Canyon County Pickles Butte Landfill

Landfill Status Report Update

4576RPT.DOC December 8, 2015

P 208-389-1030

F 208-389-1183

tetratech.com

PRESENTED BY

3380 Americana Terrace

Boise, Idaho 83706

Tetra Tech

Suite 201

Landfill Status Report Update

4576RPT.DOC December 8, 2015

PRESENTED TO

Canyon County

15500 Missouri Avenue Nampa, Idaho 83686

Prepared by:

Maureen McGraw Professional Engineer 12/8/2015

Robert Church Professional Engineer 12/8/2015

This page intentionally left blank.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
1.0 OPERATIONS ASSESSMENT	1
1.1 Site History	1
1.2 Service Area/Tonnage	2
1.3 Site Access and Security	2
1.4 Staffing/Organization	3
1.5 Waste Acceptance / Screening / Scale Operations / Traffic Control	4
1.6 Transfer Station	6
1.7 Fill and Cover Operations	6
1.8 Landfill Performance Evaluation	.11
1.8.1 Compacted Waste Density	11
1.8.2 Waste-to-Soil Ratio	11
1.8.3 Overall Performance/Volume Per Ton	. 12
1.8.4 Value of Air Space	12
1.8.5 Alternative Daily Cover	12
1.9 Primary Heavy Equipment Analysis and Recommendations	.12
1.9.1 Compactors	13
1.9.2 Loader	14
1.9.3 Tracked Dozer	14
1.9.4 Scrapers/Alternative Daily Cover (ADC)	.14
1.10 Supplementary Equipment	16
1.11 Litter Control/Dust Control	17
1.12 Special Wastes	17
1,12,1 Asbestos	17
1.12.2 Clean Wood Waste	18
1.12.3 TIFES	18
1.12.4 White Goods	.18
1.12.5 Housenoid Hazardous Waste	. 10
1.13 Support Initiastructure	.10
1.13.1 Onice Building	. 19
1.12.2 Scalenouses	.19
1.13.4 Shad Building	20
1.13.5 Caratakar House	20
1 13 6 Bulk Fuel Station	20
1 13 7 Wash Down Bay	20
1 13 8 Water System	20
1 13 9 Wastewater Systems	21
1 14 Fill Plan	21
1 15 Stormwater Run-On/Run-Off Control	23
1.16 Summary of Recommendations for Landfill Operations	.24
1.17 Operations Assessment Conclusions	.25
1.18 Personnel Interviewed	.25
2.0 GROUNDWATER EVALUATION	27
2.1 Previous Investigations	
2.1.1 Holladay Engineering Company Investigation	
2.1.2 DBS&A Investigation	
2.2 Geology	28
2.2.1 Area Geology	28

2.2.2 Stratigraphy	28
2.2.3 Methane	29
2.2.4 Groundwater Conditions	30
2.2.5 Aleas of Polenilal Recharge	
2 2 5 2 Infiltration Studies	
2.2.6 Geochemical Composition	33
2.3 Groundwater Sampling	33
2.3.1 Groundwater Sampling Procedure	37
2.3.2 Sampling Results	38
2.3.2.1 Metals	39
2.3.2.2 Organic Compounds	47
3.0 BIOSOLIDS ACCEPTANCE	49
3.1 Biosolids Benefits	49
3.2 Regulatory Requirements	49
3.3 Land Application	49
3.4 Surface Disposal	50
3.5 Composting	50
3.7 Landfill Impacts	ວ⊺ 53
3.8 Health And Safety Concerns	
401 ANDELL GAS EVALUATION	55
4.1 Applicable Pagulatory Paguiraments	
4.1 Applicable Regulatory Requirements	
4.1.2 Principal Federal Landfill Air Emissions Regulations	
4.1.3 Tier 2 NMOC Concentration	58
4.1.4 Greenhouse Gas Emissions Regulations	58
4.2 LFG Generation Estimates	58
4.2.1 Landfill Gas Generation Modeling Approach	59
4.2.2 Landfill Gas Generation Modeling	59
4.2.3 Landfill Gas Quality	60
4.2.4 Modeling Analysis Results	01
4.3 Recommendations	02
5.0 PRELIMINARY SLOPE STABILITY EVALUATION	.65
	05
5.1 Project Description	00 65
5.3 Preliminary Analysis	05
5.4 Conclusions	72
6.0 CONCEPTUAL FILL PLAN REPORT & CAPACITY ESTIMATE	73
6 1 Site Design History	73
6.2 Current Situation.	73
6.3 Proposed Fill Sequence and Design Criteria	74
6.4 Phase 1 Fill Plan	75
6.5 Phase 2 Fill Plan	76
6.6 Phase 3 Fill Plan	77
6.7 Phase 4 Fill Plan	77
6.9 Conclusions and Recommendations	// 70

7.0 STORMWATER	81
 7.1 Regulations 7.2 Drainage Control 7.3 Hydrology Methodology	
8.0 CLOSURE/POST-CLOSURE MAINTENANCE COST ESTIMATE	95
 8.1 Closure Cost Estimate	
9.0 REFERENCES	103

LIST OF TABLES

Fable 1-1. Service Area Population 2014 Census Estimates	2
Table 1-2. Fiscal Year 2014 Waste Generation Statistics PBSL Service Area	2
Fable 1-3. Performance Evaluation Summary	11
Fable 1-4. Heavy Equipment Hours and Operating Costs	13
Table 1-5. Equipment Comparison between Daily Soil Cover and Alternative Daily Cover	15
Fable 1-6. Estimated Annual Cost Savings Using a Spray-On ADC System	15
Fable 1-7. Estimated Annual Cost Savings Using a Tarp System	16
Table 1-8. Estimated Annual Cost Savings Using a Tarpomatic System	16
Cable 2-1. Summary of Monitoring Well Information	31
Fable 2-2. Estimated Sampling Costs	38
Table 2-3. Average Concentrations (in mg/l) of Metals in Groundwater, October 2003 -	
Present	39
Fable 2-4. Summary of p values for Arsenic Regression Analysis	46
Table 3-1. Maximum Concentrations for Surface Disposal	50

Table 3-2.	Composting Requirements	.51
Table 4-1.	Pickles Butte Sanitary Landfill Estimated Waste Composition	.56
Table 4-2.	LandGEM Minimum Methane Generation Rates, 2015	.60
Table 4-3.	LandGEM Maximum Methane Generation Rates, 2015	.60
Table 4-4.	Tetra Tech Estimated Methane Generation Rates Based on CARB and No	
	Biosolids, 2015	.60
Table 4-5.	Tetra Tech Estimated Methane Generation Rates Based on CARB with Biosolids,	
	2015	.60
Table 5-1.	Material Strength Properties	.66
Table 5-2.	Summary of Slope Stability Analysis	.66
Table 6-1.	Conceptual Fill Plan Design Criteria	.74
Table 6-2.	Projected Annual & Cumulative Tonnage	.75
Table 6-3.	Conceptual Lift Plan Capacity, Life Estimates, Cover Soil Volume Needed Using	
	the Current Daily Cover Operation	.76
l able 6-4.	Conceptual Lift Plan Capacity, Life Estimates, and Cover Soil Volume Needed	
	Using Alternative Daily Cover Operation	.77
Table 7-1.	25-Year, 24-Hour Run-off Summary Table – Basin A	.86
Table 7-2.	25-Year, 24-Hour Run-off Summary Table – Basin B	.86
Table 7-3.	25-Year, 24-Hour Run-off Summary Table – Basin C	.86
Table 7-4.	25-Year, 24-Hour Run-off Summary Table – Basin D	.87
Table 7-5.	Summary of Culverts and Parameters for 25-Year, 24-Hour Storm Event	.88
Table 7-6.	Summary of Channels and Parameters for 25-Year, 24-Hour Storm Event	.89
Table 7-7.	25-Year, 24-Hour Storm Event	.91
Table 7-8.	Existing versus Proposed Stormwater Controls	.91
Table 8-1.	Pickles Butte Sanitary Landfill Current Footprint (74.2 Acres) Capillary Break	00
	Cover Closure Cost Estimate (2015)	.96
	Pickles Bulle Sanitary Landill Full Build Out (116 Acres) Capillary Break	07
Table 0.2	Cover Closure Cost Estimate (2015)	.97
	Closure Cost Estimate (2015)	00
Table 0.4	Dioking Cust Estimate (2015)	.90
i able 0-4.	Closure Cost Estimate (2015)	00
Table 8.5	Dickles Butto Sanitary Landfill Annual Dest-Closure Cost Estimate (2015)	.99
	r ickies butte Gamary Lanunii Annuar Post-Giosure Cost Estimate (2013)	100

LIST OF FIGURES

Figure 1-1. Existing Site Plan	9
Figure 2-1. Site Plan / Monitoring Well Location Map	35
Figure 2-2. Effect of change in sampling method on turbidity in wells	37
Figure 2-3. Regression Analysis for Arsenic in PB-3	40
Figure 2-4. Regression Analysis for Arsenic in PB-4	41
Figure 2-5. Regression Analysis for Arsenic in PB-7	41
Figure 2-6. Regression Analysis for Arsenic in PB-9	42
Figure 2-7. Regression Analysis for Arsenic in PB-10	42
Figure 2-8. Regression Analysis for Arsenic in PB-11	43
Figure 2-9. Regression Analysis for Arsenic in PB-12	43
Figure 2-10. Regression Analysis for Arsenic in PB-13	44
Figure 2-11. Regression analysis for Arsenic in PB-14	44
Figure 2-12. Regression analysis for Arsenic in PB-15	45
Figure 5-1. Phase 3 Maximum Static Section with a 5H:1V Slope	67
Figure 5-2. Phase 3 Maximum Seismic Section with a 5H:1V Slope	.68
Figure 5-3. Phase 4 Maximum Static Section with a 4H:1V Slope	69

Figure 5-4.	Phase 4 Maximum Seismic Section with a 4H:1V Slope	70
Figure 5-5.	Phase 3 Temporary Cut with a 2H:1V Slope	71
Figure 7-1.	West Fill Face Stormwater Capture Methods	85

APPENDICES

- Appendix 1-A Site Certification Boundary
- Appendix 1-B Waste Disposal Records
- Appendix 1-C Population Data
- Appendix 1-D Organization Chart & June 2015 Schedule
- Appendix 1-E Landfill Fee Schedule
- Appendix 1-F CAT Performance Manual References
- Appendix 1-G Equipment Information
- Appendix 1-H Well PB-1 Abandonment Documentation
- Appendix 2-A Low Flow Equipment Cost
- Appendix 4-A Projected Waste Flow Data
- Appendix 4-B Copies of Federal Regulations
- Appendix 4-C LandGEM Minimum Methane Generation Rates, 2015
- Appendix 4-D LandGEM Maximum Methane Generation Rates, 2015
- Appendix 4-E Estimated Methane Generation Rates Based on CARB and No Biosolids, 2015
- Appendix 4-F Estimated Methane Generation Rates Based on CARB with Biosolids, 2015
- Appendix 4-G Gas Generation Graphs
- Appendix 6-A Conceptual Fill Plan Cross Sections
- Appendix 7 A Isopluvial Map
- Appendix 7-B Stormwater Plans
- Appendix 7-C FlowMaster Calculations
- Appendix 7-D Retention Basin Calculations

This page intentionally left blank.

EXECUTIVE SUMMARY

Canyon County (the "County") contracted with the Tetra Tech/Great West Engineering team in June 2015 to prepare a Landfill Status Report for the Pickles Butte Sanitary Landfill (PBSL, or "the Landfill"). The landfill began accepting waste in 1983 under the original facility design, which was revised in 1994 as part of licensing the facility with the Idaho DEQ under the Federal Subtitle D rules. The 1994 fill configuration is the currently approved design for the facility. The previous Landfill Status Report was written in 1997 by Holliday Engineering Company. The report covered the design history, fill rates, the facility master plan, methane and groundwater monitoring, applicability of the clean air act, and a financial assurance calculation. This report updates the previous report by reviewing operations and activities at the site since the previous report was written, and includes an evaluation, where applicable, of revised regulations that could potentially affect the landfill. The report is divided into eight sections, which are briefly described below.

Section 1.0 of the report reviews the operation of the Landfill by evaluating performance, equipment use, litter and dust control, special wastes, and infrastructure. Overall, the site is well operated and maintained. To assist with future operations, the site needs to update the operation and management plan, and develop a fill plan. In addition, this section of the report discusses alternative daily cover (ADC) options, waste diversion, infrastructure improvements, and the establishment of a capital improvement plan (CIP) for financial planning.

Section 2.0 examines activities related to the groundwater at the site, and includes a review of the geology, stratigraphy, groundwater flow characteristics, groundwater composition, and groundwater sampling program around and beneath the Landfill. Consistent with previous work at the site, the results indicate that the regional groundwater has background metals and methane present. An analysis was done to evaluate how the concentrations detected compared to regulatory limits. This report makes recommendations for standard practices used for groundwater sampling to improve data quality.

Section 3.0 evaluates the request by the Landfill to accept Class B biosolids from the Cities of Nampa and Caldwell. The Landfill can benefit by using biosolids to augment final cover or intermediate cover soil. Key benefits for cover soil are moisture holding capacity and the growth of surface vegetation, which will inhibit erosion and reduce slope maintenance. The addition of this waste stream will also provide another source of revenue for the landfill. Biosolids can be handled at the landfill in a variety of ways, each with their own regulatory implications. Four general procedures include, land application, incorporation into the active face, incorporation into soil used for landfill operations, and use as feedstock for a compost program.

There would be some health and safety concerns associated with the acceptance of biosolids. Class B biosolids contain relatively high concentrations of pathogens (fecal coliform, helminth ova, etc.). Direct contact with exposed skin should be avoided, as well as contact with the eyes and mouth. The best protection is to avoid direct contact with the biosolids. Personal protective equipment would include gloves, goggles/face shield, a Tyvek suit, and Tyvek booties.

Section 4.0 estimates the amount of landfill gas produced by the landfill from the start of operations to the year 2048. Based on the non-methane organic carbon (NMOC) concentration from the most recent Tier 2 analysis and the landfill gas generation estimates from our study, the annual NMOC emission rate was determined. This annual NMOC emission rate is a key regulatory parameter contained in 40 CFR 60, Subpart WWW. The NMOC emission rate determines if the landfill is required to install a landfill gas collection and control system (GCCS). The PBSL does not currently have a GCCS. The current NMOC threshold that applies to the PBSL is 50 Mg/year NMOC. It is estimated that the Landfill is generating 33.3 Megagrams per year (Mg/year) (estimate from 2014). However, new regulations being promulgated by the EPA

will reduce the NMOC emission threshold to 34 Mg/year. If the final version of the new regulations contain this threshold, the PBSL may be required to install a GCCS.

Tetra Tech recommends that the PBSL explore the Tier IV option for measuring NMOC emissions if this option is included in the final version of 40 CFR 60, Subpart XXX. The Tier IV option may result in a lower NMOC emission rate that would postpone the installation of a GCCS. The PBSL may also want to review the need to install perimeter LFG probes, as required by 40 CFR §258.23.

Section 5.0 of the report discusses a preliminary stability analyses and seismic evaluation of the proposed cell geometries. The analysis was conducted to verify satisfactory stability or indicate if flatter slopes are required to achieve stability. The material strength properties incorporated in the preliminary analyses were based on lower bound shear strength values, and are considered conservative estimates. Results of the preliminary seismic evaluation indicate that the Conceptual Fill Plan design for future Phases 1 through 4 should meet the requirements of the Administrative rules for the Idaho Solid Waste Facilities Act for the Idaho DEQ's administration of Municipal Solid Waste Landfills (MSWLF).

Section 6.0 presents a conceptual fill plan for the landfill area that was developed based on the stability analysis and the landfill management's preference on fill sequence and slope criteria. The conceptual fill plan includes four phases. Phase 1, currently under way, includes completion of the fill to match a historic ridgeline. Phase 2 includes filling a triangular portion of the property east of Perch Road. Phase 3 includes filling the current soil borrow area called the West Borrow Area. Phase 4 includes capping the top deck of the landfill with a 5% grade to the east. This fill plan allows the County to maximize the amount of time a motorcycle recreation area to the west can remain open for public use. This fill plan provides approximately 27 years of capacity under the current operational methods used at the facility. The soil available within the West Borrow Area will last approximately 9 years using the current cover operations. At that time, the County needs to have a plan prepared for the next excavation/soil borrow area. We recommend that the County proceed immediately with developing a cut and fill plan design in accordance with the conceptual fill plan.

Section 7.0 is an engineering analysis of the stormwater at the site and serves as an update to the previous stormwater analyses contained in the *1997 Landfill Status Report* dated February 1998 and the *Pickles Butte Sanitary Landfill Operation and Maintenance Manual* dated December 2012. This analysis includes identification and evaluation of existing run-on and run-off controls along with recommendations for additional and/or improved controls where necessary. A the 25-year, 24-hour storm event (a criterion meeting that contained in the *EPA's Solid Waste Disposal Facility Criteria Technical Manual, revised April 1998*, and the *Code of Federal Regulations, Title 40, Section 258.26* (40 CFR 258.26) was used to calculate design flows for the on-site and off-site drainage features. Utilizing AutoCAD software, the existing 2014, 2-foot PBL topography was divided into drainage tributaries. This was only possible by including the following recommended features into a preliminary design:

- Inwardly pitched haul road/drainage benches that divide portions of the west fill face. This allows control of the stormwater rather than allowing it to continue downslope for very long distances. Such long distances of travel would cause excessive erosion of the west fill face cover;
- Additional drainage channels, culverts and berms to manage and direct on-site stormwater away from or around future excavation and filling areas, and direct it to onsite retention basins; and,

Additional drainage channels and berms to divert off-site flow around the current site and future excavation/filling areas.

A detailed engineering analysis was conducted and is described in detail in this section to help reduce erosion and road crossing maintenance. The analysis assumes that all stormwater control features are in-place, so it is important that all Plan features be implemented by the County as soon as permissible. Finally, although improved stormwater controls will result in reduced future erosion rates and road crossing maintenance requirements, storm event run-off will still include significant sediment transport. Modified and/or additional controls may become necessary in the future. It is critical for the viability of stormwater controls that maintenance take place after each storm event. Required maintenance would typically consist of sediment removal from stormwater conveyance structures and retention basins as well as repairing rills formed in slopes and erosion of berms. Disregard of such maintenance will inevitably, no matter how good the design, cause loss of conveyance capacity and a failure of the stormwater control system. The extents and costs of necessary repairs caused by disregard of routine maintenance would far exceed those incurred had routine maintenance been performed.

Section 8.0 examines the basis for the proper level of funding to close and provide post-closure maintenance for the Landfill in an environmentally sound manner. Cost estimates were prepared reflecting the proposed closure design and post-closure maintenance procedures presented in the 2012 Operations and Maintenance Manual. At the request of DEQ, closure cost estimates for both the current landfill footprint (74.2 acres) and for the final build-out of the landfill (116 acres) were prepared. The closure cost estimates consider two types of final cover for each acreage scenario. Currently, the final cover design is a capillary break; however, it may be more cost effective and provide equivalent performance to use a 4-foot thick monolithic soil final cover. The total annual maintenance and monitoring cost estimate for post-closure is discussed in detail in this section. The total 30-year post-closure cost estimate was calculated by multiplying the annual cost estimate by 30 years. In accordance with 40 CFR, Subpart G, and Title 39, Chapter 74 of the Idaho Code, an operator must demonstrate financial assurance for the proper closure and post-closure maintenance. According to the Operations and Maintenance Manual, the financial assurance mechanisms for the Pickles Butte Sanitary Landfill are in the form of a Local Government Financial Test and restricted cash account. Each year, the amount of financial assurance and the choice of funding instrument is reviewed and approved by the DEQ.

This page intentionally left blank.

1.0 OPERATIONS ASSESSMENT

This section reviews the landfill operations based on a review of previous landfill documentation, interviews with key staff, and a comprehensive two-day field inspection

1.1 Site History

The Idaho Department of Environmental Quality (DEQ) approved the original design and operating plan in June 1973, and reconfirmed approval in May 1975 (Holladay, 1994). The Southwest District Health Department approved the landfill in December 1979 (ibid). The landfill initially began accepting waste in April 1983. With the implementation of Subtitle D, the County obtained site certification for the landfill from the DEQ in August 1993. The DEQ subsequently approved a Hydrogeologic Characterization, Ground Water Monitoring Plan and Facility Design Report prepared by Holladay Engineering Company (ibid). The approval included exemptions from the requirements for a liner/leachate collection system and groundwater monitoring. This technical decision was based on the depth to groundwater, native soils characteristics, and the arid climate of the facility.

The 1994 Hydrogeologic Characterization, Ground Water Monitoring Plan, and Facility Design Report is still the current regulatory basis for the design of the facility. It included a design boundary footprint for waste disposal. The design boundary for the waste footprint on the east side followed the topography of the top of the ridgeline of several coulees as shown in Figure 6 of that report. The County did not submit the 1997 Landfill Status Report to the DEQ or the Southwest Idaho District Health Department.

The County subsequently submitted an updated Site Certification in June 2010 (Daniel B. Stephens and Associates, 2010), which expanded the site certification boundary to 492 acres. Figure 1 from that report documents the current site certification boundary and is included with this report as Appendix 1-A. The DEQ approved this site certification in August 2010. That document serves as the current certification boundary for the facility.

Finally, the most current Operations and Maintenance manual for the facility is dated December 2012 (Canyon County Solid Waste (CCSW), 2012). Idaho code requires that the O&M manual be updated every three years so an updated O&M Manual will need to be completed and submitted to the DEQ by December 2015.

The 1994 Design Report, 2010 Site Certification Document, and the 2012 O&M Manual are the primary regulatory documents governing site design and operations at the facility. According to County records, the landfill has 4,074,170 tons of waste in-place as of September 30, 2014 (Appendix 1-B).

Holladay Engineering Company (Holladay) installed seven monitoring wells beginning in 1992 as part of the investigation described in their 1994 report. These were designated PB-2 through PB-8. The designation PB-1 was applied to an existing domestic well located adjacent to the shop building at the Landfill. Holladay installed monitoring wells PB-9 and PB-10 in 1995. Daniel B. Stephens & Associates (DBS&A) installed wells PB-10 through PB-15 in 2011 as part of their investigation. The County has conducted voluntary groundwater sampling on all available site monitoring wells on a biannual basis since 1995. The County also commissioned significant hydrogeologic investigations between 2010 and 2014 for the future expansion of the landfill. DBS&A conducted this work. The County has not submitted this report to the DEQ because it wishes to prepare an expansion design first.

1.2 Service Area/Tonnage

The PBSL currently services the residents of Canyon and Owyhee Counties. The 2014 population of the service area as estimated by the US Census Bureau (Appendix 1-C) is summarized in **Table 1-1**.

Area	Population
Canyon County	203,143
Owyhee County	11,353
Total	214,496

Table 1-1. Service Area Population 2014 CensusEstimates

According to the US Census Bureau, Canyon County's population increased 7.5% between 2010 and 2014. Owyhee County had a 1.5% decline over this same period. The County has kept detailed annual waste acceptance records at the landfill since scales were put into operation in February 1995 (Appendix 1-B). During the last complete fiscal year of October 2013 - September 2014, the Landfill accepted 216,376 tons. **Table 1-2** shows the per capita waste generation for this period. Annual tonnage will continue to increase with population growth.

Table 1-2. Fiscal Year 2014 Waste Generation Statistics PBSL Service Area

ltem	Amount
Total Tonnage	216,376 tons
Service Area Population	214,496
Peak Day Tonnage	1,200 tons/day
Per Capita Waste Generation	1.0 tons/person/year 5.5 lbs./person/day
National Waste Generation	4.4 lbs./person/day (EPA – 2013 Materials Fact Sheet)
Waste Tonnage Diverted	4,413 tons
Waste Diversion Percentage	2.0%

Although Canyon County does generate more than the national average of waste per person, 5.5 lbs./person/day is consistent with similar rural areas within the Western US. We have seen generation rates as high as 7 lbs./person/day in some communities in the Western US. Because the County only diverts approximately 2.0% of the wastes that arrive on-site, we recommend the County consider a waste characterization and waste diversion study so that the diversion of additional wastes can be investigated and evaluated.

1.3 Site Access and Security

The landfill is open between 8:00 am and 5:30 pm six days per week. Site access is via Missouri Avenue, which is a well maintained, two lane County Road. Because the majority of the waste originates in the cities of Nampa and Caldwell, State Highway 45 is also a major transportation route for most of the waste being delivered to the site. The entire area that the County regularly operates within is fenced with 12-15 foot high, woven wire litter fence. The primary access gate

is located on the southern boundary of the facility and is locked during hours the landfill is closed. All other supplementary access gates around the facility remain locked and only opened when used by PBSL staff. Site security is maintained off hours by a caretaker that resides at a house located immediately south of the landfill. About 1350 acres of the western portion of the property owned by the County, but outside the perimeter fenced area, has been developed as a recreation area called Jubilee Park. The emphasis of use of Jubilee Park near the Landfill is for off-highway vehicle (OHV) use.

Site access and security are in good condition and we have no recommendations for improvements.

1.4 Staffing/Organization

The PBSL is operated under the Canyon County Solid Waste Department. The Board of County Commissioners has the ultimate responsibility and decision-making authority for the Landfill. The Solid Waste Director reports to the Board and has the overall responsibility for the day-to-day operations of the landfill. The County has 24 employees for the landfill including the Director. The Director supervises three managers, including the Administrative Supervisor, Landfill Supervisor, and Code Enforcement Supervisor. The overall organization chart is included in Appendix 1-D.

The Administrative Supervisor oversees five employees including three full time Fee Collectors, a maintenance custodian, and the caretaker. The Administrative Supervisor also supervises two part time Fee Collectors. The Administrative section is generally responsible for record keeping, operating the scalehouses, collecting fees, invoicing, accounts receivable, payroll, human resources, and other accounting functions for the PBSL. Fee Collectors staff the scales and provide the first line of waste screening as well as directing traffic and collecting fees. With the four day per week, 10 hour per day (4 x 10) schedule the landfill needs three full time Fee Collectors and two part time Fee Collectors (2 for each day except 3 on Saturday so the upper scalehouse can be manned). Therefore, the Fee Collector staff is adequate and there are no recommendations for staffing changes.

The Landfill Supervisor oversees eleven employees including three hazardous waste screeners, seven heavy equipment operators, and one mechanic. Nearly all activities in the active landfill area are under the supervision of this section including waste screening, traffic control, waste compaction, soil excavation and cover, water truck operation, grading, and road maintenance. This group is also responsible for on-site equipment maintenance.

Hazardous waste screeners direct traffic at the active face and transfer station, and screen the loads for hazardous waste. They play a major role in safe operations, especially at the active face where interaction between heavy equipment and customers can occur. Two screeners are needed each day. With the 4 x 10 work schedule, three hazardous waste screeners are needed. Therefore, we recommend no changes to staffing for the hazardous waste screeners.

Equipment operators run the heavy excavation and compaction equipment including the landfill compactors, scrapers, front-end loader, water trucks, dozer, and roll-off truck. The landfill has 3 to 5 equipment operators on site each day in addition to the Landfill Supervisor. Three pieces of equipment are operated full time including the scraper, loader, and compactor. The other 1 or 2 operators run the other equipment including water trucks, grader, roll-off truck, fuel tender, dozer, etc. One equipment operator is also responsible for maintaining the tires of the equipment maintenance. The Landfill staff repairs and replaces all of the tires at the facility. This has saved the County a great deal of money compared to contracting with private tire repair services. At this time, the PBSL is properly staffed with equipment operators considering the extra duties they have, such as tire maintenance. If the County elects to implement Alternative Daily Cover (ADC) as discussed in Sections 1.9.5 and 1.10.4 this may result in the need for another equipment operators so that the staffing level can be regularly evaluated.

The County has one mechanic that is responsible for all regular maintenance and fueling at the facility. The County has included budget for the addition of another mechanic in the next fiscal year.

The Code Enforcement Supervisor oversees two employees. Code Enforcement employees enforce County's litter and covered load ordinances. They also supervise the inmate crew that does the majority of the litter picking.

Most employees work four 10-hour shifts per week. The June 2015 schedule is included in Appendix 1-D as an example of a typical schedule. The landfill has an adequate staff to run the landfill properly.

1.5 Waste Acceptance / Screening / Scale Operations / Traffic Control

The facility has two scalehouses through which all of the incoming waste is routed. The upper scalehouse has two 50-foot pit scales. The upper scale facility is used for commercial charge accounts. Customers key in their account number on the inbound scale. Once the account number is entered onto the keypad, the traffic control gate rises. All commercial account users know to travel to the upper deck of the active fill area. The customer returns to the outbound scale after dumping and keys in their account number to leave the facility, which actuates the traffic control gate. This scalehouse is completely automated when used in this fashion. The County does staff

this scale occasionally on Saturdays to assist with handling public users and increase the throughput out of the facility. The County regularly has 600-700 customers on some Saturdays that are primarily paying customers instead of commercial haulers.

The lower scalehouse is used for all customers that do not have a charge account. This scalehouse is equipped with two, 70-foot pit scales and is staffed with two scale attendants that the County calls Fee Collectors. The Fee Collectors ask the customers where they live and the type of wastes they have. If someone is suspected to be out-of-County, the Fee Collector will ask for identification. Out of County wastes are charged double the current tonnage fee.

Customers with special wastes that the County diverts are directed to the appropriate area. Customers with municipal solid waste are

directed to one of two areas. Customers with trailers or otherwise large loads are sent to the working face. Pick-up truckloads and other small loads are sent to the six bay roll-off transfer station.

The Fee Collector enters the gross weight of the vehicle into the scale software (WasteWorks) and the customer is given a laminated number placard corresponding to that transaction. When the customer leaves the site, they hand the account number placard back to the outbound Fee Collector. The Fee Collector enters the outbound weight into the scale software and the customer is billed on a per ton basis. The general fee for County residents is \$14.50 a ton with a minimum transaction fee of \$5.00 for 0-600 pounds. Owyhee County residents pay slightly higher fees than Canyon County residents do. A full breakdown of the landfill fee schedule is included in Appendix E. Other fees for Canyon County residents are as follows:

- \$12.00/ton for clean wood wastes,
- \$15.00 per unit for removal of Freon/oil from refrigeration units and other compressors, and
- \$2.00 per passenger or light truck tire.

The current tipping fee of \$14.50/ton is the lowest tipping fee for any facility that we have worked for in the region. Typical tipping fees for rural western landfills of similar size range from \$25-\$40/ton. The next lowest tipping fee in the region that we are aware of is the City of Billings, MT,

Lower Scalehouse Outbound Interior

which charges \$18.50/ton. The PBSL is an enterprise account and all revenues are generated from tipping fees, interest and commodity sales. The County does not have a tax assessment for solid waste. The County does not have a Capital Improvements Plan (CIP) for equipment purchases and capital improvements projects at the landfill. We recommend the County develop a 5-10 year CIP for the landfill and establish reserve accounts for equipment and capital projects. This will help the County determine whether the current tipping fee is adequate to fund the operation in the long term. Two hazardous waste screeners are on site each day. One waste screener is assigned to the transfer site. The screener examines wastes as they are dumped for unacceptable wastes. The screener also helps the customer identify wastes that may be diverted and helps direct traffic around the transfer site. The other screener works at the bottom of the active face examining loads and directing traffic, which improves the safety in this area.

The County conducts random screening of waste loads at the active face. Hazardous waste handling and screening protocol and forms are

Special Waste Diversion Area

documented within the O&M Manual (CCSW, 2012). Records of these inspections are kept on site.

1.6 Transfer Station

The transfer station consists of a six-bay, Z-wall that accommodates 20 cubic yard roll-off containers. Customers with smaller loads are directed to this area to dump which helps reduce the traffic at the active face. A retaining wall constructed of pre-cast concrete blocks provides the grade separation for dumping. The drop off is protected partially by a board system which prevents the customer from backing up too far and provides a surface for standing on while unloading into the container. The County uses one of the containers for diverting metal and another for diverting wood wastes. Once a container is full, the County uses its roll-off truck

to haul the wastes to the active face. There is also a waste diversion area next to the transfer site which provides a drop off location for batteries, tires, e-waste, white goods and waste oil.

The container bay arrangement for the transfer station does not meet the International Building Code (IBC) requirement 1013, which requires a 42-inch high guard barrier to protect the public from a drop off higher than 30 inches. Therefore, we recommend the County install a codecompliant 42-inch barrier along the top of the container wall. Barrier systems do sustain damage so it is advisable to add parking bumpers to prevent customers from backing into the barriers. Two alternatives for addressing the barrier requirement are: (1) to build up the surface that the containers sit on up to an elevation where the container itself provides the 42-inch barrier or (2) build up the container level, such that the drop off is less than 30 inches.

1.7 Fill and Cover Operations

The County typically runs a 15-20 foot high waste lift with a working slope of approximately 5:1. Public customers are directed to the lower level of the working face to dump. Commercial customers are directed to the top level of the lift to dump. The County uses a front-end loader to push waste from the tipping floor onto the active face. In the process, the loader helps keep the lower tipping floor deck clean of waste for the public. It also keeps the lower deck smoother because it does not tear it up like tracked equipment would. The top tipping deck is kept clean by periodically hauling soil into this area and grading the daily cover with the front-end loader. The County uses a 2013 John Deere 624K Loader. The County is in the process of purchasing a larger

loader so that they will have a backup as they have for each other major piece of landfill equipment. The County uses its water trucks to periodically moisten both the bottom and top tipping decks, which allows the soil to be more cohesive and helps control dust.

County has The two waste compactors, a 2014 Aljon 525A and a 2010 Aljon 525J4. These machines are similar in weight and horsepower to a CAT 836 Compactor. The County typically runs only one compactor a day. Having a second compactor provides redundancy for breakdowns scheduled and maintenance. Both compactors are used on high tonnage days or when a large volume of waste comes into the facility in a short period of time. The compactor places and compacts waste perpendicular to the slope. According to staff, the compactor operates continuously during the workday.

Daily cover operations are performed by two scrapers; a 2014 CAT 623K and a 2010 CAT 623G. Daily and intermediate cover is obtained from the area southwest of the waste footprint shown on **Figure 1-1** (West Borrow Area). The County also borrows material from a gravel source immediately east of the waste footprint (East Borrow Area). Gravel is used to stabilize roads and operations areas on site.

Two hours before the end of the operational day, the staff starts placing daily cover on half of the exposed active waste face. The waste face is covered by running the scraper load down the compacted slope and dropping the load while moving down the active face. The goal is to place six inches of

Compactor from Lower Deck

daily cover. However, the staff believe that they typically place more than six inches because of the loose, dry nature of the cover soil. In fact, the silts and sands that dominate the material are extremely dry and turn into a flour-like consistency when driven over repeatedly with heavy equipment. By starting to cover the active face earlier in the afternoon, the staff can complete the daily cover operations more quickly at the end of the day. The last load is taken at 5:30 pm and the operations crew generally completes their work at 6:00 pm.

After the first round of daily cover placement, the County has any construction and demolition (C&D) debris dumped in the area where the next day's waste will be placed. Idaho does not require that C&D waste be covered daily. This helps reduce the volume of waste that needs to be compacted and covered at the end of the day.

This page intentionally left blank.

1-15170-Pickles Butte Landfill/CADD 1-15170/Exhibits/Operations Assessment/1-15170-0A-FG01.dwa

1.8 Landfill Performance Evaluation

The County has conducted aerial photography and mapping of the facility on an annual basis for over a decade. We obtained surfaces from the 2013 and 2014 mapping efforts from Miller Creek Aerial Mapping so that a volume and performance evaluation could be completed. Miller Creek recommended that the 2013 surface be adjusted 0.5 feet downward because of an error during the translation of the data. Volumes were calculated with boundaries limited to the waste areas that received fill and borrow areas that had active excavation. This eliminated data scatter and resulted in accurate cut and fill volumes. The performance criteria volumes are based on the adjusted 2013 surface and the 2014 surface. **Table 1-3** summarizes the results of the evaluation.

ltem	Amount
Tonnage Landfilled	211,955 tons
Total Fill Volume	363,225 CY
Western Borrow Area	82,972 CY
Eastern Borrow Area	29,975 CY
Total Borrow Soil	112,947 CY
Waste Volume	250,278 CY
Waste-to-Soil Ratio	2.22:1
Compacted Waste Density	1,690 lb./CY
Volume Per Ton Ratio	1.7 CY/Ton

Table 1-3. Performance Evaluation Summary

1.8.1 Compacted Waste Density

The compacted waste density for this time period was outstanding. The Aljon waste compactors are similar in weight (107,000 lbs.) and horsepower (540 hp) to a CAT 836 Compactor. The CAT Performance Manual (Appendix 1-F) lists the range of compacted waste densities for an 836 machine to be between 1,200 and 1,800 lb./cy with an average of 1,500 lb./cy. The PBSL compacted waste density exceeds the average by over 12%, which results in better utilization of the air space at the landfill.

1.8.2 Waste-to-Soil Ratio

The other factor that impacts landfill disposal performance is the waste-to-soil ratio. This is simply the volume of air space used for waste divided by the total volume of daily and intermediate soil cover used. The 2.22:1 waste to soil ratio indicates a very high usage of soil cover. In fact, 31% of the air space used over this time period was for soil cover. Landfills of similar size that use soil on a daily basis typically operate at a waste-to-soil ratio of 3:1 or higher. This indicates that the County should be able to operate with the use of significantly less cover soil at the facility, which would expand the life of the landfill.

The borrow material at the PBSL is very dry, non-cohesive, and does not effectively bridge over the waste. This is one reason that the operators are forced to use additional soil to obtain the sixinch minimum soil cover depth. The County has tried deploying daily cover by stockpiling soil at the top of the slope with the scraper and pushing it onto the slope with the dozer. This is a more typical approach in the industry. However, the County believes they actually use more soil with this technique because the tracked dozer works waste up through cover soil because it does not effectively bridge the waste. We agree that the County should continue to place daily cover with the scraper because of the soil properties at the site.

1.8.3 Overall Performance/Volume Per Ton

The overall landfill performance is evaluated based on the air space used per ton of waste disposed. This criteria is termed the volume per ton ratio and is the best performance measure because it factors in both compacted waste density and soil usage. The PBSL operated at 1.7 cy/ton over the evaluation time period. Industry standards typically recognize a volume per ton ratio of less than 2.0 cy/ton as good overall performance. However, if the PBSL reduced its soil usage the overall air space utilization could be improved. For example, if the PBSL maintained a 1,690 lbs./cy compacted waste density and achieved a waste to soil ratio of 5:1 the volume per ton ratio would improve to 1.4 cy/ton. This represents nearly a 20% improvement in air space efficiency.

1.8.4 Value of Air Space

The value of air space at facilities varies widely. Certainly, landfills with costly liners, leachate collection systems, and final covers place a high value on air space because of the capital investment required to construct the air space. With the PBSL's exemption from the lining system requirements and relatively low cost alternative final cover, we understand that the air space value is less at the PBSL than other facilities on a purely capital cost perspective.

The other factor that drives air space value is the remaining life of the facility. Landfills that have minimal remaining capacity will often value the air space based on the cost of licensing and constructing a new facility. Currently, PBSL has a large approved site certification area, and likely has many decades of landfill capacity available.

1.8.5 Alternative Daily Cover

Alternative daily cover (ADC) is commonly used nationwide as a replacement for meeting the sixinch daily soil cover requirements for landfills. The six-inch daily soil cover is required to control vectors and litter at the active face of the landfill. The two most common types of ADC utilized are tarps and spray-on products

The two primary drivers for the implementation of ADC include the more efficient use of air space and the reduction in heavy equipment time. Because of the large reserve capacity at PBSL and the exemption from liner installation, air space value is not a compelling argument for evaluating the use of ADC. However, we believe that the evaluation of ADC at the PBSL is warranted based on the reduction in heavy equipment hours and the associated cost savings. ADC alternatives are evaluated within the next section of the report.

1.9 Primary Heavy Equipment Analysis and Recommendations

An evaluation of the heavy equipment used at the landfill typically starts with an evaluation of the number of hours each type of equipment is used per day. **Table 1-4** summarizes hour usage on the primary pieces of equipment used in compaction and cover activities at the landfill. **Table 1-4** also includes Federal Emergency Management Agency (FEMA) equipment rates for the key pieces of heavy equipment (Appendix 1-G). The FEMA rate covers ownership and operation costs including depreciation, overhead, maintenance, and repairs. The FEMA rate does not include the cost of the operator. FEMA rates are commonly used by local governments and are significantly less than other rate books used by private contractors, such as Blue Book.

Equipment Description	Time Period	Hours	Hours /Day	FEMA Equipment Hourly Rate	Equipment Cost/Day
2014 Aljon 525 A Compactor	03/2014-06/2015	2,841	7.5	\$225.00	\$1,687.50
2010 Aljon 525J4 Compactor	03/2014-06/2015	1,266	3.3	\$225.00	\$742.50
Total Compactor Time	03/2014-06/2015	4,107	10.8	\$225.00	\$2,430.00
2014 Cat 623K Scraper	10/2014-06/2015	1,349	6.6	\$130.00	\$858.00
2010 Cat 623G Scraper	10/2014-06/2015	378	1.9	\$130.00	\$247.00
Total Scraper Time	10/2014-06/2015	1,727	8.5	\$130.00	\$1,105.00
2013 John Deere Loader	05/2013-06/2015	6,194	9.7	\$52.00	\$504.40
2006 John Deere 1050C Dozer	06/2006-06/2015	2,671	1	\$135.00	\$135.00

Table 1-4.	Heavy	Equipment	Hours and	Operating	Costs
------------	-------	-----------	-----------	-----------	-------

1.9.1 Compactors

As shown in **Table 1-4**, the PBSL runs a compactor full time on the site each day (10.8 hours/day). The CAT Performance Manual shows that an 836-equivalent compactor is capable of handling up to 1,000 tons/day (Appendix F). The PBSL averages nearly 700 tons/day and has days exceeding 1,000 tons/day. According to PBSL staff, the landfill peak days are 1,200 tons/day.

While the CAT Performance Manual rates the compactor production at 1,000 tons/day for an eight-hour day (125 tons/hour), this assumes that the operation has a tracked loader or dozer assisting the compactor by pushing loads into thin lifts prior to compaction. Theoretically, during an average day of 700 tons/day the compactor would only need to run 5.5 to 6 hours a day if it had assistance pushing loads. The County needs to run the compactors nearly 11 hours a day because the compactors are pushing the waste into place and compacting it. The only assistance is provided by the loader at the very top and bottom of the waste fill that pushes wastes from the tipping area onto the active face. If the County utilized a tracked dozer to push waste, the compactor hours could be reduced.

As shown in **Table 1-3**, PBSL has an excellent compacted waste density based on current procedures at PBSL. This is likely due to the additional compaction obtained by pushing the waste with a compactor versus pushing it with a tracked machine.

The industry standard for municipal landfills is to use tracked equipment for pushing waste (Appendix 1-F). Utilization of tracked machinery to push waste would reduce compactor hours and could reduce overall operations costs at the facility. The County would need to experiment with the number of hours required per day for the dozer to work in this role to determine whether this would result in efficiency improvements, particularly for the compacted waste density.

Even if the County elects to continue to push waste with the compactor there may be opportunities to reduce compactor hours during low tonnage months. For instance, the tonnage during the December-February time frame historically drops off to 500 tons/day or less than half of the production capacity of the Aljon compactors. We recommend that the County consider delaying initiation of compactor start-up operations in December-February until mid-morning and possibly consider closing the site an hour early during these three months. If the County reduced compactor hours by 3 hours per day over this 3-month period (225 hour/year) that alone could save the County over \$50,000 per year.

1.9.2 Loader

As shown in **Table 1-4**, the PBSL runs the Loader full time on site each day (9.7 hours/day). The County is in the process of purchasing a second loader to serve as a backup. Use of a loader is not a typical approach for pushing waste at the active face of the landfill. The CAT Performance Manual (Appendix 1-F) recommends utilizing tracked equipment for pushing waste. In fact, most landfills nationwide use a tracked dozer to push waste and augment the compactor operation. We understand that the County uses a loader because it helps keeps the tipping decks clean. In addition, since it has rubber tires it does not tear up the tipping decks like a track mounted machine would. This approach works for the County, and there are some clear advantages even though it is not an industry standard.

One reason tracked machinery is used to push waste is that they are often needed so the compactor can keep up with the waste compaction. As discussed in the previous section, the landfill compactors are comfortably within their operating tonnage production rate, which allows time for the compactor to push waste. The effectiveness of the PBSL approach is proven by the outstanding compacted waste density the County is achieving. Therefore, a dozer is not needed to maintain the landfilling production rate at this site. The other reason for pushing with tracked equipment is that it can reduce the amount of time on the compactor. This would in turn increase time on the dozer. Therefore, if the County is interested in exploring pushing with tracked equipment, we recommend that a trial can be conducted to compare the effectiveness and costs of this method to the County's current method.

If the County stays with the current methods and the tonnage continues to increase, the County will eventually need to operate the second compactor more frequently to handle the waste volume.

The County is achieving good compaction results with the Loader/Compactor combination so we accept this as a suitable approach for landfill operation. However, the County may want to experiment with utilizing the dozer in an effort to reduce compactor hours. If the County elected to move to pushing with the dozer, the purchase of the second loader could be delayed.

1.9.3 Tracked Dozer

PBSL has a 2006 John Deere 1050C Crawler Dozer. The dozer is used sporadically for ripping in the borrow areas, pulling out stuck equipment, and miscellaneous site improvements projects. With the minimal hours placed on this piece of equipment it should continue to serve the County for many years to come. If the County elected to push waste with the dozer, this would dramatically increase the number of hours used per year on this equipment.

1.9.4 Scrapers/Alternative Daily Cover (ADC)

As shown in **Table 1-4**, the PBSL runs the scrapers nearly full time on site each day (8.5 hours/day). The paddle wheel scrapers work well for bulk excavation of the soil materials in the borrow areas. Occasionally the County does need to rip the borrow areas with the dozer when more consolidated material is encountered. Utilizing the scrapers to place daily cover material is an effective approach, but it does result in high soil usage. As discussed previously, the characteristics of the cover soil material drive this approach.

The biggest question is whether or not it would be more cost effective for the County to use ADC rather than daily soil cover. The PBSL currently runs at a 2.22:1 waste-to-soil ratio. Facilities of similar size that use ADC are typically able to achieve a waste-to-soil ratio of 5:1 to 6:1. **Table 1-5** compares annual scraper usage and operating costs under the current operation with an operation that utilizes ADC and obtains a 5:1 waste-to-soil ratio.

Cover Type	Waste to Soil Ratio	Annual Soil Volume (CY)	Annual Scraper Hours	FEMA Scraper Hourly Rate	Annual Scraper Costs
Current Daily Soil Cover Operations	2.22:1	113,000	2,600	\$130	\$338,000
Alternative Daily Cover	5:1	50,000	1,150	\$130	\$149,500
Annual Scraper Use Savings with Alternative Daily Cover					\$188,500

Table 1-5. Equipment Comparison between Daily Soil Cover and Alternative Daily Cover

Table 1-5 indicates that the County could realize significant costs on the scraper by implementing ADC. Both spray-on ADCs and tarp systems are commonly used for landfills this size. The FEMA hourly rates in **Table 1-5** do not include operator labor.

With a spray-on ADC system, the County would purchase a trailer-mounted hydro-seeder and the spray-on products (TopCoat and Posi-Shell are the most common). The spray-on products take approximately one hour to mix, spray on, and clean the equipment. For labor costs, we used an estimated loaded labor rate of \$35/hour. **Table 1-6** shows that the County could save approximately \$150,000 per year by implementing a spray-on ADC system.

Item	Cost (Savings)	
Spray-On Product	\$75,000	
Sprayer Purchase (\$50,000 spread over 10 years)	\$5,000	
Spray-on Labor (1hr/day)	\$10,700	
Labor Savings Scraper (1,450 hours)	-\$50,800	
Equipment Savings Scraper	-\$188,500	
Estimated Annual Savings	-\$148,600	

Another ADC option is a tarp system. A 100 foot x 100 foot tarp would be adequate to cover the current active face operated by the County. Deployment of the tarp includes utilizing a dozer to pull the tarp into place after the surface has been well compacted to reduce items which could protrude and damage the tarp. The tarp would need to be anchored with tires and/or soil on the leading edge facing the wind direction. The tarp would then need to be removed each day as well. As shown in **Table 1-7**, the tarp purchase is a small fraction of the overall costs for this alternative. **Table 1-7** shows that the County could save approximately \$140,000 per year with a tarp system.

Item	Cost (Savings)
Tarps (1 per year)	\$4,000
Dozer Deployment and Removal of Tarp (1.5 hr./day – 459 hrs. x \$135/hour)	\$62,000
Tarp Labor (3hr/day – Includes Dozer Operator plus helper 1.5 hour/day)	\$32,000
Tarp Repair Labor (40 hours/year – Sewing and Miscellaneous Repair)	\$1,400
Labor Savings Scraper (1,450 hours)	-\$50,800
Equipment Savings Scraper	-\$188,500
Estimated Annual Savings	-\$140,000

Another alternative for ADC is to use tarp deployment equipment like a Tarpomatic, which is a framed mechanical tarp roller that is easily mounted to the front end of the compactor or dozer at the end of the day. The advantages of this system is that the tarps are rolled out and rolled in rather than dragged across the surface of the active face, which increases the life of the tarp to two years. In addition, the tarps are weighted to improve their performance in the wind. The tarp deployment and removal is also quicker with the Tarpomatic. The tarp dimensions are limited to 40 feet wide so the County would need 3 - 40 foot x 100 foot tarps. **Table 1-8** shows the County could save approximately \$170,000 per year with a Tarpomatic system.

 Table 1-8. Estimated Annual Cost Savings Using a Tarpomatic System

Item	Cost (Savings)
Tarps (3 which need replacement every 2 years – 1.5 tarps per year)	\$9,000
Dozer Deployment and Removal of Tarps (1 hr./day – 306 hrs. x \$135/hour)	\$41,300
Tarp Labor (1hr/day – Dozer Operator 1 hour/day)	\$10,700
Tarpomatic (\$65,000 purchase with 15 year life - \$4,300/year)	\$4,300
Tarpomatic and Tarp Repairs (80 hours/year)	\$2,800
Labor Savings Scraper (1,450 hours)	-\$50,800
Equipment Savings Scraper	-\$188,500
Estimated Annual Savings	-\$171,200

There are advantages and disadvantages of each of these ADC systems that should be considered during the choice of an ADC system. As shown in the analysis, the annual cost savings of all three ADC systems are very similar. We recommend the County implement one of these ADC systems. We also recommend the County tour facilities that use each one of these alternatives before making a decision on the preferred ADC alternative for the Pickles Butte Sanitary Landfill.

1.10 Supplementary Equipment

The PBSL has an excellent complement of equipment needed to operate the landfill. The entire equipment list is included in Appendix G. Equipment includes:

- Two water trucks
- Vacuum truck

- Fuel tender/trailer
- Backhoe
- Magnetic Sweeper
- Roll-off Truck
- Motor grader
- Several pick-up trucks

All of this equipment is in relatively good condition and well maintained. This equipment provides all the capability the PBSL needs at this time.

1.11 Litter Control/Dust Control

The County has a covered waste load ordinance. It is enforced by three deputized officers who work as Code Enforcement for the Landfill. They cite customers for uncovered loads and littering. The Code Enforcement employees also supervise County Inmate crews that pick litter at the facility on nearly a daily basis. Code Enforcement also investigates illegal dumps in the County.

Litter control infrastructure consists of a 12-15 foot high woven-wire perimeter fence, which provides the primary control of windblown litter at the landfill perimeter. The County also uses smaller intermediate fencing within the landfill as well as portable litter screens to control litter to

Water Truck From Top Deck

1.12 Special Wastes

the working areas to extent possible. Finally, the County has a vacuum truck it uses for bulk litter pick-up on-site. The County litter control system is well organized and executed.

Dust control is limited to periodic watering of the primary access roads near the tipping area and the tipping area itself. Given the dry nature of the soils and the arid climate it would be difficult to expand dust control operations to the soil borrow areas. In our opinion, the current dust control operations are adequate because there are no neighbors within close proximity of the Landfill.

Special Wastes and their handling are discussed in detail within the Operations and Maintenance Manual (CCSW, 2012). A few wastes of interest are discussed below. As discussed earlier, the County should investigate alternatives for increasing the amount of diverted waste.

1.12.1 Asbestos

The County has chosen to comply with the asbestos rules by stating that the entire waste footprint has asbestos rather than document the exact location of each load of asbestos via a legal survey. The O&M Manual describes the paperwork and acceptance criteria for asbestos-containing material in detail. This is an acceptable approach and there are no additional recommendations at this time.

1.12.2 Clean Wood Waste

Clean wood waste is directed to a separate area where a private contractor processes it. The Contractor grinds the waste and hauls it off site for \$24.50/ton. This results in a significant amount of material diversion from the landfill. The tub grinder is located such that the danger from flying debris is minimized. This is an acceptable approach for diversion of wood wastes. A second option would be to consider using this material to help stabilize the final and intermediate cover slopes to help establish vegetation. A third option would be to incorporate this material with biosolids for composting, if the County elects to accept biosolids.

1.12.3 Tires

The Landfill accepts tires and stockpiles them at a designated location. Tires are removed from the wheels, and the steel and aluminum wheels are recycled. Whole tires are placed in a trailer owned by a private contractor. When the trailer is full, the tires are taken away by the contractor whom the County pays \$130/ton. Customers are charged by the tire to fund this disposal arrangement. Idaho law prevents the disposal of whole tires within the landfill. This is a reasonable approach for tire disposal and we have no recommendations.

1.12.4 White Goods

White goods are accepted by the County and stockpiled in a separate area on the landfill property. Once enough white goods are stockpiled, a private recycling vendor is brought in to crush the material and haul it away. The County staff removes Freon from appliances and sells it to a recycler. The County keeps the required Freon removal paperwork on site as required by law. This is an acceptable approach and we have no recommendations.

1.12.5 Household Hazardous Waste

The landfill does not have a household hazardous waste (HHW) collection program. The County does collect some used paint from customers. The County is budgeting \$150,000 to conduct two household hazardous waste collection events for the next fiscal year. Long term the County may want to consider constructing a household hazardous waste collection facility on-site. The success and response to the HHW collection events will help the County decide if this is worthwhile.

1.13 Support Infrastructure

Support infrastructure consists of buildings, roads, and utilities. The original shop building and support complex was on the northwest portion of the property. This was abandoned in the mid-1990's. We understand that most of the current facilities, including the office, scale facilities, shop building, paved entrance roads, and equipment shed were constructed between 1995 and 1998.

ine need of oning rinea

This infrastructure is less than 20 years old and generally in good condition. A brief description of each element of infrastructure is discussed below.

1.13.1 Office Building

This building contains the Solid Waste Director, Code Enforcement Supervisor, and Administrative Supervisor's offices. It also houses all the landfill records. It has a meeting room and is in good condition. No improvements were identified for the short term for this building.

1.13.2 Scalehouses

The scalehouses are both in good condition. The County is replacing the transaction windows in the lower scalehouse with automated windows. The Fee Collectors struggle with keeping eye contact with the customers while they are entering data. Improving the transaction window area to accommodate the Fee Collector's workstations would be a significant improvement and would improve work efficiency.

The original scales are approximately twenty years old, so the County will need to look at replacement or major rehabilitation within 5 to 10 years, and include this effort in the CIP recommended in Section 6. The next time the scales are serviced, the County should request that the service company conduct a detailed inspection of each scale's condition and estimate the remaining service life.

1.13.3 Shop Building

The shop building has two equipment bays, restrooms, break area, locker room, and storage space. The equipment bays include overhead doors so that equipment can be brought in for

servicing. One equipment bay is equipped with a rail system cast into the floor so that the compactor and dozer can be brought inside without significantly damaging the concrete floor. The County does all the regular preventive maintenance on its landfill equipment as well as repair work. It does not do major rebuild projects on the equipment. The County has the equipment required so that it can service its own tires. The work area is equipped with a 10-ton overhead crane. The building was designed so that another work bay could be added relatively easily. However, at this time County staff felt that two service bays were adequate for their needs.

A few deficiencies and wish list items were noted for the shop building as follows:

- The entire work bay area is serviced by one fan and louver. In hot weather, it is quite hot
 in the shop building, particularly when working with engines and welding equipment. The
 County should evaluate an enhanced cooling/fan system for the main shop working area,
 and incorporate into the CIP.
- The radiant heat system is marginal during the winter, and the County uses a significant amount of propane to keep the building heated. The County may want to evaluate a waste oil burner as an alternate heat source and whether the waste oil collected on site would provide an adequate amount of fuel. If viable, this could reduce the fuel costs to heat the building.
- Currently the shop is outfitted with bulk hydraulic oil stations with above ground storage tanks that range in size between 137 gallons to 240 gallons. The county has indicated that they plan to transition to 55 gallon drums to more efficiently service all the equipment on

site. Based on the oil storage capacity on site, the site may need a Spill Prevention and Control and Countermeasure (SPCC) plan as defined in 40 CFR 112 to be developed, which would provide guidance on whether or not secondary containment would be required.

 An outdoor plug-in station for equipment for use during cold weather operations was mentioned as a desired upgrade.

1.13.4 Shed Building

The shed building provides cold storage and houses the inmate work crew equipment. This building is in relatively good condition and no improvements are needed at this time. If the County needed more storage space, this building could be modified to be enclosed.

1.13.5 Caretaker House

The County owns a house south of the Office Building with its own access off Missouri Avenue.

The caretaker provides off-hour security for the facility in exchange for reduced rent.

1.13.6 Bulk Fuel Station

The site has a 6000-gallon diesel and a 1000gallon gasoline double lined AST. The fuel tanks appear to be in good condition. An SPCC plan should be in place because the storage capacity is greater than 1320 gallons. The site may qualify as a Tier 1 facility and be eligible for selfcertification because the total capacity at the site is less than 10,000 gallons. We recommend verifying that if a plan has been developed, that it is current (regulations require plans to be updated be updated every five years), and that it reflects current conditions at the facility.

1.13.7 Wash Down Bay

The County has an outside wash down concrete bay with pressurized water for washing equipment. Wash down water run-off flows to a stormwater pond, which accommodates run-off from the operations support area. Because fuels, waste, and hydraulic oil run-off from this wash bay, we recommend the County install an oil/water separator prior to discharge to the stormwater pond.

1.13.8 Water System

The water supply is provided by a deep well

located near the Shop Building that can be used for fire suppression. The fire hydrant can deliver between 500 to 650 gpm depending on the static water level within the storage tank. There is also a septic tank/cistern located next to the main storage tank, which the County uses to water the lawn at the office. More information about the water system is provided within the O&M Manual.

The County does have public restrooms for customers. The water system is regulated as a noncommunity transient water system by the State of Idaho. As a result, the County is required to regularly test for nitrates and bacterial contamination of the water supply.

This system is working well and no improvements are needed at this time.

1.13.9 Wastewater Systems

Each building that has a bathroom, sink, and/or shower is equipped with its own septic tank and drainfield. The County has as-constructed records of the design and location of these facilities. This system is working well and no improvements are needed at this time.

1.14 Fill Plan

The approved fill plan for the Landfill is not well documented. The 1994 Design Report (Holladay, 1994a) includes a drawing of the waste design boundary and several cross sections that are difficult to interpret.

The waste design boundary shown in the 1994 Design Report has been modified by the actual operation. The 1994 boundary showed the southern and eastern limits being defined by the top ridgeline of three coulees. Since that time, the County has "rounded off" the eastern and southern boundaries with a footprint that is larger than that shown on the 1994 documents. This "rounded design boundary" is shown on Figure 10 of the 1997 Status Report (Holladay, 1998a), which was never submitted to the DEQ. This "rounded boundary" is similar to the current waste limit; however, the County has expanded the waste footprint significantly to the east as shown on **Figure 1-1**. The current waste limit covers 74.2 acres. The design boundary will need to be updated when the new fill plan is submitted to the DEQ. There is also concern that the eastern boundary of the waste limits may extend slightly past the site certification boundary. We recommend the County discuss this issue with DEQ staff to determine if any action needs to be taken on this issue.

As discussed earlier the County is constructing 15 to 20 foot high lifts. In recent history, the lifts have progressed from north to south. The crew grades each lift so that positive drainage is maintained across the top deck from east to west. Storm water control benches have been constructed every 20 to 40 feet of elevation along the western fill slope. The stormwater control benches direct water southward to a main run-off control ditch along the western limit of the waste. The benches also provide vehicle access.

In the absence of a fill plan design, the County has developed a conceptual plan for the completion of the facility fill within the design boundary. A description of that plan follows. First, the County currently is placing the last full lift (15'-20') within the southern third of the existing waste footprint. Once that lift is complete one more partial lift will placed on the waste footprint. The northern third of the current landfill top deck matches elevation of the historic eastern ridgeline. The Landfill Director does not want to place any additional waste in this area because the next lift would be visible from across the eastern boundary. This is a condition

he wants to avoid or at least delay. This final lift would cover approximately two-thirds of the existing waste footprint and would be constructed to match the elevation of the historic ridgeline and avoid a direct line of sight to the east. For the purposes of discussion, this has been termed Phase 1.

Phase 2 would consist of filling a triangular area northwest of the existing fill footprint. This area is within the design boundary and represents a significant volume of waste disposal because of the overlapping air space created over the existing waste footprint. One reason the County wants to fill this area next is there is a large (approximately 60 feet high) historic waste slope that was constructed at approximately 1:1. Placing fill in this area would effectively buttress this waste slope. A cursory examination of the slope did not reveal any indications of recent slope movement or instability. However, the County does need to periodically repair erosion damage on this slope because of the extreme slope.

Phase 3 West Borrow Area

The Old Shop area was located in the Phase 2 footprint. The shop had a water supply well in this area (PB-1) which appears to have been properly abandoned (Appendix 1-H). We looked in the field to see if we could find the well but were unsuccessful. We were provided with a list of wells and coordinates including PB-1. We recommended that the County surveyor, if available, identify the well location on the ground and the County make sure that no excavation occurs in this area during the development of Phase 2.

Phase 3 would consist of filling the current soil borrow area in the southwest portion of the

design boundary. This fill would provide significant overlap of the western portion of the existing waste footprint. With the completion of Phase 3, the existing design boundary's air space would be exhausted unless the County decided to fill again on the top deck and expose the site visually on the east side. The other argument for this approach is that it maximizes the amount of time that County can stay on the existing design boundary, which is where the perimeter fence is constructed. The County wants to maximize the length of time that the public can use the OHV area in Jubilee Park west of the fenced boundary.

As discussed previously, the County has conducted hydrogeologic investigations for future expansion of the landfill. Once we complete our estimates of remaining capacity and life under the conceptual lift design task we will make recommendations on when the County should pursue the design and submittal of the expansion area.
1.15 Stormwater Run-On/Run-Off Control

The site has essentially no run-on control; however, it is unnecessary for the most part. The justification is as follows. First the eastern waste boundary is being filled to match the historic ridgeline so all stormwater along this side drains to the east rather than onto the waste. The western side is filled above grade so run-on cannot happen on that side. The northern boundary drains primarily west so the potential for run-on here is quite minimal. The southern boundary does technically need run-on control, however once the current lift is extended to the fill boundary, the waste slope will effectively prevent run-on. Phases 2 and 3 will require the construction of run-on control.

Run-off control works as follows. The crew grades each lift so that positive drainage is maintained across the top deck from east to west. Storm water control benches have been constructed every 20 to 40 feet of elevation along the western fill slope. The stormwater control benches direct water southward to a main run-off control ditch along the western limit of the waste. The benches also provide vehicle access. The main stormwater ditch runs north/northwest to a small sedimentation pond. From there the water goes through a culvert to a large stormwater pond, which is located outside the fence in an area that has public access.

The stormwater pond has never discharged according to County staff. According to the design report documents, this facility was designed for total retention. The County does not have an Industrial Stormwater Discharge Permit or SWPPP. However, the County has constructed a new stormwater pond southeast of the current pond. The County would like to direct water to this pond because it is inside the fenced boundary and would eliminate the concern about motorcycle/ATV riders getting stuck in the pond. We agree that moving the stormwater facility inside the fence is a good idea. The County would keep the existing pond in case the new pond overfilled. This would provide additional capacity to avoid a stormwater discharge off the site.

At the time of our inspection, the County was repairing erosion damage to the main stormwater ditch. The sediment pond had filled in from the last event and needed to be cleaned out. The fill slopes and other minor run-off control ditches did not show any erosion damage except the large 1:1 slope referenced earlier.

There is also a smaller stormwater pond on the east side which controls run-off from the operational support area including shop building, wash down bay, and other support facilities. A detailed analysis of the adequacy of the existing storm water system is presented in Section 7 of this report.

New Stormwater Pond

1.16 Summary of Recommendations for Landfill Operations

The following is a summary of recommendations for the County developed in this report:

- 1) Update and resubmit the Operations and Maintenance Plan by December 2015.
- 2) Upgrade the transfer site to comply with International Building Code by installing a guard barrier or reducing the drop-off to less than 30 inches.
- 3) Run the compactor three hours less per day from December to February. This would be accomplished by delaying compactor start-up until mid-morning and closing the site one hour early. Annual cost savings from this measure are projected to be over \$50,000/year.
- 4) Implement an ADC system and only place soil cover once a week. Annual cost savings are estimated to be approximately \$130,000 to \$170,000/year.
- 5) Consider conduct a waste characterization and diversion study in the long term.
- 6) Consider using processed wood waste for final and intermediate cover stabilization and vegetation. Also, consider using processed wood wastes for co-composting with biosolids.
- 7) Evaluate the condition of the scales and estimate their remaining service life.
- 8) Implement the five improvements for the shop building as discussed within this report
- 9) Improve the Fee Collector workstations for more efficient operation and communication with customers.
- 10) Install an oil/water separator for the wash down bay.
- 11) Verify that facility has up-to-date SPCC plan for bulk fuel storage.
- 12) Discuss potential infringement of the eastern site certification boundary with the DEQ to determine if any measures need to be undertaken to address this issue.
- 13) Develop a fill plan design for completing the existing waste design boundary and submit to DEQ for approval.
- 14) Obtain DEQ approval for diversion of stormwater run-off to the new stormwater detention pond.
- 15) Prepare a 5 to 10 year Capital Improvements Plan (CIP) for the landfill. The CIP would itemize major equipment and capital expenditures over the planning period and would be a valuable financial planning tool for the County in the future.

16) Establish equipment and capital reserve accounts (sinking funds) for future major expenditures identified in CIP.

1.17 Operations Assessment Conclusions

The Pickles Butte Sanitary Landfill is a well-operated and maintained facility. We compliment the landfill management and staff on the obvious care and attention to detail they provide. The site is very clean and is a tremendous asset to the residents of Canyon County. This public-owned facility provides low-cost, environmentally sound solid waste disposal to the residents. In addition, the County has shown excellent planning and forward thinking with the purchase of surrounding property and site certification of a large boundary. This additional property insures the public-owned facility will remain a valuable asset to Canyon County for many decades to come.

1.18 Personnel Interviewed

- 1) David Loper, Landfill Director
- 2) Rick Boyd, Landfill Supervisor
- 3) Debbie Jenks, Administrative Supervisor
- 4) Kirk McGee, Mechanic
- 5) Fee Collectors (Scalehouse attendants) several

This page intentionally left blank.

2.0 GROUNDWATER EVALUATION

The purpose of the groundwater evaluation presented in this section of the report is to review the geology, stratigraphy, groundwater flow characteristics, groundwater composition, and groundwater sampling program around and beneath the Pickles Butte Sanitary Landfill (referred to as PBSL or "the Landfill"). Groundwater at the Landfill has a unique chemistry and is greater than 400 feet deep. The potential for impacts to groundwater from the Landfill are low because of the depth to groundwater and the geologic stratigraphy. Canyon County has been granted a waiver for conducting groundwater monitoring at the Landfill, but elects to conduct semi-annual monitoring on a voluntary basis. Metals at concentrations above the laboratory detection limits have been observed, the county wishes to establish background concentrations at the site. Groundwater sampling reports and previous studies have been reviewed, and where appropriate, groundwater data have been put into electronic form for analysis.

2.1 Previous Investigations

Two previous studies researched and investigated the geology, stratigraphy, and groundwater flow characteristics near to and beneath the Landfill. The first of these was conducted by Holladay Engineering Company (Holladay) beginning in 1992. The results are summarized in a report titled *Hydrogeologic Characterization, Ground Water Monitoring Plan, and Facility Design, Pickles Butte Sanitary Landfill* (Holladay, 1994a). This report was the initial status report for the Landfill, and was commissioned by Canyon County for the Landfill to comply with Title 39, Chapter 74 of the Idaho Solid Waste Facility Act.

The second primary investigation to study subsurface conditions was conducted by Daniel B. Stephens & Associates, (DBS&A) beginning in 2011. The results were summarized in two reports: *Hydrogeologic Characterization Report, Pickles Butte Sanitary Landfill* (DBS&A, 2014a), and *Monitor Well Installation, Pickles Butte Sanitary Landfill* (DBS&A, 2014b). The Holladay and DBS&A reports have been reviewed to assess the current groundwater monitoring program relative to known groundwater conditions, area geology, and stratigraphy. A brief summary of the work conducted and findings from the previous investigations is presented below, along with recommendations where appropriate.

2.1.1 Holladay Engineering Company Investigation

The investigations by Holladay were conducted between 1992 and 1994. Subsurface activities included excavating trenches to identity a potential fault zone, drilling one boring using core drilling to collect continuous samples (designated PB-2), drilling six rotary borings (designated PB-3 through PB-8), installing one piezometer, installing six monitoring wells, conducting geophysical logging of an existing well and at three of the drilling locations, and conducting methane monitoring. Their investigation also included collecting numerous soil/core samples for the testing of various physical parameters. Holladay installed two additional monitoring wells (PB-9 and PB-10) in 1995.

2.1.2 DBS&A Investigation

The field investigation by DBS&A was conducted between May and December 2011. Their subsurface activities included installing five additional monitoring wells (designated PB-11 through PB-15). They also submitted over 50 core samples for testing of various physical parameters and/or hydraulic properties.

2.2 Geology

2.2.1 Area Geology

The regional geology of the Canyon County area is briefly described here to provide a basic framework for the stratigraphy discussed in the next section. The reports described above can be referenced for more thorough descriptions of area geology.

The Pickles Butte area of Canyon County is located in the western portion of the Snake River Plain. The Snake River Plain is a broad structural depression that extends across southern Idaho. The axis of the western Snake River Plain is oriented in a northwesterly/southeasterly direction; this part of the Plain is about 35 miles wide and is bounded on the northeast and southwest by a series of northwest-trending normal faults. Through this series of faults, the center of the basin dropped relative to the margins by several thousand feet. Some downwarping may have also occurred that contributed to the structural depression (Swirydczuk, et. al., 1982). The shape of the basin can be described as arcuate, or arc shaped, when viewed in both cross section and plan views. The Landfill is located near the center of the plain.

The basin or depression created by the faulting has been filled over the past several million years by igneous rocks, lacustrine (lake deposited) and fluvial (river deposited) sediments, to depths of possibly greater than 20,000 feet (Mabey, 1982). Most notable among the more recent sedimentary materials that have filled the basin are those belonging to the Idaho Group, chiefly the Glenns Ferry Formation. The sediments that comprise the Glenns Ferry Formation mainly include sand, silt, and clay deposited in lacustrine and deltaic environments. Several ash layers have also been identified with the Glenns Ferry Formation (Swirydczuk, et. al., 1981). The Glenns Ferry Formation near the Landfill area may be over 2000 feet thick (IDWR, 1981).

Younger sedimentary and igneous materials of the Idaho Group have been deposited in the plain above the Glenns Ferry Formation. Geologic mapping by Anderson and Wood (in IDWR, 1981) identified two formations near the Landfill that are present above the Glenns Ferry Formation: the Tuana Gravels and the Bruneau Formation. The Tuana Gravels are mostly poorly sorted and coarse grained, with cobbles up to several inches in diameter. These coarser grained sediments are interbedded with finer grained layers of sand and silt. The Bruneau Formation is predominantly fine-grained sediments interbedded with basalt flows.

2.2.2 Stratigraphy

Subsurface investigation activities were not conducted for this report. The descriptions of the geologic conditions located at and beneath the Landfill that are presented below are taken from the work conducted by Holladay and DBS&A as described in their 1994 and 2014 reports.

A relatively thin layer of basalt belonging to the Bruneau Formation is present on the top of Pickles Butte and on parts of the upper rim of Deadhorse Canyon north of the Landfill. Available information does not indicate that this material is present within the boundaries of the Landfill. It appears that only boring PB-13, drilled on Pickles Butte in the area southeast of the active Landfill, encountered this material. The basalt overlies sand and gravel of the Tuana Gravel formation. According to the DBS&A report (2014a), the Tuana Gravel is present at the Landfill area only on the upper part of Pickles Butte and in the northeastern rim of Deadhorse Canyon. It was encountered during the drilling of borings PB-13, PB-14, and PB-15. These three borings were drilled in the area near the southern edge of the active Landfill, in an area where the natural topographic surface is higher than in other areas of the project. The observation of the limited spatial presence the Tuana Gravel in the project area is generally consistent with the geologic map produced by Anderson and Wood (in IDWR, 1981). That map shows that Tuana Gravels are near the southern boundary of the active Landfill, but that the contact is uncertain. The map also shows that they are also present in the eastern part of the active Landfill. Upper (younger) Glenns Ferry Formation soils are the majority of geologic materials exposed on Pickles Butte and in the walls of Deadhorse Canyon to the north. The Glenns Ferry Formation extends beneath the Landfill beyond the total depths explored by Holladay and DBS&A. Information gathered during their drilling indicates that the textural composition and physical properties of the Glenns Ferry Formation vary with depth. In general, the material becomes finer grained and more consolidated or indurated with increasing depth. The properties also vary laterally, and the Holladay report mentioned that the lithification in correlating beds was seen to vary between borings.

The upper part of the Glenns Ferry Formation encountered in the borings is comprised primarily of sand and silt. DBS&A described the sand beds as ranging from poorly to well sorted, from very fine grained to coarse-grained, and having little or no consolidated structure to a well-lithified sandstone. The grain size of the upper Glenns Ferry Formation tends to decrease with depth, and in the lower depths explored the Glenns Ferry Formation consists primarily of siltstone or claystone.

A laterally extensive confining layer in the Glenns Ferry Formation is present beneath the Landfill at depths ranging from 150 to 500 feet. DBS&A describes the change between the confining layer and the sediments above it as "abrupt," therefore its presence across the area is well defined. This layer is usually described as a siltstone or claystone on the lithologic logs. Contained within this layer is a boundary at which the sediments below were deposited in an anoxic or oxygen deficient state. This condition gives them a characteristic blue green or blue grey color. This distinguishing characteristic is easily seen, so the layer is often referred to as the "blue clay," and can be identified on boring logs and traced laterally across the entire Landfill area.

The confining layer is hundreds of feet thick as evidenced by observation and core samples from the Holladay and DBS&A investigations. The confining layer slopes or dips to the northeast with a gradient of about 0.06 foot per foot.

The saturated hydraulic conductivity (K_{sat})of the confining layer ranges from about 10⁻⁴ to 10⁻⁹ centimeters per second (cm/sec) based on testing conducted on core samples collected during the Holladay investigation,. Core samples were also collected during the DBS&A investigation; K_{sat} values averaged about 4x10⁻⁸ cm/sec, with a range from about 10⁻⁴ to 10⁻⁹ cm/sec. Movement of groundwater through the confining layer is thus interpreted to be very slow.

2.2.3 Methane

Holladay conducted limited methane monitoring during their investigation using field screening techniques. They reported that during drilling; only location PB-5 yielded a detectable amount of methane, and this was after the boring had advanced into the clay unit at 620 feet deep. The recorded value was 21% of the lower explosive limit (LEL). They further reported that methane was detected within the casing of monitoring well PB-3 after it had been capped for months. Two readings specifically mentioned were 11% LEL and 44% LEL. Their interpretation was that the methane was naturally occurring based on the lithology and depth of the well screens in relation to the Landfill. This is supported by a study conducted by Idaho National Laboratory for the city of Marsing, Idaho on how to capture and utilize the naturally occurring methane found in the city's groundwater wells (Orme, et. al., 2012). The city of Marsing is located approximately seven miles northwest of the landfill, and is in a geologically similar area. The concentration of methane in the wells in Marsing varied between 0.2% to 95% methane, with an average methane concentration from six wells of 49%. In the DBS&A report, it indicated that abundant organic matter was present in the fine-grained sediments at depth, which "results in a detectable amount of natural methane production." Therefore, based on the local geology and correlation of methane with sediments at the site, the methane at the site is predominately from naturally occurring sources. Tetra Tech recommends that the groundwater monitoring caps at the site be modified or replaced to allow the methane to naturally vent for several reasons. First, this would increase the safety at the site

during routine groundwater monitoring, since the wells would not be opened under positive pressure. Second, if landfill gas ever does enter the well it would be better not to have the well under positive pressure, which would increase the chance of the landfill gas influencing groundwater. Finally, this would eliminate the need to monitor methane during groundwater sampling, and help prevent confusion between the natural methane production and potential methane production from the landfill.

2.2.4 Groundwater Conditions

Groundwater conditions across the Landfill area are somewhat variable. Holladay identified three water bearing zones during a literature review and their investigation, and referred to them as UA, MA, and BA, for Upper Aquifer, Middle Aquifer, and Bottom Aquifer. It should be noted that while these names may correspond to subsurface intervals that produce water, they are not necessarily to be considered aquifers because of low production rates or quality concerns. DBS&A acknowledged the naming convention used by Holladay, and used similar reference names in their 2014 report (uppermost-unconfined aquifer or unconfined aquifer, middle confined aquifer, or confined aquifer, and bottom aquifer). As with the site stratigraphy, a field investigation to study groundwater conditions was not conducted for this report. Instead, the information presented here has been gleaned from the Holladay and DBS&A reports.

Both reports indicated that monitoring wells were screened to characterize the first groundwater encountered at each location. The uppermost aquifer or upper unconfined aquifer was characterized at Holladay monitoring wells PB-5, PB-6, PB-7, PB-9, and PB-10. This water bearing zone is not present beneath the entire Landfill area; it is limited to the area at the northeast corner of the active Landfill and certification area. The wells set in this zone encountered water between about 490 to 535 feet deep, or between elevations of about 2330 and 2400 feet above mean sea level. The saturated thickness of sediments within the unconfined aquifer is on the order of tens of feet, with groundwater present at depths ranging from about 500 to 550 feet deep. These depths increased about eight to ten feet between 1995 and 2015. Groundwater flows to the northeast with a hydraulic gradient that is similar to the slope of the top of the confining layer (DBS&A, 2014a).

The southwestern boundary of the unconfined system appears to coincide with the approximate location of a possible northwest trending fault system that runs through the northeastern part of the Landfill, as shown on the geologic map from Anderson and Wood (in IDWR, 1981). This spatial relationship may only be coincidental; however, as neither the Holladay nor DBS&A investigations were able to provide geologic evidence that the fault system provides a barrier to groundwater flow or a source of groundwater in the unconfined system (DBS&A, 2014a). The Holladay investigation included excavating three trenches six to ten feet deep, and 150 to 200 feet long to look for evidence of concealed faulting. They reported that no evidence of faulting beneath the overburden materials was seen (Holladay, 1994a).

The confined aquifer is located within the blue clay unit and appears to underlie the entire Landfill. It is characterized by Holladay wells PB-3, PB-4, PB-8 and by DBS&A wells PB-11 through PB-15. The depth to the water bearing zone ranges from over 300 feet to almost 900 feet. Observations during the investigation indicated that water within the confining layer is present in deeper fractures within that unit. DBS&A's interpretation was that the material is more indurated with depth and can support open fractures, while the shallower parts of it are more plastic and not able to support open fractures (DBS&A, 2014a). **Table 2-1** includes well completion and basic stratigraphic information.

Well Number	Groundwater Source	Screened Interval(s)	Depth to Top of Confining Layer	Total Depth Drilled	Depth First Water Encountered	Depth to Potentiometric Surface* (April 2015)
PB-3	Glenns Ferry Fm - Confining Layer	340-350, 410-420, 520-530	263	860	410	418.65
PB-4	Glenns Ferry Fm - Confining Layer	560 - 575, 605 - 620	422	640	565 - 630	557.48
PB-5	Tuana Gravel	512.5 - 522.5	630	660	517	Dry
PB-6	Tuana Gravel	487.5 - 497.5	620	700	490	504.87
PB-7	Tuana Gravel	535 - 555	540	610	535	547.46
PB-8	Glenns Ferry Fm - Confining Layer	377 - 407	240	420	380	290.27
PB-9	Tuana Gravel	508 - 543	510**	544	Unknown	525.55
PB-10	Tuana Gravel	504 - 534	515**	560	Unknown	522.1
PB-11	Glenns Ferry Fm - Confining Layer	340 - 400	200	420	350 - 400	293.69
PB-12	Glenns Ferry Fm - Confining Layer	480 - 540	140	555	500 - 560	309.58
PB-13	Glenns Ferry Fm - Confining Layer	840 - 900	545	923	850 - 900	733.55
PB-14	Glenns Ferry Fm - Confining Layer	845 - 905	522	923	800 - 840	717.56
PB-15	Glenns Ferry Fm - Confining Layer	790 - 850	565	870	800 - 860	657.85

Table 2-1. Summary of Monitoring Well Information

Measurements are in feet and referenced to ground surface except as noted

*Referenced to top of casing, typically about 2 feet higher than ground surface

**Based on interpretation from driller's log

2.2.5 Areas of Potential Recharge

2.2.5.1 Recharge Zones

The Holladay investigation examined the upper unconfined and the lower confined aquifer to determine if there was any surface connection to the aquifers at the site. The unconfined aquifer only exists in the northeastern corner of the site. The report indicates that the yield from that area was low (less than 1 gpm) and had no beneficial use. Therefore, they questioned whether it was even a viable aquifer. For the confined aquifer that is found below most or all of the site, they found that the aquifer appears to be partially supplied by deep geothermally based water of remote origin. The water is under positive pressure head, and is protected by the lateral and vertical continuity of the confining bed across the site. This confining layer is hundreds of feet thick. They also evaluated the potential for a northwesterly fault for providing a preferential pathway from the surface to groundwater. However, based on the higher permeability soils in the overlying sediments and the deformation that would occur in the soft soils due to lithostatic load, it was concluded that the faults or fractures would close at depth. Therefore based on the information available, it is not likely that there is any connection between the site's surface and the confined aquifer. Based on the data available, it is more likely that there is not a connection.

The 2014 DBS&A study had similar conclusions about recharge to the confined aquifer, and noted that the confining layer at the site occurs on a regional basis and exerts a strong influence on

groundwater movement. They also discuss the unconfined aquifer, and note that the water is chemically different from the confined aquifer. They postulated that percolation of irrigation water from irrigated agriculture to the east and north of the Landfill may have created the aquifer, but this has not been confirmed.

2.2.5.2 Infiltration Studies

Infiltration studies were done for the site by Holladay in 1994 and DBS&A in 2014 to be in compliance with Title 39, Chapter 74 of the Idaho Code, and to apply for an exemption for groundwater monitoring under 40 CFR 258.50 and a liner under 40 CFR Section 258.40(d). These sections of the Code allow for the exemption of groundwater monitoring or a liner when there is no potential for migration of hazardous constituents from the municipal solid waste landfill (MSWLF) to the uppermost aquifer during the life of the Landfill and post-closure care. In the initial study conducted by Holladay (2014a), they calculated the travel time based on hydraulic conductivity rates assuming saturated conditions (which is very conservative for an arid environment), and using the EPA's Hydrologic Evaluation of Landfill Performance (HELP) model. Both calculations were based on laboratory data analyzed for 11 core samples collected during the subsurface investigation. For the stratigraphy in wells PB-2 through PB-8 the saturated travel times were 495, 12376, 753, 30, 31, 184, and 505 years, respectively. These values are quite conservative for this site because based on the unsaturated conductivity travel times would be one to five orders of magnitude longer. The HELP model was then used to calculate the specific moisture capacity to look at the time required for water to be retained in the formation. Evaluating how long it takes to increase the moisture to allow water to flow through the system provides an estimate of the time required before the calculated travel times would start. The range of values for PB-3 to PB-8 was 936, 1134, 1648, 1312, 2149, and 1796 years, respectively. Therefore, even for the wells where the saturated travel times were less than 100 years, the time required for migration is well over 1000 years, which exceeds the operational life of the Landfill. The analysis concluded that the Landfill would not generate significant leachate during the active life or postclosure at the site.

The infiltration study by DBS&A used saturated travel time calculations, the HELP model, and the HYDRUS model to estimate unsaturated fluxes based on Richards equation. The results were similar to those presented by Holladay. The analysis was based on hydraulic properties from core samples collected during the installation of PB-11 through PB-15, which are located in an area proposed for expansion of the Landfill and are deeper than the previous wells at the site. Multiple samples were taken from each stratigraphic unit, and the harmonic mean of the values was used in the modeling to help account for heterogeneity and variability within each unit. For PB-11 to PB-15, the saturated travel time to the first groundwater was 19,456; 42,071; 3,875; 12,923; and 5,075 years, respectively.

The HELP modeling looked at both the flow of leachate to the bottom of the landfill without a cover and the infiltration to groundwater. For the first set of simulations, percolation through the bottom of the Landfill was estimated to be 1.19×10^{-8} in/year, which is essentially zero. This reflects the dry conditions at the Landfill, the loss of moisture due to evaporation, and the storage capacity within the Landfill for precipitation not lost to evaporation. In the simulations, water retained in the Landfill caused the water content at 100 years of simulation to increase from 9.83% to 12.31%. The field capacity of the site, which indicates when saturated flow would occur, is calculated to be 29.20% by volume. At the rate of moisture accumulation estimated by the HELP model it would take approximately 700 years before field capacity is reached and percolation into the vadose zone would begin. The model then estimated it would take approximately 7,255 years to reach groundwater.

The analysis by the HYDRUS model provides the most realistic calculations of infiltration to the site because it uses unsaturated water flow. The modeling considered vapor flow in the system, but the results indicated it did not significantly impact the results, so the more conservative

analysis without vapor flow was presented. The modeling of the field capacity within the Landfill indicated that it would take 200 years to reach field capacity. This is conservative because the modeling used an average precipitation value repeated each year for 100 years versus a more realistic cycle of wet and dry years. The calculation of travel time through the vadose zone with HYDRUS was approximately 52,040 years, which is significantly longer then the HELP model because of the differences in model assumptions. The HELP model uses a linear interpolation between field capacity and wilting point, which overestimates percolation rates versus the more rigorous use of the Richard's equation. The results from the HYDRUS model are more realistic for the vadose zone flow through the system, and support the previous conclusions by Holladay that the risk to groundwater from the Landfill is very low if not zero.

2.2.6 Geochemical Composition

Groundwater characterized for this project is present within the Glenns Ferry Formation. Although primarily sedimentary by nature, several ash layers have been identified within it at other locations (Swirydczuk, et. al., 1981), and the parent material for the sediments may have been older igneous rocks that partially filled the Western Snake River Plain basin. The chemical composition of the sediments therefore can include many of the elements associated with igneous rocks, including metals. Chemical composition of the ash layers within the Glenns Ferry Formation was studied by Swirydczuk and others. This included several metals though only two of the RCRA metals were included (barium and chromium). The results showed that the ash samples did have an abundance of metals. In addition, as discussed above, a source for the deeper groundwater may be a geothermal system. Geothermal waters often contain high concentrations of metals, including arsenic, because of their interaction with igneous rocks. The presence of metals in groundwater samples collected from monitoring wells at the Landfill likely represents a natural occurrence of those elements, rather than impacts from the Landfill. It is not uncommon for groundwater in southern Idaho within sedimentary aquifers to contain concentrations of metals (non-anthropogenic), at some cases above EPA drinking water standards.

2.3 Groundwater Sampling

Although exempt from groundwater sampling per 40 CFR 258.50, Canyon County has maintained a biannual groundwater-sampling program at PBSL. **Figure 2-1** shows the location of wells relative to the footprint of the Landfill. Wells PB-3 through PB-15 are sampled biannually by Landfill personnel, if water is present, and analyzed for constituents listed in Appendix I of 40 CFR 258. The testing includes measuring various geochemical parameters in the field, laboratory analysis for metal using EPA methods 200.7 through 200.11, and laboratory analysis for volatile organic compounds (VOCs) by EPA method 8260B.

This page intentionally left blank.

2.3.1 Groundwater Sampling Procedure

Holladay prepared a groundwater-sampling plan in 1994 to guide sampling activities at the Landfill (Holladay, 1994b). The plan includes the procedure for taking water level measurements, field parameters, well purging, sampling, and decontamination. As written, the procedure calls for purging a specified amount of stagnant water before sampling the well using dedicated stainless steel bailers that are raised and lowered into the well. There is no indication in the procedure how the purged water is disposed, so it is assumed it is spread on the surface and that there is no disposal cost associated with the purged water. There is no depth specified for sampling in the method. Groundwater sampling was initially done with hand-lowered bailers, which at some point was modified to lower the bailers from a truck, which is how sampling is currently conducted. Because of the use of dedicated bailers, standard decontamination was not required before and after each sampling event. Instead, decontamination was limited to rinsing the bailers with deionized water only if required because of obvious contamination. At some point, the sampling procedure was modified to collect the groundwater sample from the first bailer placed in the well. Based on plots of total dissolved solids (Figure 2-2), it appears that the change occurred in October 2003 because the TDS values stabilized from that point onward. The use of bailers can disturb the fine sediments that collect on the bottom of a well, which can cause the variations in TDS observed in the early years of sampling. The analysis of the sampling data for this report used the data from October 2003 and later. Under the current procedures, the wells are bailed after sampling to help flush the stagnant water out of the well. It is not clear when the field parameters are collected during this procedure.

Figure 2-2. Effect of change in sampling method on turbidity in wells

At a minimum the sampling procedure for PBSL should be updated to reflect the actual sampling procedure used at the site. However, the current sampling procedure is not considered standard practice for sampling monitoring wells to reflect aquifer conditions. There are two options for sampling available. The first option is to continue the use of the bailers for sampling, but to implement several steps to improve sample integrity. The first step is to clean/decontaminate the

sampling equipment prior to use, including a wash with Liquinox[™] or a similar detergent, a water rinse, a 10% volumetric methanol and distilled water rinse, a 10% volumetric nitric acid rinse, followed by a final deionized water rinse. This will eliminate the potential for contamination or residual concentrations of constituents from previous sampling events. Disposable gloves should be used when cleaning the bailers. The gloves should be changed before purging and sampling and before proceeding to the next well. The second step for the continued use of bailers would to be to specify a sampling depth within the screened interval of the well for sample collection. This will ensure that the samples are collected from a consistent location each time, if it is not currently done. The location should be a couple of feet off the bottom of the well to prevent disturbing sediment that may have settled at the bottom of the well casing.

The second alternative for sampling is to switch to a low flow purging and sampling technique. This method would provide samples that had minimal physical and chemical alterations as a result of sampling, follow a specified EPA sampling procedure, and simplify sampling events if dedicated pumps are used in the wells. A low flow sampling system pumps water at a very low flow rate from the middle of the screened interval to pull water from the formation into the well casing with minimal draw down and without excessive purging. This provides consistent samples, improves sample accuracy, reduces sample variability, and increases the well life by reduced pumping stress. A quote for a low flow sampling system for all 13 wells was obtained from QED for discussion purposes, and is included in Appendix 2-A. The system evaluated would include a permanent installation in the wells, and would ensure that samples are collected from the same depth during each sampling event. An investment in a low flow sampling procedure would improve data quality, so the cost of implementing the system using Canyon County personnel was compared to sampling costs using the current procedure, and using an outside consultant. **Table 2-2** summarizes estimated equipment and labor costs associated with the different sampling options.

	Bailing Units Cost		Low Flow by Landfill Staff			Low flow by Outside Contractor						
			Cost		Units		Cost		Units		Cost	
Personnel	28	hours	\$65	hour	28	hours	\$65	hour	32	hours	\$60	hour
Truck & Laborer			\$2,800	event			\$0	event			\$0	event
Total Cost			\$4,620				\$1,820				\$1,920	
	18-20 hours sampling		1.5 to 2 hours/well			1.5 to 2 hours/well						
tions	5 hours preparation/handling		19.5 to 26 hours/event			19.5 to 26 hours/event						
duns	4 hours decontamination/cleaning		5 hours preparation/sample handling			5 hours preparation/handling						
As						4 hours travel time All equipment is provided by the County						

 Table 2-2.
 Estimated Sampling Costs

Based on these numbers and the cost estimate provided it would take 22 sampling events or approximately 11 years to realize the cost savings from using the current bailer system versus the installation of a low flow sampling procedure. Therefore, the main advantage of the low flow sampling procedure would be an increase in data quality.

2.3.2 Sampling Results

Groundwater samples have been collected at PBSL since 1995. Samples have not always been obtained from PB-5, PB-6, and PB-7 due to low flow or the wells being dry. These wells are

located in the unconfined aquifer, which has very low permeability and a small saturated zone thickness.

2.3.2.1 Metals

EPA regulations (40 CFR, Part 264.97) include general ground-water monitoring requirements for RCRA facilities and waste disposal units. The regulations include discussions of well placement, construction, and other variables needed in a groundwater monitoring program to adequately establish background levels. Various statistical methods may be used in the analysis of the data. Background levels of metals or organic contaminants in groundwater have not been established for the PBSL because the groundwater monitoring program is conducted voluntarily. However, a review of the data indicates that samples from some of the wells have concentrations above detection limits for arsenic (As), barium (Ba), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), and zinc (Zn). Using the sample data after the sample turbidity became less variable in October 2003; the information was analyzed for these various metals using a regression analysis to evaluate trends in the data and the range for natural background conditions.

<u>Arsenic</u>

On January 22, 2001, the EPA adopted a rule that changed the drinking water standard for arsenic from 0.05 mg/l to 0.01 mg/l. Drinking water systems were required to comply with this rule by January 23, 2006. For the groundwater wells at PBSL, the detection limit for As is currently 0.003 mg/l, but prior to 2009 it was 0.005 mg/l. The maximum value found in the groundwater samples was 0.034 mg/l in PB-10. The average from October 2003 to the present based on available data is shown in **Table 2-3** for each well sampled for the various constituents detected. In all but a few cases, the average concentrations detected are below the EPA Maximum Contaminant Levels (MCLs), although some individual samples are above these limits. The exception is for As in wells PB-3, PB-11, and PB-14 that have averages slightly above the MCL.

	As	Ва	Cd	Cu	Cr	Ni	Zn
MCL	0.01	2	0.005	1.3	0.1	UR	UR
PB-3	0.0106	0.2600	0.0005	0.0100	0.0032	0.0263	0.0117
PB-4	0.0063	0.4267	0.0005	0.0100	0.0095	0.0404	0.0211
PB-6	0.0040	0.0500	0.0005	0.0100	0.0769	0.0205	0.0109
PB-7	0.0067	0.0804	0.0007	0.0100	0.0051	0.0279	0.0107
PB-8	0.0039	0.1517	0.0005	0.0104	0.0041	0.0271	0.0103
PB-9	0.0069	0.0583	0.0006	0.0100	0.0031	0.0275	0.0100
PB-10	0.0069	0.0500	0.0005	0.0117	0.0114	0.0329	0.0124
PB-11	0.0103	0.1611	0.0005	0.0100	0.0036	0.0200	0.0222
PB-12	0.0096	0.1680	0.0005	0.0100	0.0034	0.0200	0.0170
PB-13	0.0083	0.1500	0.0005	0.0100	0.0093	0.0244	0.2789
PB-14	0.0113	0.1611	0.0005	0.0100	0.0024	0.0222	1.2478
PB-15	0.0050	0.1522	0.0005	0.0100	0.0024	0.0233	0.0278

Table 2-3. Average Concentrations (in mg/l) of Metals in Groundwater,October 2003 - Present

UR = Unregulated

Evaluation of the arsenic concentration in each well was done using a regression analysis to look at the trend in the data and examine natural variability. **Figures 2-3 through 2-12** show the plots from the regression analysis of the data versus the predicted values. If the data show natural variability it would be expected that the regression analysis would show a horizontal line or a zero slope. If the data shows a trend, then the line may increase or decrease. The parameter that

indicates whether or not the trend is significant is called the p value. When the p value is less than 0.05 it indicates that with 95% confidence that there is a trend in the data over the time period examined. For the newer wells, there is only 4 years of data available for the analysis. **Table 2-4** shows a summary of the p values for arsenic. Except for PB-9, the general trend is decreasing whether the trend was significant or not. It is not clear why the trend in arsenic concentrations is increasing in PB-9, but because the maximum concentration observed is a single sample at the MCL of 0.01 mg/l the trend would only be a concern if multiple samples are observed at elevated concentrations in the future. Overall, the results indicate there is some natural variability in the arsenic concentrations in that range are considered natural. If the sampling method is changed to a low flow system, some variation in the data may be expected if comparisons are made to the existing data set. This is because the current sampling approach generates water samples that may or may not be representative of the aquifer conditions because of high turbidity levels. If the water in the confined aquifer below PBSL is ever used for drinking water in the future, treatment would be necessary to meet drinking water standards.

Figure 2-3. Regression Analysis for Arsenic in PB-3

Figure 2-4. Regression Analysis for Arsenic in PB-4

Figure 2-5. Regression Analysis for Arsenic in PB-7

Figure 2-6. Regression Analysis for Arsenic in PB-9

Figure 2-7. Regression Analysis for Arsenic in PB-10

Figure 2-8. Regression Analysis for Arsenic in PB-11

Figure 2-9. Regression Analysis for Arsenic in PB-12

Figure 2-10. Regression Analysis for Arsenic in PB-13

Figure 2-11. Regression analysis for Arsenic in PB-14

Figure 2-12. Regression analysis for Arsenic in PB-15

Well Name	p value	Comment	
PB-3	0.0578	Not Significant, decreasing	
PB-4	0.0257	Significant, decreasing	
PB-5	-	Insufficient Data	
PB-6	-	At Detection Limit	
PB-7	4.32E-05	Significant, decreasing	
PB-8	-	At Detection Limit	
PB-9	0.0437	Significant, increasing	
PB-10	0.0012	Significant, decreasing	
PB-11	0.6013	Not Significant	
PB-12	0.7279	Not Significant	
PB-13	0.0239	Significant, decreasing	
PB-14	4.57E-05	Significant, decreasing	
PB-15	0.0003	Significant, decreasing	

Table 2-4. Summary of p values for Arsenic Regression Analysis

<u>Barium</u>

The detection limit for Ba is currently 0.05 mg/l, and the MCL is 2 mg/l. The maximum value found in the groundwater samples has been 0.46 mg/l in PB-4. The average for each of the wells from October 2003 to the present based on available data is shown in **Table 2-3**. The concentration in all samples were all below the maximum concentration limits. Therefore, a regression analysis was not conducted for Ba.

<u>Cadmium</u>

The detection limit for Cd is 0.0005 mg/l, and the MCL is 0.005 mg/l. The maximum concentration found in the groundwater samples has been 0.006 mg/l in PB-7 in a single sample during the April 2015 sampling event. There have only been three other samples above the detection limit for Cd, and there have been no consistent trends. A regression analysis was not conducted for Cd.

<u>Copper</u>

The detection limit for Cu is 0.01 mg/l, and the MCL is 1.3 mg/l. The maximum concentration found in groundwater samples has been 0.02 mg/l in PB-8 and PB-10 during several sampling events. These values are well below the MCL, and are considered to be the natural background concentration. A regression analysis was not conducted for Cu.

<u>Chromium</u>

The detection limit for Cr is 0.002 mg/l, and the MCL is 0.1 mg/l. The maximum concentration found in groundwater samples has been 0.18 mg/l in PB-6. The concentration in this well was at or above the MCL for three sampling events in 2004 and 2005, but has remained below the MCL since that time. The natural background concentration appears to be near or even above the MCL for the site, and a regression analysis was not conducted for Cr.

<u>Nickel</u>

The detection limit for Ni is 0.02 mg/l, and an MCL has not been set. The maximum concentration found in groundwater samples has been 0.28 mg/l in PB-6. However, the median for all of the groundwater samples for Ni is 0.02, which indicates that the majority of the samples are on the order of 0.02 mg/l. The natural background concentration appears to be below 0.30 mg/l. A regression analysis was not conducted for Ni.

<u>Zinc</u>

The detection limit for Zn is 0.005 mg/l, and an MCL has not been set. The maximum concentration found in groundwater samples has been 3.29 mg/l in PB-14 as a single event. The median for all of the groundwater samples for Zn is 0.01, which indicates that the majority of the samples are on the order of 0.01 mg/l. The single spike in the analysis is likely the result of cross contamination. The natural background concentration appears to be around 0.01 mg/l. A regression analysis was not conducted for Zn.

2.3.2.2 Organic Compounds

Acetone was found in the sample from monitoring well PB-4 at a concentration of 12.4 mg/l in October 2014. During the April 2015 sampling event, acetone was present in samples from PB-3, PB-4, and PB-13 at concentrations of 10.6, 32.5, and 10.1 mg/l. These wells were sampled on different days, so there is no correlation to sampling order that would explain the results. There are no EPA standards set for acetone in groundwater, but there is a concern about why acetone has begun to show up in the samples. The most likely explanations are either contamination during sampling or introduction at the laboratory. Contamination during sampling could have occurred during handling with reusable work gloves (versus disposable) and/or because the current sampling procedures does not include a sufficient cleaning/decontamination step. Although the sampling procedure uses dedicated bailers, the bailers have apparently not been cleaned for over a decade. This could be tested by filling the bailers with deionized water, then collecting that water for lab analysis. Given the low concentrations, this may or may not indicate if the bailers have been contaminated. The best option is that prior to the October 2015 sampling event, the bailers be cleaned according to an EPA approved cleaning procedure prior to sampling and that new, disposable gloves be used for handing the samplers to ensure cross contamination does not occur. In addition, a sampling blank should be provided to the laboratory for analysis. If after cleaning, the samples still exhibit detectable levels of acetone, then it is strongly recommended that air samples be collected from the wells of concern to test for the presence of VOCs. Given the stratigraphy, arid climate, depth to groundwater, and thickness of the confining layer it is very unlikely that the acetone observed in the samples is the result of landfill leachate reaching the groundwater. In the unlikely event that the air samples contain contaminants, the integrity of the wells should be evaluated.

This page intentionally left blank.

3.0 BIOSOLIDS ACCEPTANCE

The Landfill is considering accepting Class B biosolids from the Cities of Nampa and Caldwell and is concerned about compliance with applicable regulatory requirements. In addition, the landfill does not want to create an operational issue when handling the biosolids or a localized odor problem that will generate nuisance conditions to area residents, or complaints from neighboring land users. This section of the report summarizes the regulatory requirements for biosolids acceptance and discusses potential methods of handling biosolids.

3.1 Biosolids Benefits

Biosolids are rich in both organic matter and essential plant nutrients and can be utilized as a soil amendment and fertilizer. Biosolids act as a soil amendment through the contribution of organic matter. Increased organic matter improves soil physical properties including moisture holding capacity, aggregation, porosity, and tilth. Improvement of these properties facilitates transport of air, water, and nutrients throughout the soil, benefiting the establishment and growth of vegetation.

Biosolids serve as a fertilizer by providing essential micronutrients (e.g. zinc, copper, and iron) and macronutrients (e.g. nitrogen, phosphorus, and potassium) that increase vegetation growth and productivity. The stabilized biosolids provide a slow release source of nutrients that can be utilized by plants for several years following application. The slow release of nutrients may prevent leaching of excess nutrients and possible contamination of groundwater and surface water.

The Landfill can benefit by using biosolids to augment final cover or intermediate cover soil. Key benefits for cover soil are moisture holding capacity and the growth of surface vegetation, which will inhibit erosion and reduce slope maintenance.

3.2 Regulatory Requirements

There are various rules that apply to the management of biosolids, including but not limited to the Federal rules under the United States' EPA national program (40 CFR Part 503), Idaho's solid waste rules under Title 39, Chapter 74, Idaho Solid Waste Facilities Act (SWFA) (State of Idaho, 1996), and Idaho Administrative Procedure Act (IDAPA) 58.01.16.650 (State of Idaho 2015), which regulates the use of sludge for soil augmentation and requires an approved sludge disposal/management plan. If the Landfill decided to accept this waste, 40 CFR Part 503 contains the standards for the use or disposal of sewage sludge (biosolids) that would apply. The SWFA follows 40 CFR 257 & 258 and requires that the biosolids meet the paint filter test. If the biosolids pass the paint filter test then the waste is not a liquid and can be accepted as normal solid waste. However, an amendment to Landfill's Operations Plan would be necessary before biosolids could be accepted.

Under the United States' EPA national program (40 CFR Part 503) municipalities and industries have to make sure that biosolids are safely handled to protect public health and environmental quality. The most common method of disposing biosolids is land application. However, 40 CFR Part 503 includes surface disposal, composting, and incineration of biosolids as recognized solutions that can be used to mitigate public health risks.

3.3 Land Application

From a Federal regulatory standpoint, if land application of Class B biosolids is considered, pathogen requirements and site restrictions must be met. Pathogen requirements listed under §503.32(b) (2), (3) or (4) consist of testing or treatment. Biosolids may be directly applied to land if the biosolids contain fecal coliform less than 2 million Most Probable Number per gram of total solids (dry weight) or if the biosolids are treated by one of the Processes to Significantly

Reduce Pathogens as described in Appendix B of the regulations. Site restrictions consist of various time periods before the property can be used for growing food crops or turf, grazing animals, or before public access is allowed. Pollutant limits for metals listed in §503.13 apply to land application, including ceiling concentrations, cumulative pollutant loading rates, average concentrations, and annual pollutant loading rates.

Land application of biosolids will also require compliance with the DEQ's Guidance for Land Application of Municipal Biosolids (DEQ, 2011). Key requirements are submission of a biosolids management plan to DEQ, calculation of the application rate, and record keeping/reporting. In addition, 40 CFR Part 503.13 requires cumulative pollutant loading rate (CPLR) monitoring if the metals concentrations of the incoming biosolids exceed Table 3 of 503.13, but are less than the ceiling limits in Table 1 of that section.

3.4 Surface Disposal

The placement of biosolids on land for longer than 2 years is typically considered surface disposal (less than 2 years is typically considered storage). If surface disposal is considered and the landfill does not have a liner, maximum pollutant concentrations in the biosolids cannot exceed the values shown in **Table 3-1**:

Pollutant	Concentration (milligrams per kilogram)
Arsenic	73
Chromium	600
Nickel	420

Table 3-1. Maximum Concentrations for SurfaceDisposal

In addition, these concentrations are reduced as the distance of the disposal site to the property line decreases. Concentration reductions begin for disposal sites within 150 meters of the property boundary. Pathogen requirements and site restrictions similar to land application must be met. The frequency of monitoring for pollutant concentrations, pathogen density, and vectors is based on the number of metric tons of biosolids disposed of per year. For 290 metric tons or less per year, monitoring once per year is required. For more than 15,000 metric tons per year, monthly monitoring is required.

Any biosolids destined for surface disposal must meet the paint filter test as outlined in 40 CFR 258. Biosolids passing the paint filter test are considered a solid rather than a liquid. The Landfill's Operations Plan must be revised to include a description of how the biosolids will be handled after acceptance.

3.5 Composting

Biosolids are considered a feedstock if used for composting with shredded green waste, and are regulated within respective composting regulations. However, compost feedstock may influence regulatory requirements. For example, compost that incorporates biosolids as a feedstock may be subject to more stringent process and quality criteria. These criteria would include meeting pathogen reduction limits, compliance with required sampling and analysis protocols, and the maintenance of compost temperature and retention time records. Furthermore, composts incorporating feedstock other than untreated and unprocessed wood and yard waste may be subject to land application and distribution restrictions.

If a compost operation that includes biosolids as a feedstock is considered it is necessary to show the ability to reduce odors and VOC emissions, and effectively meet the Process to Further Reduce Pathogens (PFRP) and Vector Attraction Reduction (VAR) and ensure that facility composting operators are consistently meeting regulatory requirements. A summary of these requirements and the CFR references are presented in Table 3-2.

Table 3-2. Composting Requirements

Requirement	Description	CFR Reference		
Vector Attraction Reduction (VAR)	Biosolids kept under aerobic conditions at an average temperature over 45 deg. C (113 deg. F) for at least 14 days	40 CFR Part 503.33 (b)(5)		
Process to Further Reduce Pathogens (PFRP)	Temperature-time-requirement: 55 deg C (131 deg F) for at least 3 days	40 CFR Part 503.32 (a)(7), Alternative 5 in conjunction with Part 503 App. B (B)(1)		
	PFRP requirements are met prior to, or at the same time as meeting the VAR requirements	40 CFR Part 503.32 (a)(2)		

Public access to the compost operation would need to be limited, and there would need to be recordkeeping requirements and testing of the final product. The Landfill's Operations Plan would also need to be revised to include a description of how the biosolids will be handled during the composting operation

Incineration, although allowable from a regulatory standpoint, is not recommended or appropriate for PBSL.

3.6 Biosolids Acceptance at the Landfill

Biosolids can be handled at the Landfill in a variety of ways, each with their own regulatory implications. Four general procedures will be discussed, land application, incorporation into the active face, incorporation into soil used for Landfill operations, and use as feedstock for a compost program. The details of each procedure would need to be discussed with the Landfill staff.

Land application of biosolids is a good option because the Landfill has a significant amount of unused property. Any land application program would need to follow DEQ's Guidance for Land Application of Municipal Biosolids and an approved biosolids management plan. The biosolids would be delivered to currently unused landfill property and dumped in a pile or spread by the delivery truck (rear applicator).

The biosolids would then be mixed into the surface soil in order to minimize vectors. Repeat application of biosolids over the same property would only be limited by metals concentrations (40 CFR Part 503.13 – Pollutant Limits) and/or agronomic limits. The biosolids would need to be applied to an area where a crop is grown to agronimically use the nutrients. The crop could

be any non-food crop including native grass/hay. The crop needs to be periodically harvested so that nutrient levels on the site do not increase over time. If properly managed and monitored the application of biosolids should have minimal environmental impact.

A drawback to this approach is that landfill equipment may need to be mobilized to the biosolids land application site each time a truck arrives with a load. Mixing biosolids into the soil may require the landfill equipment to come into direct contact with the biosolids. This issue can be mitigated by having equipment specifically dedicated to the land application operation. Odors may also be an issue before and during the mixing operation.

Biosolids can also be incorporated into the active face of the landfill.

Incorporation into the active face may be more convenient for the landfill staff because the landfill equipment is nearby. The pictures show a truck dumping biosolids directly on the active cell, but a variation on this would be preparing a depression in the active face for the truck to dump into. Ideally, biosolids would be delivered to the landfill early in the morning so the biosolids are covered with as many loads of waste as possible.

Drawbacks to this approach are the creation of "soft" spots in the active face and biosolids coming in contact with the landfill equipment and potentially the landfill customers. Odors will also be a concern until the biosolids are buried.

The landfill staff can prepare a low area within the cover soil borrow area for the biosolids to be placed. This approach works best for high water content biosolids that just barely pass the paint filter test. This approach allows the soil to soak up some of the water. It also allows the landfill staff to mix cover soil with the biosolids without having the equipment come in direct contact with the biosolids. After a day or two of drying, the soil/biosolids mixture can be picked up by the scraper and applied as daily cover. This approach has worked well for one landfill in Yuma, Arizona that accepts biosolids from Orange County, California.

A potential drawback to this approach is that during the winter the biosolids may never dry, but rather freeze. During winter months, the biosolids may need to be immediately mixed with soil and used as cover the same day.

Finally, the biosolids can be used as feedstock for a compost operation. The compost operation can be either an aerated static pile (ASP) type or a standard aerobic windrow type. Biosolids would be mixed with shredded green waste to increase the moisture content of the green waste and jump-start the composting process. The biosolids enhances the compost process by adding nutrients, nitrogen, and active microbes. Odors and vectors should be significantly reduced once the windrows start composting (above 131 deg F).

A concern regarding this approach is that the landfill may not want to start a composting program solely to manage biosolids. A composting program is labor intensive and the finished product must be sold or used for landfill final cover reclamation in order for the overall program to be cost effective. Another concern may be public perception. Although property composted biosolids are pathogen free, there is a negative perception associated with sewage sludge.

3.7 Landfill Impacts

Incorporation of biosolids into the landfill will add moisture and heavy metals to the fill. The moisture plus active microbes in the biosolids will jump-start the anaerobic decomposition process (similar to an aerobic compost process), leading to an increase in landfill gas production. This additional landfill gas production will be vented to the atmosphere because the landfill does not have an active collection system. Odor complaints may result.

A reduction in overall waste density may be a side effect of incorporating the biosolids into the active face of the landfill because the compactor cannot compact the wet biosolids. Soft spots in the waste fill may create slope stability concerns. In addition, soft spots in the landfill deck may cause trash trucks to get stuck.

The addition of biosolids will increase the overall concentration of heavy metals in the fill. Any leachate generated by the fill may have increased concentrations of heavy metals as a result. The metals in biosolids are particularly mobile because they are water-soluble.

3.8 Health And Safety Concerns

There are relatively high concentrations of pathogens (fecal coliform, helminth ova, etc.) in biosolids. Class B biosolids have the highest concentration of pathogens. Contact with eyes, mouth, and exposed skin should be avoided. The best protection is to avoid direct physical contact with the biosolids. Personal protective equipment should be used when there is a possibility that contact will occur. Personal protective equipment includes gloves, goggles/face shield, and Tyvek (or equivalent) suit/boot covers.

Any landfill equipment that comes in direct contact with biosolids should be washed thoroughly at the end of the day. Operators should take particular care when exiting the equipment prior to washing it at the end of the day. Equipment mechanics should also take particular care when disassembling landfill equipment for repairs. Any interior surface to be accessed by the mechanic should be thoroughly pressure washed first.

We recommend that if the County is considering acceptance of biosolids that they request the following test data, at a minimum, from the customer:

- % Solids,
- Metal concentrations per the 503 regulations,
- Fecal coliform concentrations per 503 regulations,
- Total Nitrogen

This page intentionally left blank.

4.0 LANDFILL GAS EVALUATION

The primary objective of this evaluation is to prepare a landfill gas (LFG) model that can be used to predict the amount of LFG that the Landfill will generate in the coming years. It updates the Methane Monitoring portion of the 1997 Status Report. In addition, this evaluation assesses the impact of accepting biosolids at the PBSL on LFG generation. Background information for this evaluation was obtained from the PBSL Operations Assessment and from documentation provided by Canyon County staff.

The Landfill has been operated by Canyon County since its opening in 1983. It is located in a formerly agricultural area, and has a site certification boundary encompassing approximately 490 acres. A portion of this acreage will used as buffer areas to convey stormwater and to house ancillary facilities. The Landfill is operated by the Area Fill method in which lifts of waste are progressively placed over an area of the Landfill and generally overlaid with daily cover soil at the end of the workday. The current waste footprint covers 74 acres. Intermediate cover is applied to areas that are inactive for extended periods of time.

The peak waste acceptance rate, based on six days per week in 2015, is 1,200 tons per day. Appendix 4-A contains projected waste flow data based on a moderate growth rate of 1.5%.

PBSL will have a finite site life, based on the anticipated waste flow presented in Appendix 4-A, and on the ultimate site capacity. Canyon County intends to modify the configuration of the landfill to maximize air space; therefore, the design capacity of landfill is subject to change.

The Landfill is classified by Idaho DEQ as a MSWLF, which is defined as any solid waste landfill that accepts household waste, household hazardous waste, or conditionally exempt small quantity generator waste. The waste materials disposed since the Landfill opening in 1983 include household, light commercial and business grade trash from Canyon and Owyhee Counties. Materials consisting of construction debris and landscaping trash, such as tree and grass trimmings, have also been placed in the Landfill. The Landfill has a waste screening program in place preventing the disposal of hazardous waste (as defined by 40 CFR § 258.28) and Polychlorinated Biphenyls (PCB). The waste capacity of the Landfill is over 2.5 million megagrams (Mg) which is an important regulatory milestone. In fact, the landfill currently has over 4,000,000 short tons (English units, equivalent to over 3.6 million Mg) in place (see Appendix 4-A for a complete history).

Table 4-1 contains estimated waste composition values, based on visual observation of waste in place at the landfill. This information can be used to more closely determine the LFG generation capacity of the waste.

PBSL is unlined and a Landfill Gas Extraction System (LFGES) has not been installed. A 600 foot buffer separates the waste footprint from the property line, including easements, drainage channels, access roads, and earthen berms.

The Landfill's current waste footprint is approximately 74 acres. The estimated volume of waste in-place is over 8 million cubic yards.

		Type of Waste	Composition % by weight				
1		Dry Recoverable Fiber	17.60				
2	PET UBC's 0.60						
3		HDPOE	0.80				
4		Film Plastics	5.30				
5		Mixed Plastics	3.40				
6		Glass	0.90				
7		Aluminum UBC's	0.20				
8		Mixed Ferrous (Tin & Salvage)	1.70				
9		Mixed Non-Ferrous (Salvage)	0.10				
10		Inerts	7.30				
11	Hazardous Waste 0.30						
12	E-Waste 1.00						
13	Textiles 7.00						
14		Organics	43.00				
	а	Yard Waste	8.20				
	b	Food Waste	19.10				
	С	Clean Wood	3.40				
	d	Treated/Painted Wood	3.30				
	e	Wet/Contaminated Fiber	6.10				
	f	Rubber	0.90				
	g	Allocated Organics	2.00				
15		Fines (<2" items)	1.30				
16	Other 9.50						
	Total 100						
	Calculated;						
	Methane Correction Factor (MCF) 1						
	Degradable Organic Carbon (DOC) 0.187952						
	Fraction of DOC Dissimilated (DOC _F) 0.494031						

Table 4-1. Pickles Butte Sanitary Landfill Estimated Waste Composition

4.1 Applicable Regulatory Requirements

4.1.1 Principal Federal Landfill Regulations

Under the Resource Conservation and Recovery Act (RCRA), enacted by Congress in 1976 and amended in 1984, landfills that accept municipal solid waste (MSW) are primarily regulated by state, tribal, and local governments. The EPA, however, established criteria for MSWLF's (40 CFR Part 258) under RCRA on October 9, 1991 that MSWLF's must meet in order to stay open. The criteria contain location restrictions, design, and operating standards, groundwater monitoring requirements, corrective actions, financial assurance requirements, LFG migration control, closure requirements, and post closure requirements. Under the design standards, new landfills and lateral expansions that occur on or after October 9, 1993 are required to have liners on the bottom and sides of the landfill prior to waste deposition. In the case of the PBSL native in-place, soil materials have been approved by DEQ in lieu of a geomembrane liner. The regulations also state that all landfills operating after October 9, 1991, must place a final cap over the landfill surface. The placement of liners and caps reduces the potential for subsurface and surface LFG migration and groundwater contamination. While additional federal, state, and local landfill rules and regulations are in place, RCRA represents the primary laws covering land disposal of municipal solid waste.

In particular, 40 CFR §258.23 requires explosive gases control at the PBSL's property boundary. It is our understanding that LFG is currently monitored in groundwater monitoring well casings. This practice is unusual and would be cause for concern if methane found in the groundwater well casings was LFG. Tetra Tech recommends that PBSL install dedicated LFG monitoring probes

at the perimeter of the landfill as required by 40 CFR §258.23, unless an exemption from LFG monitoring has been granted by DEQ. The spacing for these probes must be negotiated with DEQ. Probe spacing of up to 1,000 feet on center have been permitted at other landfills.

4.1.2 Principal Federal Landfill Air Emissions Regulations

Because of the environmental benefits of collecting and controlling LFG, the 1996 EPA Standards of Performance for New Stationary Sources (NSPS), Guidelines for Control of Existing Sources, and the recently published National Emission Standards for Hazardous Air Pollutants (NESHAP), require "large" MSW landfills to collect LFG and combust it to reduce non-methane organic compounds (NMOC) by 98% (or to an outlet concentration \leq 20 ppmv). Appendix 4-B G contains copies of selected Federal regulations.

A "large" landfill is defined as having a design capacity of at least 2.5 million metric tons and 2.5 million cubic meters. Landfills meeting that threshold must perform an annual calculation to determine if the landfill uncontrolled NMOC emissions rate has exceeded 50 metric tons (megagrams) per year. Canyon County has elected to perform a Tier II calculation to document that the landfill has not exceeded this threshold. Landfills exceeding the limit must install a landfill gas collection and control system (GCCS). The current PBSL Tier 2 projects that the NMOC emission rate will be 33.3 Mg/year in 2014, and will exceed 50.4 Mg/year in 2026.

The NSPS and NESHAP require that gas collection systems be well designed and properly operated. They require gas collection from all areas of the landfill, monthly monitoring at each collection well, and monitoring of surface methane emissions to ensure that the collection system is operating properly and to reduce fugitive emissions. Code of Federal Regulations 40 Part 60 (40 CFR 60), Subpart WWW (Standards of Performance for Municipal Solid Waste Landfills or NSPS) is typically the driving force requiring the construction and installation of LFG extraction systems at landfills (US EPA, 1996).

The solid waste industry is waiting for the EPA to publish new NSPS regulations in the federal register, Code of Federal Regulations 40 Part 60 (40 CFR 60), Subpart XXX. Contained in the new Subpart XXX is a reduced NMOC threshold of 34 metric tons (megagrams) per year, down from the current 50 Mg/year. This new NMOC limit may impact PBSL. The following is an excerpt from 40 CFR 60, Subpart XXX:

Section 60.33f Emission Guidelines for municipal solid waste landfill emissions

(a) Landfills. For approval, a State plan must require each owner or operator of an MSW landfill having a design capacity of greater than or equal to 2.5 million Mg by mass and 2.5 million cubic meters by volume to collect and control MSW landfill emissions at each MSW landfill that meets the following conditions:

(1) The landfill has accepted waste at any time since November 8, 1987, or has additional design capacity available for future waste deposition.

(2) The landfill commenced construction, reconstruction, or modification on or before July 17, 2014.

(3) The landfill has an NMOC emission rate greater than or equal to 34 megagrams per year or the Tier 4 surface emissions report shows a surface emission concentration of 500 parts per million methane or greater.

(4) A landfill in the closed subcategory that has an NMOC emission rate greater than or equal to 50 megagrams per year or the Tier 4 surface emissions report shows a surface emission concentration of 500 parts per million methane or greater.

New Emissions Guidelines (EG) regulations apply to existing landfills. The key date for applicability has been tentatively set as July 17, 2014. If this date appears in the final EG rule, the PBSL may be subject to the lower NMOC threshold of 34 Mg/year. Once the new regulations are published in the Federal Register, Tetra Tech can evaluate which threshold is applicable to the PBSL.

From an October 6, 2015 communication with EPA staff:

"The 34 Mg/yr threshold only applies to the proposed NSPS and emission guidelines. The 50 Mg/yr threshold applies until the agency [EPA] takes final action (issues a final rule). Rules must be followed as written until they are revised or amended by final rule."

Final comments on the proposed EPA NSPS/EG rules are due October 26, 2015. Finalized rules are expected the first quarter 2016. State regulatory agencies have 9 months from the date the final rules are published in the Federal Register to promulgate regulations that comply with the new rules. If the new rules trigger the installation of a gas collection and control system, a landfill will have 30 months from the date that the 34 Mg/year NMOC emission rate is exceeded to have a LFG collection system installed. Therefore, if the proposed EPA NSPS/EG rules are published as currently written, the PBSL would have no more than 39 months from the date of publication in the Federal Register to install the system.

4.1.3 Tier 2 NMOC Concentration

PBSL has a total capacity greater than 2.5 million megagrams or 2.5 million cubic meters (3,269,877 cubic yards). Therefore, it needs to comply with paragraph (b)(2) of Section 60.752 of 40 CFR 60, and provide calculation of an NMOC emissions rate using the procedures specified in Section 60.754 (Tier 1, 2, and 3 calculations) of 40 CFR 60. The most recent Tier 2 was performed on December 2014 and is in effect for a five-year period. The NMOC concentration obtained from this Tier 2 Analysis was 485 parts per million by volume (as hexane). This value was used for the subsequent modeling contained in this report.

The new NSPS regulations will contain a new method of determining NMOC emissions from landfills, known as Tier 4. The Tier 4 analysis will reportedly consist of surface monitoring for NMOC emissions through the landfill cover.

4.1.4 Greenhouse Gas Emissions Regulations

The EPA has promulgated Greenhouse Gas (GHG) reporting requirements. Reporting of GHG emissions began on September 30, 2011. Landfills with emissions exceeding 25,000 metric tons per year of CO_2 must report. Landfills are currently required to report both biogenic and anthropogenic emissions. PBSL is above the 25,000 metric ton limit and therefore must report GHG emissions to the EPA on an annual basis. PBSL generated 84,613 MT of CO_2 for the reporting year 2014.

4.2 LFG Generation Estimates

The LFG generation estimate is an important planning tool that can be approached from three perspectives. One perspective is regulatory compliance. From this perspective, an LFG flow rate that is near the upper range of theoretically possible LFG generation is preferred to ensure that all generated LFG is being collected, and that both surface and lateral LFG migration is being controlled. Estimating higher LFG generation is conservative in this case. This scenario could be termed maximum gas flow design.

Under a maximum gas flow design a financial risk arises when the landfill is required to install a collection system before it is required. This may be acceptable if it is critical for the project owner to maintain migration control, limit surface emissions, and control odors.
A LFG flow rate estimate that is near the lower range of theoretically possible LFG generation could be termed minimum gas flow design and would be the second scenario. A disadvantage of a minimum gas flow scenario is that it may not allow sufficient time for the landfill to budget for the installation of a collection system and the landfill may run the risk of being out of compliance with regulatory requirements.

A third scenario involves changing gas flow design. This scenario acknowledges that actual LFG generation changes from year to year based on the age of the waste and the waste composition. This scenario requires waste composition information and that some assumptions be made regarding future changes in waste composition. The PBSL may choose to accept bio solids in the future, which could change the shape of the LFG generation curve going forward. A model run assuming additional moisture and more organic material has been performed to determine the impact of this decision.

4.2.1 Landfill Gas Generation Modeling Approach

The LFG modeling approach for this evaluation consisted of using the EPA LandGEM model (Version 3.02, May 2005) using existing site input parameters. A second LFG model consisting of the IPCC Guidelines for National Greenhouse Gas Inventories method, modified by the State of California Air Resources Board (CARB), was also used. The CARB LFG model uses site specific waste composition values and the degradable organic content (DOC) of the waste. The waste composition can be varied by year to adjust for changes. For the biosolids simulations, the organic fraction of PBSL waste was adjusted up from 43% organic matter to 55% organic matter, and the methane generation rate constant was increased from 0.02 to 0.05/yr. This change in waste composition was assumed to be implemented in 2015, and continue unchanged through 2040.

4.2.2 Landfill Gas Generation Modeling

One of the input parameters the model requires is the Landfill's known waste acceptance rate. Solid waste flow was determined using information supplied by Canyon County. The estimated volume of refuse in place at the site is another key parameter used by the EPA's LandGEM model to develop a projection of potential methane generation. Other input parameters were adjusted to reflect the presumed moisture content and varying rates of decomposition associated with different fractions of the waste stream. The model estimates peak methane generation one year after the last year of waste disposal, with a decline in production thereafter. The waste acceptance rates are shown in Appendix 4-A.

LFG production parameters were selected to reflect the methane generation for an arid landfill. Actual recoverable methane may be different than the predicted generation. Also, regulatory default values for the Methane Generation Potential, L_{o} , and Methane Generation Rate Constant, k, may not be representative of the specific conditions at the Landfill, and may overestimate flow rates for system design. The selection of these parameters is discussed below.

Methane Generation Potential (L₀)

In the landfill gas generation equation, the methane generation potential value represents the theoretical maximum yield (expected volume of gas per unit mass of refuse). Determining the maximum theoretical yield of a unit mass of municipal solid waste can be complex. Either of two methods can be used: 1) stoichiometric or 2) biodegradability. Both methods require extensive sampling, time consuming lab analysis, and complex analytical procedures. Both methods rely extensively on a characteristic sample of the waste stream.

The AP-42 minimum value for the methane generation potential is 100 cubic meters per megagram. Generation model runs were prepared for values of 100, 170, and a calculated site-specific value based on waste composition.

Methane Generation Rate Constant (k)

AP-42 allows the use of a k value of 0.02/year for arid regions that have less than 25 inches of rainfall per year. Tetra Tech personnel visually evaluated the moisture content of the waste being delivered to PBSL. Because the landfill is located in the western portion of the United States, and annual precipitation is less than 12 inches per year, a low gas generation rate was assigned. A value of 0.02/year was used for this generation estimate and reflects a relatively dry waste mass and slow decomposition rates. However, for the LFG generation model run with the addition of biosolids, a value of 0.05/year was used to reflect the increase in moisture associated with biosolids.

Model Results

The modeled results are shown as Appendices 4-C, 4-D, 4-E, and 4-F. The model parameters and resulting methane generation rates are shown as on Tables 4-2 through 4-5 below. The model runs in Attachments D and E are based on an assumed organic content of 55%, which includes biosolids addition after 2015.

Table 4-2. LandGEM Minimum Methane Generation Rates, 2015

Methane Potential, m ³ /Mg (L ₀)	100
Methane Generation Constant, yr ⁻¹ (k)	0.02
Modeled Methane Generation Rate for 2015, SCFM	398

See Appendix 4-C for Model Results

Table 4-3. LandGEM Maximum Methane Generation Rates, 2015

Methane Potential, m ³ /Mg (L ₀)	170
Methane Generation Constant, yr ⁻¹ (k)	0.02
Modeled Methane Generation Rate for 2015, SCFM	677

See Appendix 4-D for Model Results

Table 4-4. Tetra Tech Estimated Methane Generation Rates Based onCARB and No Biosolids, 2015

Methane Potential, m ³ /Mg (L ₀)	Custom, 43% Organics
Methane Generation Constant, yr ⁻¹ (k)	0.02
Modeled Methane Generation Rate for 2015, SCFM	485

See Appendix 4-E for Model Results

Table 4-5. Tetra Tech Estimated Methane Generation Rates Based onCARB with Biosolids, 2015

Methane Potential, m ³ /Mg (L ₀)	Custom, 55% Organics
Methane Generation Constant, yr ⁻¹ (k)	0.05
Modeled Methane Generation Rate for 2015, SCFM	903

See Appendix 4-F for Model Results

4.2.3 Landfill Gas Quality

If the PBSL decided to install a landfill gas collection and control system (GCCS), the actual methane concentration of the LFG collected would initially be 55% methane and 45% carbon dioxide. This composition reflects pure LFG as it is generated within the landfill. Once a GCCS has been in operation for a period of time the LFG composition typically changes, and there is typically an increase in nitrogen and oxygen and a decrease in methane.

Because the methane content of the LFG will vary, the results of the model runs report standard cubic feet per minute (scfm) of pure methane. The pure methane number can be divided by the methane content to obtain the LFG flow rate. As an example, assuming pure landfill gas with a methane content of 55% and the methane flow rate in Table 5 of 903 scfm, the LFG flow rate would be $903 \div 0.55 = 1,642$ scfm.

4.2.4 Modeling Analysis Results

The projected methane generation graph below shows the modeling results. A larger version of these graphs can be found in Appendix 4-G of the report. These curves were extended to the year 2050. LFG generation curves typically peak one year after closure. Because the closure date is undetermined at this time, the models assume waste is continuously accepted from 1983 to 2050.

The lower red LandGEM curve is the minimum gas generation scenario, using the arid parameters and a lower methane generation capacity. The blue LandGEM curve is the maximum methane generation scenario without biosolids addition. These model inputs are the Clean Air Act defaults with a relatively high methane generation capacity value. The green curve was generated using the Tetra Tech/CARB model and a calculated methane generation capacity based on an assumed waste composition (based on visual inspection of the waste during our site visit). The upper purple curve was generated using the Tetra Tech/CARB model and assumes a higher moisture content and a higher percentage of organic material beginning in 2015 through 2050. Tetra Tech believes the green curve may most accurately reflect LFG generate at the PBSL without the addition of biosolids. The purple curve represents the upper limit of LFG production with the addition of a significant amount of biosolids.

The projected NMOC generation graph below shows the modeling results of NMOC generation at PBSL using the most recent Tier 2 NMOC concentration of 485 ppmv. The mass of NMOC's generated by PBSL should not change much based on the amount of LFG generated. This is because anaerobic decomposition of in place waste is not the primary source of NMOC. Anaerobic decomposition of waste produces 55% methane and 45% carbon dioxide. The majority of the NMOC's are contained within the waste itself when the waste is placed and compacted at

the landfill. Therefore, as the amount of LFG generated within the landfill increases the concentration of NMOC's generally decreases, resulting in the same total NMOC mass emissions rate. The decomposition of some plastics that can produce NMOC's during degradation would be a minor contributor to the total NMOC mass emissions rate.

The graph shows a range of possible target dates for the installation of a GCCS at the PBSL. Assuming the blue curve and the proposed Subpart XXX NMOC threshold of 34 Mg/yr., the landfill would be required to begin the design of the GCCS now. Assuming the blue curve and the current Subpart WWW NMOC threshold of 50 Mg/yr., the landfill would not be required to begin the design of the GCCS until 2024. The actual NMOC generation rate probably falls between the blue and red curves because an L_0 value of 170 overstates the actual methane generation potential of the waste in the PBSL. In Tetra Tech's opinion, the most likely scenario is that PBSL will not fall under the new Emissions Guidelines Subpart Cf due to the future lateral expansion, which will occur after July 17, 2014. Rather, the PBSL would be subject to the new NSPS Subpart XXX, and therefore would be subject to the lower 34 Mg/yr. threshold.

4.2.5 Pickles Butte Sanitary Landfill Expansion

The existing Landfill will be expanded laterally in the future. The placement of additional MSW in the expansion area will extend the life of the landfill. However, LFG generation is influenced by the rate of MSW placement. If the daily tonnage coming into the landfill doubles, the amount of LFG generated the following year can be expected to double.

4.3 Recommendations

Tetra Tech recommends that once the new NSPS and EG regulations are published in the Federal Register the regulatory status of the PBSL be revisited. This may include seeking guidance from regulators. If the new 34 Mg/year NMOC threshold does apply to the PBSL, then the design of a GCCS for the site must begin. If the 50 Mg/year NMOC threshold still applies to the PBSL, then the County may have until 2024 to install a GCCS.

The cost to install a GCCS, LFG processing skid and flare may range from \$25k to \$40k per acre, depending upon the design of the system. LFG collection can consist of horizontal pipes that are buried in the waste as filling progresses, or vertical wells that are drilled in the waste after placement. It has been our experience that landfill owners prefer installing horizontal collectors as filling progresses, but this scenario requires advanced planning.

Canyon County may also want to review the need to install perimeter LFG probes, as required by 40 CFR §258.23. Unless the County has written documentation approving the current practice of monitoring in groundwater well casings, the installation of perimeter LFG probes may be necessary.

The County may also benefit from exploring the Tier IV option for measuring NMOC emissions if this option is included in the final version of 40 CFR 60, Subpart XXX. The current PBSL Tier 2 NMOC emission rate was estimated to be 33.3 Mg/year in 2014. The Tier IV option may result in a lower NMOC emission rate.

This page intentionally left blank.

5.0 PRELIMINARY SLOPE STABILITY EVALUATION

This section of the report details the preliminary slope stability evaluation of the Conceptual Fill Plan for Landfill. Tetra Tech performed stability analyses and seismic evaluation of the proposed cell geometries to verify satisfactory stability or to indicate if flatter slopes are required to achieve stability. Cross-sections used in this preliminary stability evaluation were those generated by the Conceptual Fill Plan that is presented in Section 6 of this report (Figures 6-1 through 6-13).

5.1 Project Description

Based on the Conceptual Fill Plan, planned Phases 1 through 4 of the Pickles Butte Sanitary Landfill consist of approximately 74 acres of unlined cells. These phases are further described in Section 1.15 of this report. Proposed fill slopes are planned to be on the order of 5H:1V (horizontal to vertical) to 4H:1V, with maximum waste fill depths on the order of 170 feet. Proposed excavation slopes are planned to be on the order of 2H:1V to 2.5H:1V or less, with maximum cut depths on the order of 75 to 80 feet. The finished fill slopes will consist of a sequence of slopes with 20-foot wide storm water/erosion control benches for every 40 feet of elevation gain. The reasons for selecting the lower angle slopes includes more effective erosion and stormwater control on the final slopes.

5.2 Purpose and Scope of Services

Administrative rules for the Idaho Solid Waste Facilities Act (Idaho Statutes, Title 39 – Health and Safety, Chapter 74, Section 39-7407) for the DEQ's administration of MSWLFs require that,

"A MSWLF unit shall not be located: ... (ii) within seismic impact zones except as provided in 40 CFR §258.14;"

The EPA, in 40 CFR §258.14, defines a seismic impact zone as;

"...an area with a ten percent or greater probability that the maximum horizontal acceleration...will exceed 0.10g in 250 years."

The EPA requires that MSWLF units located within a seismic impact zone shall demonstrate that all landfill containment structures are designed to resist the maximum horizontal acceleration in lithified earth material for the site. Based on the USGS National Seismic Hazard Mapping application, the peak horizontal ground acceleration at the project site having a 10 percent probability of exceedance in any 250-year period is 0.11g, which exceeds the criteria above and therefore classifies or designates the site by rule definition to be within a seismic impact zone.

The purpose of this preliminary study is to demonstrate that the conceptual cell design of Phases 2 through 4 of the Pickles Butte Sanitary Landfill meets the requirements for the following containment structures:

- Phase 3 Maximum Section (Section N667100)
- Phase 4 Maximum Section (Section N667900)
- Phase 3 Temporary Cut Slope (Section N667100)

5.3 Preliminary Analysis

A geotechnical evaluation for the Landfill was previously completed in 1998 Holladay Engineering Company (Holladay, 1998b). Tetra Tech reviewed the existing soil strength data in the 1998 report to select conservative soil strength values for the preliminary slope stability evaluation. Waste material shear strengths were selected based on published ranges of material strength data (Bray, et al. 2009). Conservative (lower bound) shear strength values were used to evaluate slope stability for static and seismic conditions.

Table 5.1 presents the material values that were assumed for this analysis:

Material	Unit Weight (pcf)	Friction Angle (deg)	Cohesion (psf)
Waste Fill	75	28	300
Native Soil	110	30	100

Table 5-1. Material Strength Properties

Tetra Tech reviewed the most recent published USGS probabilistic earthquake hazard information for seismic events with a 10 percent probability of exceedance in a 250-year period (USGS 2008 NSHMP PSHA Interactive Deaggregation Web Application), as current state of practice warrants, to select a peak spectral horizontal acceleration (PSHA). Based on our review of the USGS probabilistic earthquake hazard information, including site specific deaggregation characteristics of the Maximum Credible Earthquake (MCE), including magnitude, distance, and probability, a PSHA of 0.26g was selected to represent the extreme seismic case.

Based on recommendations in the EPA's Seismic Design Guidance for MSWLF (1995), the maximum horizontal acceleration was reduced by 50 percent to represent the average horizontal acceleration for the given slope. In this case, 50 percent of the maximum horizontal acceleration (0.26g) yields an average horizontal acceleration of 0.13g. An adjusted horizontal acceleration of 0.13g was therefore applied for pseudo-static analysis of the modeled slope configurations.

Slope stability and pseudo-static analyses were performed using the computer program SLIDE v.6, developed by Rocscience, Inc., to determine the factors of safety of critical slip surfaces using both circular and block failure searches and vertical slice limit equilibrium methods. Because the landfill is unlined, the potential of a critical interface between the waste fill and the natural subgrade soil is low. Therefore, circular failure analyses were performed at the critical sections. A screening analysis for block failure was performed to verify the potential for failure along the waste-soil interface is low compared to circular failure through the waste fill. A static, circular failure analysis was also performed on the critical (2H:1V) temporary cut slope.

The EPA recommends a minimum factor of safety (FS) of 1.5 for static slope stability analysis and a FS of 1.3 for pseudo-static slope stability analysis, based on Table 2-4 of the EPA's Solid Waste Disposal Facility Criteria Technical Manual (1998).

Based on the Conceptual Fill Plan cross-sections, the critical slope conditions identified were Section N667100 and Section 667900. A summary of the analysis results is presented in **Table 5-2; Figures 5-1 through 5-5** are the corresponding output plots.

	Figure	Safety Factor		
Section	Number(s)	Static Analysis, Circular Failure	Pseudo-static Analysis, Circular Failure	
Phase 3 Maximum Section (Section N667100)	1 and 2	3.37	1.92	
Phase 4 Maximum Section (Section N667900)	3 and 4	2.79	1.71	
Phase 3 Temporary Cut Slope (Section N667100)	5	1.63	-	

 Table 5-2.
 Summary of Slope Stability Analysis

Figure 5-1

When the pseudo-static analysis indicates a factor of safety of equal to or less than 1.3, the containment structure is required to be evaluated utilizing the at least two independent methods to estimate permanent seismic induced displacement of the refuse mass. The displacement analysis methods are typically used as a screening method to evaluate if the structure or slope under analysis is within the range of critical displacement. For design of municipal solid waste landfill facilities, a maximum displacement less than 15 to 30 cm is typically acceptable for design. The pseudo-static analyses did not indicate a factor of safety below 1.3; therefore, a displacement analysis was not performed.

The performance of landfills subjected to strong earthquake ground motions is an extremely complicated process, and all of the variables that affect the behavior are not yet fully understood or capable of being analyzed. The historical performance of landfills subjected to seismic events similar to the design earthquake generally indicates satisfactory performance for the landfills studied.

A conceptual veneer cover slope was also evaluated based on the method presented by Koerner and Soong (1998). Based on a proposed maximum slope angle of 4H:1V (14-degrees), 3 feet of soil cover, a soil-geomembrane interface friction angle and adhesion of 20-degrees and 100 psf, respectively, and the proposed slope geometry and soil properties above, the veneer cover stability factor of safety was calculated to be 2.9.

5.4 Conclusions

The material strength properties incorporated in the preliminary seismic evaluation analyses were based on lower bound shear strength values and are considered conservative estimates.

Results of the preliminary seismic evaluation indicate that the Conceptual Fill Plan design for Phases 1 through 4 should meet the requirements of the Administrative rules for the Idaho Solid Waste Facilities Act for the Idaho DEQ's administration of MSWLF.

The preliminary seismic evaluation presented above was performed in accordance with generally accepted standards of the geotechnical engineering profession.

6.0 CONCEPTUAL FILL PLAN REPORT & CAPACITY ESTIMATE

This section of the report presents a conceptual fill plan for the landfill area that is currently approved for placement of waste. The purpose of this plan is to develop a conceptual sequence for the fill operations and to estimate the remaining life of the facility as it is currently permitted. The plan also evaluates the overall soil balance for the facility.

6.1 Site Design History

The design history of the site is documented within the Hydrogeologic Characterization, Ground Water Monitoring Plan, and Facility Design Report (Holladay, 1994a) and the 1997 Landfill Status Report (Holladay, 1998a).

The original design was prepared by Blakley Engineers in 1973 and included filling three deep coulees or ravines to a top deck elevation of 2900 feet. This essentially matched the existing grade along the east side of the coulees. The capacity of the site was estimated to be 16,000,000 cubic yards. Two of the ravines were east of Perch Road and the third ravine was west of Perch Road. The plan was modified in 1980 to allow public use of the OHV west of the active Landfill are for the maximum time. The modified plan included continuing the placing waste east of Perch Road and not expanding into the area west of Perch Road until necessary.

The facility began accepting waste in April 1983. When the federal Subtitle D rules were implemented in the early 1990's, the County was required to update the facility design and hydrogeologic characterization for approval of the facility by the State of Idaho (Holladay Engineering, July 1994). This design included a fill boundary, which followed the top of three coulees along the east side and crossed Perch Road, as shown on Figure 6 of the 1994 design report (Holladay, 1994a). The design elements included constructing 3:1 exterior slopes and building the fill above grade rather than the flat top proposed in the 1973 design. This significantly increased the overall capacity of the facility to 25,700,000 cubic yards. The 1994 design also included provisions for stormwater control and a conceptual final cover design approach.

Holladay prepared a revised design for the facility as part of the 1997 Landfill Status Report. The footprint for this design is quite similar to the 1994 footprint except the eastern boundary was rounded rather than following the incised contour of the tops of the coulees. This design included constructing 3:1 slopes with benches for stormwater control every 50 vertical feet. The final top deck was proposed to reach an elevation of 3054 feet. Incorporation of the stormwater benches reduced the overall capacity of the facility to 21,500,000 cubic yards. Our understanding is that the 1997 Landfill Status Report was never submitted to the Idaho DEQ so the 1994 design is the currently approved plan.

The 1997 Status Report also evaluated a conceptual plan for expansion called the Total Canyon Design. This design includes expanding the footprint to the west and constructing the landfill to the same height and slope configuration. This design would increase the capacity of the landfill to 64,500,000 cubic yards.

6.2 Current Situation

The waste design boundary shown in the 1994 Design Report has been modified by the actual operation. The 1994 boundary showed the southern and eastern limits being defined by the top ridgeline of three coulees. Since that time, the County has "rounded off" the eastern and southern boundaries with a footprint that is larger than that shown on the 1994 documents. This "rounded design boundary" is shown on Figure 10 of the 1997 Updated Status Report (Holladay, 1998a), which was never submitted to the DEQ. This "rounded boundary" is similar to the current waste limit; however, the County has expanded the waste footprint significantly to the east beyond the footprint proposed in 1997 as shown on **Figure 6-1 in Appendix 6-A**. The current waste limit

covers 74.2 acres. The design boundary will need to be updated when the new fill plan is submitted to the DEQ.

The County is constructing 15-20 foot high lifts. In recent history, the lifts have progressed from north to south. The crew grades each lift so that positive drainage is maintained across the top deck from east to west. Storm water control benches have been constructed every 20-40 feet of elevation along the western fill slope.

6.3 Proposed Fill Sequence and Design Criteria

The Tetra Tech/Great West team has developed the conceptual fill plan based on the following:

- Stability analysis of landfill
- Site topographic map from October 2014 (Miller Creek Aerial Mapping)
- Site inspection
- Discussions with PBSL Director on preferred fill sequence and slope criteria

Tetra Tech completed an analysis of landfill stability and determined that the exterior slopes could be constructed at a ratio of up to 4:1 (four feet horizontal for each one foot vertical), and still provide the landfill with an adequate safety factor for stability (See Section 5 of this report). However, operational experience at the site has determined that a lower angle is more functional because of the difficulty establishing vegetation on finished slopes because of the arid climate and minimal topsoil that is available on-site for reclamation of the slopes.

The County has historically filled the existing finished slopes between 6:1 and 5:1. They would prefer to continue to fill exterior slopes at 5:1 except in the Phase 2 area (discussed later in this report). The reasons for selecting the lower angle slope (5:1) include more effective erosion and stormwater control on the final slopes. In addition, the largest slope will be along the western side of the fill that will likely be overlapped with the expansion of the landfill footprint in the future. We anticipate that the expansion design will be similar to that shown in the 1997 Total Canyon conceptual design. Tetra Tech recommends that a 20-foot wide storm water/erosion control bench be constructed for each 40 feet vertical of slope. The final design criteria for the conceptual fill plan are included in **Table 6-1**.

Item	Criteria
Fill Slopes	5:1 (4:1 in Phase 2 Fill area)
Height between Stormwater Benches	40 feet
Stormwater Bench Width	20 feet
Minimum Finished Slope	5% (20:1)

Table 6-1.	Conceptual F	Fill Plan	Design	Criteria
------------	--------------	-----------	--------	----------

The landfill has experienced an average growth in waste tonnage of 1.5% in recent history. **Table 6-2** projects the annual and cumulative tonnage for the facility from 2014 through 2045. The information in **Table 6-2** is used later in the report to project the life of each landfill phase.

Year	Waste Landfilled (tons/yr.)	Cumulative Waste Landfilled (tons)
2014	211,955	211,955
2015	215,134	427,089
2016	218,361	645,450
2017	221,637	867,087
2018	224,961	1,092,048
2019	228,336	1,320,384
2020	231,761	1,552,145
2021	235,237	1,787,382
2022	238,766	2,026,148
2023	242,347	2,268,495
2024	245,982	2,514,477
2025	249,672	2,764,149
2026	253,417	3,017,566
2027	257,219	3,274,785
2028	261,077	3,535,862
2029	264,993	3,800,855
2030	268,968	4,069,823
2031	273,002	4,342,825
2032	277,097	4,619,922
2033	281,254	4,901,176
2034	285,473	5,186,649
2035	289,755	5,476,404
2036	294,101	5,770,505
2037	298,513	6,069,018
2038	302,990	6,372,008
2039	307,535	6,679,543
2040	312,148	6,991,691
2041	316,830	7,308,521
2042	321,582	7,630,103
2043	326,406	7,956,509
2044	331,302	8,287,811
2045	336,271	8,624,082
Total	8,624,082	

6.4 Phase 1 Fill Plan

Phase 1 consists of completing the fill on the current waste footprint. The County is placing the last full lift (15-20 ft. deep) within the southern third of the existing waste footprint. One more partial lift will placed on the waste footprint once that last full lift is complete. The northern third of the current landfill top deck matches elevation of the historic eastern ridgeline. The Landfill Director wants to delay placement of waste in this area because the next lift would be visible off site from the east.

Constructing the landfill above the historic ridge would make the site visible from several ranches and households east of the facility. This is the only direction from which the site will be readily visible for at least 30 years. We recommend the County consider installing visual screening along the east side of the landfill. This would consist of planting native, drought resistant trees along this boundary. The survivability of the trees could be enhanced by installing a drip irrigation system. Eventually with the Phase 4 fill plan, the landfill will become visible from the east and planting trees now would allow time for growth before the landfill reaches an elevation where it becomes visible. Tetra Tech's botanists in Boise can make a recommendation for appropriate species for the visual barrier. This final lift will cover approximately two-thirds of the existing waste footprint and will be constructed to match the elevation of the historic ridgeline to minimize visibility to the east. The landfill top deck has been filled to this point with a cross slope from east to west of approximately 2%. The Director would like to complete the final lift in this same manner and place the minimum final 5% top deck grade as part of Phase 4 after completing Phases 1 to 3, as described below. **Figures 6-2 through 6-10 in Appendix 6-A** (Cross sections N 666,500 to N 668,100) show the conceptual fill configuration under Phase 1 and the addition of future waste in Phase 4 that will achieve the minimum 5% grade for the final fill.

The capacity estimate for Phase 1 is based off the most recent topographic map, which was completed in October 2014. Phase 1 had 2.3 years of capacity remaining as of October 2014. Therefore, there are 1.3 years remaining as of the date of this report. **Table 6-3** summarizes capacity estimates, life remaining, and needed soil volumes under the current daily operation and **Table 6-4** summarizes the same criteria if the landfill switched to a system utilizing alternative daily cover (ADC).

6.5 Phase 2 Fill Plan

Phase 2 consists of filling a triangular area northwest of the existing fill footprint. The boundary of this area is shown on **Figure 6-1 in Appendix 6-A**. This area is within the approved design boundary and represents a significant volume of waste disposal because of the overlapping air space created over the existing waste footprint. One reason the County wants to fill this area next is there is a large (approximately 60 feet high) historic waste slope that was constructed at an approximate slope angle of 1:1. Placing fill in this area would effectively buttress this waste slope. Soil will not be excavated from this expansion area because of an abandoned well in this area (PB-1) and the limited footprint available to conduct waste excavation,

The Director would like to keep the Phase 2 fill area east of Perch Road. The reason is to delay impacts to the Jubilee Park OHV recreational area west of the current perimeter fence. This results in a slight modification and reduction to the 1994 design boundary in this area. The Phase 2 slopes will be constructed at 4:1 so that the historic 1:1 slope can be completely covered and additional capacity developed above the historic waste footprint (See **Figures 6-8, 6-9 and 6-10 in Appendix 6-A** (Cross Sections N667,700; N667,900; and N668,100) for details. Phase 2 has 5.2 years of capacity under projected tonnage and current operational efficiency.

Phase	Capacity (CY)	Tonnage (Tons)	Cumulative Tonnage (Tons)	Life (Yrs)	Cover Soil Volume (CY)	Cumulative Soil Volume (CY)
Phase 1	856,000	503,000	503,000	2.3	268,000	268,000
Phase 2	1,983,000	1,166,000	1,669,000	5.2	620,000	888,000
Phase 3	547,2000 (2)	3,219,000	4,888,000	12.5	1,710,000	2,598,000
Phase 4	3,804,000	2,238,000	7,126,000	7.7	1,189,000	3,787,000
Total	12,115,000	7,126,000	-	27.7	3,787,000	-

Table 6-3.	Conceptual Lift Plan Capacity, Life Estimates, Cover Soil Volume Needed
	Using the Current Daily Cover Operation

⁽¹⁾ Life is based on last topographic map prepared in October 2014

⁽²⁾ Phase 3 capacity includes proposed excavation of west borrow area

Phase	Capacity (CY)	Tonnage (Tons)	Cumulative Tonnage (Tons)	Life (Yrs)	Cover Soil Volume (CY)	Cumulative Soil Volume (CY)
Phase 1	856,000	552,000	552,000	2.6	143,000	143,000
Phase 2	1,983,000	1,416,000	1,968,000	6.2	331,000	474,000
Phase 3	5,472,000 (2)	3,909,000	5,877,000	14.6	912,000	1,386,000
Phase 4	3,804,000	2,717,000	8,594,000	8.5	634,000	2,020,000
Total	12,115,000	8,594,000	-	31.9	2,020,000	-

Table 6-4. Conceptual Lift Plan Capacity, Life Estimates, and Cover Soil Volume Needed Using Alternative Daily Cover Operation

 $^{(1)}\mbox{ Life}$ is based on last topographic map prepared in October 2014

⁽²⁾ Phase 3 capacity includes proposed excavation of west borrow area

6.6 Phase 3 Fill Plan

Phase 3 consists of filling the current soil borrow area in the southwest portion of the design boundary. This fill will provide significant overlap of the western portion of the existing waste footprint. The top of the fill will match the top deck slope elevations created under the Phase 1 and Phase 2 fill operation (See **Figure 6-8**, Cross Section N667,700). The argument for this approach is that it maximizes the amount of time that County can stay on the existing design boundary, which is where the perimeter fence is constructed. The County also wants to maximize the length of time that the public can use OHV portion of Jubilee Park outside the fenced boundary. The fill volume also includes excavating additional material from within the West Borrow Area as shown on cross sections N666,500 to N667,700 (**Figures 6-7 to 6-8** in Appendix 6-A).

Phase 3 has 12.5 years of capacity under the projected tonnage and current operational efficiency.

6.7 Phase 4 Fill Plan

Phase 4 consists of completing the top deck fill created by Phases 1-3. A minimum 5% grade will be constructed from the historic ridge to match the western slopes created under Phases 1-3. The 5% crown will make waste visible from the east, but the very gradual slope will minimize visibility issues because it will have more of a natural appearance (See **Figures 6-2 through 6-12 in Appendix 6-A**). With the completion of Phase 4 the final elevation of the fill would be approximately 3010 feet. With the addition of a vegetative visual screen, we do not expect visibility to be a public relations problem for the PBSL. Phase 4 has 7.7 years of capacity at projected tonnage and current operational efficiency.

6.8 Daily Cover and Soil Balance

The Operational Assessment completed as part of the Landfill Status Report calculated the current operations performance criteria for the landfill based on aerial mapping conducted at the facility. These criteria were used to determine the soil usage and tonnage capacity in each phase within **Table 6-3**. Measured criteria included the following:

- Waste to soil ratio 2.2:1
- Compacted waste density 1,690 lb/cy
- Volume per ton ratio 1.7 CY/Ton

The operations criteria used for developing **Table 6-4** (ADC) included the following:

- Waste to soil ratio 5:1
- Compacted waste density 1,690 lb/cy
- Volume per ton ratio 1.4 CY/Ton

The PBSL currently excavates most of the daily cover for its operation from the West Borrow Area. The East Borrow Area is used to provide gravel for road and lift stabilization.

A conceptual cut plan was developed for maximizing the amount of soil that can be excavated from the West Borrow Area. Under this plan, the bottom of the West Borrow Area will be graded to drain at a minimum slope of 2% to the north, see **Figure 6-13 in Appendix 6-A** (Cross Section A-A'). Side slopes of the excavation will be excavated at 2:1. Tetra Tech examined the stability of this proposed excavation slope and height and determined that it has an adequate safety factor. Approximately 1,072,000 cubic yards of additional material can be excavated as of October 2014 from the West Borrow Area under this plan.

Table 6-3 shows that adequate daily cover material is available from the West Borrow Area to complete all of Phases 1 and 2 as well as 1.5 years into Phase 3 under the current operational approach. This approach provides approximately 9 years of daily cover availability before the County will need to develop a new soil borrow area to provide the remainder of the daily cover material needed for Phases 3 and 4.

Table 6-4 shows that that adequate daily cover material is available from the West Borrow Area to complete Phase 1 and 2 as well as 5.5 years into Phase 3 under the ADC alternative. This approach provides approximately 14.3 years of daily cover availability before the County will need to develop a new soil borrow area.

6.9 Conclusions and Recommendations

The analysis in this report indicates that the County has approximately 27 years of remaining capacity within the approved landfill design boundary. The life can be extended by approximately 15% by implementing ADC measures. If the County is in agreement with the conceptual plan presented in this report, we recommend the County first proceed with the development and DEQ approval of a detailed cut and fill plan. This process could take approximately six to eight months to complete. The cut and fill plan would provide specific information PBSL can use to construct the final and intermediate slopes to the proper grades and heights. The detailed fill plan would also provide detailed design information for the proper height and dimensions of stormwater benches that would be needed to control stormwater at the site. Benches will also provide access for final cover maintenance.

We recommend the County plant a vegetative visual barrier in order to mitigate future visibility concerns along the eastern side of the landfill; Tetra Tech can be consulted on appropriate species and irrigation requirements, if the County elects to proceed with this recommendation.

Depending on whether the County continues to use the current approach or implements ADC, the West Borrow Area will be fully excavated in 9 to 14 years. The County then will need to begin excavating cover soils from a new borrow area. Typically, the borrow area would located and designed to serve as the next cell for disposal of waste at the landfill. For PBSL this requires development of a plan in conjunction with an expansion licensing effort.

After approval of the cut and fill plan, the County will need to decide when to proceed with the design and licensing of the expansion area. PBSL has already completed a hydrogeologic investigation of the proposed expansion area. The EPA published new draft landfill gas rules in August 2015, which are currently in the comment period. One concern of the County and the Tetra Tech team was that implementation of the expansion might trigger the lower regulatory

emissions limit for the PBSL and require installation of active gas collection infrastructure sooner than if the PBSL did not expand. After further review of the proposed rules, our opinion is that the PBSL is already subject to the lower regulatory limit proposed under the draft rule.

The federal rule is expected to be finalized early in 2016. States will have nine months to finalize their rules after the Federal rules are finalized. The EPA will then have four months to approve the State plans. Therefore, it is estimated that it will be mid-2017 before there is a final gas rule in place that impacts the PBSL. Once the rule is in place, the facility will have 30 months to install a gas collection system (late 2019).

We recommend the PBSL delay implementation of the expansion licensing until mid-2017 when the landfill gas rules are finalized. This will provide the County plenty of time to complete the process under its terms if difficulties are encountered during the regulatory approval process with the State. This will also allow adequate time to obtain approval for the expansion area so that the next borrow area is planned and available for excavation when the West Borrow area excavation has been completed. This page intentionally left blank.

7.0 STORMWATER

An analysis of stormwater control was conducted for this status report update. This analysis included identification and evaluation of existing run-on and run-off controls along with recommendations for additional and/or improved controls where necessary.

A 25-year, 24-hour storm event (a criterion meeting that contained in the EPA's Solid Waste Disposal Facility Criteria Technical Manual, revised April 1998, and the Code of Federal Regulations, Title 40, Section 258.26 (40 CFR 258.26) was used to calculate design flows for the Landfill's on-site and off-site drainage features. The National Oceanic and Atmospheric Administration (NOAA) Atlas 2, Volume 5 provided the estimated 25-year, 24-hour precipitation value of 1.80 inches (**Appendix 7-A**). Utilizing AutoCAD software, the existing 2014, 2-foot landfill topography was divided into drainage tributaries. This was only possible by including the following recommended features into a preliminary design:

- Inwardly pitched haul road/drainage benches that divide portions of the west fill face. This allows control of the stormwater rather than allowing it to continue downslope for very long distances. Such long distances of travel would cause excessive erosion of the west fill face cover (Figure 7-1);
- 2) Additional drainage channels, culverts and berms to manage and direct on-site stormwater away from or around future excavation and filling areas, and direct it to on-site retention basins; and,
- 3) Additional drainage channels and berms to divert off-site flow around the current site and future excavation/filling areas (See Stormwater plan Sheets located in **Appendix 7-B**).

The United States Army Corps of Engineers (USACE) Hydrologic Engineering Center's Hydrologic Modeling Software (HEC-HMS) was used for hydrology calculations estimating stormwater flows from each tributary and at each concentration point (CP, combination of tributaries); (**Table 7-1 to 7-4**). Hydraulic calculations for stormwater run-off control features were performed with the Bently software program FlowMaster (**Appendix 7-C**). The required retention basin storage capacities were prepared using an Excel spreadsheet based on the conical area method (**Appendix 7-D**).

Based on these stormwater calculations, the stormwater system improvements depicted in the Pickles Butte Landfill Status Report Update Project plan set (**Appendix 7-B**) will result in reduced future erosion rates and road crossing maintenance requirements. However, this analysis was performed assuming all stormwater control features as in-place. Therefore, it is important that the storm water improvements are prioritized and incorporated into the Capital Improvement Plan (CIP) to ensure that required features are installed as required.

Finally, although improved stormwater controls will result in reduced future erosion rates and road crossing maintenance requirements, storm event run-off will still include significant sediment transport. Modified and/or additional controls may become necessary in the future. It is critical for the viability of stormwater controls that maintenance take place after each storm event. Required maintenance would typically consist of sediment removal from stormwater conveyance structures and retention basins as well as repairing rills formed in slopes and erosion of berms. Disregard of such maintenance will inevitably, no matter how good the design, cause loss of conveyance capacity and a failure of the stormwater control system. The extents and costs of necessary repairs caused by disregard of routine maintenance would far exceed those incurred had routine maintenance been performed.

7.1 Regulations

As noted above, a 25-year, 24-hour storm event was used to calculate design flows for the Landfill's on-site and off-site drainage features. This criterion meets that contained in the *EPA*'s *Solid Waste* Disposal *Facility Criteria Technical Manual, revised April 1998,* and the *Code of Federal Regulations, Title 40, Section 258.26* (40 CFR 258.26).

The e-CFR website (http://www.ecfr.gov/cgi-bin/ECFR?page=browse) as of October, 2015 states the following in Title 40, Chapter 1, Subchapter 1, Part 258, Subpart C, §258.26:

Title 40: Protection of Environment

PART 258 – CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS

Subpart C – Operating Criteria

§258.26 Run-on/run-off control systems.

- (a) Owners or operators of all MSWLF units must design, construct, and maintain:
- (1) A run-on control system to prevent flow onto the active portion of the landfill during the peak discharge from a 25-year storm;
- (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm.

(b) Run-off from the active portion of the landfill unit must be handled in accordance with §258.27(a) of this part.

[56 FR 51016, Oct. 9, 1991; 57 FR 28627, June 26, 1992]

The Landfill's ultimate outfalls have not been altered from their existing operating plan configuration. Outfall 1 (CPA7*; 20.78 ac) is at Basin A on the Landfill's southeast side. Outfall 2 (CPB1; 5.94 ac) is at Basin B on the Landfill's east side. Outfall 3 (CPC1; 1.86 ac) on the Landfill's northeast side. Outfall 4 (CPD21*; 114.57 ac) is on the Landfill's west side (**Appendix 7-B**, see index sheet).

The latitude (43.494406° N) and longitude (-116.704111° W) of the Landfill were used to estimate Precipitation Frequency Estimates (in inches) based on data from the NOAA Atlas 2, Volume 5. The estimated 25-year, 24-hour precipitation is 1.80 inches (Appendix 7-A Figure 28 – Isopluvials of 25-yr, 24-hr Precipitation in Tenths of an Inch). The program FlowMaster was used to design and evaluate the stormwater control elements. The channel velocities were checked for the 25-year, 24-hour storm event to ensure excessive erosion does not result.

7.2 Drainage Control

The existing facility drainage control is accomplished with a combination of sloped top deck, midslope roads/drainage benches (**Figure 7-1**), channels, and culverts. This existing system is well maintained, but has some shortcomings during larger storm events. It is important that these items are addressed prior to commencement of the planned Phase 2 and Phase 3 excavation and filling operations. This is because both Phase 2 and Phase 3 are located down-slope of the current fill slope. As such, improved and/or additional controls are required to direct stormwater around these future operations. The following paragraphs detail a proposed method of merging existing drainage controls with new or improved controls and results in an improved overall drainage control methodology.

The existing topography and stormwater drainage were carefully examined and evaluated. The facility was then delineated into drainage tributaries using existing and improved and/or additional features (**Appendix 7-B**).

First, potential run-on areas were identified. Potential run-on Region 1 is along the far southeast boundary. The existing roadside ditch should be sufficient to prevent run-on from making a northward crossing of Missouri Avenue. However, a berm should be added along the southwest edge of the intersection of Missouri Avenue and Perch Road. Potential run-on Region 2 is significant and impacts the south and southwest regions of the facility's southern and western sides. This is run-off from Pickles Butte and must be diverted by use of a berm and/or channel to prevent run-on from entering the facility's planned Phase 3 operations (**Appendix 7-B**).

Descriptions of the conveyance within each of the site's four drainage areas are presented below. Referencing the Plan Set, which includes a schematic of Basin Tributaries, Junctions, & Routing, is recommended (**Appendix 7-B**).

<u>Area A</u>

The entrance area (Area A) in the far southeast region of the facility contains seven tributaries, as described below.

- Area A1 flow is captured by an existing channel along its north side. This channel extends to the east edge of Perch Road. Flow from A1 is conveyed by a culvert into A2 at CPA1 (4.0 cfs).
- Area A2 flow is conveyed northward by a channel prior to a culvert crossing at CPA2* (5.0 cfs) into Basin A.
- Area A3 flows northeast, where it is conveyed by a culvert at CPA3 (1.0 cfs) into A4.
- Area A4 flow is captured and conveyed by a channel along its north edge to a culvert at CPA4* (6.4 cfs) and into A5.
- Area A5 flows are conveyed northward by a channel to a culvert a CPA5* (7.4 cfs) and into A6.
- Area A6 flows are conveyed eastward by a channel to a culvert at CPA6* (9.7 cfs) and into Basin A.
- Area A7 is the Basin A area. The total combined flow into Basin A is A7* (16.6 cfs).

<u>Area B</u>

Area B on the east side captures flow in between Area A and the perimeter access roads high point divide. This CPB1 flow (9.0 cfs) is directed to Basin B.

<u>Area C</u>

Area C is located just north of Area B, captures flows along the east side at CPC1 (3.0 cfs), and directs them to Basin C.

<u>Area D</u>

Area D encompasses the remaining current on-site flows. It is subdivided into 21 subareas, as described below.

- Area D1 flow is captured along its west edge by a combination of inward pitched haul roads and drainage channels and conveyed southward to CPD2* (37.1 cfs).
- Area D2 flow is captured along its southwest corner and west side and conveyed northward by this same pitched road and channel methodology to CPD2* (37.1 cfs). This flow is conveyed via culvert to Area D3.
- Area D3 flow is then conveyed southward to CPD3* (41.9 cfs) where it crosses via culvert into Area D6 and is conveyed to CPD6* (61.5 cfs).
- Area D4 flow is conveyed to CPD4 (14.0 cfs) and crossed through a culvert into Area D6.

- Area D5 flow is conveyed to CPD5* (29.0 cfs) and into Area D6.
- Area D6 flow is conveyed to CPD6* (61.5 cfs) where it is crossed through a culvert into Area D9.
- Area D7 flow is conveyed to CPD7 (7.0 cfs) and crossed through a culvert into Area D8.
- Area D8 flow is conveyed to CPD8* (15.0 cfs) and crossed through a culvert into Area D9.
- Area D9 flow is conveyed to CPD9* (66.8 cfs) and crossed through a culvert into Area D18 (note that it may be possible to combine CPD9* and CPD17* flows and convey them through a single culvert to Area D18).
- Area D10 flow is conveyed to CPD10 (7.0 cfs) and into Area D11.
- Area D11 flow is conveyed to CPD11* (9.6 cfs) and crossed through a culvert into Area D12.
- Area D12 is conveyed to CPD12* (11.7 cfs) and crossed through a culvert to CPD14* (12.7 cfs). Note that Area D12 currently has a low lying region immediately east of the proposed Phase 2 excavation area. It is therefore important that this region have a berm and culvert to prevent flow entering into the proposed excavation.
- Area D13 flow is conveyed to CPD13 (1.0 cfs) and crossed through a culvert into Area D14.
- Area D14 flow is conveyed to CPD14* (12.7 cfs) and crossed through a culvert into Area D19.
- Area D15 is conveyed to CPD15 (2.0 cfs) and crossed though a culvert into Area D17.
- Area D16 flow is conveyed via channel along its east and north side to CPD16* (7.0 cfs) and into Area D17.
- Area D17 flow is conveyed via channel along its east side to CPD17* (68.3 cfs) and crossed through a culvert into Area D18.
- Area D18 flow is conveyed via channel along its east side to CPD18* (79.0 cfs) and into Area D19.
- Area D19 flow is conveyed via channel along its east side to CPD19* (79.2 cfs) and crossed through a culvert to Basin D.
- Area D20 flow is conveyed via roadside channel along the west side of Perch Road and then around the proposed Phase 3 excavation area to CPD20 (5 cfs) and into Basin D.
- Area D21 is the Basin D area. The total combined flow into Basin D is D21* (82.1 cfs).

In summary, the existing/proposed facility drainage control is accomplished with a combination of an existing sloped top deck, inward pitched haul roads (the existing roads do not currently appear to have enough pitch to capture and convey stormwater), drainage channels, culverts and berms. Typical stormwater capture methods for the west fill face are depicted in **Figure 7-1**.

Figure 7-1. West Fill Face Stormwater Capture Methods

Pitching of the roads away from features to be protected is an important aspect of the presented mix of existing and proposed stormwater control methodologies. For example, the perimeter road around the proposed Phase 3 excavation should be pitched away from the excavation. Similarly, Area D17 should be pitched to drain eastward. Areas D18 and D19 are special case in that they should be pitched away from both the proposed Phase 2 and Phase 3 excavations; i.e. a channel down their centers.

All permanent stormwater control features should be protected from erosion by combinations of riprap, geotextile, and compacted, engineered fill materials. Intermediate features such channels along the insides of fill face drainage benches may be earthen but may require rip-rap check dams to prevent excessive stormwater velocities and resultant erosion. Routine maintenance following storm events is critical to the success of any stormwater control design.

7.3 Hydrology Methodology

The 2014 existing 2-foot Landfill topography was divided into tributaries utilizing AutoCAD software. The peak flows were calculated for each tributary and at each concentration point (combination of tributaries). The HEC-HMS software was utilized to perform hydrology calculations to estimate the stormwater run-off flows from each tributary (**Tables 7-1 to 7-4**). Conservatively, no canopy or infiltration losses were included in the modeling. The SCS Unit Hydrograph transform method with a Standard (PRF 484) graph type and 15-minute lag time was used for each tributary. The Lag routing method with no infiltration and a 15-minute lag time was

used for routing of flows through tributaries. Based upon the Landfill's location, an SCS Type II Storm was selected as the synthetic rainfall distribution.

7.3.1 Rainfall Data

The guidelines set forth in the *EPA's Solid Waste Disposal Facility Criteria Technical Manual, revised April 1998*, and 40 CFR 258.26, call for the peak discharge flows to be estimated for a 25-year, 24-hour storm event. The latitude and longitude for the Landfill was taken from Google Earth. The latitude is 43.494406° N, the longitude is -116.704111° W. Based on this information, the NOAA Atlas 2, Volume 5 provided the estimated 25-year, 24-hour precipitation as 1.80 inches (**Appendix 7-A**).

7.3.2 Stormwater Run-off Data

A summary of the tributaries and flow at concentration points is shown in the **Table 7-1 through Table 7-4**:

End Discharge	Tributary Area Name	Area (acres)	Run-off (cfs)	∑Area (acres)	∑Run- off (cfs)	Discharge To
	A1	2.71	4.0	2.71	4.0	A2
	A2	4.35	2.0	4.35	2.0	BASIN A
	A2*	-	-	7.06	5.0	BASIN A
	A3	0.95	1.0	0.95	1.0	A4
	A4	4.13	6.0	4.13	6.0	A5
Basin A	A4*	-	-	5.08	6.4	A5
(CPA7*)	A5	1.46	2.0	1.46	2.0	A6
	A5*	-	-	6.54	7.4	A6
	A6	5.22	8.0	5.22	8.0	BASIN A
	A6*	-	-	15.38	9.7	BASIN A
	A7	1.96	3.0	1.96	3.0	BASIN A
	A7*	-	-	20.78	16.6	BASIN A

Table 7-1. 25-Year, 24-Hour Run-off Summary Table – Basin A

 Table 7-2.
 25-Year, 24-Hour Run-off Summary Table – Basin B

End Discharge	Tributary Area Name	Area (acres)	Run-off (cfs)	∑Area (acres)	∑Run-off (cfs)	Discharge To
Basin B (CPB1)	B1	5.94	9.0	5.94	9.0	BASIN B

Table 7-3.	25-Year	, 24-Hour Run-o	ff Summary	Table –	Basin C
------------	---------	-----------------	------------	---------	---------

End Discharge	Tributary Area Name	Area (acres)	Run-off (cfs)	∑Area (acres)	∑Run- off (cfs)	Discharge To
Basin C (CPC1)	C1	1.86	3.0	1.86	3.0	BASIN C

End Discharge	Tributary Area Name	Area (acres)	Run-off (cfs)	∑Area (acres)	∑Run- off (cfs)	Discharge To
	D1	5.89	9.0	5.89	9.0	D3
	D2	18.18	28.0	18.18	28.0	D3
	D2*	-	-	24.07	37.1	D3
	D3	6.60	10.0	6.60	10.0	D6
	D3*	-	-	30.67	41.9	D6
	D4	9.09	14.0	9.09	14.0	D6
	D5	9.62	15.0	9.62	15.0	D6
	D5*	-	-	18.71	29.0	D6
	D6	6.01	9.0	6.01	9.0	D9
	D6*	-	-	55.39	61.5	D9
	D7	4.42	7.0	4.42	7.0	D9
	D8	5.04	8.0	5.04	8.0	D9
	D8*	-	-	9.46	15.0	D9
	D9	1.89	3.0	1.89	3.0	D18
	D9*	-	-	66.74	66.8	D18
	D10	4.44	7.0	4.44	7	D11
	D11	3.34	5.0	3.34	5.0	D12
Basin D	D11*	-	-	7.78	9.6	D12
(CPD21^)	D12	5.26	8.0	5.26	8.0	D19
	D12*	-	-	13.04	11.7	D19
	D13	0.61	1.0	0.61	1.0	D14
	D14	0.51	1.0	0.51	1.0	D19
	D14*	-	-	14.17	12.7	D19
	D15	0.96	2.0	0.96	2.0	D17
	D16	3.45	5.0	3.45	5.0	D17
	D16*	-	-	4.42	7.0	D17
	D17	1.12	2.0	1.12	2.0	D18
	D17*	-	-	72.29	68.3	D18
	D18	0.99	2.0	0.99	2.0	D19
	D18*	-	-	87.44	79.0	D19
	D19	1.11	2.0	1.11	2.0	BASIN D
	D19*	-	-	88.55	79.2	BASIN D
	D20	3.07	5.0	3.07	5.0	BASIN D
	D21	22.94	36.1	22.94	36.1	BASIN D
	D21*	-	-	114.57	82.1	BASIN D

 Table 7-4.
 25-Year, 24-Hour Run-off Summary Table – Basin D

7.4 Stormwater Run-off Control

Hydraulic calculations, based on the Manning's Formula, for stormwater run-off control features were performed with the FlowMaster program. Stormwater control features and parameters for the 25-year, 24-hour storm event are shown in the **Tables 7-5 and 7-6**.

Culvert	Upstream Elev. [Ft]	Downstream Elev. [Ft]	Length [Ft]	Slope [Ft/Ft]	Normal Depth [Ft]	Dia. [Ft]	Disch. [Cfs]	Vel. [Ft/S]	# Culverts / Cfs Each
CPA1	2955	2952	64	0.047	0.78	1.0	4.0	6.1	1
CPA2*	2906	2904	18	0.111	0.66	1.0	5.0	9.0	1
CPA3	2945	2942	59	0.051	0.33	1.0	1.0	4.5	1
CPA4*	2936	2934	45	0.044	0.78	1.5	6.4	6.9	1
CPA5*	2917	2916	28	0.036	0.91	1.5	7.4	6.6	1
CPA6*	2916	2911	64	0.078	0.85	1.5	9.7	9.4	1
CPC1	2922	2921	24	0.042	0.65	1.0	3.0	5.5	1
CPD2*	2897	2895	49	0.041	1.31	2.0	37.1	8.7	2/19
CPD3*	2881	2877	62	0.065	1.20	2.0	41.9	10.7	2/21
CPD4	2866	2865	121	0.008	1.44	2.5	14.0	4.4	1
CPD6*	2852	2850	30	0.067	1.60	2.0	61.5	11.5	2/31
CPD7	2824	2823	92	0.011	1.05	2	7.0	4.2	1
CPD8*	2824	2823	52	0.019	1.47	2	15.0	6.1	1
CPD9*	2810	2807	51	0.059	1.44	2.5	66.8	11.6	2/34
CPD11*	2807	2802	46	0.109	0.76	1.5	9.6	10.7	1
CPD12*	2794	2768	332	0.078	0.96	1.5	11.7	9.8	1
CPD13	2781	2778	45	0.067	0.30	1.0	1.0	5.0	1
CPD14*	2768	2761	56	0.125	0.86	1.5	12.7	12.0	1
CPD15	2879	2872	59	0.119	0.38	1.0	2.0	7.4	1
CPD17*	2812	2807	74	0.068	1.4	2.5	68.3	12.4	2/35
CPD19*	2706	2702	93	0.043	1.80	2.5	79.2	10.6	2/40
CPD20	2735	2734	31	0.032	0.74	1.5	5.0	5.7	1

Table 7-5. Summary of Culverts and Parameters for 25-Year, 24-Hour Storm Event

Note: Assumes all culverts are corrugated metal pipe (CMP) with a roughness coefficient of 0.024

Channel	Upstream Elev. [Ft]	Downstream Elev. [Ft]	Length [Ft]	Slope [Ft/Ft]	Roughness Coefficient	Normal Depth [Ft]	Dia. [Ft]	Discharge [Cfs]	Vel. [Ft/S]
CPA1-HALF-CMP	2988	2955	499	0.066	0.024	0.54	1.5	4.0	7.1
CPA1-V-DITCH- 6"-RIPRAP	2988	2955	499	0.066	0.069	0.83	-	4.0	2.9
CPA2*-HALF-CMP	2960	2906	1125	0.048	0.024	0.66	1.5	5.0	6.7
CPA2*-V-DITCH- 6"-RIPRAP	2960	2906	1125	0.048	0.069	0.96	-	5.0	2.7
CPA3-HALF-CMP	2954	2945	308	0.029	0.024	0.38	1.0	1.0	3.7
CPA3-V-DITCH- EARTHEN	2954	2945	308	0.029	0.020	0.36	-	1.0	3.8
CPA4*-HALF-CMP	2942	2936	709	0.008	0.024	0.98	2.5	6.4	3.6
CPA4*-V-DITCH- EARTHEN	2942	2936	709	0.008	0.020	0.93	-	6.4	3.7
CPA5*-HALF-CMP	2934	2917	467	0.036	0.024	0.78	2.0	7.4	6.6
CPA5*-V-DITCH- 6"-RIPRAP	2934	2917	467	0.036	0.069	1.18	-	7.4	2.7
CPA6*-HALF-CMP	2916	2915	391	0.003	0.024	1.48	3.0	9.7	2.8
CPA6*-V-DITCH- EARTHEN	2916	2915	391	0.003	0.020	1.31	-	9.7	2.8
CPD2*-V-DITCH- EARTHEN	2917	2897	983	0.020	0.020	1.51	-	37.1	8.1
CPD3*-V-DITCH- EARTHEN	2895	2881	1051	0.013	0.020	1.72	-	41.9	7.1
CPD4-V-DITCH- EARTHEN	2896	2866	1341	0.022	0.020	1.03	-	14.0	6.6
CPD6*-V-DITCH- 6"-RIPRAP	2865	2852	704	0.018	0.069	2.97	-	61.5	3.5
CPD7-V-DITCH- 6"-RIPRAP	2888	2824	1443	0.044	0.069	1.44	-	14.0	3.8
CPD8*-V-DITCH- 6"-RIPRAP	2870	2824	906	0.051	0.069	1.44	-	15.0	3.6
CPD9*-HALF-CMP	2823	2810	383	0.034	0.024	1.92	4.0	66.8	11.2
CPD9*-V-DITCH- 6"-RIPRAP	2823	2810	383	0.034	0.069	2.72	-	66.8	4.5
CPD11*-HALF-CMP	2926	2807	1125	0.106	0.024	0.67	2.0	9.6	10.4
CPD11*-V-DITCH-6"- RIPRAP	2926	2807	1125	0.106	0.069	1.06	-	9.6	4.3
CPD12*HALF-CMP	2802	2794	792	0.010	0.024	1.17	3.0	11.7	4.56
CPD12*-V-DITCH-6"- RIPRAP	2802	2794	792	0.010	0.069	1.78	-	11.7	1.9
CPD13-HALF-CMP	2806	2781	285	0.088	0.024	0.40	1.0	1.9	6.6

Table 7-6.	Summary	y of Channel	s and Param	eters for 25-	Year, 24-Hour	Storm Event
------------	---------	--------------	-------------	---------------	---------------	-------------

Channel	Upstream Elev. [Ft]	Downstream Elev. [Ft]	Length [Ft]	Slope [Ft/Ft]	Roughness Coefficient	Normal Depth [Ft]	Dia. [Ft]	Discharge [Cfs]	Vel. [Ft/S]
CPD13-V-DITCH-6"- RIPRAP	2806	2781	285	0.088	0.069	0.60	-	1.9	2.7
CPD14*-HALF-CMP	2778	2768	83	0.120	0.024	0.75	2.0	12.7	11.8
CPD14*-V-DITCH-6"- RIPRAP	2778	2768	83	0.120	0.069	1.15	-	12.7	4.8
CPD15-HALF-CMP	2922	2879	471	0.091	0.024	0.40	1.0	2.0	6.7
CPD15-V-DITCH-6"- RIPRAP	2922	2879	471	0.091	0.069	0.61	-	2.0	2.7
CPD16-HALF-CMP	2983	2872	1592	0.070	0.024	0.60	1.5	5.0	7.7
CPD16-V-DITCH-6"- RIPRAP	2983	2872	1592	0.070	0.069	0.90	-	5.0	3.1
CPD17*-HALF-CMP	2872	2812	647	0.093	0.024	1.56	3.5	68.3	16.4
CPD17*-V-DITCH-6"- RIPRAP	2872	2812	647	0.093	0.069	2.27	-	68.3	6.6
CPD18*-HALF-CMP	2807	2761	503	0.091	0.024	1.71	3.5	79.0	16.9
CPD18*-V-DITCH-6"- RIPRAP	2807	2761	503	0.091	0.069	2.41	-	79.0	6.8
CPD19*-HALF-CMP	2761	2704	451	0.126	0.024	1.56	3.5	79.2	19.1
CPD19*-V-DITCH-6"- RIPRAP	2761	2704	451	0.126	0.069	2.27	-	79.2	7.7
CPD20-V-HALF-CMP	2994	2736	3897	0.066	0.024	0.65	1.5	5.7	7.7
CPD20-V-DITCH-6"- RIPRAP	2994	2736	3897	0.066	0.069	0.95	-	5.7	3.1

Table 7-6. Summary of Channels and Parameters for 25-Year, 24-Hour Storm Eve	ent
--	-----

7.5 Retention Pond Storage

The required retention basin storage capacities were prepared using an Excel spreadsheet based on the conical area method (**Appendix 7-D**). To strike a balance between seasonal differences a run-off coefficient of 0.7 was selected. A typical value may be 0.55 during most of the year. However, during portions of the year when snow cover and/or freezing ground is present, the run-off coefficient would be 1.0, meaning no infiltration would occur.

Table 7-7 summarizes the basin design criteria and actual capacities.

Basin	Tributary Area (acres)	Run-off (cfs)	Volume Required (acre-ft.)	Volume Provided (acre-ft.)
A (CPA7*)	20.78	16.6	2.18	2.34
B (CPB1)	5.94	9.0	0.62	0.87
C (CPC1)	1.86	3.0	0.20	0.20
D (CPD21*)	114.57	82.1	12.03	13.20

Table 7-7. 25-Year, 24-Hour Storm Event

7.6 Adequacy of Design

Based on these stormwater calculations, the stormwater system improvements depicted in the Pickles Butte Landfill Status Report Update Project plan set (**Appendix 7-B**) will result in reduced future erosion rates and road crossing maintenance requirements. However, this analysis was performed assuming that all stormwater control features as described in this report will be used. Therefore, it is important that the storm water improvements are prioritized and incorporated into the CIP. **Table 7-8** summarizes the status of the stormwater features evaluated, and would the basis for the development of a CIP. It is important to note that some of the existing features may need to be modified per the evaluation.

Storm Water Controls		Existing	Proposed	Notes
Culverts ³	CPA1	Х		1
	CPA2*	Х		1
	CPA3	Х		1
	CPA4*	Х		1
	CPA5*	Х		1
	CPA6*	Х		1
	CPC1		Х	
	CPD2*		Х	
	CPD3*		Х	
	CPD4		Х	
	CPD6*	Х		1
	CPD7		Х	
	CPD8*		Х	
	CPD9*		Х	
	CPD11*		Х	
	CPD12*		Х	
	CPD13		Х	
	CPD14*		Х	
	CPD15	Х		1
	CPD17*		Х	
	CPD19*		Х	
	CPD20		Х	
Channels ^₄	CPA1-HALF-CMP	х		4
	CPA1-V-DITCH-6"-RIPRAP			1
Channels⁴	CPA2*-HALF-CMP	x		1.0
	CPA2*-V-DITCH-6"-RIPRAP			Ι, Ζ
	CPA3-HALF-CMP		Х	
	CPA3-V-DITCH-EARTHEN			
	CPA4*-HALF-CMP	Х		1, 2

 Table 7-8. Existing versus Proposed Stormwater Controls

Storm Water Controls		Existing	Proposed	Notes
	CPA4*-V-DITCH-EARTHEN			
	CPA5*-HALF-CMP	v		4
	CPA5*-V-DITCH-6"-RIPRAP	^		I
	CPA6*-HALF-CMP	x		4
	CPA6*-V-DITCH-EARTHEN			I
	CPD2*-V-DITCH-EARTHEN		Х	
	CPD3*-V-DITCH-EARTHEN		Х	1, 2
	CPD4-V-DITCH-EARTHEN		Х	
	CPD6*-V-DITCH-6"-RIPRAP		Х	
	CPD7-V-DITCH-6"-RIPRAP		Х	
	CPD8*-V-DITCH-6"-RIPRAP		Х	
	CPD9*-HALF-CMP		v	
	CPD9*-V-DITCH-6"-RIPRAP		^	
	CPD11*-HALF-CMP		Y	
	CPD11*-V-DITCH-6"-RIPRAP		^	
	CPD12*HALF-CMP		Y	
	CPD12*-V-DITCH-6"-RIPRAP		^	
	CPD13-HALF-CMP		×	
	CPD13-V-DITCH-6"-RIPRAP		^	
	CPD14*-HALF-CMP		×	
	CPD14*-V-DITCH-6"-RIPRAP		^	
	CPD15-HALF-CMP	×		1 2
	CPD15-V-DITCH-6"-RIPRAP	^		1, 2
	CPD16-HALF-CMP	×		1 2
	CPD16-V-DITCH-6"-RIPRAP	^		1, 2
	CPD17*-HALF-CMP	x x		1.0
	CPD17*-V-DITCH-6"-RIPRAP			1, 2
	CPD18*-HALF-CMP			1, 2
	CPD18*-V-DITCH-6"-RIPRAP			
	CPD19*-HALF-CMP		v	
	CPD19*-V-DITCH-6"-RIPRAP		^	
	CPD20-V-HALF-CMP		V	
	CPD20-V-DITCH-6"-RIPRAP		~	
Basins	A (CPA7*)		X	
	B (CPB1)		Х	
	C (CPC1)	X		
	D (CPD21*)		Х	
Roads		X		5, 6
Berms			Х	7

Table 7-8. Existing versus Proposed Stormwater Controls

NOTES

1) Modify As Required Per Proposed

2) Partially Complete

 Cmp & Rip-Rap Channels Presented As Comparison - In Most Cases Cmp Culvert Velocities Exceed The Recommended Maximum Of 8 Feet Per Second

4) Additional Cmp Culverts Are In-Place Since 2014 Topography - Check Against & Merge With Proposed Controls

5) All Roads Are In-Place Except For Those Around The North Of Phase 2 And South & West Of Phase 3

6) All Roads Require Modification (Reverse-Pitch) To Keep Stormwater Within Proposed Tributaries/Channels

7) Includes Continuous Off-Site Berm Along South & West (Major Run-On Prevention From Pickles Butte; Includes Phase 3), From Southeast Corner North To Basin A (Including East Side Of Basin A), In Between East Fill Face And Perimeter Road, East Side Of Basin B, East Side Of Basin C, Along North Side Of Phase 2 (Minor Region), & At Low Portion Of Tributary D12 Immediately Above East Side Of Phase 2

Finally, although improved stormwater controls will result in reduced future erosion rates and road crossing maintenance requirements, storm event run-off will still include significant sediment transport. Modified and/or additional controls may become necessary in the future. It is critical for the viability of stormwater controls that maintenance take place after each storm event. Required

maintenance might typically consist of sediment removal from stormwater conveyance structures and retention basins, as well as repairing rills formed in slopes and erosion of berms. Disregard of such maintenance will inevitably, no matter how good the design, cause loss of conveyance capacity and a failure of the stormwater control system. The extents and costs of necessary repairs caused by disregard of routine maintenance would far exceed those incurred had routine maintenance been performed. This page intentionally left blank.
8.0 CLOSURE/POST-CLOSURE MAINTENANCE COST ESTIMATE

The EPA, as part of 40 CFR Part 258.7 (Subtitle D) criteria, requires that each landfill in operation after April 9, 1997 provide financial assurance sufficient to cover the cost of third party closure and post-closure care of the landfill. The EPA financial assurance requirements are included by reference in Title 39, Chapter 74, Idaho Code from 40 CFR Part 258 as amended. A cost estimate has been prepared in order to establish the basis for the proper level of funding to close and provide post-closure maintenance for the Landfill in an environmentally sound manner. The cost estimate was prepared based on the proposed closure design and post-closure maintenance procedures presented in the December 2012 Operations and Maintenance Manual. This estimate was then combined with an estimate for construction management/quality assurance services and a contingency cost for closure to determine the total cost estimate. The closure and post-closure and post-closure as the basis to fund the Landfill closure account over the life of the landfill.

8.1 Closure Cost Estimate

40 CFR Part 258.60 requires that the closure cost estimate be based on the largest area of the landfill ever requiring a final cover at any time during the active life of the landfill. The site design is for up to 116 acres; however, the largest area that would be open prior to the start of final cover application is the current landfill footprint of 74.2 acres. The financial assurance cost estimate will need to be updated as the landfill footprint increases. In addition to the cost for the current landfill footprint, the DEQ has requested the closure cost estimate for the final 116-acre build-out of the landfill. The closure plan features are grouped into categories for convenience in presenting the cost estimate. The total closure cost estimates are shown in **Tables 8-1** through **8-4**, and present two different types of final cover for each acreage scenario. The current final cover design is a capillary break. Equivalent performance at a lower cost may be obtained by using a 4-foot thick monolithic soil final cover. A brief description of the components included in each category is given below.

8.1.1 Final Cover

The currently approved final cover is a capillary break cover consisting of gravel, soil cover, and geotextile. **Tables 8-1** and **8-2** present the cost for placement of this cover. The proposed alternative final cover consists of a four-foot thick monolithic soil cover constructed with on-site soils. The cost for the alternative final cover is presented in **Tables 8-3** and **8-4**. The cost of constructing both types of final covers includes site preparation, removal of soils from onsite stockpiles, soil compaction, and site grading.

8.1.2 Final Cover Construction Quality Assurance Monitoring And Testing

Costs for construction quality assurance and monitoring and testing include the final cover placement tests, inspections and reporting.

8.1.3 Final Cover Hydroseeding

This category covers the cost of seeding the final cover area for erosion control. It includes preparing the soil, and planting native vegetative materials by hydroseeding. The closure cost estimate is based on non-irrigated open space for the end use of the site.

8.1.4 Surface Water Management

Costs for the drainage system include placement of temporary Best Management Practices (BMPs), installing downdrains, and constructing berms for all internal and external drainage structures. Costs for desilting or detention basins are not included because we assume that those improvements will be built prior to closure.

Table 8-1. Pickles Butte Sanitary Landfill Current Footprint (74.2 Acres) Capillary BreakCover Closure Cost Estimate (2015)

ltem No.	Item	Qty	Units	Unit Cost	Total
1	Mobilization, Survey, General and Supplemental Conditions	1	LS	\$450,000	\$450,000
2	Final Cover Construction (see below for cost details)	74.2	Acres	\$44,568	\$3,306,946
3	Surface Water Management	74.2	Acres	\$20,000	\$1,484,000
4	Preliminary Grading	74.2	Acres	\$10,900	\$808,780
5	Final Cover Hydroseeding	74.2	Acres	\$1,000	\$74,200
6	Demolition	1	LS	150,000	\$150,000
7	Construction Quality Assurance	30	Wk	\$4,500	\$135,000
8	Engineering Design	1	LS	\$300,000	\$300,000
9	Construction Management	39	Wk	\$6,750	\$263,250
				Subtotal	\$6,972,176
			Continge	ency (20%)	\$1,394,435
				Total	\$8,366,611
	Capillary Break Cover Costs, Per	Acre			
	Gravel (assumes 12-inch thick layer)				
	Soil Cover (assumes 36-inch thick layer)			\$24,200	
	Geotextile			\$13,068	
	Total Cost Per Acre			\$44,568	

Notes:

- 1 Typical costs for item 1 range between 5 to 10 percent of total construction cost; approximately 7 percent was used for this estimate.
- 2 Assumes \$4.50 per cubic yard of gravel material (supply assumed to be available from the existing gravel borrow area on site), \$5 per CY of soil material, and \$0.30 per square foot of filter fabric installation. Gravel material will be more costly to excavate and place than a typical monocover material; and a thinner veneer of soil material above a geotextile will be significantly more expensive due to the requirement for use of low ground pressure equipment that will be needed to spread and compact the material above the geotextile along with the likeliness that all the slopes will have to be over-built horizontally and then cut back to final thickness.
- 3 Assumes \$20,000 per acre to include temporary BMPs, installation of downdrains, berms for all internal and external drainage structures.
- 4 Assumes \$0.25 per square foot for remedial grading to meet sub-grade elevations.
- 5 Based on typical construction costs for final vegetation establishment.
- 6 Estimated cost to remove several small buildings and scale facilities.
- 7 Assumes 30 weeks of CQA services at \$4,400 per week for a 40-hour week for CQA staff at \$100/hour and 5 days of per diem.
- 8 Engineering costs are estimated to be approximately 5 percent of total construction for a project of this size.
- 9 Assumes a 39-week construction period, 40-hour week for a construction manager at \$150/hour and 5 days of per diem.

Table 8-2. Pickles Butte Sanitary Landfill Full Build Out (116 Acres) Capillary Break CoverClosure Cost Estimate (2015)

ltem No.	Item	Qty	Units	Unit Cost	Total
1	Mobilization, Survey, General and Supplemental Conditions	1	LS	\$672,370	\$672,370
2	Final Cover Construction (see below for cost details)	116	Acres	\$44,568	\$5,169,888
3	Surface Water Management	116	Acres	\$20,000	\$2,320,000
4	Preliminary Grading	116	Acres	\$10,900	\$1,264,400
5	Final Cover Hydroseeding	116	Acres	\$1,000	\$116,000
6	Demolition	1	LS	\$150,000	\$150,000
7	Construction Quality Assurance	45	Wk	\$4,500	\$202,500
8	Engineering Design	1	LS	\$513,883	\$513,883
9	Construction Management	40	Wk	\$9,563	\$382,500
				Subtotal	\$10,791,541
			Conti	ngency (20%)	\$2,158,308
				Total	\$12,949,849
	Capillary Break Cover Costs, Pe	r Acre			
	Gravel (assumes 12-inch thick layer)				
	Soil Cover (assumes 36-inch thick layer)			\$24,200	
	Geotextile			\$13,068	
	Total Cost Per Acre			\$44,568	

Notes:

- 1 Typical costs for item 1 range between 5 to 10 percent of total construction cost; approximately 7 percent was used for this estimate.
- Assumes \$4.50 per cubic yard of gravel material (supply assumed to be available from the existing gravel borrow area on site), \$5 per CY of soil material, and \$0.30 per square foot of filter fabric installation. Gravel material will be more costly to excavate and place than a typical monocover material; and a thinner veneer of soil material above a geotextile will be significantly more expensive due to the requirement for use of low ground pressure equipment that will be needed to spread and compact the material above the geotextile along with the likeliness that all the slopes will have to be over-built horizontally and then cut back to final thickness.
- 3 Assumes \$20,000 per acre to include temporary BMPs, installation of downdrains, berms for all internal and external drainage structures.
- 4 Assumes \$0.25 per square foot for remedial grading to meet sub-grade elevations.
- 5 Based on typical construction costs for final vegetation establishment.
- 6 Estimated cost to remove several small buildings and scale facilities.
- 7 Assumes 30 weeks for one full-time and one part-time CQA Staffperson for CQA services at \$4,750 per week for a 40 hour week for CQA staff at \$100/hour and 5 days of per diem.
- 8 Engineering costs are estimated to be approximately 5 percent of total construction for a project of this size.
- 9 Assumes a 40 week construction period, 40 hour week for a construction manager at \$150/hour and 5 days of per diem and 20 week period. 40 hour week for a construction supervisor at \$125/hour and five days of per diem.

Table 8-3. Pickles Butte Sanitary Landfill Current Footprint (74.2 acres) Monolithic CoverClosure Cost Estimate (2015)

ltem No.	Item	Qty	Units	Unit Cost	Total
1	Mobilization, Survey, General and Supplemental Conditions	1	LS	\$450,000	\$450,000
2	Final Cover Construction (assumes 4-feet thick soil layer)	74.2	Acres	\$25,800	\$1,914,360
3	Surface Water Management	74.2	Acres	\$20,000	\$1,484,000
4	Preliminary Grading	74.2	Acres	\$10,900	\$808,780
5	Final Cover Hydroseeding	74.2	Acres	\$1,000	\$74,200
6	Demolition	1	LS	\$150,000	\$150,000
7	Construction Quality Assurance	30	Wk	\$4,750	\$142,500
8	Engineering Design	1	LS	\$300,000	\$300,000
9	Construction Management	39	Wk	\$6,750	\$263,250
				Subtotal	\$5,587,090
			Conti	ngency (20%)	\$1,117,418
				Total	\$6,704,508

Notes:

1 Typical costs for item 1 range between 5 to 10 percent of total construction cost; approximately 7 percent was used for this estimate.

2 Assumes \$4 per cubic yard for excavation, movement, placement, and compaction. Assumes material is available on-site and no processing is required.

3 Assumes \$20,000 per acre to include temporary BMPs, installation of downdrains, berms for all internal and external drainage structures.

4 Assumes \$0.25 per square foot for remedial grading to meet sub-grade elevations.

5 Based on typical construction costs for final vegetation establishment.

6 Estimated cost to remove several small buildings and scale facilities.

7 Assumes 30 weeks of CQA services at \$4,400 per week for a 40-hour week for CQA staff at \$100/hour and 5 days of per diem.

8 Engineering costs are estimated to be approximately 5 percent of total construction for a project of this size.

9 Assumes a 39-week construction period, 40-hour week for a construction manager at \$150/hour and 5 days of per diem.

Table 8-4. Pickles Butte Sanitary Landfill Full Build Out (116 acres) Monolithic CoverClosure Cost Estimate (2015)

ltem No.	Item	Qty	Units	Unit Cost	Total
1	Mobilization, Survey, General and Supplemental Conditions	1	LS	\$520,000	\$520,000
2	Final Cover Construction (assumes 4-feet thick soil layer)	116	Acres	\$25,800	\$2,992,800
3	Surface Water Management	116	Acres	\$20,000	\$2,320,000
4	Preliminary Grading	116	Acres	\$10,900	\$1,264,400
5	Final Cover Hydroseeding	116	Acres	\$1,000	\$116,000
6	Demolition	1	LS	\$150,000	\$150,000
7	Construction Quality Assurance	30	Wk	\$4,500	\$202,500
8	Engineering Design	1	LS	\$400,000	\$400,000
9	Construction Management	39	Wk	\$9,563	\$382,500
				Subtotal	\$8,348,200
			Cont	ingency (20%)	\$1,669,640
				Total	\$10,017,840

Notes:

1 Typical costs for item 1 range between 5 to 10 percent of total construction cost; approximately 7 percent was used for this estimate.

2 Assumes \$4 per cubic yard for excavation, movement, placement, and compaction. Assumes material is available on-site and no processing is required.

3 Assumes \$20,000 per acre to include temporary BMPs, installation of downdrains, berms for all internal and external drainage structures.

4 Assumes \$0.25 per square foot for remedial grading to meet sub-grade elevations.

5 Based on typical construction costs for final vegetation establishment.

6 Estimated cost to remove several small buildings and scale facilities.

7 Assumes 30 weeks for one full-time and one part-time CQA Staffperson for CQA services at \$4,750 per week for a 40-hour week for CQA staff at \$100/hour and 5 days of per diem.

8 Engineering costs are estimated to be approximately 5 percent of total construction for a project of this size.

9 Assumes a 40-week construction period, 40-hour week for a construction manager at \$150/hour and 5 days of per diem and 20-week period. 40-hour week for a construction supervisor at \$125/hour and five days of per diem.

ltem No.	Item	Qty	Units	Unit Cost	Total
1	Final Cover Inspection and Maintenance	1	LS	\$3,500	\$3,500
2	Access Road Maintenance	1	LS	\$2,500	\$2,500
3	Drainage Control System Maintenance	1	LS	\$5,000	\$5,000
4	Site Security Inspection/Maintenance/Repair	1	LS	\$2,500	\$2,500
5	Survey Monument Inspection/Maintenance and Survey	1	LS	\$3,000	\$3,000
6	Landscape Maintenance	1	LS	\$2,000	\$2,000
7	Groundwater Monitoring System Maintenance	1	LS	\$3,000	\$3,000
8	Groundwater Monitoring	1	LS	\$6,000	\$6,000
9	Landfill Gas Monitoring	1	LS	\$9,000	\$9,000
10	Site Administration	1	LS	\$20,000	\$20,000
				\$56,500	
			Cor	ntingency (20%)	\$11,300
	Subtotal Annual	Post-C	losure Ma	aintenance Cost	\$67,800
	Total 30 Year P	ost-Clo	sure Mai	ntenance Cost	\$2,034,000

Table 8-5. Pickles Butte Sanitary Landfill Annual Post-Closure Cost Estimate (2015)

Notes: 1

Cost (labor and equipment) are included with the cost and hours for the post-closure maintenance and monitoring staff in Item 10. Materials used for the minor cover repairs are the materials stockpiled on-site from cleaning of the desilting basins. Assumes that major cover soils repair is below the vegetative layer of the final cover and only occurs once every ten years, so total annual cost reflected is 1/10 of the total cost. Soil used for cover repairs is from on-site stockpile.

- 2 Costs include asphalt crack repair-liquid filler and hot asphalt. Soil used for repairs of unpaved roads are from on-site stockpiles.
- 3 Estimated cost (\$25,000 total every five years or \$5,000/year) for replacement of 100 LF of the downdrain channels and two bench crossings every five years provided by contractor cost estimate. The estimated cost for replacement of the downdrain channel includes excavation, subgrade finish, and shotcrete. The estimated cost for the bench crossing includes excavation, AC berms, and subgrade finish. Additionally, costs include mobilization and demobilization, demolition of the channels, and disposal of the demo material off-site. Estimated cost for repairs of minor cracks are included in Site Administration hours (Item 10) for labor. Materials are included in access road maintenance materials (Item 2).
- 4 Cost and time for the inspections are included with the post-closure maintenance and monitoring staff in Item 10. Assumes replacement of approximately 500 If of fencing every five years.

8.1.5 Demolition

This category includes costs for dismantling and removing the fee collection building and landfill scales including backfill of the scale pits. It also includes removing other small buildings and the office if not required for post-closure activities.

8.1.6 Construction Management

The construction management cost for the Landfill is based on the closure construction period. This cost is based on a 39-week estimated construction schedule.

8.1.7 Engineering Design And Support

This category includes costs for design support and for preparing construction-level engineering design plans and specifications for bid purposes. This cost is assumed to be five percent of the construction cost.

8.1.8 Contingency

A 20 percent contingency factor has been added to the construction cost estimate.

8.2 Post-Closure Maintenance Cost Estimate

The post-closure maintenance cost estimate has been prepared utilizing information contained in the December 2012 Operations and Maintenance Manual, and estimates of manpower, materials and equipment to maintain the Landfill in compliance with current applicable regulations.

The total annual maintenance and monitoring cost estimate for post-closure is shown on **Table 8-5**. The total 30-year post-closure cost estimate was calculated by multiplying the annual cost estimate from **Table 8-5** by 30 years. The 30-year post-closure cost obligation does not factor in inflation or interest over the funding period but assumes the rates will be similar. The actual future value of the 30-year total may be different.

It should be noted that the maintenance and monitoring costs presented have been projected utilizing current regulations and applicable requirements. In the event that changes occur in the regulatory conditions pertaining to the Landfill, these estimates will need to be adjusted accordingly. A brief description of the components included in each category is given below.

8.2.1 Final Cover Inspection And Maintenance

This cost includes inspection and maintenance of the final cover and assumes that any major final cover soil repairs are below the vegetative layer and only occur once every ten years. Soil used for cover repairs is assumed to come from an on-site stockpile.

8.2.2 Access Road Maintenance

This cost includes maintenance and repair of the main access road and dirt roads on the landfill including crack repair and re-grading. Soil used for unpaved roads is assumed to come from an on-site stockpile.

8.2.3 Drainage Control System Maintenance

This cost assumes replacement of 100 LF of the downdrain channels and two bench crossings every five years. The estimated cost for replacement of the downdrain channel includes excavation, subgrade finish, and shotcrete. The estimated cost for the bench crossing includes excavation, asphaltic concrete berms, and subgrade finish. Costs also include mobilization and demobilization, demolition of the channels, and disposal of the demolition material off-site.

8.2.4 Site Security Inspection/Maintenance/Repair

This cost assumes replacement of 500 linear feet of fencing every five years.

8.2.5 Landscape Maintenance

This cost includes erosion control (installation of erosion blanket, silt fencing, and hydroseeding), weed control (hand pulling and spraying), and reseeding (application of compost, soil amendments, and seed).

8.2.6 Groundwater Monitoring System Maintenance

This cost assumes general maintenance of the groundwater monitoring system including replacement of one groundwater well every 15 years and redevelopment of the wells, as necessary.

8.2.7 Groundwater Monitoring

This cost assumes semi-annual sampling and reporting.

8.2.8 Landfill Gas Monitoring

This cost assumes quarterly surface monitoring, semi-annual monitoring of buildings, and reporting.

8.2.9 Site Administration

This item includes costs for scheduled inspections and reporting as well as annual permit fees and utilities.

8.2.10 Contingency

A 20 percent contingency factor has been added to the annual post-closure maintenance and monitoring cost estimate.

8.3 Demonstration Of Financial Responsibility

In accordance with 40 CFR, Subpart G and Title 39, Chapter 74 of the Idaho Code, an operator must demonstrate financial assurance for the proper closure and post-closure maintenance. According to the Operations and Maintenance Manual, dated December 2012, the financial assurance mechanisms for the Pickles Butte Sanitary Landfill are in the form of a Local Government Financial Test and restricted cash account. Each year, the amount of financial assurance and the choice of funding instrument is reviewed and approved by the DEQ.

9.0 REFERENCES

- Bray, J.D., Zekkos, D., Kavazanjian, E., Athanasopoulos, G.A., Riemer, M.F., 2009. "Shear Strength of Municipal Solid Waste." ASCE Journal of Geotechnical & Environmental Engineering. June 2009.
- CCSW (Canyon County Solid Waste Department), 2012. Operations and Maintenance Manual, Pickles Butte Sanitary Landfill, Canyon County Idaho, December 2012.
- DBS&A (Daniel B. Stephens & Associates), 2010. Site Certification, Pickles Butte Sanitary Landfill. Report to Canyon County, June 17.
- DBS&A. 2014a. Hydrogeologic Characterization Report, Pickles Butte Sanitary Landfill, Volumes 1 and 2. Report to Pickles Butte Sanitary Landfill, April 25.
- DBS&A. 2014b. Monitor Well Installation, Pickles Butte Sanitary Landfill. Report to Pickles Butte Sanitary Landfill, April 25.
- DEQ (Department of Environmental Quality), 2011. Guidance for Land Application of Municipal Biosolids
- Holladay (Holladay Engineering Company), 1994a. Hydrogeologic Characterization, Groundwater Monitoring Plan, & Facility Design, Pickles Butte Sanitary Landfill, Canyon County Idaho, July 1994.
- Holladay, 1994b. Ground Water Sampling QA/QC Protocol for Pickles Butte Sanitary Landfill, Canyon County, Idaho, November 1994.
- Holladay, 1998a. 1997 Landfill Status Report, Pickles Butte Sanitary Landfill, Canyon County Idaho. February 1998.
- Holladay, 1998b. Geotechnical Evaluation Pickles Butte Sanitary Landfill, Canyon County, Idaho. February 1998.
- IDWR (Idaho Department of Water Resources), 1981. Geothermal Investigations in Idaho, Part 11, Geological, Hydrological, Geochemical, and Geophysical Investigations of the Nampa-Caldwell and Adjacent Areas, Southwestern Idaho. Edited by John C. Mitchell. Water Information Bulletin, December 1981.
- Koerner, R.N. and Soong, T.Y., 1998. "Analysis and Design of Veneer Cover Soils," 6th International Conference on Geosynthetics.
- Mabey, D.R. 1982. Geophysics and Tectonics of the Snake River Plain, Idaho. Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26. Bill Bonnichsen and R.M. Breckenridge, editors. P. 139-153.
- Miller Creek Aerial Mapping, 2014. Volumetric Report, Pickles Butte Sanitary Landfill, November 26, 2014.
- Orme, C., Rae, C., Peterson, E., and Cook, S., 2012. Analysis and Methane Gas Separations Studies for City of Marsing, Idaho. An Idaho National Laboratory Technical Assistance Program Study, August 2012.
- State of Idaho, 1996. Idaho Statues. Title 39. Health and Safety. Chapter 74. Idaho Solid Waste Facilities Act.

- State of Idaho, 2015, Idaho Administrative Procedure Act. Code 58. Title 1. Chapter 16. Wastewater Rules. Sludge Usage. § 58.01.16.650.
- Swirydczuk, K., Larson G.P., and Smith, G.R., 1981. Volcanic Ash Stratigraphy of the Glenns Ferry and Chalk Hills Formations, Western Snake River Plain, Idaho. Idaho Geological Survey Technical Report 81-1.
- Swirydczuk, K., Larson G.P., and Smith, G.R., 1982. Volcanic Ash Beds as Stratigraphic Markers in the Glenns Ferry and Chalk Hills Formations from Adrian, Oregon to Bruneau, Idaho. Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26. Bill Bonnichsen and R.M. Breckenridge, editors. P. 543-558.
- US EPA (Environmental Protection Agency), 1993. Criteria for Classification of Solid Waste Disposal Facilities and Practices, 40 CFR, Part 257, 1993.
- US EPA, 1993. Criteria for Municipal Solid Waste Landfills, 40 CFR, Part 258, 1993.
- US EPA, 1993. Standards for the Use or Disposal of Sewage Sludge, 40 CFR, Part 503, 1993.
- US EPA, 1995. "RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities". EPA/600/R-95/051.
- US EPA, 1996. Standards of Performance for Municipal Solid Waste Landfills, 40 CFR, Part 60, Subpart WWW, 1996.
- US EPA, 1998. "Solid Waste Disposal Facility Criteria Technical Manual". EPA 530-R-93-017.
- USGS, 2008. National Seismic Hazard Mapping Project (NSHMP) PSHA Interactive Deaggregation Web Application. <u>http://geohazards.usgs.gov/deaggint/2008/</u>

APPENDIX 1-A SITE CERTIFICATION BOUNDARY

Figure

APPENDIX 1-B WASTE DISPOSAL RECORDS

Tonnage and MegaGram Records since Landfill Opened Annual Tonnage for Greenhouse Gas Calculations Vear is defined by Oct 1 through Sept 30. * 1983 April 1 through Sept 30.

	Tons	Megagrams
1983*	18478	15768
1984	39503	35847
1985	42206	38299
1986	45074	40902
1987	48117	43663
1988	51345	46593
1989	54770	49701
1990	68472	62134
1991	72649	65925
1992	77081	69946
1993	81980	74392
1994	108065	98063
1995	113424	102926
1996	119,707	108627
1997	125,389	113783
1998	127,329	115543
1999	131,723	119531
2000	140,418	127421
2001	149,789	135924
2002	155,874	141446
2003	170,110	154365
2004	178,582	162052
2005	195,572	177470
2006	228,320	207187
2007	222,475	201883
2008	204,433	185511
2009	176,284	159968
2010	179,175	162591
2011	169,137	153482
2012	178,124	151637
2013	188,611	171153
2014	211,955	192337
Totals	4,074.170	3.697.069

2	
Ş	\mathbf{O}
5	X
ดิ	
	Ē
π	()
П	_
Ω.	ω
2	
4	-
ñ	-i
0	mi.
ij	
5	S
ΞŤ.	⋗
ŝ	Z
ñ	=
≥	1
_	≥
	Σ
Z	-
2	_
Ъ	
	2
	Z
4	0
5	Ť.
ž	E.
	Η.

13	<u>994/1995 1</u>	<u>995/1996 1</u>	<u>996/1997 1</u>	997/1998	1998/	NET	1999/2		2000/2	2001	2001/	2002	2002/;	2003	2003/2	2004	2004/;	2005
					GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET
OCTOBER		11,038	10,957	10,830	11,013	11,013	11,156	11,142	12,614	12,605	13,519	13,514	15,044	15,021	15,127	14,391	14,925	14,409
NOVEMBER		10,034	9,526	8,934	9,444	9,444	10,803	10,703	12,266	12,203	12,208	12,136	12,867	12,794	12,274	12,194	15,163	14,604
DECEMBER		7,609	8,901	9,136	10,327	10,327	10,475	10,467	10,401	10,122	10,199	9,792	12,378	11,874	12,991	12,982	13,426	13,414
JANUARY		8,078	9,181	9,327	8,764	8,764	9,754	9,750	10, 164	10,159	11,703	11,696	12,237	12,230	11,353	11,344	12,794	12,641
FEBRUARY	7,372	7,895	7,853	8,029	9,032	9,032	9,999	9,914	9,935	9,866	9,757	9,400	11,562	11,388	10,984	10,983	12,881	12,871
MARCH	10,605	8,619	10,332	9,840	11,548	11,548	12,059	11,998	15,241	14,920	11,595	11,270	13,592	13,491	16,214	16, 197	16,095	16,090
APRIL	8,768	10,738	10,967	11,269	11,586	11,567	11,974	11,960	13,146	13,084	14,608	13,984	15,178	15,144	17,124	16,969	17,512	16,958
MAY	10,939	12,125	12,393	12,288	11,491	11,427	13,827	13,780	14,818	14,141	16,037	15,514	16,596	15,758	16,602	15,553	19,368	19,346
JUNE	10,636	10,226	11,307	11,878	12,581	12,435	12,875	12,701	13,615	13,481	14,731	14,720	15,558	15,545	17,857	17,828	19,424	18,868
JULY	10,666	11,312	11,367	11,912	11,600	11,583	11,599	11,581	13,604	13,084	15,470	14,871	15,879	15,780	17,181	17,066	17,512	17,498
AUGUST	12,113	11,731	10,853	11,857	12,462	12,445	13,919	13,819	14,371	14,288	15,254	15,171	15,669	15,647	16,729	16,634	21,297	21,270
SEPTEMBER	9,728	10,300	11,753	12,028	12,146	<u>12,138</u>	13,361	12,603	12,335	11,835	14,365	13,807	15,632	15,437	16,463	16,441	18,638	18,505
Annual Total	80,827	119,707	125,389	127,329	131,994	131,723	141,801	140,418	152,510	149,789	159,446	155,874	172,191	170,110	180,899	178,582	199,034	196,474
Adjusted Tonna	ge for Recy	/cling				131,723		140,418		149,789		155,874		170,110		178,582		195,572
Tons Recyled						271		1,383		2,721		3,572		2,081		2,317		3,462
Pounds Recycle	ă					542,000	N	,766,000	ഗ	,442,380	-	,144,240	4	,162,460	4	,634,640	6	;,924,040
Mega Grams	73,346	108,627	113,783	115,543		119,531		127,421		135,924	144,688	141,446	156,254	154,365	164,155	162,052	180,611	177,470
Gross % increa	se	48.10	4.75	1.55	3.66		7.43		7.55		4.55		7.99		5.06		10.02	
% Recycled						0.21 3.45		0.98		1.78 6 67		2.24		1.21		1.28		1.74 0.51
INET ETTECTIVE G	OWIN					3.45		0.00		0.07		4.06		9.13		4.98		9.51

	2005/2	006	2006/2	007	2007/	2008	2008/	2009	2009/	2010	2010/	2011	2011	2012	2012	2013	<u>2013</u>	/2014	% Change
	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	GROSS	NET	
OCTOBER	18,476	18,459	19,422	18,569	20,117	19,457	17,562	17,446	16117	16015	14506	14020	15399.5	15391.75	16976.1	16972.35	19384.90	19378.64	14.19
NOVEMBER	17,597	17,579	18,488	18,483	17,449	17,446	15,029	15,022	14960	14954	14493	14487	14810.5	14797.34	16631.7	15997.23	19129.72	19126.28	15.02
DECEMBER	14,622	14,615	14,684	14,204	13, 190	12,754	12,953	11,776	12367	12366	11659	11658	12476	11912.03	12292.76	12088.80	13174.71	12957.15	7.17
JANUARY	15,906	15,757	15,734	15,725	13,669	13,662	11,528	11,510	11516	11510	11505	11491	11416	11345.49	10922.06	10920.73	13063.54	12452.42	19.61
FEBRUARY	15,897	15,359	14,679	14,540	13,089	12,913	11,285	10,972	11331	10443	11595	10293	11469.1	11462.85	11887.78	11707.00	12489.65	12027.99	5.06
MARCH	17,989	17,968	18,655	18,172	16,226	15,966	13,082	12,653	14812	14439	13215	13214	13943.2	13940.91	14827.06	14512.25	16288.08	16143.14	9.85
APRIL	20,618	20,585	19,880	19,860	18,754	18,356	15,820	15,745	16691	16176	15790	15782	16390.6	16373.38	17357.43	17348.42	19752.70	19149.51	13.80
MAY	24,029	23,170	23,850	22,740	20,729	20,280	17,862	17,245	16766	16751	16482	15648	18171.9	17051.45	20018.71	19133.11	21435.51	20768.89	7.08
JUNE	22,663	21,986	20,462	20,456	19,646	19,485	16,978	16,971	18344	18213	17233	17148	17290.5	17278.33	17612.79	17264.69	18664.17	18330.61	5.97
JULY	19,891	19,872	20,863	20,404	18,687	17,821	15,992	14,888	16684	15953	14986	14984	16055	16047.23	17851.42	17835.48	20403.21	20003.89	14.29
AUGUST	23,677	22,893	21,069	20,447	18,200	17,629	16,285	16,283	16574	16558	16123	15173	18028.6	17076.93	18875.35	18326.52	22194.69	21507.53	17.59

	Fence	Note: -7.10 i	Fence	Note:-17.04 i	Fence	Note:-4.75													
	12.37		5.89		5.31	-	-5.60	-	1.59		-3939.01		1.36		-104.68		-54.37	Growth	Net Effective (
	2.04		2.07		1.59		2.52		1.67		2.53		#DIV/0!		#DIV/0!		1.94		% Recycled
		12.33		6.41		4.32		-4.78		0.76		#DIV/0!		#DIV/0!		-100.00		-54.42	Gross % incre
	192,337		171,169		161,637		153,482		162,591		159,968		-4,167	0	-4,111	0	87,768	89,504	Mega Grams
	8,826,540		7,988,160		5,748,180	-	8,739,040		6,095,900		9,139,260		9,183,840		9,060,300		3,828,040	led	Pounds Recyc
	4,413.27	2.04%	3,994.08	2.07%	2,874	1.59%	4,370	2.52%	3,048	1.67%	4,570	2.53%	4,592		4,530		1,914		Tons Recyled
	211,955	216,369	188,611	192,605	178,124		169,137		179,175		176,284		-4,591.92		-4,530		96,719.83	lage for Re	Adjusted Tonr
78.95 120,914	211,962	216,376	188,628	192,622	178,124	180,998	169,137	173,507	179,175	182,223	176,372	180,852	-4,592	0	-4,530	0	96,723.66	98,633.85 9	Annual Total
17.42 2013 Sum	20116.31	20394.75	16521.43	17368.97	15445.88	15551.7	15239	15921	15797	16060	15,862	16,477	-606	0	-342	0	0	0	SEPTEMBER
17.59	21507.53	22194.69	18326.52	18875.35	17076.93	18028.6	15173	16123	16558	16574	16,283	16,285	-571	0	-622	0	0	0	AUGUST
14.29	20003.89	20403.21	17835.48	17851.42	16047.23	16055	14984	14986	15953	16684	14,888	15,992	-866	0	-459	0	0	0	JULY
5.97	18330.61	18664.17	17264.69	17612.79	17278.33	17290.5	17148	17233	18213	18344	16,971	16,978	-160	0	-ტ	0	0	0	JUNE
7.08	20768.89	21435.51	19133.11	20018.71	17051.45	18171.9	15648	16482	16751	16766	17,245	17,862	-449	0	-1,111	0	0	0	MAY
13.80	19149.51	19752.70	17348.42	17357.43	16373.38	16390.6	15782	15790	16176	16691	15,745	15,820	-399	0	-21	0	0	0	APRIL
10.45	16143.14	16288.08	14512.25	14827.06	13940.91	13943.2	13214	13215	14439	14812	12,653	13,082	-260	0	-483	0	17553.89	17,990.33	MARCH
20.71	12027.99	12489.65	11707.00	11887.78	11462.85	11469.1	10293	11595	10443	11331	10,972	11,285	-176	0	-139	0	14904.99	15,076.18	FEBRUARY
8.46	12452.42	13063.54	10920.73	10922.06	11345.49	11416	11491	11505	11510	11516	11,510	11,528	-6	0	-0-	0	13918.32	14,169.11	JANUARY
24.54	12957.15	13174.71	12088.80	12292.76	11912.03	12476	11658	11659	12366	12367	11,776	12,953	-437	0	-481	0	16091.87	16,408.17	DECEMBER
-21.70	19126.28	19129.72	15997.23	16631.7	14797.34	14810.5	14487	14493	14954	14960	15,022	15,029	-2	0	ក់	0	14586.05	14,979.30	NOVEMBER
3.23	19378.64	19384.90	16972.35	16976.1	15391.75	15399.5	14020	14506	16015	16117	17,446	17,562	-660	0	-853	0	19668.54	20,010.76	OCTOBER
	NEI	GROSS	NE	GROSS	NEI	GROSS	NET	GROSS	NEI	GROSS	NEI	GROSS	NEI	GROSS	NE	GROSS	NE	GROSS	
% Change			0	20000)))			0		0)]))	5/2017	2016	/2016	20015	2015	2014/2	
	Fence	Note: -7.101	Fence	Note:-17.04	Fence	Note:-4.75													
	12.37		5.89		5.31	2	-5.60	-	1.59		-13.77		-8.11		-2.92		16.21	Growth	Net Effective (
	2.04		2.07		1.59		2.52		1.67		2.53		2.20		2.00		1.72		% Recycled
		12.33		6.41		4.32		-4.78		0.76		-13.48		-7.92		-2.28		16.72	Gross % incre
	192,337		171,169		161,637		153,482		162,591		159,968		185,511	189,678	201,883	205,994	207,187	210,808	Mega Grams

Adjusted Tonnage for Recycling/fence
 SEPTEMBER
 20,925
 19,217
 18,875
 19,269

 Annual Total
 232,311
 229,173
 227,005
 222,475
 209,025
 Tons Recyled Pounds Recycled 228,320 3,991 7,982,560 222,475 4,530 9,060,300 204,432.69 4,592 9,183,840
 18,663
 16,477
 15,862
 16060
 15797
 15921
 15239
 15551.7
 15445.88
 17368.97
 16521.43
 20394.75
 20116.31

 204,433
 180,852
 176,372
 182,223
 179,175
 173,507
 169,137
 180,998
 178,124
 192,622
 186,628
 216,376
 211,962
 2.53% 176,284 6 4,570 9,139,260 1.67% 179,175 3,048 6,095,900 2.52% 169,137 6 4,370 8,739,040 178,124 192,605 188,611 216,369 211,955 1.59% 2,874 2.07% 3,994.08 2.04% 4,413.27 5,748,180 7,988,160 8,826,540 17.42 2013 Sum 12.33 192,622

APPENDIX 1-C POPULATION DATA

•

						Search	
Topics Population, Economy	Geography Maps, Products	Library Infographics, Publications	Data Tools, Developers	Surveys/Programs Respond, Survey Data	Newsroom News, Blogs	About Us Our Research	
State & County Quicl	kFacts						

Thank you for your feedback! The new delivers the following improvements: Search by zip code, improved table display, browse more data feature, download data, and more.

Canyon County, Idaho

People QuickFacts	Canyon County	Idaho
Population, 2014 estimate	203,143	1,634,464
Population, 2010 (April 1) estimates base	188,923	1,567,652
Population, percent change - April 1, 2010 to July 1, 2014	7.5%	4.3%
Population, 2010	188,923	1,567,582
Persons under 5 years, percent, 2014	7.9%	7.0%
Persons under 18 years, percent, 2014	29.9%	26.4%
Persons 65 years and over, percent, 2014	12.5%	14.3%
Female persons, percent, 2014	50.6%	49.9%
White alone, percent, 2014 (a)	93.7%	93.5%
Black or African American alone, percent, 2014 (a)	0.8%	0.8%
American Indian and Alaska Native alone, percent, 2014 (a)	1.7%	1.7%
Asian alone, percent, 2014 (a)	1.0%	1.4%
Native Hawaiian and Other Pacific Islander alone, percent, 2014 (a)	0.3%	0.2%
Two or More Races, percent, 2014	2.5%	2.3%
Hispanic or Latino, percent, 2014 (b)	24.6%	12.0%
White alone, not Hispanic or Latino, percent, 2014	71.3%	82.8%
Living in same house 1 year & over, percent, 2009-2013	82.1%	82.8%
Foreign born persons, percent, 2009-2013	8.4%	5.9%
Language other than English spoken at home, pct age 5+, 2009-2013	18.1%	10.4%
High school graduate or higher, percent of persons age 25+, 2009-2013	82.7%	88.8%
Bachelor's degree or higher, percent of persons age 25+, 2009-2013	16.8%	25.1%
Veterans, 2009-2013	13.416	122.955
Mean travel time to work (minutes), workers age 16+, 2009-2013	23.6	20.0
Housing units, 2014	71,326	685,099
Homeownership rate, 2009-2013	69.3%	69.8%
Housing units in multi-unit structures, percent, 2009-2013	11.4%	14.9%
Median value of owner-occupied housing units, 2009-2013	\$122,800	\$162,100
Households, 2009-2013	63,442	579,797
Persons per household, 2009-2013	2.98	2.68
Per capita money income in past 12 months (2013 dollars), 2009-2013	\$17,755	\$22,568
Median household income, 2009-2013	\$42,105	\$46,767
Persons below poverty level, percent, 2009-2013	20.4%	15.5%
Business QuickFacts	Canyon County	Idaho
Private nonfarm establishments, 2013	3,627	43,124 ¹
Private nonfarm employment, 2013	45,609	509,986 ¹
Private nonfarm employment, percent change, 2012-2013	5.7%	3.3% ¹
Nonemployer establishments, 2013	11,596	115,043
Total number of firms, 2007	14,561	151,671
Black-owned firms, percent, 2007	0.2%	0.2%
American Indian- and Alaska Native-owned firms, percent, 2007	0.7%	0.9%
Asian-owned firms, percent, 2007	0.6%	0.8%
Native Hawaiian and Other Pacific Islander-owned firms, percent, 2007	F	S
Hispanic-owned firms, percent, 2007	5.9%	2.6%
Women-owned firms, percent, 2007	22.4%	23.5%
Manufacturers shipments, 2007 (\$1000)	D	18,010,976

Merchant wholesaler sales, 2007 (\$1000)	992.925	14.286.715
Retail sales, 2007 (\$1000)	2,176,039	20,526,631
Retail sales per capita, 2007	\$12,171	\$13,691
Accommodation and food services sales, 2007 (\$1000)	140,865	2,415,951
Building permits, 2014	1,130	8,797
Geography QuickFacts	Canyon County	Idaho
Land area in square miles, 2010	587.37	82,643.12
Persons per square mile, 2010	321.6	19.0
FIPS Code	027	16

Metropolitan or Micropolitan Statistical Area

1: Includes data not distributed by county.

Includes data not distributed by county.
(a) Includes persons reporting only one race.
(b) Hispanics may be of any race, so also are included in applicable race categories.
D: Suppressed to avoid disclosure of confidential information
F: Fewer than 25 firms
FN: Footnote on this item for this area in place of data
NA: Not available

NA: Not available S: Suppressed; does not meet publication standards X: Not applicable Z: Value greater than zero but less than half unit of measure shown Source U.S. Census Bureau: State and County QuickFacts. Data derived from Population Estimates, American Community Survey, Census of Population and Housing, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits

Last Revised: Wednesday, 14-Oct-2015 15:54:46 EDT

ARC	лл	us	
		00	

FIND DATA

BUSINESS & INDUSTRY

PEOPLE & HOUSEHOLDS

Boise City, ID Metro Area

> NEWSROOM SPECIAL TOPICS

Ш

							1111
						Search	+
Topics Population, Economy	Geography Maps, Products	Library Infographics, Publications	Data Tools, Developers	Surveys/Programs Respond, Survey Data	Newsroom News, Blogs	About Us Our Research	
State & County Quic	kFacts						

Thank you for your feedback! The new delivers the following improvements: Search by zip code, improved table display, browse more data feature, download data, and more.

Owyhee County, Idaho

	Owyhee	
People QuickFacts	County	Idaho
Population, 2014 estimate	11,353	1,634,464
Population, 2010 (April 1) estimates base	11,526	1,567,652
Population, percent change - April 1, 2010 to July 1, 2014	-1.5%	4.3%
Population, 2010	11,526	1,567,582
Persons under 5 years, percent, 2014	6.4%	7.0%
Persons under 18 years, percent, 2014	26.6%	26.4%
Persons 65 years and over, percent, 2014	16.3%	14.3%
Female persons, percent, 2014	49.1%	49.9%
White alone, percent, 2014 (a)	91.7%	93.5%
Black or African American alone, percent, 2014 (a)	0.8%	0.8%
American Indian and Alaska Native alone, percent, 2014 (a)	4.5%	1.7%
Asian alone, percent, 2014 (a)	0.7%	1.4%
Native Hawaiian and Other Pacific Islander alone, percent, 2014 (a)	0.2%	0.2%
Two or More Races, percent, 2014	2.0%	2.3%
Hispanic or Latino, percent, 2014 (b)	26.5%	12.0%
White alone, not Hispanic or Latino, percent, 2014	68.2%	82.8%
Living in same house 1 year & over, percent, 2009-2013	84.8%	82.8%
Foreign born persons, percent, 2009-2013	10.3%	5.9%
Language other than English spoken at home, pct age 5+, 2009-2013	21.2%	10.4%
High school graduate or higher, percent of persons age 25+, 2009-2013	75.4%	88.8%
Bachelor's degree or higher, percent of persons age 25+, 2009-2013	8.2%	25.1%
Veterans, 2009-2013	922	122,955
Mean travel time to work (minutes), workers age 16+, 2009-2013	27.2	20.0
Housing units, 2014	4,769	685,099
Homeownership rate, 2009-2013	64.2%	69.8%
Housing units in multi-unit structures, percent, 2009-2013	5.4%	14.9%
Median value of owner-occupied housing units, 2009-2013	\$121,200	\$162,100
Households, 2009-2013	3,911	579,797
Persons per household, 2009-2013	2.90	2.68
Per capita money income in past 12 months (2013 dollars), 2009-2013	\$15,945	\$22,568
Median household income, 2009-2013	\$32,175	\$46,767
Persons below poverty level, percent, 2009-2013	24.2%	15.5%
	Owyhee	
Business QuickFacts	County	Idaho
Private nonfarm establishments, 2013	181	43,124 ²
Private nonfarm employment, 2013	1,612	509,986 ²
Private nonfarm employment, percent change, 2012-2013	5.6%	3.3%2
Nonemployer establishments, 2013	635	115,043
Total number of firms, 2007	999	151,671
Black-owned firms, percent, 2007	F	0.2%
American Indian- and Alaska Native-owned firms, percent, 2007	S	0.9%
Asian-owned firms, percent, 2007	F	0.8%
Native Hawaiian and Other Pacific Islander-owned firms, percent, 2007	F	S
Hispanic-owned firms, percent, 2007	4.0%	2.6%
Women-owned firms, percent, 2007	21.6%	23.5%

Manufacturers shipments, 2007 (\$1000)	0 ¹	18,010,976
Merchant wholesaler sales, 2007 (\$1000)	34,609	14,286,715
Retail sales, 2007 (\$1000)	50,935	20,526,631
Retail sales per capita, 2007	\$4,653	\$13,691
Accommodation and food services sales, 2007 (\$1000)	4,150	2,415,951
Building permits, 2014	16	8,797
	Owyhee	
Geography QuickFacts	County	Idaho
Land area in square miles, 2010	7,665.51	82,643.12
Persons per square mile, 2010	1.5	19.0
FIPS Code	073	16
Metropolitan or Micropolitan Statistical Area	Boise City, ID Metro Area	

Nietro Area
Nietro Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits

Last Revised: Wednesday, 14-Oct-2015 15:54:52 EDT

ABOUT US	FIND DATA	BUSINESS & INDUSTRY	PEOPLE & HOUSEHOLDS	SPECIAL TOPICS	NEWSROOM
				0. 20. 2 . 0 00	

|||||

•

				Search			
Topics Population, Economy	Geography Maps, Products	Library Infographics, Publications	Data Tools, Developers	Surveys/Programs Respond, Survey Data	Newsroom News, Blogs	About Us Our Research	
State & County Quic	kFacts						

Thank you for your feedback! The new delivers the following improvements: Search by zip code, improved table display, browse more data feature, download data, and more.

Nampa (city), Idaho

People QuickFacts	Nampa	Idaho
Population, 2014 estimate	88,211	1,634,464
Population, 2010 (April 1) estimates base	81,748	1,567,652
Population, percent change - April 1, 2010 to July 1, 2014	7.9%	4.3%
Population, 2010	81,557	1,567,582
Persons under 5 years, percent, 2010	9.8%	7.8%
Persons under 18 years, percent, 2010	32.3%	27.4%
Persons 65 years and over, percent, 2010	10.3%	12.4%
Female persons, percent, 2010	51.0%	49.9%
White alone, percent, 2010 (a)	82.9%	89.1%
Black or African American alone, percent, 2010 (a)	0.7%	0.6%
American Indian and Alaska Native alone, percent, 2010 (a)	1.2%	1.4%
Asian alone, percent, 2010 (a)	0.9%	1.2%
Native Hawaiian and Other Pacific Islander alone, percent, 2010 (a)	0.4%	0.1%
Two or More Races, percent, 2010	3.2%	2.5%
Hispanic or Latino, percent, 2010 (b)	22.9%	11.2%
White alone, not Hispanic or Latino, percent, 2010	72.7%	84.0%
Living in same house 1 year & over, percent, 2009-2013	80.0%	82.8%
Foreign born persons, percent, 2009-2013	8.0%	5.9%
Language other than English spoken at home, pct age 5+, 2009-2013	17.1%	10.4%
High school graduate or higher, percent of persons age 25+, 2009-2013	83.0%	88.8%
Bachelor's degree or higher, percent of persons age 25+, 2009-2013	17.0%	25.1%
Veterans, 2009-2013	5,656	122,955
Mean travel time to work (minutes), workers age 16+, 2009-2013	23.5	20.0
Housing units, 2010	30,507	667,796
Homeownership rate, 2009-2013	64.7%	69.8%
Housing units in multi-unit structures, percent, 2009-2013	14.8%	14.9%
Median value of owner-occupied housing units, 2009-2013	\$113,600	\$162,100
Households, 2009-2013	27,227	579,797
Persons per household, 2009-2013	2.99	2.68
Per capita money income in past 12 months (2013 dollars), 2009-2013	\$16,813	\$22,568
Median household income, 2009-2013	\$40,244	\$46,767
Persons below poverty level, percent, 2009-2013	23.8%	15.5%
Business QuickFacts	Nampa	Idaho
Total number of firms, 2007	6,775	151,671
Black-owned firms, percent, 2007	0.4%	0.2%
American Indian- and Alaska Native-owned firms, percent, 2007	1.0%	0.9%
Asian-owned firms, percent, 2007	0.9%	0.8%
Native Hawaiian and Other Pacific Islander-owned firms, percent, 2007	F	S
Hispanic-owned firms, percent, 2007	5.9%	2.6%
Women-owned firms, percent, 2007	22.2%	23.5%
Manufacturers shipments, 2007 (\$1000)	1,412,643	18,010,976
Merchant wholesaler sales, 2007 (\$1000)	709,659	14,286,715
Retail sales, 2007 (\$1000)	1,483,882	20,526,631
Retail sales per capita, 2007	\$18,823	\$13,691
Accommodation and food services sales, 2007 (\$1000)	97,015	2,415,951

Nampa	Idaho	
31.19	82,643.12	
2,614.7	19.0	
56260	16	
	Nampa 31.19 2,614.7 56260	

Counties

Counties
(a) Includes persons reporting only one race.
(b) Hispanics may be of any race, so also are included in applicable race categories.
D: Suppressed to avoid disclosure of confidential information
F: Fewer than 25 firms
FN: Footnote on this item for this area in place of data
NA: Not available
S: Suppressed; does not meet publication standards
X: Not applicable
Z: Value greater than zero but less than half unit of measure shown
Source U.S. Census Bureau: State and County QuickFacts. Data derived from Population Estimates, American Community Survey, Census of Population and Housing, County Business Patterns, Economic
Census. Survey of Business Owners. Building Permits Census of Covernments. Census, Survey of Business Owners, Building Permits, Census of Governments

Last Revised: Wednesday, 14-Oct-2015 16:18:39 EDT

ABOUT US	FIND DATA	BUSINESS & INDUSTRY	PEOPLE & HOUSEHOLDS	SPECIAL TOPICS	NEWSROOM

|||||

•

						Search
Topics Population, Economy	Geography Maps, Products	Library Infographics, Publications	Data Tools, Developers	Surveys/Programs Respond, Survey Data	Newsroom News, Blogs	About Us Our Research
State & County Quic	kFacts					

Thank you for your feedback! The new delivers the following improvements: Search by zip code, improved table display, browse more data feature, download data, and more.

Caldwell (city), Idaho

People QuickFacts	Caldwell	Idaho
Population, 2014 estimate	50,224	1,634,464
Population, 2010 (April 1) estimates base	46,301	1,567,652
Population, percent change - April 1, 2010 to July 1, 2014	8.5%	4.3%
Population, 2010	46,237	1,567,582
Persons under 5 years, percent, 2010	10.7%	7.8%
Persons under 18 years, percent, 2010	33.1%	27.4%
Persons 65 years and over, percent, 2010	8.9%	12.4%
Female persons, percent, 2010	50.6%	49.9%
White alone, percent, 2010 (a)	77.5%	89.1%
Black or African American alone, percent, 2010 (a)	0.6%	0.6%
American Indian and Alaska Native alone, percent, 2010 (a)	1.2%	1.4%
Asian alone, percent, 2010 (a)	0.9%	1.2%
Native Hawaiian and Other Pacific Islander alone, percent, 2010 (a)	0.1%	0.1%
Two or More Races, percent, 2010	3.6%	2.5%
Hispanic or Latino, percent, 2010 (b)	35.4%	11.2%
White alone, not Hispanic or Latino, percent, 2010	60.8%	84.0%
Living in same house 1 year & over, percent, 2009-2013	80.3%	82.8%
Foreign born persons, percent, 2009-2013	10.9%	5.9%
Language other than English spoken at home, pct age 5+, 2009-2013	24.4%	10.4%
High school graduate or higher, percent of persons age 25+, 2009-2013	79.8%	88.8%
Bachelor's degree or higher, percent of persons age 25+, 2009-2013	14.2%	25.1%
Veterans, 2009-2013	2,755	122,955
Mean travel time to work (minutes), workers age 16+, 2009-2013	21.9	20.0
Housing units, 2010	16,323	667,796
Homeownership rate, 2009-2013	64.8%	69.8%
Housing units in multi-unit structures, percent, 2009-2013	15.6%	14.9%
Median value of owner-occupied housing units, 2009-2013	\$99,500	\$162,100
Households, 2009-2013	15,563	579,797
Persons per household, 2009-2013	2.96	2.68
Per capita money income in past 12 months (2013 dollars), 2009-2013	\$15,710	\$22,568
Median household income, 2009-2013	\$39,242	\$46,767
Persons below poverty level, percent, 2009-2013	21.6%	15.5%
Business QuickFacts	Caldwell	Idaho
Total number of firms, 2007	2,945	151,671
Black-owned firms, percent, 2007	F	0.2%
American Indian- and Alaska Native-owned firms, percent, 2007	F	0.9%
Asian-owned firms, percent, 2007	F	0.8%
Native Hawaiian and Other Pacific Islander-owned firms, percent, 2007	F	S
Hispanic-owned firms, percent, 2007	S	2.6%
Women-owned firms, percent, 2007	24.7%	23.5%
Manufacturers shipments, 2007 (\$1000)	D	18,010,976
Merchant wholesaler sales, 2007 (\$1000)	83,384	14,286,715
Retail sales, 2007 (\$1000)	611,804	20,526,631
Retail sales per capita, 2007	\$15,400	\$13,691
Accommodation and food services sales, 2007 (\$1000)	36,755	2,415,951

Geography QuickFacts	Caldwell	Idaho
Land area in square miles, 2010	22.06	82,643.12
Persons per square mile, 2010	2,095.6	19.0
FIPS Code	12250	16

Counties

Counties
(a) Includes persons reporting only one race.
(b) Hispanics may be of any race, so also are included in applicable race categories.
D: Suppressed to avoid disclosure of confidential information
F: Fewer than 25 firms
FN: Footnote on this item for this area in place of data
NA: Not available
S: Suppressed; does not meet publication standards
X: Not applicable
Z: Value greater than zero but less than half unit of measure shown
Source U.S. Census Bureau: State and County QuickFacts. Data derived from Population Estimates, American Community Survey, Census of Population and Housing, County Business Patterns, Economic
Census. Survey of Business Owners. Building Permits Census of Covernments. Census, Survey of Business Owners, Building Permits, Census of Governments

Last Revised: Wednesday, 14-Oct-2015 16:18:35 EDT

ABOUT US	FIND DATA	BUSINESS & INDUSTRY	PEOPLE & HOUSEHOLDS	SPECIAL TOPICS	NEWSROOM
----------	-----------	--------------------------------	---------------------	----------------	----------

|||||

APPENDIX 1-D ORGANIZATION CHART AND JUNE 2015 SCHEDULE

Canyon County Solid Waste Department

APPENDIX 1-E LANDFILL FEE SCHEDULE

Minimum & General Fees

Canyon County Residents

Covered Load Requirements Material Waste Verification Minimum & General Fees Opportunities to Recycle Pay Online Solid Waste FAQs Type of Waste Accepted

General Fee: \$14.50 per ton Note: It takes approximately 620lbs to exceed the minimum fee of \$5.00

A limit of ten (10) passenger or light truck tires for \$2.00 each in addition to your weight.

Refrigeration units with or without compressors containing Freon or oil an additional fee of \$15.00 per unit is charged in addition to your weight.

Stay Connected:

Clean wood wastes are accepted for a reduced fee of \$12.00 per ton.

Owyhee County Residents

General Fee: \$16.00 per ton

Note: It takes approximately 620lbs to exceed the minimum fee of \$4.75.

A limit of ten (10) passenger or light truck tires for \$2.25 each in addition to your weight.

Refrigeration units with or without compressors containing Freon or oil an additional fee of \$15.00 per unit is charged in addition to your weight.

Clean wood wastes are accepted for a reduced fee of \$12.00 per ton.

Copyright © Canyon County, Idaho | <u>Contact Information</u> | <u>Liability Disclaimer</u> | <u>Site Map</u> 1115 Albany St. Caldwell, Idaho 83605 | Phone: (208) 454-7300

APPENDIX 1-F CAT PERFORMANCE MANUAL REFERENCES

Waste Handling Landfills

Landfill Methods Equipment Selection Track-Type Tractors

LANDFILLS

The most commonly accepted way to dispose of refuse is to bury it in a sanitary landfill. A sanitary landfill protects the environment by disposing solid waste on land in an engineered cell. Building a cell involves apreading the waste in thin layers, compacting it to the smallest practical volume, covering it with soil by the end of each working day, and compacting the cover material. Proper equipment selection and operating technique can maximize refuse and cover compaction and extend the operational landfill life.

LANDFILL METHODS

There are three basic landfill methods:

In the ored method, waste is usually deposited at the toe of the previously compacted cell and then epread and compacted. This method is attractive for landfills receiving over 450 metric tons (500 tons) of refuse per day because it reduces truck unloading congestion. Cover material is normally handled by articulated trucks or wheel tractor-scrapers from nearby borrow sites.

The irench method is normally found at smaller landfills where the ground water table is deep. A trench is excavated and refuse is deposited and compacted within it. Excavated material becomes the cover material. Since the trench working face is narrow, stuck congestion can occur. This method is usually attractive to landfills receiving under 450 metric cons (500 tons) of refuse per day.

The ramp method combines the characteristics of both area and trench designs. Refuse is dumped, spread and compacted on existing slopes and covered with material excavated directly in front of the working face. The excavated area becomes part of the next cell. This is a good way for a landfill to begin operation with a minimum of equipment expenditures.

EQUIPMENT SELECTION

A landfill's largest single cost for daily operation is purchasing, operating and maintaining the mobile equipment. Underwised, inadequate or unreliable equipment results in breakdowns, higher operating costs and improper landfill operation.

- Landfill equipment performs three distinct functions 1. Waste handling and compaction equipment dispose of the waste. Track type tractors, track loaders, and landfill compactors are the primary machines.
- 2. Cover material bandling machines provide daily cover requirements. If supplying cover material is a machine's sole function at a landfill, it can be selected on the basis of normal earthmoving considerations, such as material characteristics, distance to borrow areas, volume to be transported, and other basic earthmoving punciples, i.e., maximizing earth movement in the least amount of time at the lowest cost per yerd.
- Support equipment includes motor graders, backhoe loaders, bydraulic excavators, water trucks, air compressors, service vehicles, water pumps, generators and any other necessary equipment.

Track-Type Tractors

The track-type tractor is the most popular and versatile machine on a sanitary landfill. They not only spread and compact refuse and cover material, they also prepare the site, rip cover material, build hash roads, knock down treas, remove samps, and work in virtually all weather conditions. They are wellsuited for all three landfill methods (area, ramp, and trench).

The grawler tractor can achieve compaction densities of 475 to 590 kg/m^{*} (800-1000 k/vd²), klaximum compaction is achieved when it works on a 3-1 dopt, permitting the grousers to rip and tear while publing and compacting waste up-slope. Economic limit of cover or waste movement by a track type tractor is normally under 50 m (300 fb).

Equipment Selection Track Loaders
Landfill Compactors Wheel Loaders
Wheel Tractor-Scrapers Articulated Trucks

Waste Handling Landfills

ick Loaders

Frack loaders are highly versatile allowing them perform many applications, Small landfills under 5 metric tons (150 tons) per day generally utilize minimum amount of equipment. Track loaders can be both the waste handling and covor material actions.

The track loader is an ideal machine for the trench thed. Since the buckst does not extend outside tracks, it can obtain full compaction to the trench fin. Rippers can be attached to handle frozen cover iterial. Compaction densities are similar to or ghtly higher than the track type tractor — 475 to 0 kg/m° (800-1000 lb/yd³). Many people believe ick loaders equipped with single grouser shoes wide maximum demolition and compaction denles. Loading the bucket during compaction passes reases weight helping achieve higher densities. Suppping track loaders with multi-purpose buckt increases their versatility in single machine plications, allowing the operator to selectively uple items out of the working face.

ndfill Compactors

andfill compactors are specialized pieces of equipnt effective in spreading and compacting large unes of waste. Compactors offer higher operapal speeds than track machines. This is the recmended machine if more than one spreading and spatian machine is needed and waste does not who be pushed more than 90 m (300 ft).

andfill compactors over 20 410 kg (45,000 lb) operng weight achieve the bighest compaction levels from 710 to 950 kg/m² (1200-1600 lb/yd²).

andfill compactors normally operate on alopes no eperthan 4:1 due to reduced compaction and operscal safety. Compactors abould not be used to wate cover material.

Wheel Loaders

Although not recommended as a waste handling and compaction machine, wheel loaders are used by those communities sharing a single machine which travels from landfill to landfill. Versatility and mobility are the primary wheel loader advantages. In landfills over 272 metric tons (300 tons) per day, wheel loaders will sometimes be used to perform general clean-up tasks.

Wheel loaders can achieve compaction densities of 550 to 650 kg/m² (900-1100 lb/yd⁴). A disadvantage of wheel loaders is that they can leave ruts in the refuse, requiring extra-cover insterial

Wheel Tractor-Scrapera

A scraper can be used to excavate trenches for sits preparation, but usually performs a cover operation at a landfill and is most comminal at distances over 185 m (600 ft) A scraper should be selected as if it were performing a typical earthmoving job.

Preferably, the scraper unloads the cover material close to the working face, either at the base or top. The cover material is then apread by the machine(s) working on the refuse. This reduces the possibility of tire damage from driving over the refuse. Foam filled tires are not recommended for scrapers due to the high travel speeds. Since excavating and transporting cover material is a major expense at a landfill, scrapers with work alone capability have been the most popular.

Articulated Trucks

Articulated trucks are versatile, highly manouverable, all-weather haulers that can negotiate poor underfoot conditions and tight spaces normally found in landfills. In combination with a variety of loading tools, articulated trucks typically work in site preparation, cell construction, halling cover material, and are economically effective at haul distances ranging from 0.1 km-5 km (000 ft-5 miles). In durap configuration, cover material can be duraped close to the face and spread by other machines. In ejector configuration, articulated trucks provide onthe-go dumning and can operate in soft material and on side-slopes that would not be suitable for machines in dump configuration. In addition, Cat articulated trucks are available in a range of container handler and refuse body configurations for specialized land fill applications.

25

Waste Handling Landfills

Machine Selection Factors

Selecting the type, size, quantity, and combination of machines required to apread, compact, and cover varying daily refuse volumes is determined by the following parameters:

- Amount and type of waste to be handled (daily townage)
- 3. Amount and type of soil cover to be handled
- 8. Distance cover material to he transported
- 4. Weather conditions.
- 5. Compaction requirements
- 6. Landfill method utilized
- 7. Bupplemental tasks
- 8. Budget
- 9. Growth
- A Daily tannage and type of axists Amount of waste produced by a community is the major variable in selecting the appropriate size machine. The chart serves as a guideline in sizing a landfill machine. For example, if a community generares approximately 180 metric tons (200 tons) of refuse per day, a D6 or 955 and a 816 Landfill Compactor should be considered.

WASTE EQUIPMENT SELECTION BASED UPON POPULATION AND DAILY REFUSE TONNAGE

Population.	Metric Toquí Day	U.S. Tone/ Day	Machine(±) Required
D-20,000	0-45	0-50	D3 or B3B
28,000-60,000	45-136	90-150	El4 for 936 And en 615
60.000-100,000	188-826	190-255	DS or DE or BS3 and B13
100,000-140,000	229-317	250-360	D6 or D7 or 863 and 316
140,000-200.000	317-459	360-500	07 or 08 oi 873 and 816
200.000-300.000 300,000-more	453-680 680-more	600-750 750-more	D9 or D9 and 836 D9, D10 and 836/Variety of

support exputerment

MOTE: Drive contracte figures and based on 2.25 by (51b) is residential refuse per periate ran only. The remound of wasterpersonality can vary depending on the community and should be adjunce to the individual community. Type of wasts to be handled will strongly influence machine selection. The major colid wasts components for a community should be identified and the proper machine chosen based on the type of wasts and the compaction desired. For example, if the site receives a high propartion of noncompactible heavy industrial wasts (rocks, bricks, concrete, reinforcing rod, etc.) a compactor might not achieve normal compaction densities and the pushing and tractive ability of a track-type tractor may be needed. However, a small track-type tractor has more difficulty compacting bulk wasts such as washing machines and telephone poles than a landfill compartor.

Waste varies from location to location, even within a community; however, the following figures are representative in the U.S.:

Characterization of

Local Month Pills	PORTATION AND AN AREAD
Gomponent	Parcent by Waight
Paper	42
Food	18
Gitres	14
Mercal	12
Plastic	5
Wood	5
Rubber and Leather	4
Tepplies	2
	Gomponent Paper Food Gizes Metal Plastics Wood Rubber and Leather Textiles

NOTE: Moisture contrant can have a stortificant effect on watch chemeteristic Field tasts have indicated molecule contract can yar, from 10-305 during dry and yet accords. Equipment Selection
 Machine Selection Factors

Waste Handling Landfills

Incuration and type of cover material to be handled — Although landfill size and type will vary, a rule f thurnb for estimating needed cover material is one cubic meter (cobic yard) of cover material or every four cobic meters (or cubic yards) of inlace compacted wasts. That is, about 20-26% of a sanitary landfill's volume consists of soil used or cover (including daily and final covering). On maller landfills, the percentage of soil could be as high as 50% to meet reasonable cover equirements.

It is important to remember that cover mateial also occupies landfill apace reducing the volume available for refuse. For example a landfill with 1 900 000 m⁸ (2,500,000 yd³) of total volume could provide for dispusing of 1 520 000 m³ 2,000,000 yd³) of refuse and allow 380 000 m³ 500,000 yd³) of cover material. This example coniders one cubic yard of cover for every 4 cubic write of in place compacted wasts.

The type of cover material can also be imporant. If the material is sandy or highly abrasive, a rubber tired wheel loader or scraper might be unsidered ruther than a track-type unit. C Distance cover material is to be transported will have a large effect on over equipment selection. The following economic limits or guidelines are recommended for cover material movement. The quantity of material to be moved and the time available must be considered when using these guidelines.

Track-type tractor	0-90 m	(0.300 ft)
Track loader	0-162 m	(0-500 代)
Wheel loader	0-185 m	10-600 ft)
Wheel tractor-scrape	rover 186 m	(over 600 ft)
Articulated trucks	over 185 m	(over 600 ft)

- D. Weather conditions when working in indement weather, the tractive capability of a tracktype machine may be necessary for poor underfoot conditions or to rip imagen cover material.
- E. Compaction requirements are becoming onlincal as extended isondfill life is sought. If high density is desired, then a compactor may be necessary.

The following pages contain features, specifics tions and work tools for Caterpillar's Waste Handling machines. Additional information regarding drawbar pull/rimpull Vs groundspeed, controls, ground pressures, production estimating for these machines as well as specifications and performance information for Wheel Tractor Scrapers and Articulated Trucks can be found in their respective Performance Handbook sections.

Waste Handling Landfills

Refuse Densities Factors Governing Compaction

REFUSE DENSITIES

Generally, loose residential and commercial refuse weighs 150-180 kg/m³ (250-300 lb/yd³). A refuse collection value will increase this density to 227-416 iggm⁴ (400-700 lb/yd³). In-place landfill density can vary from \$55-890 kg/m³ (600-1500 lb/yd³), depending on the compactive effort applied to the refuse. Landfill sites that accept a high percentage of demolition waste can have densities up to 1485 kg/m³ (2500 lb/yd³). Covermaterial will generally raise fill densities 60-120 kg/m² (100-200 lb/yd³) over the figures given above.

1	lieigin al Rolluse	
	log/m*	Rylyof
Locue Fielupe	150-180	250-300
Facuer Truck:	207-415	400-700
Fill Dienally:	.956-88G	609-1600
Grenune and Cover	415-1009	700-1700

FACTORS GOVERNING COMPACTION

Assuming equal machine weight, regardless of the type of machine, the following factors (1-4) affect atmpsouton:

1 Refuse Layer Thickness — The depth of each compacted layer is verhaps the single most unportant connectable factor unfluencing density. To obtain maximum density, wasts should be spread and compacted in layers nor exceeding a depth of 610 mm (2 ft). Thicker layers will reduce the tienaity that a machine can develop in a given number of passes. (Density figures shown do nolinclude cover material.)

1. Number of passes made over the refuse also affects density, Regardless of the type of machine used, the unit should make 3-4 passes to achieve optimum density. The following graph illustrates that more than four passes result in little additional compactive effort. The added appende of additional passes is not justified by the incremental increases in density.

8. Slope — Maximum compactive effort by a traditype unit is achieved by working the waste on a alope of 8:1. Track type machines achieve higher densities by grinding and sirredding the ramas into smaller pieces as they climb a close.

Just the opposite is true for landfill compactors, the flatter the slope the better. This is because the weight of the landfill compactor is more efficiently utilized and concentrated when working on a first surface. Landfill compactors that are used on slight slopes achieve a higher compaction density due to shearing stress that side shredding and hetter blending of metariel

Monsture Contant — has been shown to have a significant effect on compacted density. It as believed that water cends to weaken the bridging characteristics of refuse, particularly paper such as large pieces of cardboard, atc., thereby allowing tighter consolidation. The water may also act as a fubricent — much as it does for calls A minimum amount of moisture can increase refuse compaction density by 10%.

The optimum moisture content for menomialcompaction of household refuse appears to be around 50% by weight. Field tests show ected, moisture contents varying from 10-85% during dry and wer seasons. Although higher maisture.

Waste Handling Landfills

MPACTION COMPARISON ESTIMATE

he following graph may be used as a rule of mh for the compactive ranges of various types andfill machines if proper operating technique mployed.

EXAMPLE OF WOREASED COMPACTION

UN PUICI	ON POTENTIAL LANDFILL LES										
ndill refized capacity entiting days ily volume ally volume	1 530 000 m ² (2,000,000 yd?) 260 365 pretijc rons (400 tons) 94 329 metric rons (104,090 tons)										
Compaction	Landiil Life	Gain									
30 ko/m² 1000 lb/vdl	9.6 years 11.5 waars	19 Mars									
50 kg/m* 1900 lb/y64	13.4 yeers 15.8 yeers	3.8 years 5.7 yaars									
70 kg/m9 1850 kb/hd?	17.2 years	7.6 years									

In this example, each 120 kg (200 lb) increase to refuse density results in an additional 1.9 years of tangfill life. Also this example is exclusive of cover regulirements.

COMPACTOR PRODUCTION GUIDELINES

	Ton	siDay	Tomati		
Model	Matria	U.S.	Matric	U.S.	
836	1016	1000	127	125	
826G	813	800	102	100	
BIGF	506	500	53,5	B2.5	

All models are planning virtues 61 th (200 ft) corearing and making 3 to 4 pagates to comprisel, a pase is defined as: A machine traveling over the velope one time in one direction on find weatignmuch Asserter (uprivil or invertible (downait) of elevalid effect the above production figures.

- F. Landfill method utilized impacts the soulpment needed. The area method, which is generally souted for flat or gradual sloping surfaces will get maximum compaction effort with a compaction. The transh method may require a track loader due to its excavating and tractive capabilities.
- G. Supplemental tasks should be reviewed before selecting a landfill machine. Will the machine be required for site clearing, maintaining access roads, excepting, atc.? Anailiary duties may require additional machine capability and/or attachments. If versatility is the key consideration, a tracktype machine again becomes the logical choice.
- H. Budget Smaller landfill operations with limited budgets may have to consider single mechino versatility ahead of specialized machinos or maltiple units.
- Growth Future increases in refuse volume must be considered to properly size machines.

APPENDIX 1-G EQUIPMENT INFORMATION

DEPARTMENT OF HOMELAND SECURITY FEDERAL EMERGENCY MANAGEMENT AGENCY RECOVERY DIRECTORATE PUBLIC ASSISTANCE DIVISION WASHINGTON, D.C. 20472

The rates on this Schedule of Equipment Rates are for applicant-owned equipment in good mechanical condition, complete with all required attachments. Each rate covers all costs eligible under the Robert T. Stafford Disaster Relief and Emergency Assistance Act, 42 U.S.C. § 5121, et seq., for ownership and operation of equipment, including depreciation, overhead, all maintenance, field repairs, fuel, lubricants, tires, OSHA equipment and other costs incidental to operation. Standby equipment costs are not eligible.

Equipment must be in actual operation performing eligible work in order for reimbursement to be eligible. LABOR COSTS OF OPERATOR ARE NOT INCLUDED in the rates and should be approved separately from equipment costs.

Information regarding the use of the Schedule is contained in 44 CFR § 206.228 Allowable Costs. Rates for equipment not listed will be furnished by FEMA upon request. Any appeals shall be in accordance with 44 CFR § 206.206 Appeals.

THESE RATES ARE APPLICABLE TO MAJOR DISASTERS AND EMERGENCIES DECLARED BY THE PRESIDENT ON OR AFTER SEPTEMBER 15, 2010.

Cost	Equipment	Specification	Capacity/Size	HP	Notes	Unit	Rate
8490	Aerial Lift Self-Propelled	Max Platform Height	37 ft	to 15	Articulated Telescoping Scissor	hour	\$8.25
8491	Aerial Lift, Self-Propelled	Max. Platform Height	60 ft	to 30	Articulated, Telescoping, Scissor	hour	\$12.25
8492	Aerial Lift, Self-Propelled	Max. Platform Height	70 ft	to 50	Articulated, Telescoping, Scissor.	hour	\$21.00
8493	Aerial Lift, Self-Propelled	Max. Platform Height	125 ft	to 85	Articulated and Telescoping.	hour	\$55.00
8494	Aerial Lift, Self-Propelled	Max. Platform Height	150 ft	to 130	Articulated and Telescoping.	hour	\$67.00
	·····	······································			Articulated and Telescoping Add to		
8486	Aerial Lift, Truck Mntd	Max. Platform Height	40 ft		Truck rate for total rate.	hour	\$6 75
0.00		inara i latterit reight	10 11		Articulated and Telescoping Add to		<i>_</i> 0110
8487	Aerial Lift, Truck Mntd	Max. Platform Height	61 ft		Truck rate for total rate.	hour	\$12.25
0.01		inara i latterit reight	0111		Articulated and Telescoping Add to		
8488	Aerial Lift Truck Motd	Max Platform Height	80 ft		Truck rate for total rate	hour	\$23.50
0.00		inara i latterni i eigit	0011		Articulated and Telescoping. Add to		<i>_</i> 20.00
8489	Aerial Lift Truck Moto	Max Platform Height	100 ft		Truck rate for total rate	hour	\$34.00
8010	Air Compressor	Air Delivery	41 cfm	to 10	Hoses included	hour	\$1.50
8011	Air Compressor	Air Delivery	103 cfm	to 30	Hoses included	hour	\$7.00
8012	Air Compressor	Air Delivery	130 cfm	to 50	Hoses included	hour	\$9.25
8013	Air Compressor	Air Delivery	175 cfm	to 90	Hoses included	hour	\$20.00
8014	Air Compressor	Air Delivery	400 cfm	to 145	Hoses included	hour	\$27.50
8015	Air Compressor	Air Delivery	575 cfm	to 230	Hoses included	hour	\$45.50
8016	Air Compressor	Air Delivery	1100 cfm	to 355	Hoses included	hour	\$51.00
8017	Air Compressor	Air Delivery	1600 cfm	to 500	Hoses included	hour	\$80.00
8040	Ambulance		1000 0111	to 150		hour	\$25.50
8041	Ambulance			to 210		hour	\$32.50
8060	Auger Portable	Hole Diameter	16 in	to 6		hour	\$1.30
8061	Auger, Portable	Hole Diameter	18 in	to 13		hour	\$3.50
					Includes digger, boom and mounting		<i>\</i> 0.00
					hardware Add to Tractor rate for total		
8062	Auger Tractor Motd	Max Auger Diameter	36 in	to 13	rate	hour	\$1.30
0002		Max. 7 ager Blamotor	00 11	10 10	Includes diager, boom and mounting	nour	φ1.00
					hardware Add to Truck rate for total		
8063	Auger Truck Motd	Max Auger Size	24 in	to 100	rate	hour	\$29.00
8070	Automobile	Max. 7 Kigor Cizo	2.1.11	to 130	Transporting people	mile	\$0.50
8071	Automobile			to 130	Transporting cargo	hour	\$13.00
8072				to 250	Patrolling	mile	\$0.60
8073	Automobile, Police			to 250	Stationary with engine running	hour	\$16.25
8110	Barge, Deck	Size	50'x35'x7.25'	10 200		hour	\$34.00
8111	Barge, Deck	Size	50'x35'x9'			hour	\$49.00
8112	Barge, Deck	Size	120'x45'x10'			hour	\$60.00
8113	Barge, Deck	Size	160'x45'x11'			hour	\$75.00
8050	Board, Arrow			to 8	Trailer Mounted.	hour	\$3.15
8051	Board, Message			to 5	Trailer Mounted.	hour	\$8.50
8133	Boat, Push	Size	45'x21'x6'	to 435	Flat hull.	hour	\$150.00
8134	Boat, Push	Size	54'x21'x6'	to 525	Flat hull.	hour	\$200.00
8135	Boat, Push	Size	58'x24'x7.5'	to 705	Flat hull.	hour	\$250.00
8136	Boat, Push	Size	64'x25'x8'	to 870	Flat hull.	hour	\$300.00

Cost Code	Equipment	Specification	Capacity/Size	HP	Notes	Unit	Rate
8130	Boat, Row				Heavy duty.	hour	\$0.85
8131	Boat, Runabout	Size	13'x5'	to 50	Outboard.	hour	\$14.00
8132	Boat, Tender	Size	14'x7'	to 100	Inboard with 360 degree drive.	hour	\$26.00
8120	Boat, Tow	Size	55'x20'x5'	to 870	Steel.	hour	\$250.00
8121	Boat, Tow	Size	60'x21'x5'	to 1050	Steel.	hour	\$300.00
8122	Boat, Tow	Size	70'x30'x7.5'	to 1350	Steel.	hour	\$450.00
8123	Boat, Tow	Size	120'x34'x8'	to 2000	Steel.	hour	\$830.00
8140	Boat, Tug	Length	16 ft	to 100		hour	\$33.50
8141	Boat, Tug	Length	18 ft	to 175		nour	\$53.00
814Z	Boat, Tug	Length	26 ft 40 ft	to 290		hour	\$65.00
0143	Boat Tug	Length	40 IL	to 700		hour	\$150.00
0144	Breaker Payement	Length	511	10 7 00		noui	φΖΖΟ.00
8/10	Hand-Held	Weight	25-90 lb			hour	\$0.65
8420	Breaker Pavement	Weight	20-00 10	to 70		hour	\$31.25
8150	Broom, Pavement	Broom Length	72 in	to 35		hour	\$12.30
8151	Broom, Pavement	Broom Length	96 in	to 100		hour	\$19.75
8153	Broom, Pavement, Mntd	Broom Length	72 in	to 18	Add to Prime Mover rate for total rate.	hour	\$6.00
8154	Broom, Pavement, Pull	Broom Length	84 in	to 20	Add to Prime Mover rate for total rate.	hour	\$10.25
		Ŭ			Includes teeth. Does not include		
8270	Bucket, Clamshell	Capacity	1.0 cy		Clamshell & Dragline.	hour	\$3.60
					Includes teeth. Does not include		
8271	Bucket, Clamshell	Capacity	2.5 cy		Clamshell & Dragline.	hour	\$6.75
					Includes teeth. Does not include		
8272	Bucket, Clamshell	Capacity	5.0 cy		Clamshell & Dragline.	hour	\$11.25
					Includes teeth. Does not include		
8273	Bucket, Clamshell	Capacity	7.5 cy		Clamshell & Dragline.	hour	\$14.50
8275	Bucket, Dragline	Capacity	2.0 cy		Does not include Clamshell & Dragline.	hour	\$2.90
8276	Bucket, Dragline	Capacity	5.0 cy		Does not include Clamshell & Dragline.	hour	\$6.50
8277	Bucket, Dragline	Capacity	10 cy		Does not include Clamshell & Dragline.	hour	\$10.50
8278	Bucket, Dragline	Capacity	14 cy		Does not include Clamshell & Dragline.	hour	\$13.50
8180	Bus			to 150		hour	\$20.00
8181	Bus			to 210		hour	\$23.00
8182	Bus		10.1	to 300		hour	\$27.00
8190	Chain Saw	Bar Length	16 in			hour	\$1.75
8191	Chain Saw	Bar Length	25 IN			nour	\$3.20
8192	Chain Saw, Pole	Dal Size	18 IN 6 in	to 25	Trailer Mounted	hour	\$1.60
8200	Chipper, Brush	Chipping Capacity	0 in	to 65	Trailer Mounted	hour	\$16.00
8202	Chipper, Brush	Chipping Capacity	9 III 12 in	to 100	Trailer Mounted	hour	\$10.00 \$21.75
8202	Chipper, Brush	Chipping Capacity	12 in	to 100	Trailer Mounted	hour	\$30.75
8204	Chipper, Brush	Chipping Capacity	18 in	to 200	Trailer Mounted	hour	\$45.50
0201	Clamshell & Dragline	Chipping Capacity	10 11	10 200		nour	φ10.00
8210	Crawler		149.999 lb	to 235	Bucket not included in rate.	hour	\$86.00
- 02.10	Clamshell & Dragline.			10 200			<i>Q</i> OOOOOOOOOOOOO
8211	Crawler		250.000 lb	to 520	Bucket not included in rate.	hour	\$121.00
	Clamshell & Dragline.						
8212	Truck			to 240	Bucket not included in rate.	hour	\$130.00
	Cleaner, Sewer/Catch			-	Truck Mounted. Add to Truck rate for		
8712	Basin	Hopper Capacity	5 cy		total rate.	hour	\$16.00
	Cleaner, Sewer/Catch		Í		Truck Mounted. Add to Truck rate for		
8713	Basin	Hopper Capacity	14 cy		total rate.	hour	\$21.50
8220	Compactor			to 10		hour	\$ <u>11</u> .00
	Compactor, Towed,						
8221	Vibratory Drum			to 45		hour	\$17.50
	Compactor, Vibratory,						
8222	Drum			to 75		hour	\$25.00
	Compactor, Pneumatic,						_1
8223	Wheel			to 100		hour	\$29.00
8225	Compactor, Sanitation			to 300		hour	\$96.00
8226	Compactor, Sanitation			to 400		hour	\$163.00
8227	Compactor, Sanitation			to 535		hour	\$225.00
	Compactor, Towed,						
8228	Pneumatic, Wheel	1	10000 lb		Add to Prime Mover rate for total rate.	hour	\$7.50

Cost Code	Equipment	Specification	Capacity/Size	HP	Notes	Unit	Rate
8229	Compactor, Towed, Drum Static		20000 lb		Add to Prime Mover rate for total rate.	hour	\$12.25
8500	Crane	Max. Lift Capacity	8 MT	to 80		hour	\$27.00
8501	Crane	Max. Lift Capacity	15 MT	to 150		hour	\$55.00
8502	Crane	Max. Lift Capacity	50 MT	to 200		hour	\$95.00
8503	Crane	Max. Lift Capacity	70 MT	to 300		hour	\$155.00
8504	Crane	Max. Lift Capacity	110 MT	to 350		hour	\$220.00
8496	Crane, Truck Mntd	Max. Lift Capacity	24000 lb		Add to Truck rate for total rate.	hour	\$10.00
8497	Crane, Truck Mntd	Max. Lift Capacity	36000 lb		Add to Truck rate for total rate.	hour	\$16.00
8498	Crane, Truck Mintd	Max. Lift Capacity	di 0000	to 150	Add to Truck rate for total rate.	nour	\$30.00
8195	Cutter, Brush	Cutter Size	8 IL 9 ft	to 100		hour	\$90.00
0190	Cuttor Bruch	Cutter Size	0 IL 10 ft	to 245		hour	\$100.00
0197			1011	10 245	Includes bydraulie pole alignment	noui	φ120.00
8670	Derrick Hydraulic Digger	Max Boom Length	60 ft		attachment Add to Truck rate	hour	\$21.00
8070	Denick, Hydraulic Digger	Iviax. Dooni Lengin	00 11		Includes hydraulis pole alignment	noui	φ21.00
8671	Derrick Hydraulic Digger	Max Boom Length	00 ft		attachment Add to Truck rate	hour	\$30.00
0071	Denick, Hydraulic Digger	Iviax. Dooni Lengin	90 II		insulated task, and circulating spray	noui	φ39.00
8580	Distributor Asphalt	Tank Canacity	500 gal		har	hour	¢12.00
0300	Distributor, Asprian		JUU yai		Truck Mounted Includes burners	noui	φ12.00
					insulated tank, and circulating spray		
8581	Distributor Asphalt	Tank Canacity	1000 gal		har Add to Truck rate	hour	\$13.00
0301	Distributor, Asprian		1000 gai		Truck Mounted Includes burners	noui	φ13.00
					insulated tank, and circulating spray		
8582	Distributor Asphalt	Tank Canacity	4000 gal		har Add to Truck rate	hour	\$25.00
8250	Dozer Crawler		4000 gui	to 75		hour	\$31.00
8251	Dozer, Crawler			to 105		hour	\$40.00
8252	Dozer, Crawler			to 160		hour	\$65.00
8253	Dozer, Crawler			to 250		hour	\$80.00
8254	Dozer, Crawler			to 360		hour	\$135.00
8255	Dozer, Crawler			to 565		hour	\$250.00
8256	Dozer, Crawler			to 850		hour	\$340.00
8260	Dozer, Wheel			to 300		hour	\$55.00
8261	Dozer, Wheel			to 400		hour	\$110.00
8262	Dozer, Wheel			to 500		hour	\$150.00
8263	Dozer, Wheel			to 625		hour	\$200.00
					Crawler, Truck & Wheel. Includes		
8280	Excavator, Hydraulic	Bucket Capacity	0.5 cy	to 45	bucket.	hour	\$18.00
					Crawler, Truck & Wheel. Includes		
8281	Excavator, Hydraulic	Bucket Capacity	1.0 cy	to 90	bucket.	hour	\$39.00
					Crawler, Truck & Wheel. Includes		
8282	Excavator, Hydraulic	Bucket Capacity	1.5 cy	to 160	bucket.	hour	\$65.00
					Crawler, Truck & Wheel. Includes		
8283	Excavator, Hydraulic	Bucket Capacity	2.5 cy	to 265	bucket.	hour	\$120.00
					Crawler, Truck & Wheel. Includes		
8284	Excavator, Hydraulic	Bucket Capacity	4.5 cy	to 420	bucket.	hour	\$200.00
					Crawler, Truck & Wheel. Includes		
8285	Excavator, Hydraulic	Bucket Capacity	7.5 cy	to 650	bucket.	hour	\$240.00
					Crawler, Truck & Wheel. Includes		
8286	Excavator, Hydraulic	Bucket Capacity	12 cy	to 1000	bucket.	hour	\$400.00
8240	Feeder, Grizzly			to 35		hour	\$17.00
8241	Feeder, Grizzly			to 55		hour	\$30.00
8242	Feeder, Grizzly	Conceitu	6000 lb	to /5		nour	\$44.00
0300	FOIK LIIL Fork Lift	Capacity	12000 lb	to 00		hour	11,/5 ¢17.00
8202	Fork Lift	Capacity	12000 ID	to 1.40		hour	\$17.00 \$22.00
8302	Fork Lift	Capacity	50000 lb	to 215		hour	\$≤0.00
8310	Generator	Prime Output	5.5 k/M	to 10		hour	\$3.25
8311	Generator	Prime Output	16 kW	to 25		hour	ψ3.∠3 \$8.00
8312	Generator	Prime Output	43 kW	to 65		hour	\$17.00
8313	Generator	Prime Output	100 kW	to 125		hour	\$34.00
8314	Generator	Prime Output	150 kW	to 240		hour	\$50.00
8315	Generator	Prime Output	210 kW	to 300		hour	\$60.00
8316	Generator	Prime Output	280 kW	to 400		hour	\$85.00

Cost Code	Equipment	Specification	Capacity/Size	HP	Notes	Unit	Rate
8317	Generator	Prime Output	350 kW	to 500		hour	\$95.00
8318	Generator	Prime Output	530 kW	to 750		hour	\$150.00
8319	Generator	Prime Output	710 kW	to 1000		hour	\$200.00
8320	Generator	Prime Output	1100 KW	to 1500		nour	\$375.00
8321 9755	Generator Golf Cort	Capacity	2500 KVV	to 3000		hour	\$500.00
8330	Goli Calt	Moldboard Size	2 person 10 ft	to 110	Includes Rigid and Articulate	hour	\$3.20 \$34.50
8331	Graders	Moldboard Size	10 ft	to 150	Includes Rigid and Articulate	hour	\$34.50 \$58.00
8332	Graders	Moldboard Size	12 ft	to 225	Includes Rigid and Articulate	hour	\$70.00
8350	Hose, Discharge	Diameter	3 in	10 220	Per 25 foot length. Includes couplings.	hour	\$0.13
8351	Hose. Discharge	Diameter	4 in		Per 25 foot length. Includes couplings.	hour	\$0.19
8352	Hose, Discharge	Diameter	6 in		Per 25 foot length. Includes couplings.	hour	\$0.50
8353	Hose, Discharge	Diameter	8 in		Per 25 foot length. Includes couplings.	hour	\$0.75
8354	Hose, Discharge	Diameter	12 in		Per 25 foot length. Includes couplings.	hour	\$1.35
8355	Hose, Discharge	Diameter	16 in		Per 25 foot length. Includes couplings.	hour	\$2.20
8356	Hose, Suction	Diameter	3 in		Per 25 foot length. Includes couplings.	hour	\$0.23
8357	Hose, Suction	Diameter	4 in		Per 25 foot length. Includes couplings.	hour	\$0.43
8358	Hose, Suction	Diameter	6 in		Per 25 foot length. Includes couplings.	hour	\$0.90
8359	Hose, Suction	Diameter	8 in		Per 25 foot length. Includes couplings.	hour	\$1.35
8360	Hose, Suction	Diameter	12 in		Per 25 foot length. Includes couplings.	hour	\$2.45
8361	Hose, Suction	Diameter	16 in		Per 25 foot length. Includes couplings.	hour	\$3.90
8517	Jackhammer (Dry)	Weight Class	25-45 lb			nour	\$1.00
8518	Jackhammer (wet)	Weight Class	30-55 ID	to 22	Includes busket	nour	\$1.15
0300	Loader, Crawler	Bucket Capacity	0.5 Cy	to 60	Includes bucket	hour	\$11.50
8383	Loader, Crawler	Bucket Capacity	2 cv	to 118	Includes bucket	hour	\$19.00
8383	Loader, Crawler	Bucket Capacity	2 Cy 3 CV	to 178	Includes bucket	hour	\$76.00
8384	Loader, Crawler	Bucket Capacity	4 cv	to 238	Includes bucket.	hour	\$115.00
8540	Loader, Skid-Steer	Operating Capacity	1000 lb	to 35		hour	\$11.00
8541	Loader, Skid-Steer	Operating Capacity	2000 lb	to 65		hour	\$18.00
8542	Loader, Skid-Steer	Operating Capacity	3000 lb	to 85		hour	\$22.00
8401	Loader, Tractor, Wheel			to 81		hour	\$25.00
8390	Loader, Wheel	Bucket Capacity	0.5 cy	to 38		hour	\$15.50
8391	Loader, Wheel	Bucket Capacity	1 cy	to 60		hour	\$21.50
8392	Loader, Wheel	Bucket Capacity	2 cy	to 105		hour	\$28.75
8393	Loader, Wheel	Bucket Capacity	3 cy	to 152		hour	\$40.00
8394	Loader, Wheel	Bucket Capacity	4 cy	to 200		hour	\$52.00
8395	Loader, Wheel	Bucket Capacity	5 cy	to 250		hour	\$66.00
8396	Loader, Wheel	Bucket Capacity	6 CY	to 305		nour	\$82.00
8397	Loader, Wheel	Bucket Capacity	7 CY	to 360		nour	\$95.00
8398	Loader, Wheel	Bucket Capacity	<u>8 cy</u>	to 40	Loader and Backhoo Buckets included	hour	\$140.00
8571	Loader-Backhoe Wheel	Loader Bucket Capacity	1 cv	to 70	Loader and Backhoe Buckets included.	hour	\$14.75 \$22.50
8572	Loader-Backhoe Wheel	Loader Bucket Capacity	1.5 cv	to 95	Loader and Backhoe Buckets included.	hour	\$33.00
8573	Loader-Backhoe Wheel	Loader Bucket Capacity	1.0 cy	to 115	Loader and Backhoe Buckets included	hour	\$38.00
8410	Mixer, Concrete Portable	Batching Capacity	10 cft	10 110		hour	\$3.25
8411	Mixer, Concrete Portable	Batching Capacity	12 cft			hour	\$4.25
	Mixer, Concrete, Trailer					İ	
8412	Mntd	Batching Capacity	11 cft	to 10		hour	\$8.75
	Mixer, Concrete, Trailer						
8413	Mntd	Batching Capacity	16 cft	to 25		hour	\$15.25
8075	Motorcycle, Police					mile	\$0.35
8633	Mulcher, Trailer Mntd	Working Capacity	7 tph	to 35		hour	\$10.25
8634	Mulcher, Trailer Mntd	Working Capacity	10 tph	to 55		hour	\$15.75
8635	Mulcher, Trailer Mntd	Working Capacity	20 tph	to 120		hour	\$24.75
8430	Paver, Asphalt, Towed				Does not include Prime Mover.	hour	\$7.00
8431	Paver, Asphalt			to 50	Includes wheel and crawler equipment.	hour	\$65.00
8432	Paver, Asphalt			to 125	Includes wheel and crawler equipment.	hour	\$115.00
8433	Paver, Asphalt			to 175	Includes wheel and crawler equipment.	nour	\$125.00
8434	Paver, Asphalt			to 250	includes wheel and crawler equipment.	nour	\$140.00
0430 8427	Pick-up, Asphalt			to 150		hour	00.CC¢
8/28	Pick-up, Asphalt			to 200		hour	φ03.00 \$110.00
8439	Pick-up, Asphalt			to 275		hour	\$140.00
8660	Plow. Cable	Plow Depth	24 in	to 30		hour	\$10.25

Cost Code	Equipment	Specification	Capacity/Size	HP	Notes	Unit	Rate
8661	Plow, Cable	Plow Depth	36 in	to 65		hour	\$27.75
8662	Plow, Cable	Plow Depth	48 in	to 110		hour	\$31.75
8450	Plow, Snow, Grader Mntd	Width	to 10 ft		Add to Grader for total rate.	hour	\$16.00
8451	Plow, Snow, Grader Mntd	Width	to 14 ft		Add to Grader for total rate.	hour	\$24.00
8452	Plow, Snow, Truck Mntd	Width	to 15 ft		Add to Truck rate for total rate.	hour	\$10.75
					With leveling wing. Add to Truck rate for		
8453	Plow, Snow, Truck Mntd	Width	to 15 ft		total rate.	hour	\$18.50
8470	Pump			to 4	Does not include Hoses.	hour	\$2.15
8471	Pump			to 6	Does not include Hoses.	hour	\$3.20
8472	Pump			to 10	Does not include Hoses.	hour	\$4.10
8473	Pump			to 15	Does not include Hoses.	hour	\$7.75
8474	Pump			to 25	Does not include Hoses.	hour	\$9.25
8475	Pump			to 40	Does not include Hoses.	hour	\$16.00
8476	Pump			to 60	Does not include Hoses.	hour	\$18.75
8477	Pump			to 95	Does not include Hoses.	hour	\$26.50
8478	Pump			to 140	Does not include Hoses.	hour	\$31.00
8479	Pump			to 200	Does not include Hoses.	hour	\$36.00
8480	Pump			to 275	Does not include Hoses.	hour	\$80.00
8481	Pump			to 350	Does not include Hoses.	hour	\$95.00
8482	Pump			to 425	Does not include Hoses.	hour	\$120.00
8483	Pump			to 500	Does not include Hoses.	hour	\$135.00
8484	Pump			to 575	Does not include Hoses.	hour	\$155.00
8485	Pump			to 650	Does not include Hoses	hour	\$180.00
8510	Saw. Concrete	Blade Diameter	14 in	to 14		hour	\$6.00
8511	Saw Concrete	Blade Diameter	26 in	to 35		hour	\$13.50
8512	Saw Concrete	Blade Diameter	48 in	to 65		hour	\$23.00
8513	Saw Rock		10 111	to 100		hour	\$30.00
8514	Saw Rock			to 200		hour	\$60.00
8521	Scraper	Scraper Capacity	16 cv	to 250		hour	\$90.00
8522	Scraper	Scraper Capacity	23 CV	to 365		hour	\$130.00
8523	Scraper	Scraper Capacity	34 cv	to 475		hour	\$200.00
8524	Scraper	Scraper Capacity	44 cy	to 600		hour	\$240.00
8560	Spow Blower	Capacity	2 000 tob	to 400		hour	\$140.00
8561	Show Blower	Capacity	2,000 tph	to 500		hour	\$140.00
9562	Show Blower	Capacity	2,500 tph	to 600		hour	\$100.00 \$190.00
0502	Show Blower Truck Metd	Capacity	5,500 tph	to 75	Doog pot ipoludo Truck	hour	\$100.00
0000	Show Blower, Truck Minto	Capacity	1400 tph	to 200	Does not include Truck.	hour	\$37.50
0001	Show Blower, Truck Mate	Capacity	1400 tph	to 200	Does not include Truck.	hour	\$70.00
0002	Show Blower, Truck Mate	Capacity	2000 tph	to 400	Does not include Truck.	hour	\$110.00
0000		Capacity	2500 ipri	10 400	Does not include truck.	noui	\$120.00
0550	Show Inrower, walk		05 in	4- 5		h	\$0.05
8558		Cutting width	25 IN	10 5		nour	\$3.25
	Snow Thrower, Walk						
8559	Behind	Cutting Width	60 in	to 15		hour	\$7.00
					Trailer & Truck mounted. Does not		
8630	Sprayer, Seed	Working Capacity	750 gal	to 30	include Prime Mover.	hour	\$9.75
					Trailer & Truck mounted. Does not		
8631	Sprayer, Seed	Working Capacity	1250 gal	to 50	include Prime Mover.	hour	\$15.00
					Trailer & Truck mounted. Does not		
8632	Sprayer, Seed	Working Capacity	3500 gal	to 115	include Prime Mover.	hour	\$25.75
8458	Spreader, Chemical	Capacity	5 cy	to 4	Trailer & Truck mounted. Does not	hour	\$4.00
8423	Spreader, Chip	Spread Hopper Width	12.5 ft	to 152		hour	\$50.00
8424	Spreader, Chip	Spread Hopper Width	16.5 ft	to 215		hour	\$80.00
8425	Spreader, Chip, Mntd	Hopper Size	8 ft	to 8	Trailer & Truck mounted.	hour	\$3.30
8455	Spreader, Sand	Mounting	Tailgate, Chassis			hour	\$3.30
8456	Spreader, Sand	Mounting	Dump Body			hour	\$5.50
8457	Spreader, Sand	Mounting	Truck (10 vd)			hour	\$7.50
8440	Striper	Paint Capacity	40 gal	to 22		hour	\$8.75
8441	Striper	Paint Capacity	90 gal	to 60		hour	\$19.00
8442	Striper	Paint Capacity	120 gai	to 122		hour	\$37.00
8445	Striper, Truck Moto	Paint Capacity	120 gai	to 460		hour	\$70.00
8446	Striper, Walk-behind	Paint Capacity	12 gal	10 100		hour	\$3.35
8157	Sweeper, Pavement		12 901	to 110		hour	\$59.00
8158	Sweeper, Pavement			to 230		hour	\$74.00
8590	Trailer, Dump	Capacity	20 cv		Does not include Prime Mover	hour	\$8.00

Cost Code	Equipment	Specification	Capacity/Size	HP	Notes	Unit	Rate
8591	Trailer, Dump	Capacity	30 cy		Does not include Prime Mover.	hour	\$14.00
8600	Trailer, Equipment	Capacity	30 ton			hour	\$10.25
8601	Trailer, Equipment	Capacity	40 ton			hour	\$12.50
8602	Trailer, Equipment	Capacity	60 ton			hour	\$15.00
8603	Trailer, Equipment	Capacity	120 ton			hour	\$25.00
8640	Trailer, Office	Trailer Size	8' x 24'			hour	\$1.70
8641	Trailer, Office	Trailer Size	8' x 32'			hour	\$1.75
8642	Trailer, Office	Trailer Size	10' x 32'			hour	\$2.60
					Includes a centrifugal pump with sump		
8610	Trailer, Water	Tank Capacity	4000 gal		and a rear spraybar.	hour	\$11.00
					Includes a centrifugal pump with sump		
8611	Trailer, Water	Tank Capacity	6000 gal		and a rear spraybar.	hour	\$14.00
					Includes a centrifugal pump with sump		
8612	Trailer, Water	Tank Capacity	10000 gal		and a rear spraybar.	hour	\$16.50
					Includes a centrifugal pump with sump		
8613	Trailer, Water	Tank Capacity	14000 gal		and a rear spraybar.	hour	\$20.50
					Walk-behind, Crawler & Wheel		
8650	Trencher			to 40	Mounted. Chain and Wheel.	hour	\$11.75
					Walk-behind, Crawler & Wheel		
8651	Trencher			to 85	Mounted. Chain and Wheel.	hour	\$25.00
8290	Trowel, Concrete	Diameter	48 in	to 12		hour	\$4.50
8680	Truck, Concrete Mixer	Mixer Capacity	13 cy	to 300		hour	\$75.00
8720	Truck, Dump	Struck Capacity	8 cy	to 220		hour	\$35.00
8721	Truck, Dump	Struck Capacity	10 cy	to 320		hour	\$45.00
8722	Truck, Dump	Struck Capacity	12 cy	to 400		hour	\$60.00
8723	Truck, Dump	Struck Capacity	18 cy	to 400		hour	\$65.00
8724	Truck, Dump, Off	Struck Capacity	28 cy	to 450		hour	\$105.00
8690	Truck, Fire	Pump Capacity	1000 gpm			hour	\$70.00
8691	Truck, Fire	Pump Capacity	1250 gpm			hour	\$80.00
8692	Truck, Fire	Pump Capacity	1500 gpm			hour	\$85.00
8693	Truck, Fire	Pump Capacity	2000 gpm			hour	\$90.00
8694	Truck, Fire Ladder	Ladder length	75 ft			hour	\$125.00
8695	Truck, Fire Ladder	Ladder length	150 ft			hour	\$150.00
8700	Iruck, Flatbed	Maximum Gvw	15000 lb	to 200		hour	\$20.00
8701	Truck, Flatbed	Maximum Gvw	25000 lb	to 275		hour	\$22.00
8702	Truck, Flatbed	Maximum Gvw	30000 lb	to 300		nour	\$25.00
8703	Truck, Flatbed	Maximum Gvw	45000 lb	to 380		nour	\$43.00
8730	Truck, Garbage	Capacity	25 Cy	to 255		nour	\$47.00
8731	Truck, Garbage	Capacity	32 CY	10 325	Transporting poorlo	nour	\$55.00
8800	Truck, Pickup		1/ top		Transporting people.	hour	\$0.50
0001	Truck, Fickup		72 1011			hour	\$14.00 \$20.00
8802	Truck, Fickup		11/ ton			hour	\$20.00 \$22.00
8804	Truck Pickup		1¼ ton			hour	\$25.00
8805	Truck Pickup		13/ ton			hour	\$20.00
8790	Truck Tractor	4 x 2	30000 lb	to 220		hour	\$32.00
8791	Truck Tractor	4 x 2	45000 lb	to 310		hour	\$45.00
8792	Truck Tractor	6 x 4	50000 lb	to 400		hour	\$55.00
8780	Truck, Water	Tank Capacity	2500 gal	to 175	Include pump and rear spray system.	hour	\$31.00
8781	Truck, Water	Tank Capacity	4000 gal	to 250	Include pump and rear spray system.	hour	\$42.00
8620	Tub Grinder	i anni e apaony	1000 gai	to 440		hour	\$85.00
8621	Tub Grinder			to 630		hour	\$120.00
8622	Tub Grinder			to 760		hour	\$150.00
8623	Tub Grinder			to 1000		hour	\$270.00
8753	Vehicle, Recreational			to 10		hour	\$3.00
8750	Vehicle, Small			to 30		hour	\$7.00
8761	Vibrator, Concrete	1		to 4		hour	\$1.15
8770	Welder, Portable	1		to 16	Includes ground cable and lead cable.	hour	\$5.00
8771	Welder, Portable			to 34	Includes ground cable and lead cable.	hour	\$11.50
8772	Welder, Portable	1		to 50	Includes ground cable and lead cable.	hour	\$16.00
8773	Welder, Portable			to 80	Includes ground cable and lead cable.	hour	\$22.00

Inventory

	DESCRIPTION	DRIVER	SERIAL #	LIC. #	CO SHOP
SVVD1	2013 Ford Escape	Office	1FMCU9H97DUD88489	<u>C18900</u>	X
SW08	2000 FORD F350 DIESEL W/DUMPER	Shop	1FDWF37F8YED59238	C7612	X
#26	Goertzen Tag Dump Trailer	Work Crew	2WXTH122310006710	A5083	
#27	2002 Kenworth T800 Water Truck		1NKDLU0X82R887695	C12055	
SW29	2014 Ford 150 Pickup	Shop	1FTNF1EF8EKF24516	C6886	x
#39	2007 White Bus	Safety	4DRBUAFM17B412824	C14421	
#40		Safety	4 IUBI 114266N023043	A11717	
#20	2000 MADVAC - trailer	Salety	11091	ATT717	
#41	2006 John Deere 1050C Crawler Dozer		LU1050C008488		
#42	2006 Thule Trailer	Freon/Shop	5FGN4071663024730		
#43	2007 Water/Dump Kenworth Truck	Shop	1NKDL40X27R196024	C14798	
	state shows 2007 not 2006			014700	
#44	2007 Backhoe Loader 410J	Shop	TO410JX145083		
#45	Water Tank for 2007 Kenworth	Shop			
SW46	2005 Toyota Tundra Truck	Screener	5TBDT48105S496766	C14121	X
#47	2007 Hull Fuel Tank	Shop	D08657		
SW48	2007 Dodge Ram Truck	Shop	3D6WH48D67G755252	C11315	. <u> </u>
SW49	2005 Toyota Tundra Truck	Shop	5TBDT44115S475947	C14063	X
#52	2010 623G Scraper (20)	Shop	DBC00514		
SW55	2007 Chevy K2500 Crew Cab Pickup	Code	1GCHK23D87F180584	C11853	X
#56	2010 John Deer Motor Grader	Shop	1DW772GPCA0629951		+
#57	2010 Advantage 525J4 Al-jon (W)	Shop	14821		·
#58	Car Tire DeRimmer - CHS13	Shop	61232710		
#59	2012 Husqvama lawn mower	Shop	YTH24K48/022812A002113		
SW60	2014 Ford 150 Pickup	Office	1FTFW1EF4EKE90966	C18129	X
۸ <u></u>	- · · · · · · · · · · · · · · · · · · ·		11G739021-Changer		
:	TCX575 Tire changer & 3W00 Balancer	Shop	KWC913-Balancer	1	
	2013 John Deer 624K loader (w)	Shop	1DW624KHCDE653048		
<u>(-</u> *****	2013 Dodge Ram 1500 ST Cab 4x4	Ken	3C6JR7DG7DG592872	C11333	X
SW64	2013 F150 Ford	Bags	1FTFW1EF0DFB45859	C14234	_X
SW65	2013 Dodge Ram 1500	Screener	3C6JR7AG6DG585299	C18393	X
#66	2014 Advantage 525 Compactor	Shop	15085/0W05556		
#67	2004 Sterling Model LT7500 Rolloff Truck	Shop	VIN#2FZHATDCX4ANW8641	C18694	
#68	Tow Behind Magnetic Sweeper	Shop	n/a model #mks5000		
		01			
#69	2014 Caterpillar 623K Scrapper (W)	Shop	BZ3K OWTB0013B		

Unit#	Description	Hours	Miles	Monthly Average
	27 2000 Water Truck		73449	
	41 2006 Bull Dozer	2671		
	43 2006 Dump Truck		12006	
	44 2007 Backhoe	2350		
	52 2009 Scraper	6212		
	56 2010 Motor Grader	3047		
	57 2010 Compactor	8335		
	62 2013 Loader	6194		240
	66 2014 Compactor	2841		240
	67 2005 Transfer Truck	10787	224493	
	69 2014 Scraper	1349	100	180
			COT 2014	

2010 Coupeele View 2014

LON MAR SERVICE MORTONY

Products | Parts | Services & Support | Buying & Financing | Our Company

Home / Wheel Loaders / 624K

Overview	Features	Specifications	Compare	Support	

A whole lot of new thinKing.

What operator wouldn't be more productive in the high-back air-ride seat of a 624K Loader? Up-front and enhanced multifunction monitor displays operation, diagnostic, and maintenance info on a color LCD screen with easy-on-the-eyes clarity. Ten-percent more tinted glass and a lower-profile console allow a commanding view of the work ahead. The quieter cab boasts more legroom and improved ergonomics, too, including fatigue-beating features like seat-mounted loader controls. And an expanded sealed-switch module with keyless start and easy push-button operation of even more functions. For more productivity without extra effort.

PRODUCT BROCHURES:

Brochure - English

Brochure - Français

Product Guide

YOU MAY ALSO BE INTERESTED IN ...

Attachment Guide

Non-Current Wheel Loaders

Used Equipment

Product News and Jobsite Stories

Ultimate Uptime

Manual Constraint	Engine	The second statement of the se		
Mode Relation Exit Num J and Interest J Sage (N Exit Num J Sage (N Nu	Manufacturer and Model	John Deere Powerlech - PVX 505	b John Deere Power lech Plus buok	SH JOHN DEERE POWERIECH BUDSH
Answer for entropy (and for a set of protection) Col Set of a set of a set (and for a set of protection) Col Set of a set (and for a set of protection) Col Set of a set (and for a set of protection) Col Set of a set (and for a set of protection) Set of a set (and for a set of protection) Col Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set (and for a set of protection) Set of a set	Non-Koad Emission Standard	EPA Final lier 4/EU Stage IV	EPA LIEF 3/EU Stage IIIA	EPA Jier Z/EU Stage II
Marker For Granter Recent Section Solution	Cylinders	. م	0	Q.
Display Display Sign (S) (A) (A, C, C) Sign (S) (A) (A, C, C) Sign (S) (A) (A, C, C) Reick Rever (FOO Syst) 35 (A) (A) (A) (A) 73 (A) (130 (P) (A) (A) (A) (A) 73 (A) (130 (P) (A) (A) (A) Reick Rever (FOO Syst) 25 (A) (A) (A) (A) 35 (A) (A) (A) (A) (A) 35 (A) (A) (A) (A) 37 (A) (130 (P) (A) (A) (A) Reick Rever (FOO Syst) 25 (A)	Valves Per Cylinder	4	4	4
Ref for Reversion 335 Min (15) Min (17) Min (18) Min (11) Min (18) Min (13) Min (15) Min	Displacement	6.8 L (414 cu. in.)	6.8 L [414 cu. in.]	6.8 L (414 cu. in.)
Ref Position SSA Mon SD Ha, FJ J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran SSA Mon SD Ha, FJ J J AD Tran Mon SD Ha T	Net Peak Power (ISO 9249)	139 kW (186 hp) at 1,800 rpm	147 kW (198 hp) at 1,800 rpm	147 kW (198 hp) at 1,800 rpm
Given Section of Topological Section Control of	Net Peak Torque (ISO 9249)	826 Nm (609 lbft.) at 1,300 rpm	836 Nm (617 lbft.) at 1,600 rpr	n 836 Nm (617 lbft.) at 1,600 rpm
Constraint High servator High servator High servator High servator Agnation End System Constraint High servator Constraint High servator Constraint High servator Constraint High servator Constraint Constraint High servator Constraint	Net Torque Rise	57%	65%	65%
Induction Control Schedule Control Schedule Control Schedule Control Schedule Control Schedule Schedule <th< td=""><td>Fuel System (electronically controlled)</td><td>High-pressure common rail</td><td>High-pressure common rail</td><td>High-pressure common rail</td></th<>	Fuel System (electronically controlled)	High-pressure common rail	High-pressure common rail	High-pressure common rail
Appendix Control of any efferenci of types and of any effective and any efferenci of types and of any effective and effective and effective and any effective any effective and any effective and any effective and	Lubrication	Full-flow spin-on filter and integra cooler	I Full-flow spin-on filter and integr cooler	al Full-flow spin-on filter and integral cooler
Ricclanet Under land in france france in disperation dispersion disperation disperation dispersion di dispersion dispersion dispersion dispersion di di dispersion di	Aspiration	Turbocharged, charge air cooled	Turbocharged, charge air cooled	Turbocharoed, charoe air cooled
End Dise Control of an interaction Hydraulity dirent protonomy Hydraulity dirent protonomy Exercted System Second System Second System Second System Second System Exercted System Socid Hacky Second System Second System Second System Exercted System Socid Hacky Second System Second System Second System Exercted System Second System Second System Second System Second System Exercted System Second System Second System Second System Second System Exerct System Second System Second System Second System Second System Exerct System Second System Second System Second System Second System Exerct System Second System System Second System Second System Second System Exerct System Second System System Second System Second System Second System Exerct System Second System System Second System Second System Second System Exerct System Second System System Second Sy	Air Cleaner	Under-hood, dual-element dry typ	be, restriction indicator in cab monit	or for service
Better of Spate Control of Spate <thcontrol of="" spate<="" th=""> <thcontrol of="" spate<="" td="" th<=""><td>Fan Drive</td><td>Hydraulically driven, proportionally</td><td>y Hydraulically dríven, proportiona</td><td>lly Hydraulically driven, proportionally</td></thcontrol></thcontrol>	Fan Drive	Hydraulically driven, proportionally	y Hydraulically dríven, proportiona	lly Hydraulically driven, proportionally
Betrical System 24 volt veith 130-ang plemator 24 volt veith 300-ang 1000-ang potonal stremator 24 volt veith 300-ang 1000-ang plot on stremator 24 volt veith 300-ang plot on stremator 24 volt veith 300-ang plot on stremator 24 volt veith 300-ang plot veith 100-ang 24 volt veith 300-ang 24 volt veith 300-ang S10 to veith 2015 R 25 trees S10 veith 2015 R 25 veith 2015 R 25 veith 2015 R 25 veith 2015 R 25 veith 2015 R 2016 R		controlled, fan aft of coolers	controlled, fan aft of coolers	controlled, fan aft of coolers
Batterier (2 - 1 2 volt) S90.C.C.(leach) S90.C.C.(leach) S90.C.C.(leach) Transistion System Contrentshit type PowerShit S90.C.C.(leach) S90.C.C.(leach) Transistion System Contrentshit type PowerShit S90.C.C.(leach) S90.C.C.(leach) Transistion System Contrentshit type PowerShit S00.C.C.(leach) S00.C.C.(leach) Transistion System Contrentshit type PowerShit Contrentshit type PowerShit S00.C.C.(leach) Transistion System Contrentshit type PowerShit Contrentshit type PowerShit S00.C.C.(leach) Transistion System Contrentshit type PowerShit Contrentshit type PowerShit S00.C.C.(leach) Transistion System Contrentshit type PowerShit S00.c.C.(leach) Transistic type PowerShit Transistic States Control Tot Son Shit Control Tot Son Shit Transistic type PowerShit Transistic States Control Tot Son Shit Control Tot Son Shit Transistic type PowerShit Transistic States Control Tot Son Shit Control Tot Son Shit Transistic type PowerShit Transistic States Control Tot Son Shit Control Tot Son Shit Transistic t	Electrical System	24 volt with 130-amp alternator	24 volt with 80-amp (100-amp	24 volt with 80-amp (100-amp
Source interference			optional) alternator	optional) alternator
Type Indicated Converter Staff St	Batteries (z = 1 z voit) Transmission Station	Sou cua leach	Sou LLA (Bach)	950 LLA (Edch)
Bigger Connection Signation of current of section and section of performance in the current of the and section of performance in the current of the and section of performance in the current of the curent of the curent of the current of the curent of the current of t		Counterchaft tune DowerChiftw		
Sint Current Sint Current District District District District Current District District Current District District Current District District Current District District District District District Current District District	Torona Converter	Sinds state sinds share		
Operator Interface Stearing column or joyatick-mounted F. H. and gera-select liver quick-shift button on hydrauit lever and analytade (ucht) - curder). Direction of the context Operator Interface String 1 Remersion Strandom CS-speed with Locky Front Virt 12, a feed file modes. It is chan file (a mohile from of a second of Screed with Locky Front Virt 23, mohile 3, mo	Shift Control	Flectronically modulated adaptivi	e load and sneed dependent	
Stir Indes Manua ¹ /artis (1st - D ¹ /a ² 2nd -D); Durd-Shift but for with 2 selectable modes: kick-down or kick-up/down: <i>Range</i> 1 <i>Range</i> 1 <i>Range</i> 2 <i>Rando</i> 2 <i>Rando 2 <i>Rando</i> 2 <i>Rando 2 <i>Rando 2 <i>Rando</i> 2 <i>Rando </i></i></i></i>	Oberator Interface	Steering-column or joystick-moun	nted F-N-R and gear-select lever; gui	ick-shift button on hvdraulic lever
Material Barge 1 Solution Figure 6 Solution Figure 7	Shift Modes	Manual/auto (1st-D or 2nd-D); Q	uick-Shift button with 2 selectable	modes: kick-down or kick-up/down;
Manimultared Species (with 20.5.R.25 tires) Forward Stamp Common aspect with (5.5 mph) Common aspect with (5.6 mph) Common aspect with with compaspec with with with compaspec with with with compaspec with with		and 3 adjustable clutch-cutoff set	ttings	-
Andmunt Construct Construct <thconst< th=""> <thconst< th=""> Construct<</thconst<></thconst<>	d'admin Terral Canada (1934) 20 C 0 3C that	Standard S-speed with Lockup to	rque converter Optional 4-5p	Deed Deed
Barge 2 Construct of an phonon Construct of an phonon <thcon phonon<="" th=""> Con</thcon>	(SAN) CZN COZ NIMI SDARC MARI NIMIYA	c o lm/h (2 7 m/h) 6 2 lm	se roiwild 7.6 km/h 14.7	muhi 7.6 km/h (4.7 muhi
Range + Bange +	Canno 2	4 5 0 1 1 4 m 2 5 4 m 4 5 0 1	rm/h (6.5 mph) 3.2 5 km/h (7.7	R mob) 3 0 km/h (8 1 mob)
Range 4 Scontrol (15.5 mph) NA NA NA Range 5 Control (15.5 mph) NA NA NA Range 5 Control (15.5 mph) NA NA NA Offerentials Control (15.5 mph) NA NA NA Offerentials Control (15.5 mph) NA NA NA Offerentials Control (15.5 mph) NA NA NA Reny Aub Calinitor, Stop to Stop (with 20.5 R25 tites) 26 of end (nection) Event Aub Calinitor (10.5 mph) NA Reny Aub Calinitor Stop 34501 Heavy duty inboard starts and rear-optional rear-standard: dual color (nor) Even Aub Calinitor (10.5 mph) NA Reny Aub Calinitor (10.5 (nor) Code (nor) (nor) 2557 mm (10.6 (nor) Even Aub Calinitor (10.5 (nor) Rend Michin Writh Over Trass Valatically extuated spinor (10.6 (nor) Stort (10.6 (nor) Rend Michin Tead Writh Over Trass Valatically extuated spinor (10.6 (nor) Stort (10.6 (nor) Rend Michin Tead Writh Over Trass Valatically extuated spinor (10.6 (nor) Stort (10.6 (nor) Rend Michin <t< td=""><td>Ranne 3</td><td>16.1 km/h (10.0 mmh) 26.2 k</td><td>cm/h (163 mnh) 75 (1 km/h (15</td><td>5 mobi 25.7 km/h (16.0 mobi</td></t<>	Ranne 3	16.1 km/h (10.0 mmh) 26.2 k	cm/h (163 mnh) 75 (1 km/h (15	5 mobi 25.7 km/h (16.0 mobi
Range 5 40.0 km/h (24,9 m/p) N/A N/A N/A AtterPrivates	Range 4	25.0 km/h (15.5 mph) N/A	39.5 km/h (24	.5 mph) N/A
Merc/Entex Heav-duy inboart-mounted plantary Final Direct Priaditic locking front with conventional tex - standard; dual locking front and rear - optional Final Direct Differentials Brance Scientials Pripabilic locking front with conventional tex - standard; dual locking front and rear - optional Brance Scientials Pripabilic locking front with conventional Brance Scientials Pripabilic locking front with conventional Brance Science State Price Science Michtin Doc Files Discondulation Discondulation Discondulation Brance Science Science Discondulation Michtin Doc Files Discondulation Discondulation Discondulation Brance Science Science Discondulation Brance Science Science Discondulation Brance Science Science Discondulation Brance Science Science Discondulation Brance Science Science Science Disc	Range 5	40.0 km/h (24.9 mph) N/A	N/A	N/A
Trand Drives Teary-dury inboard mounted planetary Offerentiation Errory stop to Stop (with 20.5 R.25 tires) Heavy-dury inboard mounted planetary Rear And Oscillation, Stop to Stop (with 20.5 R.25 tires) 24 deg. (12 deg. set) direction) Rear Made Oscillation, Stop to Stop (with 20.5 R.25 tires) 24 deg. (12 deg. set) direction) Rear Made Oscillation, Stop to Stop (with 20.5 R.25 tires) 24 deg. (12 deg. set) direction) Rear Made Scillation, Stop to Stop (with 20.5 R.25 tires) Notamic's pring-septied, Match Attomatic's pring-splited, Match Width Over Tires Attomatic's pring-splited, Match Width Over Tires Rear Mark Lockble Cap 295 LIP3 gal) 255 mm (10,46 in.) Rear Mark Lockble Cap 291 LIP3 gal) 252 LIP3 gal) 271 LP3 qal) Rear Tark Touid (DEF) 291 LIP3 gal) 352 LIP3 gal) 291 LP3 gal) Rear Mith Lockble Cap 291 LP3 gal) 352 LIP3 gal) 291 LP3 gal) Rear Mith Lockble Cap 291 LP3 gal) 291 LP3 gal) 291 LP3 gal) Rear Last Fluid (DEF) 291 LP3 gal) 21 LP3 gal) 21 LP3 gal) Rear Last Fluid (DEF) 21 LP3 gal) 21 LP3 gal) 21 LP3 g	åxles/Brakes			
Mathematical Numerical condition Standard car - optional Rear Adv Gostilation. Stop 150 p with 20:5 R 35 tires 24 deg. 1/5 eq. each direction Hydraulically actuated, spring-retracted, self-adjusting, inboard sun-shaft mounted, oil-cooled, multi disc Parking Brakes (conform to 150.3450) Hydraulically actuated, spring-retracted, self-adjusting, inboard sun-shaft mounted, oil-cooled, multi disc Parking Brakes (conform to 150.3450) Automatic spring-applied, hydraulically released, driveline-mounted, oil-cooled, multi disc Parking Brakes (conform to 150.3450) Automatic spring-applied, hydraulically released, driveline-mounted, oil-cooled, multi disc Parking Brakes (conform to 150.3450) Numatic spring-applied, hydraulically released, driveline-mounted, oil-cooled, multi disc Parking Brakes (conform to 150.3450) Numatic spring-applied, hydraulically released, driveline-mounted, oil-cooled, multi disc Reinfl Capacities Tread Width Width Over Tires Reinfl Capacities 232.133 gal; 332.193 gal; Reinfl Capacities 333.4.135, rel; 271.129 qt; Reinfl Capacities 33.8.1.635, rel; 271.129 qt; Reinfl Capacities 33.8.1.635, rel; 271.129 qt; Reinfl Capacities 33.8.1.635, rel; 271.129 qt; Reing Reservo	Final Drives	Heavy-duty inboard-mounted plan	netary	
Answine Braker (conform to ISO 3450) Hydraulically released, spring-retracted, self-adjusting, inboard sun-shaft mounted, oil-cooled, single discretived backer (conform to ISO 3450) Parking Braker (conform to ISO 3450) Automatic spring-applied, hydraulically released, driveline-mounted, oil-cooled, multi disc. Tree Withels (see page 35 for complete tire edjuarment) Treed Width Width Over Tires Michelin 20, 5 R 25, 1 Star L-3 2050 mm (80,7 in.) 2657 mm (104,6 in.) Seriol control 2050 mm (80,7 in.) 2657 mm (104,6 in.) Michelin 20, 5 R 25, 1 Star L-3 2050 mm (80,7 in.) 2657 mm (104,6 in.) Seriol control 299 L (79 apl) 352 L [39 apl) 372 L [39 apl] Seriol control 291 L (20 qt.) 201 L (20 qt.) 271 L (20 qt.) 271 L (20 qt.) Diesel Exhaust Fluid (DEF) 33.4 L (155 qt.) 271 L (20 qt.) 271 L (20 qt.) 271 L (20 qt.) Diesel Exhaust Fluid (DEF) 33.4 L (155 qt.) 271 L (20 qt.) 271 L (20 qt.) 271 L (20 qt.) Diesel Exhaust Fluid (DEF) 33.4 L (153 qt.) 271 L (20 qt.) 271 L (20 qt.) 271 L (20 qt.) Diesel Exhaust Fluid (DEF) 33.4 L (153 qt.) 271 L (20 qt.) 271 L (20 qt.) 271 L (20 qt.) Diesel Exhaust Fluid (DEF) 33.4 L (153 qt.) 271 L (20 qt.) 271 L (20 qt.) 271 L (20 qt.) Dinesel Exh	Utherentials Bear Avia Deciliation Ston to Ston (with 20 5 8 25 tires)	Hydraulic locking front with conve 1 26 den 112 den each direction	entional rear – standard; dual lockin	g front and rear – optional
Arring Brakes (conform to SO 3450) Attonation and configurations Attonation and configurations Arring Brakes (conform to SO 3450) Treed Writh With Over Tires Arring Brakes (conform to SO 3450) Treed Writh With Over Tires Arring Brakes (conform to SO 3450) Treed Writh With Over Tires Rev Mithelis (reveaper 3) for complex properties Treed Writh With Over Tires Rev Mithelin 20,5 R 25,1 Start L3 Z050 mm (80,7 in.) Z657 mm (104,6 in.) Rev Mithelin 20,5 R 25,1 Start L3 Z050 mm (80,7 in.) Z657 mm (104,6 in.) Rev Mith Vertical Spin-On Filter 291 L70 gal.) NA NA Diesel Exhaust Fluid (DET) 201 L70 gal.) NA NA Cooling System 231 L123 gal.) NA NA Cooling System 231 L123 gal.) NA NA Cooling System 211 L30 gr.) 21 L123 gr.) 21 L123 gr.) Met OII Front 22 L123 gr.) 22 L123 gr.) 21 L123 gr.) Reant NA 22 L123 gr.) 22 L123 gr.) 21 L123 gr.) Reant Transision Reseroir with Vertrica	Service Brakes (conform to ISO 3450)	Hydraulically actuated coning-refi	racted self-adjusting inhoard sup-	shaft mounted ail-confed single disc
Michelin 20.5 R 25, 1 Star L3 Tread Width Tread Width Serviceability Width Over Tires Michelin 20.5 R 25, 1 Star L3 2050 mm (80.7 in.) 2657 mm (104.6 in.) Serviceability EPA FI4/EU Stage (N 2657 mm (104.6 in.) Serviceability EPA FI4/EU Stage (N 874 Fier 3/EU Stage (II Serviceability EPA FI4/EU Stage (N 872 L193 gal.) 852 L193 gal.) Discel Exhaust Fluid (DEF) 19 L(20 qc.) N/A N/A Discel Exhaust Fluid (DEF) 19 L(20 qc.) 19 L(20 qc.) 19 L(20 qc.) Discel Exhaust Fluid (DEF) 19 L(20 qc.) 19 L(20 qc.) 19 L(20 qc.) Cooling System 23 L103 qc.) 23 L103 qc.) 27 L123 qc.) 27 L123 qc.) Ade OI 10 L(10 qc.) 22 L(23 qc.) 22 L(23 qc.) 22 L(23 qc.) 22 L(23 qc.) Ade OI 10 L(10 qc.) 10 L(10 qc.) 03 L(10 qc.) 03 L(10 qc.) Ade OI 10 L(10 qc.) 03 L(10 qc.) 03 L(10 qc.) Ade OI 10 L(10 qc.) 03 L(10 qc.) 03 L(10 qc.) Ade OI 23 L(23 qc.) 03 L(10 qc.) 03 L(10 qc.) Ade OI 23 L(23 qc.) 03 L(10 qc.) 03 L(10 qc.) Ade OI 23 L(23 qc.) 03 L(10 qc.) 03 L(10 qc.) Doader Contric	Parking Brakes (conform to ISO 3450)	Automatic spring-applied, hydrau	lically released, driveline-mounted,	oil-cooled, multi disc
Michelin 20.5 R 25, 1 Star L-3 2650 mm (104, 6 i n,) 2657 mm (104, 6 i n,) Serviceability EPA FV/EU Stage IV EPA FV/EU Stage IV EPA FV/EU Stage IV Rein Capacities EPA FV/EU Stage IV EPA FV/EU Stage IV EPA FV/EU Stage IV Rein Capacities EPA FV/EU Stage IV EPA FV/EU Stage IV EPA FV/EU Stage IV EPA FV/EU Stage IV Rein Capacities 2392 L(93 gal.) 335 L(93 gal.) 352 L(93 gal.) 352 L(93 gal.) Diesel Exhaust Fluid (DEF) 33.8 L(35,7 qt.) 21 L(29 qt.) 27 L(29 qt.) 27 L(29 qt.) Cooling System 33.8 L(35,7 qt.) 22 L(23 qt.) 22 L(23 qt.) 27 L(29 qt.) Ade OI MA N/A N/A N/A N/A Ade OI Transistion Reservoir and Filter 22 L(23 qt.) 22 L(23 qt.) 22 L(23 qt.) 22 L(23 qt.) Ade OI Front 22 L(23 qt.) 23 L(10 oc.) 21 L(10 qt.) 21 L(10 qt.) Ade OI Front 22 L(23 qt.) 0.3 L(10 oc.) 0.3 L(10 oc.) 23 L(23 qt.) Ade OI Front 22 L(23 qt.) 0.3 L(1	illest at theis (see bade 13 for complete the adjustments)	Tread Width	Width Over Tires	
Refil Capacities EPA FT4/EU Stage IV EPA Tier 3/EU Stage IIA EPA Tier 2/EU Stage II Refil Capacities refil Capacities 299 L(79 gal.) 352 L(93 gal.) 352 L(93 gal.) Decel Exhaust 19 L(20 qr.) NA 352 L(93 gal.) 352 L(93 gal.) Decel Exhaust 19 L(20 qr.) NA NA NA NA Ensities for with Uterical Spin-On Filter 19 L(20 qr.) 19 L(20 qr.) 19 L(20 qr.) 19 L(20 qr.) Tansmission Reservoir with Vertical Filter 19 L(20 qr.) 19 L(20 qr.) 19 L(20 qr.) 19 L(20 qr.) Read 17 L(18 qr.) Park Base voir and Filter 22 L(23 qr.) 23 L(23 qr.) 23 L(23 qr.) 22 L(23 qr.) Read Read 17 L(18 qr.) 17 L(18 qr.) 17 L(18 qr.) 17 L(18 qr.) Read Read 17 L(18 qr.) 10 L(10 cr.) 0.3 L(10 cr.) 0.3 L(10 cr.) Park Bask Of (10 Sc.) 0.3 L(10 cr.) 0.3 L(10 cr.) 0.3 L(10 cr.) 0.3 L(10 cr.) Park Bask Of (10 Sc.) <td>Michelin 20.5 R 25, 1 Star L-3</td> <td>2050 mm (80.7 in.)</td> <td>2657 mm (104.6 in.)</td> <td></td>	Michelin 20.5 R 25, 1 Star L-3	2050 mm (80.7 in.)	2657 mm (104.6 in.)	
Fuel Tark with Lockable Cap299 L(79 gal.)352 L (93 gal.)352 L (93 gal.)352 L (93 gal.)Decel Exhaust Fluid (DEF)19 L (20 qt.)NANAN/ADecel Exhaust Fluid (DEF)19 L (20 qt.)19 L (20 qt.)21 L (29 qt.)Engine OI with Vertical Filter19.5 L (20 dt.)19.1 L (20 qt.)21 L (29 qt.)Transmission Reservoir with Vertical Filter22 L (23 qt.)22 L (23 qt.)22 L (23 qt.)Ate OIRear22 L (23 qt.)22 L (23 qt.)22 L (23 qt.)Ate OI17 L (18 qt.)17 L (18 qt.)17 L (18 qt.)17 L (18 qt.)Hydraulic Reservoir and Filter15 L (27.8 gal.)110 L (29 gal.)0.3 L (10 oz.)Hydraulic Reservoir and Filter0.3 L (10 oz.)0.3 L (10 oz.)0.3 L (10 oz.)Purp Hoader and steering)0.3 L (10 oz.)0.3 L (10 oz.)0.3 L (10 oz.)System Relief Fressure (Ioader and steering)23 L We (3.575 ps)0.3 L (10 oz.)Oder Controls23 L We (3.575 ps)0.3 L (10 oz.)0.3 L (10 oz.)System Relief Fressure (Ioader and steering)23 L We (3.575 ps)0.3 L (10 oz.)Oder Controls23 L We (3.575 ps)0.3 L (10 oz.)0.3 L (10 oz.)Stereing (confronts to ISO 5010)24 R (20 mate (19 mate (10 mat	Refill Capacities	EPA FT4/EU Stage IV	EPA Tier 3/EU Stage IIIA	EPA Tier 2/EU Stape II
Diesel Exhaust Fluid (DEF) 19 L (20 qc.) N/A N/A N/A Cooling System 33 L (35.7 qc.) 21 L (29 qc.) 27 L (29 qc.) 27 L (29 qc.) Engine OI with Vertical Spin-On Filter 19.5 L (20 dc.) 19.1 L (20 qc.) 27 L (29 qc.) 27 L (29 qc.) Transision Reservoir with Vertical Filter 2.2 L (23 qc.) 22 L (23 qc.) 22 L (23 qc.) 21 L (23 qc.) Ake OI 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) Ake OI 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) Ake OI 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) Ake OI 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) Ake OI 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) Ake OI 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) 2.2 L (23 qc.) Park Bake OI (wer disc) 0.1 L (18 qc.) 1.1 L (18 qc.) 1.1 L (18 qc.) 1.1 L (18 qc.) Park Bake OI (wer disc) 0.3 L (10 oc.)	Fuel Tank with Lockable Cap	299 L (79 gal.)	352 L (93 cal.)	352 L 193 gal.)
Cooling System $33.61(35.7 qt)$ $271(29 qt)$ $271(29 qt)$ Engine OI with Vertical Spin-On Filter $19.51(20.6 qt)$ $19.1(20 qt)$ $191(20 qt)$ Tansision Reservoir with Vertical Filter $221(23 qt)$ $221(23 qt)$ $221(23 qt)$ Are OIIFront $221(23 qt)$ $221(23 qt)$ $221(23 qt)$ Rear $171(18 qt)$ $171(18 qt)$ $171(18 qt)$ $171(18 qt)$ Hydraulic Reservoir and Filter $0.51(100 st)$ $0.31(100 st)$ $0.31(100 st)$ Dump Iloader and Steering) $0.31(100 st)$ $0.31(100 st)$ $0.31(100 st)$ Variable displacement, axial-piston pump; closed-center, pressure-compensating systemDump Iloader and steering) $2.31(100 st)$ $0.31(100 st)$ System Relief Pressure (loader and steering) $2.31(100 st)$ $0.31(100 st)$ System Relief Pressure (loader and steering) $2.31(100 st)$ $0.31(100 st)$ System Relief Pressure (loader and steering) $2.31(100 st)$ $0.31(100 st)$ System Relief Pressure (loader and steering) $2.31(100 st)$ $0.31(100 st)$ System Relief Pressure (loader and steering) $2.31(100 st)$ $0.31(100 st)$ System Relief Pressure (loader and steering) $2.13(100 st)$ $2.10(100 st)$ System Relief Pressure (loader and steering) $2.10(100 st)$ $2.1000 st)$ System Relief Pressure (loader and steering) $2.1000 st)$ $2.1000 st)$ System Relief Pressure (loader and steering) $2.1000 st)$ $2.1000 st)$ System R	Diesel Exhaust Fluid (DEF)	19 L(20 at.)	N/A	N/A
Engine of with Vertical Spin-On Filter 19.5 L (23 qt.) 19 L (20 qt.) 19 L (20 qt.) Transmission Reservoir with Vertical Filter 22 L (23 qt.)	Coolina System	33.8 L (35.7 at.)	27 L (29 at.)	27 L (29 at.)
Transmission Reservoir with Vertical Filter 21 L (23 qt.) 22 L (23 qt.) 17 L (18 qt.) 17 L (10 oz.) 9 qt.) 110 L (29 gt.) 0.3 L (10 oz.) 9 qt.) 10 nt. 10 qt.) 10 dt. (10 oz.) 9 qt.) 10 dt.	Engine Oil with Vertical Spin-On Filter	19.5 L (20.6 qt.)	19 L (20 qt.)	19 L (20 qt.)
Arie Oll Arie Oll Z2 L [23 qt.) Z2 L [22 gt.) Z2 L [20 gt.) <thz2 [20="" gt.)<="" l="" th=""> Z2 L [20 gt.)</thz2>	Transmission Reservoir with Vertical Filter	22 L (23 qt.)	22 L (23 qt.)	22 L (23 qt.)
Front Z2 L(Z3 qt.) Z2 L(Z3 qt.) Z2 L(Z3 qt.) Z2 L(Z3 qt.) Rear 17 L(18 qt.) 17 L(18 qt.) 17 L(18 qt.) 17 L(18 qt.) Hydraulic Reservoir and Filter 105.2 L(127.8 gal.) 110 L(29 gal.) 101 L(29 gal.) Park Brake Oil (wet disc) 0.3 L(10 oz.) 0.3 L(10 oz.) 0.3 L(10 oz.) Ump floader and steering) Variable-displacement, axial-piston pump; closed-center, pressure-compensating system Maximum Rated Flow at 6895 kba (1,000 psi) and Z23 L/m (59 gpm) 2.3 L(10 oz.) 0.3 L(10 oz.) Oxinum Rated Flow at 6895 kba (1,000 psi) and Z23 L/m (59 gpm) 2.3 L(10 oz.) 0.3 L(10 oz.) Attentingi Variable-displacement, axial-piston pump; closed-center, pressure-compensating system Maximum Rated Flow at 6895 kba (1,000 psi) and Z23 L/m (59 gpm) 2,350 pm Z33 L(10 oz.) 2.4 R21 kba (3,07 bis) oder Controls Z4 Rot trol or fingertip controls; hydraulic-function enable/disable; optional 3rd- and Order Controls Power, fully, hydraulic Type Power, fully, hydraulic	Axle Oil			
Hydraulic Secenceir and Filter 105.11.07.8 10.11.01.129.9al. Park Brake Oil (wet disc) 0.31.110.02.19 0.31.110.02.9al. Park Brake Oil (wet disc) 0.31.110.02.1 0.31.110.02.19 Variable Controls 0.31.110.02.1 0.31.110.02.1 Variable Controls 0.31.110.02.1 0.31.110.02.1 Variable Controls 0.31.110.02.1 0.31.110.02.1 Variable Controls 0.31.110.02.1 0.31.110.02.1 Variable Controls Variable Controls 0.31.110.02.1 System Relief Pressure (loader and steering) 2.33.0 µm 2.33.0 µm Oader Controls 2.34.821 kPa (3.000 psi) and 2.23.1.48.19.575 psi) System Relief Pressure (loader and steering) 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) Joader Controls 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) Sostem Relief Pressure (loader and steering) 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.050 psi) and Joader Controls 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) Joader Controls 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) Joader Controls 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) 2.4.821 kPa (3.0575 psi) Joader Controls 2.4.821 kPa (3.0575 psi) </td <td>Front</td> <td>22 L(23 qt.)</td> <td>22 L (23 qt.)</td> <td>22L(23qt.)</td>	Front	22 L(23 qt.)	22 L (23 qt.)	22L(23qt.)
Park Base for in the first 105./LL2/A gal.) 110.L29 gal.) Park Base for il weight 0.3.L (10 oz.) 0.3.L (10 oz.) Park Base for il weight 0.3.L (10 oz.) 0.3.L (10 oz.) Park Base for il weight 0.3.L (10 oz.) 0.3.L (10 oz.) Park Base for il weight 0.3.L (10 oz.) 0.3.L (10 oz.) Park Base for il weight 0.3.L (10 oz.) 0.3.L (10 oz.) Park Base for il weight 0.3.L (10 oz.) 0.3.L (10 oz.) Park Base for il weight Variable-displacement, axial-piston pump; closed-center, pressure-compensating system Parkinum Rated Flow at 6895 kPa (1.000 psi) and 2.2.3.Lm (59 gpm) 2.3.1 mp; closed-center, pressure-compensating system 2.3.50 rpm 2.3.50 rpm 2.4 B21 kPa (3.6.75 psi) 2.4 B21 kPa (3.6.75 psi) 2.3.50 rpm 2.4 B21 kPa (3.6.75 psi) 2.4 Function valve; joystek control or fingetip controls; hydraulic-function enable/disable; optional 3rd- and 2.3.50 rpm 2.4 B21 kPa (3.6.75 psi) 2.4 Function valve; joystek control or fingetip controls; hydraulic-function enable/disable; optional 3rd- and 2.3.50 rpm 2.4 Function valve; high aveilary lever 4 function rate is for aveilary lever 2.3.50 rpm 2.4 B21 kPa (3.6.75 psi) 2.4 B21 kPa (3.6.75 psi) 2.3.50 rpm 2.4 B21 kPa (3.6.75 psi) 2.4 B21 kPa (3.6.75 psi) 2.4 Function valve; high aveid	Rear	17 L(18 qt.)	17 L (18 qt.)	1 / L (18 qt.)
Hydraulic System/Steering Pump loader and steering) Maximum Rated Flow at 6805 kPa (1,000 ps) and 223 L/m (59 gpm) 2.350 npm 2.350 npm 2.350 npm 2.4 R21 kPa (3.675 ps) System Relief Pressure (loader and steering) 2.4 R21 kPa (3.675 ps) 2.4 R21 kPa (3.675 ps) 2	Hydraulic Reservoir and Filter Park Brake Oil (wet disc)	105.2 L (27.8 gal.) 0.3 L (10 oz.)	110 L (29 gal.) 0.3 L (10 oz.)	110L (29 gal.) 0.3 L (10 oz.)
Pump (loader and steering) Variable-displacement, axial-piston pump; closed-center, pressure-compensating system Maximum Rated Flow at 6895 kPa (1.000 psi) and 2.23 L/m (59 gpm) 2.350 ppm 2.350 ppm 2.350 ppm 2.350 ppm 2.4 Relief Pressure (loader and steering) 2.4 821 kPa (3.675 psi) 2.4 821 kPa (3.675 psi) 2.4 821 kPa (3.675 psi) 5.5 stem Relief Pressure (loader and steering) 2.4 821 kPa (3.675 psi) 5.5 stem Relief Pressure (loader and steering) 2.4 821 kPa (3.675 psi) 5.5 stem Relief Pressure (loader and steering) 2.4 821 kPa (3.675 psi) 5.5 stem Relief Pressure (loader and steering) 2.4 821 kPa (3.675 psi) 5.5 stem Relief Pressure (loader and steering) 5.5 stem Relief Pres	Hydraulic System/Steering			
System Relief Pressure (loader and steering) 24 821 kPa [3,675 ps) System Relief Pressure (loader and steering) 2-function valves; Joystick control or fingertip controls; hydraulic-function enable/disable; optional 3rd- and 4th-function valve with auxiliary lever Steering (conforms to ISO 5010) Power, fully hydraulic	Pump (loader and steering) Maximum Rated Flow at 6895 kPa (1,000 psi) and	Variable-displacement, axial-pisto 223 L/m (59 gpm)	on pump; closed-center, pressure-cc	wmpensating system
Steering (conforms to ISO 5010) Type	System Relief Pressure (loader and steering) Loader Controls	24 821 kPa (3,675 psi) 2-function valve; joystick control (4th-function valve with auxiliary k	or fingertip controls; hydraulic-func ever	tion enable/disable; optional 3rd- and
Type Power, fully hydraulic	Steering (conforms to ISO 5010)			
	Type	Power, fully hydraulic		

624K Z-BAR / HIGH-LIFT / POWERLIEL / TOOL CARRER

Turning Radius (measured to centerline of outside tire)	5.27 m (17 ft. 4 in.)			
Hydraulic Cycle Times	Z-Bar	High-Lift	Powerliel	Tool Carrier
Raise	5.9 sec.	5.9 sec.	5.9 sec.	5.6 sec.
Dump	1.3 sec.	1.3 sec.	1.4 sec.	3.0 sec.
Lower [float down]	2.7 sec.	2.7 sec.	2.8 sec.	2.7 sec.
Total	9.9 sec.	9.9 sec.	10.1 sec.	11.3 sec.

-On Bucke

624K Z-BAR AND HIGH-LIFT LOADERS WITH PIN-ON BUCKET

Link I the

	JDD-7	Light-Lift
Dimensions with Bucket	2.7-m3 (3.5 cu. yd.) general-purpose with bolt-on edge	2.7-m ³ (3.5 cu. yd.) general-purpose with bolt-on edge
A Height to Top of Cab	3.32 m (10 ft. 11 in.)	3.32 m (10 ft. 11 in.)
B Hood Height	2.46 m (8 ft. 1 in.)	2.46 m (8 ft. 1 in.)
C Ground Clearance	384 mm (15.1 in.)	384 mm (15.1 in.)
D Length from Centerline to Front Axle	1.52 m (5 ft. 0 in.)	1.52 m (5 ft. 0 in.)
E Wheelbase	3.09 m (10 ft, 1 in.)	3.09 m (10 ft. 1 in.)
F Overall Length, Bucket on Ground	7.76 m (25 ft. 5 in.)	8.17 m (26 ft. 9 in.)
G Height to Hinge Pin, Fully Raised	3.95 m (13 ft, 0 in.)	4.30 m (14 ft, 2 in.)
H Dump Clearance, 45 deg., Full Height	2.86 m (9 ft. 5 in.)	3.23 m (10 ft. 7 in.)
I Reach, 45-deg. Dump, Full Height	1.02 m (3 ft. 4 in.)	1.11 m (3 ft. 8 in.)
J Reach, 45-deg. Dump, 2.13-m (7 ft. 0 in.) Clearance	1.57 m (5 ft. 2 in.)	1.93 m (6 ft. 4 in.)
K Maximum Digging Depth	95 mm (3.8 in.)	203 mm (8.0 in.)
L Maximum Rollback at Ground Level	37 deg.	36 deg.
M Maximum Rollback, Boom Fully Raised	50 deg.	49 deg.
N Maximum Bucket Dump Angle, Fully Raised	45 deg.	46 deg.
Loader Clearance Circle, Bucket Carry Position	12.24 m (40 ft. 2 in.)	12.61 m (41 ft. 4 in.)
Specifications with Bucket		
Capacity, Heaped	2.7 m ³ (3.5 cu. yd.)	2.7 m ³ (3.5 cu. yd.)
Capacity, Struck	2.3 m ³ (3.0 cu. yd.)	2.3 m ³ (3.0 cu. yd.)
Bucket Weight with Bolt-On Cutting Edge	1148 kg (2,532 lb.)	1148 kg (2,532 lb.)
Bucket Width	2.69 m (8 ft. 10 in.)	2.69 m (8 ft. 10 in.)
Breakout Force	12 821 kg (28,266 lb.)	11 662 kg (25,709 lb.)
Tipping Load, Straight, No Tire Deflection	13 804 kg (30,433 lb.)	11 590 kg (25,552 lb.)
Tipping Load, Straight, With Tire Oeflection	13 005 kg (28,671 lb.)	11 007 kg (24,266 lb.)
Tipping Load, 40-deg. Full Turn, No Tire Deflection	12 006 kg (26,469 lb.)	10 044 kg (22,143 lb.)
Tipping Load, 40-deg. Full Turn, With Tire Deflection	10 956 kg (24,154 lb.)	9255 kg (20,404 lb.)
Rated Operating Load, 50% Full-Turn Tipping Load, No Tire Deflection (conforms to ISO 14397-1)*	6003 kg (13,234 lb.)	5022 kg (11,072 lb.)
Rated Operating Load, 50% Full-Turn Tipping Load, With Tire Deflection (conforms to ISO 14397-1)*	5478 kg (12,077 lb.)	4627 kg (10,201 lb.)
Operating Weight	15 747 kg (34,717 lb.)	15 948 kg (35,159 lb.)
Loader operating information is based on machine v	with identified linkage and standard equipment, PowerTec	h PVX 6068 (EPA Final Tier 4/EU Stage IV) engine, ROPS
and some safe his and a contraction of the source of the s	ALL THE ADD DECENTRY OF THE PROPERTY ADD DECENTRY OF THE PROPERTY OF THE PROPE	CONTRACTOR AND A CONTRACTOR OF

cob, rear cast bumper/counterweight, transmission side-frame g affected by changes in tires, ballast, and different attachments. *Rated operating capacity based on Deere attachments only.

۹

20 21 21

Bucket (continued)	624K Z-BAR / I	HIGH-LIFT / POV	VERLLEL / TOOL	CARRIER				
	Z-Bar	Z-Bar	High-Lift	High-Lift	Powerllel	Powerllel	Tool Carrier	Tool Carrier
Specifications with Bucket	2.7-m³ (3.5 cu. yd.) general-	4.01-m² (5.25 cu. yd.) light-	2.7-m ³ (3.5 cu. yd.) general-	4.01-m ³ (5.25 cu. yd.J light-	2.7-m ³ (3.5 cu. yd.) general-	4.01-m3 (5.25 cu. yd.) light-	2.7-m ³ (3.5 cu. yd.) general-	4.01-m ² (5.25 cu. yd.) light-
	purpose with bolt-on edge	material with bolt-on edge	purpose with bolt-on edge	material with bolt-on edge	purpose with bolt-on edge	material with bolt-on edge	purpose with bolt-on edge	material with bolt-on edge
Capacity, Heaped	2.7 m ³	4.0 m ³	2.7 m ³	4.0 m ³	2.7 m ³	4.0 m ³	2.7 m ³	4.0 m ³
	(3.5 cu. yd.)	(5.25 cu. yd.)	(3.5 cu. yd.)	(5.25 cu. yd.)	[3.5 cu. yd.]	(5.25 cu. yd.)	(3.5 cu. yd.)	(5.25 cu. yd.)
Capacity, Struck	2.3 m ³	3.5 m ³	2.3 m ³	3.5 m ³	2.3 m ³	3.5 m ³	2.3 m ³	3.5 m ³
	[3.0 cu. yd.)	[4.6 cu. yd.]	[3.0 cu. yd.]	[4.6 cu. yd.]	[3.0 cu. yd.)	(4.b cu. yd.)	[3.0 cu. yd.)	[4.b cu. yd.]
Bucket Weight with Bolt-On Cutting Edge	1532 kg (3,378 lb.)	1890 kg (4,167 lb.)	1532 kg (3,378 lb.)	1890 kg (4,167 lb.)	1562 kg (3,444 lb.)	1913 kg (4,217 lb.)	1077 kg (2,375 lb.)	1724 kg (3,801 lb.)
Bucket Width	2.69 m	3.05 m	2.69 m	3.05 m	2.69 m	3.05 m	2.69 ш	3.05 m
	(8 ft. 10 in.)	(10 ft, 0 in.)	(8 ft. 10 in.)	(10 ft, 0 in.)	(8 ft. 10 in.)	(10 ft. 0 in.)	(8 ft. 10 in.)	(10 ft, 0 in.)
Breakout Force	10 983 kg	9849 kg	9998 kg	9035 kg	10 759 kg	10 638 kg	10 978 kg	9826 kg
	(24,214 lb.)	(21,713 lb.)	[22,042 Ib.]	(19,919 lb.)	(23,719 lb.)	(23,453 lb.)	[24,202 ib.]	[Z1,663 lb.)
Tipping Load, Straight, No Tire	12 357 kg	11 924 kg	10 419 kg	10 001 kg	10 803 kg	10 299 kg	11 837 kg	11 337 kg
Deflection	(27,242 lb.)	(26,288 lb.)	(22,969 lb.)	[22,048 lb.]	(23,816 lb.)	(22,705 lb.)	(26,097 lb.)	[24,994 lb.]
Tipping Load, Straight, With Tire	11 661 kg	11 199 kg	9900 kg	9540 kg	10.251 kg	9729 kg	11 169 kg	10 659 kg
Deflection	(25,708 lb.)	(24,689 lb.)	{21,826 lb.}	(21,032 lb.)	(22,600 lb.)	(21,449 lb.)	(24,623 lb.)	(23,499 lb.)
Tipping Load, 40-deg, Full Turn, No	10 694 kg	10 278 kg	8975 kg	8573 kg	9312 kg	8835 kg	10 253 kg	9774 kg
Tire Deflection	(23,577 lb.)	(22,659 lb.)	(19,786 lb.)	[18,900 lb.]	(20,530 lb.)	(19,478 lb)	(22,605 lb.)	(21,548 lb.)
Tipping Load, 40-deg. Full Turn,	9768 kg	9318 kg	8268 kg	7827 kg	8547 kg	8064 kg	9354 kg	8862 kg
With Tire Deflection	(21,535 lb.)	(20,542 lb.)	(18,228 lb.)	(17,255 lb.)	(18,843 lb.)	(17,778 lb.)	(20,622 lb.)	[19,537 lb.]
Rated Operating Load, 50% Full-Turn	5347 kg	5139 kg	4487 kg	4286 kg	4656 kg	4417 kg	5127 kg	4887 kg
Tipping Load, No Tire Deflection fronforms to ISO 14397.11*	(11,788 lb.)	(11,329 lb.)	(9,893 lb.)	(9,449 lb.)	(10,265 lb.)	(9,738 lb.)	(11),302 lb.)	(10,774 lb.)
Rated Operating Load, 50% Full-Turn	4884 kg	4659 kg	4134 kg	3913 kg	4273 kg	4032 kg	4677 kg	4431 kg
Tipping Load, With Tire Deflection (conforms to ISO 14397-1)*	(10,767 lb.)	(10,271 lb.)	(9,114 lb.)	(8,627 lb.)	(9,420 lb.)	(8,889 lb.)	(10,31 Ĩ lb.)	(9,769 lb.)
Operating Weight	16 152 kg	16 477 kg	16 352 kg	16,678 kg	17 167 kg	17 472 kg	16 166 kg	16 482 kg
	(35,608 lb.)	(36,325 lb.)	(36,050 lb.)	(36,769 lb.)	(37,847 lb.)	(38,519 lb.)	(35,640 lb.)	(36,336 lb.)

cob, reac cast bumper/counterweight, transmission side-tranme g affected by changes in tires, bollast, and different attachments. *Rated operating copacity based on Deere attachments only. Bucket Selection Guides

reduction final drive. independent system, displacement pump, motor and planetary consisting of PC-controlled variable Hydrostatic drive, with each wheel driven by its own

4 Speeds Forward, 4 Speeds Reverse. 0 to 5.2 mph (0 to 8.4 km/lrr) SPEED:

GAUGES:

Illuminated, analog style gauges display engine oil pressure, engine coolant temperature, fuel level, and tachometer.

MC400 ELECTRONIC **CONTROL SYSTEM:**

alarm and shuts down the machine when potentially damaging Continuously calibrates all four wheels with the angle of the center joint to improve steering, reduce component wear and increase operator comfort. The MC400 monitors all critical components and alerts the operator via digital display and/or conditions exist.

FILTRATION and COOLING:

Hydraulic system features 100 mesh screened inlet filtration, 5 micron return line filtration and independent 10 micron and feature in-line tubes with 6.5 cooling fins per inch for superior performance in dusty landfill conditions. Corrugated Cooling components are oversized all aluminum construction and perforated pre-screens pull out for easy maintenance. filtration for each individual wheel circuit.

Ergonomically-designed, insulated and sound suppressed. ROPS/FOPS certified.

Six-way adjustable air ride seat, adjustable head rest and 3 inch wide seat belt.

Joystick blade control with blade (raise, lower, float), speed selector, Joystick steering with horn button.

and directional controls.

Illuminated analog style gauges, MC400 digital display screen and warning indicators.

40,000 BTU front and rear A/C system with directional vents. 30,000 BTU front and rear Heat/Defrost system.

Four front and rear, two side Halogen exterior lights. Filtered fresh air intake. AM/FM radio/CD, MP3 port, four speaker stereo. Rear vision camera with full color display. Four exterior West Coast Mirrors. Integrated CB antenna.

Front and rear wiper/washer (intermittent front wiper). Iwo 12V DC accessory.

4 cup holders, 2 coat hooks and Dome light

IN. 107,000 lbs. OPERATING WEIGHT:

CAPACITIES:

Fuel:

(776 liters) (264 liters) (264 liters) 205 gallons 70 gallons 70 gallons 19 gallons 9.0 gallons 10.5 gallons Hydraulic oil, reserve tank: Hydraulic oil, main tank: Engine lube oil system: John Deer Engine Engine coolant: Cat Engine

(34 liters) (39 liters) (71 liters)

Ŧ

13 ft 10 in 4216 mm

Ground clearance: Articulation: plus/minus Overall width at wheels: Overall height at ROPS: Furning radius (inside): Oscillation: plus/minus DIMENSIONS: Overall length: Wheelbase:

(9271mm) (4445mm) (3200mm) (4216mm) (3657mm) (733mm) 30ft 5in (1 14ft 7in (-13ft 10in (-12ft (-10ft 6in (-28 7/8in. (-35 degrees 6 degrees

1.

0

BRAKES

OSHA-approved, all-wheel hydrodynamic braking. Independent spring-applied, hydraulic-realease fail-safe parking/emergency brakes on front wheels.

FRAME:

Extra heavy box beam construction with 1 /5 inch (38mm) flanges and 1 inch (25mm) thick webs. Center joint with 4 inch (101mm) thick rear tangs and one 2 inch (50mm) and three 1 1/2 inch (38mm) thick front tangs

ELECTRICAL SYSTEM:

24 volt electrical system with four maintenance free, heavy duty 925CCA batteries. Cat engine has a 95 AMP and John Deere engine has a 140 AMP Alternator.

OPTIONS:

Caterpillar® C15 ACERTTM: 15.2 liter/540 gross horsepower These turbo-charged and after-cooled six cylinder diesel engines OR - John Deere® 6135H PowerTech PlusTM: 13.5 liter/550 gross horsepower **ENGINE:**

starting with ether starting aid. Dual, dry-type, two-stage air cleaner. Pressure lubrication with full-flow filtered oil and heat exchange oil cooler. Al-jon hydraulic, auto-reverse cooling fan injection fuel system with adjustment-free injection pumps and valves. 1500 watt engine block heater. 24 volt direct electric meet current Tier 3/Stage IIIA emissions regulations. Direct ("ARC") is standard.

Contact Al-jon for a list of available options

Cat[®] 623K

WHEEL TRACTOR-SCRAPER

MAIN FEATURES AND BENEFITS:

- Tractor Serviceability Improvement The filter bank located at the rear of the engine compartment has undergone improvements for serviceability by raising the filter bank up for easier access.
- Engine Over Speed Protection In the event of an engine over speed situation, the compression brake or brakes will automatically engage with no operator input. The machine determines the over speed condition based on rate of acceleration and applies compression brakes automatically.
- Advanced Cushion Hitch With similar technology as the Cat[®] Advanced Ride Management seat suspension, this software allows the cushion hitch to prevent end stroke by having the ability to predict end stroke events and manage the rate of dampening. The desired result is improved hitch repair, reduced maintenance and improved operator ride in rough conditions.
- High Pressure Steering 620K Series steering system design requires significantly less steering effort. The reduced steering effort will allow for decreased operator fatigue and a more efficient operator resulting in possible higher rates of production late in the work cycle.
- Load Assist Option The 623K now is offered with the Load Assist option like the 621K and 627K.
- Draft Arm Overflow Guards The open bowls now come standard with bowl side overflow guards to help prevent material from flowing over the bowl sides and falling onto the draft arms where material becomes lodged between the bowl side and draft arm resulting in decreased work cycle times.
- Auto Stall In cold weather conditions the machine will use the Auto Stall feature to help warm up the transmission oil faster resulting in the machine shifting out of torque converter drive (2nd gear) faster than on previous models.

- Differential Lock Engagement Protection (Standard) This standard feature allows the machine to prevent the operator from engaging the differential lock when damage could occur.
- Cab Improved The interior of the K Series cabs has improved the operator comfort and visibility by redesigning the dash area and key pad placement.
- Machine Speed Limit This feature is designed to take the place of top gear selection. If the machine top speed needs to be limited the operator can select the top speed through the display or the top speed can be set in ET. This will allow the machine to find the correct gear that works best for the engine and transmission. Allowing the engine and transmission to select the correct gear to pull the load in most cases resulting in a lower engine load factor and lower fuel burn verses using top gear selection that required the machine to run at engine speeds at or close high idle.
- Ground Speed Control Ground Speed Control sets the desired top speed by the operator if job site conditions or segment speed limits require a speed less than full run out. Machine Speed Limit is intended for use when top speed needs to be limited for longer durations and Ground Speed Control is intended for use when the top speed needs to be reduced for shorter segments or intermediate periods of time. The operator can set the desired top speed and the machine will find the correct gear that works best for the engine and transmission. Allowing the engine and transmission to select the correct gear to pull the load in most cases will result in a lower engine load factor and lower fuel burn verses top gear selection.

Specifications

General Data

763 L	201 U.S. gal	Top Speed (Loaded)	53.9 km/h	33.5 mph
3.57 m	11'7"	180° Curb-to-Curb Turning Width	11.8 m	38'7"
3.77 m	12'3"	Tires:		
		Tractor Drive	33.25R29**E	3
14.4 m ³	18.8 yd³	Scraper	33.25R29**E	3
17.6 m ³	23 yd ³	Operating Weight (Empty)	39 937 kg	88,061 lb
25 038 kg	55,200 lb	Overall Length	13.77 m	45'2"
25.1 tonnes	27.6 tons	Elevator Flight Spacing	520 mm	20"
3.14 m	10'4"	Number of Flights	15	
262 mm	10.3"	Maximum Floor Opening	1.34 mm	4'4"
465 mm	18.3"	1 5		
	763 L 3.57 m 3.77 m 14.4 m ³ 17.6 m ³ 25 038 kg 25.1 tonnes 3.14 m 262 mm 465 mm	763 L 201 U.S. gal 3.57 m 11'7" 3.77 m 12'3" 14.4 m³ 18.8 yd³ 17.6 m³ 23 yd³ 25 038 kg 55,200 lb 25.1 tonnes 27.6 tons 3.14 m 10'4" 262 mm 10.3" 465 mm 18.3"	763 L201 U.S. galTop Speed (Loaded)3.57 m11'7"180° Curb-to-Curb Turning Width3.77 m12'3"Tires: Tractor Drive14.4 m³18.8 yd³Scraper17.6 m³23 yd³Operating Weight (Empty)25 038 kg55,200 lbOverall Length25.1 tonnes27.6 tonsElevator Flight Spacing3.14 m10'4"Number of Flights262 mm10.3"Maximum Floor Opening	763 L 201 U.S. gal Top Speed (Loaded) 53.9 km/h 3.57 m 11'7" 180° Curb-to-Curb Turning Width 11.8 m 3.77 m 12'3" Tires: 33.25R29**E3 14.4 m³ 18.8 yd³ Scraper 33.25R29**E3 17.6 m³ 23 yd³ Operating Weight (Empty) 39 937 kg 25 038 kg 55,200 lb Overall Length 13.77 m 25.1 tonnes 27.6 tons Elevator Flight Spacing 520 mm 3.14 m 10'4" Number of Flights 15 262 mm 10.3" Maximum Floor Opening 1.34 mm

623K Wheel Tractor-Scraper

Engine

Engine Model	Cat C13 ACER	Г™
Rated Engine RPM	2,000 rpm	
Flywheel Power: Tractor	304 kW	407 hp

• Cat C13 ACERT engine meets U.S. Environmental Protection Agency (EPA) Tier 4 Final/EU Stage IV engine emission standards.

Cab

ROPS/FOPS

Meets SAE and ISO standards

- The exterior sound power level for the standard machine (ISO 6393) is 111.5 dB(A).

Safety Criteria Compliance Standards

Rollover Protection Structure (ROPS)	ISO 3471:2008 for up to 17 084 kg (37,664 lb)
Falling Object Protective Structure (FOPS)	ISO 3449:2005 Level II
Brakes	ISO 3450:1996
Steering System	ISO 5010:2007
Seat Belt	SAE J386:JUN1985
Reverse Alarm	ISO 9533:2010

Travel Speeds (Runout)

Transmission Gear:		
First	5.0 km/h	3.1 mph
Second	8.9 km/h	5.5 mph
Third	12.1 km/h	7.5 mph
Fourth	16.3 km/h	10.1 mph
Fifth	21.9 km/h	13.6 mph
Sixth	29.6 km/h	18.4 mph
Seventh	39.9 km/h	24.8 mph
Eighth	53.9 km/h	33.5 mph
Reverse	9.2 km/h	5.7 mph

Implement Cycle Times

Bowl Raise	3.0 seconds
Bowl Lower	3.5 seconds
Ejector Extend	6.45 seconds
Ejector Retract	9.7 seconds

Service Refill Capacities

Crankcase	30.58 L	8.08 gal
Transmission System	93 L	24.76 gal
Cooling System	45 L	11.89 gal
Fuel Tank	818 L	216.09 gal
Hydraulic System	83 L	21.926 gal
Diesel Exhaust Fluid	30.5 L	8.0572 gal

Dimensions

	623K	
	mm	in
1 Width – Overall Machine	3585	141.1
2 Width – Overall Machine – Ladder Down	3790	149.2
3 Width – Tractor	3381	133.1
4 Width – Rear Tire Centers	2290	90.2
5 Width – Inside of Bowl	3048	120.0
6 Width – Outside Rear Tires	3275	128.9
7 Height – Overall Shipping	4037	158.9
8 Height – Top of Cab	3621	142.6
9 Height of Top of Elevator	3768	148.3
10 Ground Clearance – Tractor	557	21.9
11 Front of Tractor to Front Axle	3119	122.8
12 Axle to Vertical Hitch Pin	432	17.0
13 Height – Scraper Blade Maximum	520	20.5
14 Wheelbase	8370	329.5
15 Length – Overall Machine	13 767	542.0
16 Rear Axle to Rear of Machine	2278	89.7

APPENDIX 1-H WELL PB-1 ABANDONMENT DOCUMENTATION

David M. Loper

From: Sent: To: Subject: Jones, Chad <Chad Jones@idwr.idaho.gov> Thursday, July 09, 2015 12:29 PM ccsw@speedyquick.net Well Info

There are many wells around that area, but I seem to have only located one that was abandoned. The only document scanned into the system relating to its abandonment is included below. Permit # 731904 Well ID # 296507

http://www.idwr.ldaho.gov/apps/apps/well/.%SCDocsImages%5C3p2701 PDF

Chad Jones Office Specialist II Idaho Dopt. of Water Resources - Western Region <u>chad.jones@idwr.idaho.gov</u> (208)334-2190

PHASE I HYDROGEOLOGIC CHARACTERIZATION REPORT

1992 SITE INVESTIGATION PICKLES BUTTE SANITARY LANDFILL CANYON COUNTY, IDAHO

JUNE 1993

HOLLADAY ENGINEERING COMPANY Payette, Idaho

Project Number T1120491

IV. SITE HYDROGEOLOGY

A. PB-1 DESCRIPTION

The PB-1 well is located approximately 100 feet southeast of the landfill shop with a collar elevation of 2692 MSL and was completed on 2-11-78 by Witi Drilling using a cable tool drill. The following lithologic description for PB-1 is based on the well driller's log (see Appendix B) which was found to be generally consistent with results of the Phase I drilling. The uppermost 48 feet is described as clayey sand, sandy clay from 48 to 152 feet, yellow clay from 152 to 205, gray sticky clay from 205 to 251, blue or gray clay and shale from 251 to 595, sandy shale from 595 to 640, and blue clay from 640 to the hole bottom at 658 feet. The driller's log reported ground-water production from the sandy shale unit of 595 to 640 feet and placed the well screen from 577 to 637 feet. The resulting static water level after completion was recorded as 339 feet below land surface (2353 feet MSL).

The low consumptive use of the well for the landfill's equipment cleaner and for its two restrooms appears to have resulted in substantial drawdown. This use has required the pump to be lowered twice in the well to date. Knowledge of the well's performance history is unclear since water levels were not taken in the intervening years. However, a check on the water level on 10-23-92 indicated a depth of 420 feet (2272 feet MSL) or 81 feet lower than recorded at the time of well construction in 1978. The water level found on 10-23 may be lower than normally encountered due to heavy use the day prior since personnel at the facility knew they would be without water the following day. In any case the well recovers slowly and has possibly sustained a reduction in confined head from routine use over the intervening 14 years. A videocamera survey of the well on 10-24-92 indicated no problems with the casing liner or screen.

16
The water temperature in the bottom of the well's water column as determined by a downhole thermometer is 27.8° C (82° F). The water is described by the facility's personnel as unfit to drink due to sulfide odor and high iron and mineral taste (they use bottled water). Analysis for the Appendix I 40 CFR Part 258 suite on a sample taken from this well on 4-8-92 resulted in nondetect for all constituents (certificate of analysis in Appendix F). Tested field parameters of water at the wellhead indicate a temperature of 21.1° C (70° F), a pH of 8.4 and a conductivity of 1.10 mS/cm. The fact that the productive zone occurs 256 feet below the static level at the time of drilling (175 feet below its measured level on 10-23-92) and the aquifer is at elevated temperatures indicates both a confined and geothermally heated aquifer condition. This condition is implicit of the resource possessing positive pressure at the confining layer boundary and the water's origin is either remote or, at least in part, ascending from depth from an environment of higher heat flow.

B. PB-2 DESCRIPTION

Corehole PB-2 was located immediately east of the landfill as shown on the well location map (Figure 1). The lithology encountered in this hole consist of a varied sequence of weak to moderately consolidated tan to light brown silty sand, clayey silt, and sandy silt from the surface down to 294 feet. This assemblage constitutes the coarser material of which an analog was identified in the upper levels of all three holes drilled at the landfill. The same package also appears to be reflected in the driller's log of the domestic well PB-1 which may correspond to its sand (0 - 48 feet) and sandy clay (48 -152 feet). A moderately consolidated silty claystone occurs from 294 to 396 feet depth; this unit contains a redox boundary at 353 feet, below which occasional plant carbon and fine pyrite occurs. A well indurated, dark gray, mostly massive claystone was found in the interval below 396 feet to the hole bottom at 557 feet. This unit corresponds to the lithology found in the lower reaches of the subsequent holes PB-3 and PB-4 and almost

USE TYPEWRITER OR BALL POINT PEN State of Idaho epartment of Water Resources

WELL DRILLER'S REPORT

State law requires that this report be filed with the Director, Department of Water Resources within 30

days after the completion of	aband	onment	of the v	ven.			
1. WELL OWNER	7. V	VATER	LEVEL				
Name CANYON COUNTY	Static water level 739 feet below land surface						
Address CALdwell TdAHO	Flowing? D Yes D No G.P.M. flow						
	A	rtesian	closed-i	n pressurep.s.i.		2	
Owner's Permit No.		Controlle	ed by	□ Valve □ Cap (] Plug		
2. NATURE OF WORK	8. V	VELL T	EST DA	ТА			
New well Deepened Replacement	0	Pump		Bailer Other			
C Abandonad (describe method of shandoning)	0	ischarge	G.P.M.	Draw Down	Hours P	umped	i
C Abandoned (describe method of abandoning)		8 R	DM	17.1	3		
3. PROPOSED USE				,			
Domestic Irrigation Test Other (specify type)	9. 1	ITHOL	OGIC L	.og 10	6783		
Ci Municipal Industrial Stock Waste Disposal or	Hole	De	pth	Material		Wa	ter
Injection	Diam.	From	To			Yes	No
4. METHOD DRILLED	11	3	48	SAND 20%	CLAY		
De Cable 🗆 Rotory 🗆 Dug 🗆 Other	11	48	152	SANDY C.LA	TAY	-	
5. WELL CONSTRUCTION	11	205	251	/GRAY C.LAY	, stic.	4	
	20	297	327	RLUE CLAY	10% 54	hed	-
Casing schedule: Desteel Concrete	20	327	520	Blue. C.LAY	SHALC		-
Thickness Diameter From To	16	595	640	SHALE, SANdy	e	1	E
1250 inches 10 inches 537 feet 572 feet	16	640	658	BLUE CLA			-
2.50 inches 10 inches 637 feet 6.58 feet	<u> </u>						
inches inches feet feet feet							
Was a packer or seal used? Pres INo					-		
Perforated?	<u> </u>						
How perforated? Factory Knife Torch Size of perforation inches by inches				······································			
Number From To				'me	GP 1		
perforations feet feet			-				
perforations feet feet				80 m	9		
Well screen installed? BYes ONo				110 40 (8/8			
Manufacturer's name <u>JOHINSON</u> Type STAINLESS Model No.				Department of Water Res			
5 Diameter 16 Slot size 25 Set from 577 feet to 637 feet				Western Kegionai Uni		\vdash	
Feet to feet							_
Gravel packed? BYes D No Size of gravel Malle Del. M	onle.			• • •			
Surface seel depth Material used in seal 12 Coment grout							
Sealing procedure used Starry pit D Temporary surface casing					- y		
Overbore to seel depth					-		
6. LOCATION OF WELL	10. W	ork star	ted	18/4/77 finished	7/16/7.	8	
Sketch map location must agree with written location. 63					111		-
	11. D	RILLER	S CERTI	FICATION			
Subdivision Name	F	irm Nan	ne/	1.T.T. Drillis	19 Firm No	59	ž
	4	ddress (n,A.	Ldwe LL Ida	Data Z.//	12	P
Lot No Block No				X H	8. 71-	. 74	4
	S	igned by	(Firm C	official for melle	2112	16	-
ounty_ CANYON			(Oper	over) CLANde.	DUE	e,	_
SW 1/ NW 1/4 Sec. 2/ T. 2 N/K. R. 3 KW	ŝ						

USE ADDITIONAL SHEETS IF NECESSARY FORWARD THE WHITE COPY TO THE DEPARTMENT

APPENDIX 2-A LOW FLOW EQUIPMENT COST

USA

Site Reference: Pickle Butte Landfill

Prepared For:	Represented By:
Maureen McGraw	Rose Riedel, Olympic Envr Equipment
(406) 543-3045	360-297-5409
maureen.mcgraw@tetratech.com	rose@olympicenv.com
TETRA TECH	Prepared By:
2525 PALMER ST	Carl Ellison
SUITE 2	800-624-2026
MISSOULA, MT 59808	cellison@qedenv.com

QTY	PART NO.	DESCRIPTION	UM	UNIT PRICE	EXTENSION
13	ST1102M	Bladder pump, stainless steel construction with Dura-Flex Teflon bladder. Flow tested, lab certified with inlet screen and support cable hardware (for 34324 cable). 3/8" discharge.	EA	1,045.00	13,585.00
8	C46UH	4" well cap, designed for 1/4" air supply and 3/8" discharge tubing. Cap is constructed of anodized aluminum. Includes Ultra High Pressure Fitting and dust cover.	EA	115.00	920.00
5	WW-	WELL WIZARD CUSTOM PRODUCT	EA	175.00	875.00
	CUSTOM	C46UH - 4" well cap, designed for 1/4" air supply and 3/8" discharge tubing. Cap is constructed of anodized aluminum. Includes Ultra High Pressure Fitting, dust cover and adapter plate for use with a 4.5" SS well casing.			
		SPN: 909511			
		LEAD TIME: 3-4 weeks ARO			
13	38458UH	Freeze protection kit for 3/8" or 1/4" tubing, for Ultra High Pressure applications.	EA	46.00	598.00
13	37740	3/8" Dura-Flex discharge adapter, 3' length, with reusable tubing lock ring.	EA	31.00	403.00
7158	PT5000	Teflon-lined polyethylene tubing, twin bonded design. 3/8" OD sample tube with 1/4" OD air line.	FT	4.10	29,347.80
5	37757	Drop tube kit for 1200 series or portable stainless pump (ST1102PM). For 3/8" tube, includes stainless steel pump inlet fitting and stainless steel weight.	EA	150.00	750.00
363	34115	Polyethylene tubing, 3/8" OD.	FT	1.05	381.15

5	39365EP	Drop Tube Screen Adapter. (Connects ST1102M inlet screen to SS drop tube weight.)	EA	12.00	60.00
5	35415	Additional stainless steel drop tube weight, 2' long.	EA	70.00	350.00
7171	34324	Poly covered 3/32" stainless steel cable.	FT	1.35	9,680.85
1	MP10UH	Ultra High Pressure MicroPurge Basics Controller. Advanced electronic controller for applications to 500 PSI, 1000 maximum lift. Microprocessor- based logic simplies MicroPurge sampling. Eliminate excessive drawdown by linking with optional MP30 Drawdown Meter. Controls allow for easy flow rate adjustment and include manual mode for sample collection. Powered by 3 "AA" batteries (provides up to 400 hours use). Includes	EA	5,495.00	5,495.00
		Nitrogen regulator (CGA-580) and (2) air hoses.			
		Nitrogen regulator (CGA-580) and (2) air hoses.		TOTAL	62,445.80
OPTION	NAL ITEMS:	Nitrogen regulator (CGA-580) and (2) air hoses.		TOTAL	62,445.80
OPTION 1	NAL ITEMS: WW- CUSTOM	WELL WIZARD CUSTOM PRODUCT MP30-1000: MicroPurge Basics Drawdown / Level Meter. 1000' model connects to the MP10 / MP15 controls to prevent excessive drawdown during low- flow purging (based on limits you set). If	EA	TOTAL 2,600.00	62,445.80 2,600.00

SPN:909512

LEAD TIME:4-5 Weels ARO

TERMS & CONDITIONS: Payment Terms: NET 30

Estimated shipping time 5-10 working days after receipt of Purchase Order, transit time not included. Pricing valid for 30 days. Final delivery date will be determined at time of order. All prices are in U. S. dollars, FOB SHIPPING POINT, USA. A copy of your purchase order, or signed quote, is required at time of order. Payment terms (shown above) are calculated from invoice date, subject to credit approval. A service charge of 1% per month will be applied to all past due invoices.

Unless shown as separate line item(s), total price shown DOES NOT include applicable sales tax or shipping & handling charges. Applicable sales taxes, shipping and handling charges will be added to the invoice. Estimates available upon request.

After acceptance of an order, no order can be returned without QED approval. Standard equipment, not

custom in nature, can generally be returned for credit within 30 days of purchase. The equipment must be unused and in its original packaging and is subject to a 15% restocking fee. Custom equipment or tubing cut to a requested length cannot be returned for credit. All products will be returned freight prepaid to sellers facility.

Invoice To:	Ship To:
	Aut
REQUESTED DELIVERY DATE: / / 2	2015 Amount Approved: \$
Accepted by:	PO Number:
Print Name:	Company:
Title:	Date:

[_] Check box if this order is necessary to your (or another contractors) contract with the federal government.

To place your order, complete the above section and email to: info@qedenv.com (or fax to: 734-995-1170). (Please note that a hard copy of your PO may be required before shipment.)

When placing orders, please make paperwork out to: QED Environmental Systems, Inc.

Mailing Address: PO Box 3726 Ann Arbor, MI, 48106 Remit To Address: PO Box 935668 Atlanta, GA 31193-5668

TOTAL BEING APPROVED \$62,445.80

Well Wizard (R) Specification Sheet

Rev Date: 8/13/2015

Customer: Tetra Tech Site/Location: Pickle Butte Landfill Date: 8/12/15 Salesperson: RES/cfe

Well ID No.	PB-3	PB-4	PB-5	PB-6	PB-7	PB-8
Well System Type	L	А	А	А	А	А
Casing Material & Schedule	SS	SS	SS	SS	SS	SS
Well Diameter (Inches)	4	4	4	4	4	4
Well Depth	542	645	527.5	507.5	565	417.5
Static Water Level	400	545	517	492	537	289
Water Column Height	142	100	10.5	15.5	28	128.5
Screen Length	10	15	10	10	20	30
Casing Length to Screen	520	605	512.5	487.5	535	377.5
Recovery Rate (gpm)						
Sample Collection Point	525	612	521	496	545	392.5
Cold Weather Protection	38458UH	38458UH	38458UH	38458UH	38458UH	38458UH
Cap Model	C46UH	C46UH	C46UH	C46UH	C46UH	C46UH
Elbow/Flex Flow Model	37740	37740	37740	37740	37740	37740
Tubing Stick-up Above Cap (included in total tube length)	0	0	0	0	0	0
Bladder Pump Model	ST1102M	ST1102M	ST1102M	ST1102M	ST1102M	ST1102M
Bladder Pump Inlet Screen	w/pump	w/pump	w/pump	w/pump	w/pump	w/pump
Pump Submergence	75.0	63.5	<u>0.5</u>	<u>0.5</u>	<u>4.5</u>	100.0
Bladder PumpTubing Model	PT5000	PT5000	PT5000	PT5000	PT5000	PT5000
Bladder Pump Tubing Length	475.0	608.5	517.5	492.5	541.5	389.0
Drop Tube Kit	37757					
Drop Tubing Model	34115					
Drop Tubing Length	42.5					
Drop Tube Inlet Screen Adapter	39365EP					
Drop Tube Weight Model	35415					
Drop Tube Extra Weights	1					
SS Support Cable SS Support Cable Length SS Support Cable Hardware Cable Support Bracket (pump) Cable Support Bracket (cap)	34324 476.0 w/pump w/pump w/pump	34324 609.5 w/pump w/pump w/pump	34324 518.5 w/pump w/pump w/pump	34324 493.5 w/pump w/pump w/pump	34324 542.5 w/pump w/pump w/pump	34324 390.0 w/pump w/pump w/pump
Initial Purge Volume (ml) (pump & tubing)	5,850	6,480	5,570	5,320	5,810	4,285
Calculated Throttle Pressure			oo		<u> </u>	
Initial Install Operational Pressures VOA Sampling Pressures	57.5 257.5 224.25	51.75 324.25 281.655	20.25 278.75 242.525	20.25 266.25 231.775	22.25 290.75 252.845	70 214.5 187.27
				Signature:		
y:\2015\[w-10043.xls]rev -				Date:		

Rev Date: 8/13/2015

Customer: Tetra Tech Site/Location: Pickle Butte Landfill Date: 8/12/15 Salesperson: RES/cfe

Note: All dimensions	from to	o of casing,	unless	specified.
----------------------	---------	--------------	--------	------------

Well ID No.	PB-9	PB-10	PB-11	PB-12	PB-13	PB-14
Well System Type	А	А	А	L	L	L
Casing Material & Schedule	SS	SS	SS	SS	SS	SS
Well Diameter (Inches)	4	4	4.5	4.5	4.5	4.5
Well Depth	543.25	546.35	420	555	923	923
Static Water Level	509	512	294	311	735	719
Water Column Height	34.25	34.35	126	244	188	204
Screen Length	30	30	60	60	60	60
Casing Length to Screen	508.25	511.35	340	480	840	845
Recovery Rate (gpm)						
Sample Collection Point	523	526	370	510	870	875
Cold Weather Protection	38458UH	38458UH	38458UH	38458UH	38458UH	38458UH
Cap Model	C46UH	C46UH	WW-CUSTOM	WW-CUSTOM	WW-CUSTOM	WW-CUSTOM
Elbow/Flex Flow Model	37740	37740	37740	37740	37740	37740
Tubing Stick-up Above Cap (included in total tube length)	0	0	0	0	0	0
Bladder Pump Model	ST1102M	ST1102M	ST1102M	ST1102M	ST1102M	ST1102M
Bladder Pump Inlet Screen	w/pump	w/pump	w/pump	w/pump	w/pump	w/pump
Pump Submergence	10.5	10.5	72.5	75.0	75.0	75.0
Bladder PumpTubing Model	PT5000	PT5000	PT5000	PT5000	PT5000	PT5000
Bladder Pump Tubing Length	519.5	522.5	366.5	386.0	810.0	794.0
Drop Tube Kit				37757	37757	37757
Drop Tubing Model				34115	34115	34115
Drop Tubing Length				116.5	52.5	73.5
Drop Tube Inlet Screen Adapter				39365EP	39365EP	39365EP
Drop Tube Weight Model				35415	35415	35415
Drop Tube Extra Weights				1	1	1
SS Support Cable SS Support Cable Length SS Support Cable Hardware Cable Support Bracket (pump) Cable Support Bracket (cap)	34324 520.5 w/pump w/pump w/pump	34324 523.5 w/pump w/pump w/pump	34324 367.5 w/pump w/pump w/pump	34324 387.0 w/pump w/pump w/pump	34324 811.0 w/pump w/pump w/pump	34324 795.0 w/pump w/pump w/pump
Initial Purge Volume (ml) (pump & tubing)	5,590	5,620	4,060	5,700	9,300	9,350
Calculated Throttle Pressure						
Initial Install Operational Pressures VOA Sampling Pressures	25.25 279.75 243.385	25.25 281.25 244.675	56.25 203.25 177.595	57.5 213 185.98	57.5 425 368.3	57.5 417 361.42
			l	Signature:		
y:\2015\[w-10043.xls]rev -			ľ	Date:		

Well Wizard (R) Specification Sheet

						Rev Date:	8/13/2015
Customer:	letra lech						
Site/Location:	Pickle Butte L	andfill					
Date:	8/12/15						
Salesperson:	RES/cfe		Note:	All di	imensions from	top of casing, ι	inless specified.
Well ID No.	PB-15						
Well System Type	L						
Casing Material & Schedule	SS						
Well Diameter (Inches)	4.5						
Well Depth	870						
Static Water Level	660						
Water Column Height	210						
Screen Length	60						
Casing Length to Screen	790						
Recovery Rate (gpm)							
Sample Collection Point	820						
Cold Weather Protection	38458UH						
Cap Model	WW-CUSTOM						
Elbow/Flex Flow Model	37740						
Tubing Stick-up Above Cap	0						
(included in total tube length)							
Bladder Pump Model	ST1102M						
Bladder Pump Inlet Screen	w/pump						
Pump Submergence	75.0						
Bladder PumpTubing Model	PT5000						
Bladder Pump Tubing Length	735.0						
Drop Tube Kit	37757						
Drop Tubing Model	34115						
Drop Tubing Length	77.5						
Drop Tube Inlet Screen Adapter	39365EP						
Drop Tube Weight Model	35415						
Drop Tube Extra Weights	1						
SS Support Cable	34324						
SS Support Cable Length	736.0						
SS Support Cable Hardware	w/pump						
Cable Support Bracket (pump)	w/pump						
Cable Support Bracket (cap)	w/pump						
Initial Purge Volume (ml) (pump & tubing)	8,800						
Calculated Throttle Pressure							
Initial Install	57.5						
Operational Pressures VOA Sampling Pressures	387.5 336.05						
					Signature		
v:\2015\[w 10042 violesy					Doto:		
y. \∠013\[w-10043.xis]rev -					Date:		

APPENDIX 4-A PROJECTED WASTE FLOW DATA

Waste Landfilled		Cumulative Waste Landfilled	Daily Rate	
Year	[Mg/yr.]	[short tons/yr.]	[short tons/yr.]	[short tons/yr.]
	2015 - 2040 to	nnage estimated ba increase	ased on 1.5% annual	(312 DPY)
1983	16,763	18,478	18,478	59
1984	35,837	39,503	57,981	127
1985	38,289	42,206	100,187	135
1986	40,890	45,074	145,261	144
1987	43,651	48,117	193,378	154
1988	46,579	51,345	244,723	165
1989	49,687	54,770	299,493	176
1990	62,117	68,472	367,965	219
1991	65,906	72,649	440,614	233
1992	69,927	77,081	517,695	247
1993	74,371	81,980	599,675	263
1994	98,035	108,065	707,740	346
1995	102,897	113,424	821,164	364
1996	108,596	119,707	940,871	384
1997	113,751	125,389	1,066,260	402
1998	115,511	127,329	1,193,589	408
1999	119,497	131,723	1,325,312	422
2000	127,385	140,418	1,465,730	450
2001	135,886	149,789	1,615,519	480
2002	141,407	155,874	1,771,393	500
2003	154,321	170,110	1,941,503	545
2004	162,007	178,582	2,120,085	572
2005	177,420	195,572	2,315,657	627
2006	207,128	228,320	2,543,977	732
2007	201,826	222,475	2,766,452	713
2008	185,458	204,433	2,970,885	655
2009	159,922	176,284	3,147,169	565
2010	162,545	179,175	3,326,344	574
2011	153,438	169,137	3,495,481	542
2012	161,591	178,124	3,673,605	571
2013	171,105	188,611	3,862,216	605
2014	192,282	211,955	4,074,171	679
2015	195,167	215,134	4,289,305	690
2016	198,094	218,361	4,507,667	700
2017	201,065	221,637	4,729,303	710
2018	204,081	224,961	4,954,265	721
2019	207,143	228,336	5,182,600	732
2020	210,250	231,761	5,414,361	743
2021	213,404	235,237	5,649,598	754

Canyon County Pickles Butte Sanitary Landfill Waste Acceptance

	Waste I	_andfilled	Cumulative Waste Landfilled	Daily Rate	
Year	[Mg/yr.]	[Mg/yr.] [short tons/yr.]		[short tons/yr.]	
	2015 - 2040 to	2040 tonnage estimated based on 1.5% annual increase			
2022	216,605	238,766	5,888,364	765	
2023	219,854	242,347	6,130,711	777	
2024	223,151	245,982	6,376,694	788	
2025	226,499	249,672	6,626,366	800	
2026	229,896	253,417	6,879,783	812	
2027	233,345	257,219	7,137,002	824	
2028	236,845	261,077	7,398,079	837	
2029	240,398	264,993	7,663,071	849	
2030	244,004	268,968	7,932,039	862	
2031	247,664	273,002	8,205,042	875	
2032	251,379	277,097	8,482,139	888	
2033	255,149	281,254	8,763,393	901	
2034	258,976	285,473	9,048,866	915	
2035	262,861	289,755	9,338,620	929	
2036	266,804	294,101	9,632,721	943	
2037	270,806	298,513	9,931,234	957	
2038	274,868	302,990	10,234,224	971	
2039	278,991	307,535	10,541,759	986	
2040	283,176	312,148	10,853,907	1,000	
Total	9,846,499	10,853,907			

Canyon County Pickles Butte Sanitary Landfill Waste Acceptance

*Based on a 6 day per week operation (312 days per year) and an annual growth rate of 1.5%

APPENDIX 4-B COPIES OF FEDERAL REGULATIONS

The EPA Administrator, Gina McCarthy, signed the following notice on 8/14/2015, and EPA is submitting it for publication in the *Federal Register* (FR). While we have taken steps to ensure the accuracy of this Internet version of the rule, it is not the official version of the rule for purposes of compliance. Please refer to the official version in a forthcoming FR publication, which will appear on the Government Printing Office's FDSys website (http://gpo.gov/fdsys/search/home.action) and on Regulations.gov (http://www.regulations.gov) in Docket No. EPA-HQ-OAR-2014-0451. Once the official version of this document is published in the FR, this version will be removed from the Internet and replaced with a link to the official version

6560-50-P

ENVIRONMENTAL PROTECTION AGENCY

40 CFR Part 60

[EFA-EQ-OAR-2014-0451; FRL-9930-64-OAR]

RIN 2060-AS23

Emission Guidelines and Compliance Times for Municipal Solid

Waste Landfills

AGENCY: Environmental Protection Agency.

ACTION: Proposed rule.

SUMMARY: The Environmental Protection Agency (EPA) is proposing a new subpart, 40 CFR part 60, subpart Cf that updates the Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills (40 CFR part 60, subpart Cc) (Emission Guidelines). The EPA determined that it was appropriate to review the landfills Emission Guidelines based on changes in the landfills industry since the Emission Guidelines were promulgated in 1996. The EPA's review of the Emission Guidelines for municipal solid waste (MSW) landfills applies to landfills that accepted waste after November 8, 1987, and commenced construction, reconstruction, or modification on or before July 17, 2014. Based on its initial review, the EPA has determined that it is appropriate to propose revisions to the Emission Guidelines that reflect changes to the population of landfills and the results of an analysis of the timing and methods for reducing emissions. This action proposes to achieve additional reductions of landfill gas (LFG) and its components, including methane, by lowering the emissions threshold at which a landfill must install controls. This action also incorporates new data and information received in response to an advanced notice of proposed rulemaking and addresses other regulatory issues including surface emissions monitoring, wellhead monitoring, and the definition of landfill gas treatment system.

In addition to considering information received in response to this proposed rule in evaluating potential changes to the Emission Guidelines, the EPA intends to consider the information in evaluating whether changes to the requirements for new sources beyond those in the July 17, 2014, proposed rule (79 FR 41796) for new sources are warranted.

The proposed revisions to the Emission Guidelines, once implemented through revised state plans or a revised federal plan, would reduce emissions of LFG, which contains both nonmethane organic compounds and methane. Landfills are a significant source of methane which is a potent greenhouse gas (GHG) pollutant. These avoided emissions will improve air quality and reduce public health and welfare effects associated with exposure to landfill gas emissions.

This document is a prepublication version, signed by EPA Administrator, Gina McCarthy on 8/14/2015. We have taken steps to ensure the accuracy of this version, but it is not the official version.

the row the ons ay he to to te e

8

vil to

protection of human health and the environment.

3.4.3 Technical Considerations

Disease vectors such as rodents, birds, flies, and mosquitoes typically are attracted by putrescent waste and standing water, which act as a food source and breeding ground. Putrescent waste is solid waste that contains organic matter (such as food waste) capable of being decomposed by micro-organisms. A MSWLF facility typically accepts putrescent wastes.

Application of cover at the end of each operating day generally is sufficient to control disease vectors; however, other vector control alternatives may be required. --These alternatives could include: reducing the size of the working face; other operational modifications (e.g., increasing cover thickness, changing cover type, density, placement frequency, and grading); repellents, insecticides or rodenticides; composting or processing of organic wastes prior to disposal; and predatory or reproductive control of insect, bird, and animal populations. Additional methods to control birds are discussed in Chapter 2 (Airport Safety).

Mosquitoes, for example, are attracted by standing water found at MSWLFs, which can provide a potential breeding ground after only three days. Water generally collects in surface depressions, open containers, exposed tires, ponds resulting from soil excavation, leachate storage ponds, and siltation basins. Landfill operations that minimize standing water and that use an insecticide spraying program ordinarily are effective in controlling mosquitoes.

Vectors may reach the landfill facility not only from areas adjacent to the landfill, but through other modes conducive to harborage and breeding of disease vectors. Such modes may include residential and commercial route collection vehicles and transfer stations. These transport modes and areas also should be included in the disease vector control program if disease vectors at the landfill facility become a problem. Keeping the collection vehicles and transfer stations covered; emptying and cleaning the collection vehicles and transfer stations; using repellents. insecticides. OF rodenticides; and reproductive control are all measures available to reduce disease vectors in these areas.

3.5 EXPLOSIVE GASES CONTROL 40 CFR §258.23

3.5.1 Statement of Regulation

(a) Owners or operators of all MSWLF units must ensure that:

(1) The concentration of methane gas generated by the facility does not exceed 25 percent of the lower explosive limit for methane in facility structures (excluding gas control or recovery system components); and

(2) The concentration of methane gas does not exceed the LEL for methane at the facility property boundary.

(b) Owners or operators of all MSWLF units must implement a routine methane monitoring program to ensure that the standards of paragraph (a) of this section are met.

87

(1) The type and frequency of monitoring must be determined based on the following factors:

(i) Soil conditions;

(ii) The hydrogeologic conditions surrounding the facility;

(iii) The hydraulic conditions surrounding the facility; and

(iv) The location of facility structures and property boundaries.

(2) The minimum frequency of monitoring shall be quarterly.

(c) If methane gas levels exceeding the limits specified in paragraph (a) of this section are detected, the owner or operator must:

(1) Immediately take all necessary steps to ensure protection of human health and notify the State Director;

(2) Within seven days of detection, place in the operating record the methane gas levels detected and a description of the steps taken to protect human health; and

(3) Within 60 days of detection, implement a remediation plan for the methane gas releases, place a copy of the plan in the operating record, and notify the State Director that the plan has been implemented. The plan shall describe the nature and extent of the problem and the proposed remedy. (4) The Director of an approved State may establish alternative schedules for demonstrating compliance with paragraphs (2) and (3).

(d) For purposes of this section, <u>lower</u> <u>explosive limit</u> (LEL) means the lowest percent by volume of a mixture of explosive gases in air that will propagate a flame at 25°C and atmospheric pressure.

3.5.2 Applicability

The regulation applies to existing MSWLF units, lateral expansions, and new MSWLF The accumulation of methane in units. MSWLF structures can potentially result in fire and explosions that can endanger employees, users of the disposal site, and occupants of nearby structures, or cause damage to landfill containment structures. These hazards are preventable through monitoring and through corrective action should methane gas levels exceed specified limits in the facility structures (excluding gas control or recovery system components), or at the facility property boundary. MSWLF facility owners and operators must comply with the following requirements:

- Monitor at least quarterly;
- Take immediate steps to protect human health in the event of methane gas levels exceeding 25% of the lower explosive limit (LEL) in facility structures, such as evacuating the building;
- Notify the State/Tribal Director if methane levels exceed 25% of the LEL in facility structures or exceed the LEL at the facility property boundary;

State for with

West

gate ure,

/LF

of

LF in t in ger and use ts. igh ion ied ng s),

ry. ust

an

25

er ty

10

if

L

L

 Within 7 days of detection, place in the operating record documentation that methane gas concentrations exceeded the criteria, along with a description of immediate actions taken to protect human health; and

• Within 60 days of detection, implement a remediation plan for the methane gas releases, notify the State/Tribal Director, and place a copy of the remediation plan in the operating record.

The compliance schedule for monitoring and responding to methane levels that exceed the criteria of this regulation can be changed by the Director of an approved State/Tribe.

3.5.3 Technical Considerations

To implement an appropriate routine methane monitoring program to demonstrate allowable methane compliance with concentrations, the characteristics of landfill gas production and migration at a site should be understood. Landfill gases are the result of microbial decomposition of solid waste. Gases produced include methane (CH.), carbon dioxide (CO2), and lesser amounts of other gases (e.g., hydrogen, volatile organic compounds, and hydrogen sulfide). Methane gas, the principal component of natural gas, is generally the primary concern in evaluating landfill gas generation because it is odorless and highly combustible. Typically, hydrogen gas is present at much lower concentra-tions. Hydrogen forms as decomposition progresses from the acid production phase to the methanogenic phase. While hydrogen is explosive and is occasionally detected in landfill gas, it readily reacts to form methane or hydrogen sulfide. Hydrogen sulfide is toxic and is

readily identified by its "rotten egg" smell at a threshold concentration near 5 ppb.

Landfill gas production rates vary spatially within a landfill unit as a result of pockets of elevated microbial activity but, due to partial pressure gradients, differences in gas composition are reduced as the gases commingle within and outside the landfill unit. Although methane gas is lighter than air and carbon dioxide is heavier, these gases are concurrently produced at the microbial level and will not separate by their individual density. The gases will remain mixed and will migrate according to the density gradients between the landfill gas and the surrounding gases (i.e., a mixture of methane and carbon dioxide in a landfill unit or in surrounding soil will not separate by rising and sinking respectively, but will migrate as a mass in accordance with the density of the mixture and other gradients such as temperature and partial pressure).

undergoing vigorous microbial When production, gas pressures on the order of 1 to 3 inches of water relative to atmospheric pressure are common at landfill facilities. with much higher pressures occasionally reported. A barometric pressure change of 2 inches of mercury is equivalent to 27.2 inches of water. Relative gauge pressures at a particular landfill unit or portion of a landfill unit, the ability of site conditions to contain landfill gas, barometric pressure variations, and the microbial gas production rate control pressure-induced landfill gas Negative gas pressures are migration. commonly observed and are believed to occur as a result of the delayed response within a landfill unit to the passage of a high pressure system outside the landfill unit. Barometric highs will tend to introduce atmospheric oxygen into surface soils in

shallow portions of the landfill unit, which may alter microbial activity, particularly methane production and gas composition.

Migration of landfill gas is caused by concentration gradients, pressure gradients, and density gradients. The direction in which landfill gas will migrate is controlled by the driving gradients and gas permeability of the porous material through which it is migrating. Generally, landfill gas will migrate through the path of least resistance.

Coarse, porous soils such as sand and gravel will allow greater lateral migration or transport of gases than finer-grained soils. Generally, resistance to landfill gas flow increases as moisture content increases and, – therefore, an effective barrier to gas flow can be created under saturated conditions. Thus, readily drained soil conditions, such as sands and gravels above the water table, may provide a preferred flowpath, but unless finer-grained soils are fully saturated, landfill gases also can migrate in a "semisaturated" zone. Figure 3-2 illustrates the potential effects of surrounding geology on gas migration.

While geomembranes may not eliminate landfill gas migration, landfill gas in a closed MSWLF unit will tend to migrate laterally if the final cover contains a geomembrane and if the side slopes of the landfill do not contain an effective gas barrier. Lateral gas migration is more common in older facilities that lack appropriate gas control systems. The degree of lateral migration in older facilities also may depend on the type of natural soils surrounding the facility. Stressed vegetation may indicate migration. Landfill gas present in the atmosphere tends to make the soil anaerd by displacing the oxygen, then asphyxiating the roots of plants. General the higher the concentration of combust gas and/or carbon dioxide and the lower to amount of oxygen, the greater the extent damage to vegetation (Flowers, et. 1 1982).

Gas Monitoring

The owner or operator of a MSWI unit/facility must implement a routing methane monitoring program to comply with the lower explosive limit (LEI) requirements for methane. Methane is explosive when present in the range of 5 th 15 percent by volume in air. When present in air at concentrations greater than 15 percent, the mixture will not explode. This 15 percent threshold is the Upper Explosive Limit (UEL). The UEL is the maximum concentration of a gas or vapor above which the substance will not explode when exposed to a source of ignition. The explosive hazard range is between the LEL and the UEL. Note, however, that methane concentrations above the UEL remain a significant concern; fire and asphyxiation can still occur at these levels. In addition, even a minor dilution of the methane by increased ventilation can bring the mixture back into the explosive range.

To demonstrate compliance, the owner/operator would sample air within facility structures where gas may accumulate and in soil at the property boundary. Other monitoring methods may include: (1) sampling gases from probes within the landfill unit or from within the leachate collection system; or (2) sampling gases

1111

3

e h J

3 0 It

5 is e n h d

10

10

a M

n,)y re

10

in ite

ier (1) the ate

Figure 3-2 Potential Effects of Surrounding Geology on Gas Migration

from monitoring probes installed in soil between the landfill unit and either the property boundary or structures where gas migration may pose a danger. A typical gas monitoring probe installation is depicted in Figure 3-3.

Although not required by the regulations, collection of data such as water presence and level, gas probe pressure, ambient temperature, barometric pressure, and the occurrence of precipitation during sampling, provides useful information in assessing monitoring results. For example, falling barometric pressure may cause increased subsurface (gas) pressures and corresponding increased methane content as gas more readily migrates from the landfill. Gas probe pressure can be measured using a portable gauge capable of measuring both vacuum and pressure in the range of zero to five inches of water pressure (or other suitable ranges for pressure conditions); this pressure should be measured prior to methane measurement or sample collection in the gas probe. A representative sample of formation (subsurface) gases can be collected directly from the probe. Purging typically is not necessary due to the small volume of the probe. A water trap is recommended to protect instrumentation that is connected directly to the gas probe. After measurements are obtained, the gas probe should be capped to reduce the effects of venting or barometric pressure variations on gas composition in the vicinity of the probe.

The frequency of monitoring should be sufficient to detect landfill gas migration based on subsurface conditions and changing landfill conditions such as partial or complete capping, landfill expansion, gas migration control system operation or failure, construction of new or replacement structures, and changes in landscaping or land use practices. The rate of landfill gas migration as a result of these anticipated changes and the site-specific conditions provides the basis for establishing monitoring frequency. Monitoring is to be conducted at least quarterly.

The number and location of gas probes is also site-specific and highly dependent on subsurface conditions, land use, and location and design of facility structures. Monitoring for gas migration should be within the more permeable strata. Multiple or nested probes are useful in defining the vertical configuration of the migration pathway. Structures with basements or crawl spaces are more susceptible to landfill gas infiltration. Elevated structures are typically not at risk.

Measurements are usually made in the field with 2 portable methane meter. explosimeter, or organic vapor analyzer. Gas samples also may be collected in glass or metal containers for laboratory analysis. Instruments with scales of measure in "percent of LEL" can be calibrated and used to detect the presence of methane. Instruments of the hot-wire Wheatstone bridge type (i.e., catalytic combustion) directly measure combustibility of the gas mixture withdrawn from the probe. The thermal conductivity type meter is susceptible to interference as the relative gas composition and, therefore, the thermal conductivity, changes. Field instruments should be calibrated prior to measurements and should be rechecked after each day's monitoring activity.

Ch. I (7-1-09 Edition)

÷

ŝ

veriods (during actual ss) during which the temperature is 5 or ees above the average sured during the most nce test that demnce;

lected facilities monicinerator combustion

all 3-hour periods ating operations) durrage combustion temevice is more than 28 low the average comure of the device durent performance test l compliance;

ected facilities moniincinerator catalyst

all 3-hour periods ting operations) durrage gas temperature e the catalyst bed is us degrees below the perature during the formance test that npliance and all 3ig actual coating ophich the average gas ence across the cataan 80 percent of the iperature difference recent performance ated compliance;

ected facility moniclosure pursuant to capture system pur-, all 3-hour periods bing operations) durrage total enclosure ystem monitor readrcent or more from measured during the ormance test that liance.

r operator of an afration not required ; under paragraphs of this section bele periods have oct semiannual stateis fact.

r operator of an afoperation, demance by the test in §60.743(a)(3) (liqbalance) shall sub-

Environmental Protection Agency

(1) For months of compliance, semiannual reports to the Administrator stating that the affected coating operation was in compliance for each 1month period; and

(2) For months of noncompliance, quarterly reports to the Administrator documenting the 1-month amount of VOC contained in the coatings, the 1month amount of VOC recovered, and the percent emission reduction for each month.

(f) Each owner or operator of an affacted coating operation, either by itself or with associated coating mix preparation equipment, shall submit the following with the reports required under paragraphs (d) and (e) of this section:

(1) All periods during actual mixing or coating operations when a required monitoring device (if any) was malfunctioning or not operating; and

(2) All periods during actual mixing or coating operations when the control device was malfunctioning or not operating.

(g) The reports required under paragraphs (b), (c), (d), and (e) of this section shall be postmarked within 30 days of the end of the reporting period. (h) Records required in §60.747 must

be retained for at least 2 years.

(i) The requirements of this section remain in force until and unless EPA, in delegating enforcement authority to a State under section 111(c) of the Act, approves reporting requirements or an alternative means of compliance surveillance adopted by such States. In this event, affected sources within the State will be relieved of the obligation to comply with this subsection, provided that they comply with the requirements established by the State.

§ 60.748 Delegation of authority.

(a) In delegating implementation and enforcement authority to a State under section 111(c) of the Act, the authorities contained in paragraph (b) of this section shall be retained by the Administrator and not transferred to a State.

(b) Authorities that will not be delegated to States: §§ 60.743(a)(3)(v) (A) and (B); 60.743(e); 60.745(a); 60.746.

Subpart WWW-Standards of Performance for Municipal Solid Waste Landfills

SOURCE: 61 FR 9919, Mar. 12, 1896, unless otherwise noted.

§ 60.750 Applicability, designation of affected facility, and delegation of authority.

(a) The provisions of this subpart apply to each municipal solid waste landfill that commenced construction, reconstruction or modification on or after May 30, 1991. Physical or operational changes made to an existing MSW landfill solely to comply with subpart Cc of this part are not considered construction, reconstruction, or modification for the purposes of this section.

(b) The following authorities shall be retained by the Administrator and not transferred to the State: \$60.754(a)(5).

(c) Activities required by or conducted pursuant to a CERCLA, RORA, or State remedial action are not considered construction, reconstruction, or modification for purposes of this subpart.

[61 FR 9919, Mar. 12, 1996, as amended at 63 FR 32750, June 16, 1998]

§ 60.751 Definitions.

As used in this subpart, all terms not defined herein shall have the meaning given them in the Act or in subpart A of this part.

Active collection system means a gas collection system that uses gas mover equipment.

Active landfill means a landfill in which solid waste is being placed or a landfill that is planned to accept waste in the future.

Closed landfill means a landfill in which solid waste is no longer being placed, and in which no additional solid wastes will be placed without first filing a notification of modification as prescribed under $\S60.7(a)(4)$. Once a notification of modification has been filed, and additional solid waste is placed in the landfill, the landfill is no longer closed.

Closure means that point in time when a landfill becomes a closed landfill.

751

APPENDIX 4-C LANDGEM MINIMUM METHANE GENERATION RATES, 2015

Summary Report

Landfill Name or Identifier: Pickles Butte Landfill

Ç

Date: Tuesday, September 01, 2015

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

 Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

- i = 1-year time increment
- n = (year of the calculation) (initial year of waste acceptance)
- j = 0.1-year time increment

k = methane generation rate (year')

 L_0 = potential methane generation capacity (m^3/Mg)

 M_i = mass of waste accepted in the ith year (*Mg*) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (*decimal years*, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilp.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

LANDFILL CHARACTERISTICS		
Landfill Open Year	1983	
Landfill Closure Year (with 80-year limit)	2050	
Actual Closure Year (without limit)	2050	
Have Model Calculate Closure Year?	No	
Waste Design Capacity	39,909,972	short tons
MODEL PARAMETERS		
Methane Generation Rate, k	0.020	year ⁻¹
Potential Methane Generation Capacity, Lo	100	m ³ /Mg
NMOC Concentration	485	ppmv as hexane
Methane Content	50	% by volume
GASES / POLLUTANTS SELECTED		

CADED / I OLEDIANIO DI	
Gas / Pollutant #1:	⊺otai landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

WASTE ACCEPTANCE RATES

V	Waste Ac	cepted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1983	16,798	18,478	0	0	
1984	35,912	39,503	16,798	18,478	
1985	38,369	42,206	52,710	57,981	
1986	40,976	45,074	91,079	100,187	
1987	43,743	48,117	132,055	145,261	
1988	46,677	51,345	175,798	193,378	
1989	49,791	54,770	222,475	244,723	
1990	62,247	68,472	272,266	299,493	
1991	66,045	72,649	334,514	367,965	
1992	70,074	77,081	400,558	440,614	
1993	74,527	81,980	470,632	517,695	
1994	98,241	108,065	545,159	599,675	
1995	103,113	113,424	643,400	707,740	
1996	108,825	119,707	746,513	821,164	
1997	113,990	125,389	855,337	940,871	
1998	115,754	127,329	969,327	1,066,260	
1999	119,748	131,723	1,085,081	1,193,589	
2000	127,653	140,418	1,204,829	1,325,312	
2001	136,172	149,789	1,332,482	1,465,730	
2002	141,704	155,874	1,468,654	1,615,519	
2003	154,645	170,110	1,610,357	1,771,393	
2004	162,347	178,582	1,765,003	1,941,503	
2005	177,793	195,572	1,927,350	2,120,085	
2006	207,564	228,320	2,105,143	2,315,657	
2007	202,250	222,475	2,312,706	2,543,977	
2008	185, 8 48	204,433	2,514,956	2,766,452	
2009	160,258	176,284	2,700,805	2,970,885	
2010	162,886	179,175	2,861,063	3,147,169	
2011	153,761	169,137	3,023,949	3,326,344	
2012	161,931	178,124	3,177,710	3,495,481	
2013	171,465	188,611	3,339,641	3,673,605	
2014	192,686	211,955	3,511,105	3,862,216	
2015	195,577	215,134	3,703,792	4,074,171	
2016	198,510	218,361	3,899,368	4,289,305	
2017	201,488	221,637	4,097,879	4,507,667	
2018	204,510	224,961	4,299,367	4,729,303	
2019	207,578	228,336	4,503,877	4,954,265	
2020	210,692	231,761	4,711,455	5,182,600	
2021	213,852	235,237	4,922,147	5,414,361	
2022	217.060	238,766	5,135,999	5,649,598	

WASTE ACCEPTANCE RATES (Continued)

Veen	Waste Ac	cepted	Waste-I	n-Place
1941	(Mg/year)	(short tons/year)	(Mg)	(short tons)
2023	220,316	242,347	5,353,058	5,888,364
2024	223,620	245,982	5,573,374	6,130,711
2025	226,975	249,672	5,796,994	6,376,694
2026	230,379	253,417	6,023,969	6,626,366
2027	233,835	257,219	6,254,348	6,879,783
2028	237,343	261,077	6,488,183	7,137,002
2029	240,903	264,993	6,725,526	7,398,079
2030	244,516	268,968	6,966,429	7,663,071
2031	248,184	273,002	7,210,945	7,932,039
2032	251,907	277,097	7,459,129	8,205,042
2033	255,685	281,254	7,711,035	8,482,139
2034	259,521	285,473	7,966,721	8,763,393
2035	263,413	289,755	8,226,241	9,048,866
2036	267,365	294,101	8,489,655	9,338,620
2037	271,375	298,513	8,757,019	9,632,721
2038	275,446	302,990	9,028,394	9,931,234
2039	279,577	307,535	9,303,840	10,234,224
2040	283,771	312,148	9,583,418	10,541,759
2041	283,771	312,148	9,867,189	10,853,907
2042	283,771	312,148	10,150,960	11,166,056
2043	283,771	312,148	10,434,731	11,478,204
2044	283,771	312,148	10,718,502	11,790,352
2045	283,771	312,148	11,002,273	12,102,500
2046	283,771	312,148	11,286,044	12,414, 64 8
2047	283,771	312,148	11,569,815	12,726,796
2048	283,771	312,148	11,853,586	13,038,944
2049	283,771	312,148	12,137,357	13,351,093
2050	0	0	12,421,128	13,663,241
2051	0	0	12,421,128	13,663,241
2052	0	0	12,421,128	13,663,241
2053	0	0	12,421,128	13,663,241
2054	0	0	12,421,128	13,663,241
2055	0	0	12,421,128	13,663,241
2056	0	0	12,421,128	13,663,241
2057	0	0	12,421,128	13,663,241
2058	0	0	12,421,128	13,663,241
2059	0	0	12,421,128	13,663,241
2060	0	0	12,421,128	13,663,241
2061	0	0	12,421,128	13,663,241
2062	0	0	12,421,128	13,663,241

Pollutant Parameters

	Gas / Pollutant Default Parameters:			User-specified Po	ollutant Parameters:
-		Concentration		Concentration	
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
Gases	Total landfill gas		0.00		
	Methane		16.04	k l	
	Carbon dioxide		44.01		
	NMOC	4,000	86.18		
	1,1,1-Trichloroethane (methyl chloroform) - HAP	0.48	133.41		1
	1,1,2,2- Tetrachloroethane - HAP/VOC	1.1	167.85		
	1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	2.4	98.97		
	1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	0.20	96.94		
	1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	0.41	98.96		
	1,2-Dichloropropane (propylene dichloride) - HAP/VOC	0.18	112.99		
	2-Propanol (isopropyl				
	alcohol) - VOC	50	60.11		
	Acetone	7.0	58.08		
	Acrylonitrile - HAP/VOC	6.3	53.06		
	Benzene - No or Unknown Co-disposal -	19	78 11		
	Benzene - Co-disposal - HAP/VOC	11	78.11		
	Bromodichloromethane -				
	VOC	3.1	163.83		
	Butane - VOC	5.0	58.12		
	Carbon disulfide -				
	HAP/VOC	0.58	76.13		
	Carbon monoxide	140	28.01		
	Carbon tetrachloride - HAP/VOC	4.0E-03	153.84		
	Carbonyl sulfide -	0.40	00.07		
	Chlorobenzene -	0.49	60.07		
	HAP/VUC	0.25	112.56		
	Chloroethane (ethyl	1.3	80.4/		
	cnionde) - HAP/VOC	1.3	64.52		
	Chlorotorm - HAP/VOC	0.03	119.39		
	Unioromethane - VOC	1.2	50.49		
	Dichlorobenzene - (HAP for para isomer/VOC)	0.21	147		
	Dichlorodifluoromethane	16	120.91		
	Dichlorofluoromethane -	2,6	102.92		
	Dichloromethane				
	(methylene chloride) -				
	HAP	14	84.94		
	Dimethyl sulfide (methyl sulfide) - VOC	7.8	62.13		
	Ethane	890	30.07		
	Ethanol - VOC	27	46.08		
			10.00		

Pollutant Parameters (Continued)

Gas / Pollutant Default Parameters:			User-specified Po	llutant Parameters.
Compound	Concentration (ppmv)	Molecular Weight	Concentration (ppmv)	Molecular Weigh
Ethyl mercaptan	23	62 13		
Ethylbenzene -	4.0	100.10		
Ethylene dibromide -	4.0	106.16		
HAP/VOC Fluorotrichloromethane -	1.0E-03	187.88		
VOC	0.76	137.38	<u></u>	
Hudrogon oulfido	36	34.08		
Marcuny (total) - HAP	2.9E-04	200.61		
Methyl ethyl ketone -	2.02.04	200.01		
HAP/VOC	7.1	72.11		
HAP/VOC	1.9	100.16		
Methyl mercaptan - VOC	2.5	48.11		
Pentane - VOC	3.3	72.15		
Perchloroethylene (tetrachloroethylene) -			0	
HAP	3.7	165.83		
Propane - VOC	11	44.09		
t-1,2-Dichloroethene -	2.0	06.04		
Toluene - No or	2.0	50.94		
Unknown Co-disposal -	20	02.12		
	39	92.10		
HAP/VOC	170	92.13		
(trichloroethene) - HAP/VOC	2.8	131.40		
Vinyl chloride -				
HAP/VOC	7.3	62.50		
Xylenes - HAP/VOC	12	106.16		
1000				
the second se				

<u>Graphs</u>

Results

V		Total landfill gas			Methane	
Tear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1983	0	0	0	0	0	0
1984	8.316E+01	6.659E+04	4.474E+00	2.221E+01	3.330E+04	2.237E+00
1985	2.593E+02	2.076E+05	1.395E+01	6.926E+01	1.038E+05	6.976E+00
1986	4.441E+02	3.556E+05	2.389E+01	1.186E+02	1.778E+05	1.195E+01
1987	6.382E+02	5.110E+05	3.434E+01	1.705E+02	2.555E+05	1.717E+01
1988	8.421E+02	6.743E+05	4.531E+01	2.249E+02	3.372E+05	2.265E+01
1989	1.057E+03	8.460E+05	5.684E+01	2.822E+02	4.230E+05	2.842E+01
1990	1.282E+03	1.027E+06	6.898E+01	3.425E+02	5.133E+05	3.449E+01
1991	1.565E+03	1.253E+06	8.419E+01	4.180E+02	6.265E+05	4.210E+01
1992	1.861E+03	1.490E+06	1.001E+02	4.970E+02	7.450E+05	5.006E+01
1993	2.171E+03	1.738E+06	1.168E+02	5.799E+02	8.692E+05	5.840E+01
1994	2.497E+03	1.999E+06	1.343E+02	6.669E+02	9.997E+05	6.717E+01
1995	2.934E+03	2.349E+06	1.578E+02	7.836E+02	1.175E+06	7.892E+01
1996	3.386E+03	2.711E+06	1.822E+02	9.045E+02	1.356E+06	9.109E+01
1997	3.858E+03	3.089E+06	2.076E+02	1.030E+03	1.545E+06	1.038E+02
1998	4.346E+03	3.480E+06	2.338E+02	1.161E+03	1.740E+06	1.169E+02
1999	4.833E+03	3.870E+06	2.600E+02	1.291E+03	1.935E+06	1.300E+02
2000	5.330E+03	4.268E+06	2.868E+02	1.424E+03	2.134E+06	1.434E+02
2001	5.856E+03	4.689E+06	3.151E+02	1.564E+03	2.345E+06	1.575E+02
2002	6.415E+03	5.136E+06	3.451E+02	1.713E+03	2.568E+06	1.726E+02
2003	6.989E+03	5.596E+06	3.760E+02	1.867E+03	2.798E+06	1.880E+02
2004	7.616E+03	6.099E+06	4.098E+02	2.034E+03	3.049E+06	2.049E+02
2005	8.269E+03	6.622E+06	4.449E+02	2.209E+03	3.311E+06	2.224E+02
2006	8.986E+03	7.195E+06	4.834E+02	2.400E+03	3.598E+06	2.417E+02
2007	9.835E+03	7.876E+06	5.292E+02	2.62/E+03	3.938E+06	2.646E+02
2008	1.064E+04	8.521E+06	5./26E+02	2.843E+03	4.261E+06	2.863E+02
2009	1.135E+04	9.0895+06	6.10/E+02	3.032E+03	4.545E+06	3.054E+02
2010	1.192E+04	9.545E+06	6.413E+02	3.184E+03	4.772E+06	3.207E+02
2011	1.249E+04	1.000E+07	6.000E+02	3.330E+03	5.0010+00	3.300E+02
2012	1.300E+04	1.041E+07	0.990E+02	3.4/3E+03	5.2000+00	3.498E+02
2013	1.300E+04	1.003E+07	7.209E+02	3.019E+03	5.4246+00	3.040E+02
2014	1.4135+04	1.1312+07	7.002E+02	3.774E+03	5.007E+06	3.001E+02
2015	1.400E+04	1.105E+07	7.904E+02	3.934E+03	5.927 E+00	3.902E+02
2010	1.5462404	1.239E+07	8 601E+02	4.1342+03	6.197 L+00	4.1046402
2017	1.683E±04	1.294L+07	9.056E+02	4.015E+03	6 739E+06	4.598E+02
2010	1.000E+04	1 402E+07	9.000E+02	4.430E+00	7.011E±06	4 711E±02
2013	1.751E+04	1.457E+07	9 788E±02	4.859E±03	7.011E+00	4.894F±02
2020	1.875±04	1.437E+07	1.016E+02	5.042E+03	7.557E+06	5.078E+02
2022	1.007 E+04	1.566E+07	1.052E+03	5 225E+03	7.831E+06	5.262E±02
2023	2 025E+04	1.600E+07	1.089E+03	5 408E+03	8 106E+06	5.447E+02
2024	2.020E+04	1.627E+07	1 126E+03	5.592E+03	8.383E+06	5.632E+02
2025	2.163F+04	1.732F+07	1.164F+03	5.777F+03	8.660F+06	5.819F+02
2026	2.232F+04	1.788E+07	1.201F+03	5.963E+03	8.938F+06	6.006F+02
2027	2.302E+04	1.844E+07	1.239E+03	6.150E+03	9.218E+06	6.193E+02
2028	2.372E+04	1.900E+07	1.276E+03	6.337E+03	9.499E+06	6.382E+02
2029	2.443E+04	1.956E+07	1.314E+03	6.526E+03	9.781E+06	6.572E+02
2030	2.514E+04	2.013E+07	1.353E+03	6.715E+03	1.007E+07	6.763E+02
2031	2.585E+04	2.070E+07	1.391E+03	6.905E+03	1.035E+07	6.954E+02
2032	2.657E+04	2.127E+07	1.429E+03	7.097E+03	1.064E+07	7.147E+02

	Total landfill gas			Methane			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
2033	2.729E+04	2.185E+07	1.468E+03	7.289E+03	1.093E+07	7.341E+02	
2034	2.801E+04	2.243E+07	1.507E+03	7.483E+03	1.122E+07	7.536E+02	
2035	2.874E+04	2.302E+07	1.547E+03	7.678E+03	1.151E+07	7.733E+02	
2036	2.948E+04	2.361E+07	1.586E+03	7.874E+03	1.180E+07	7.930E+02	
2037	3.022E+04	2.420E+07	1.626E+03	8.072E+03	1.210E+07	8.129E+02	
2038	3.096E+04	2.480E+07	1.666E+03	8.271E+03	1.240E+07	8.330E+02	
2039	3.172E+04	2.540E+07	1.706E+03	8.471E+03	1.270E+07	8.532E+02	
2040	3.247E+04	2.600E+07	1.747E+03	8.673E+03	1.300E+07	8.735E+02	
2041	3.323E+04	2.661E+07	1.788E+03	8.877E+03	1.331E+07	8.940E+02	
2042	3.398E+04	2.721E+07	1.828E+03	9.076E+03	1.360E+07	9.141E+02	
2043	3.471E+04	2.780E+07	1.868E+03	9.272E+03	1.390E+07	9.338E+02	
2044	3.543E+04	2.837E+07	1.906E+03	9.464E+03	1.419E+07	9.531E+02	
2045	3.613E+04	2.893E+07	1.944E+03	9.651E+03	1.447E+07	9.720E+02	
2046	3.682E+04	2.949E+07	1.981E+03	9.836E+03	1.474E+07	9.906E+02	
2047	3.750E+04	3.003E+07	2.017E+03	1.002E+04	1.501E+07	1.009E+03	
2048	3.816E+04	3.056E+07	2.053E+03	1.019E+04	1.528E+07	1.027E+03	
2049	3.881E+04	3.108E+07	2.088E+03	1.037E+04	1.554E+07	1.044E+03	
2050	3.945E+04	3.159E+07	2.122E+03	1.054E+04	1.579E+07	1.061E+03	
2051	3.866E+04	3.096E+07	2.080E+03	1.033E+04	1.548E+07	1.040E+03	
2052	3.790E+04	3.035E+07	2.039E+03	1.012E+04	1.517E+07	1.020E+03	
2053	3.715E+04	2.975E+07	1.999E+03	9.923E+03	1.487E+07	9.993E+02	
2054	3.641E+04	2.916E+07	1.959E+03	9.726E+03	1.458E+07	9.796E+02	
2055	3.569E+04	2.858E+07	1.920E+03	9.534E+03	1.429E+07	9.602E+02	
2056	3.499E+04	2.801E+07	1.882E+03	9.345E+03	1.401E+07	9.411E+02	
2057	3.429E+04	2.746E+07	1.845E+03	9.160E+03	1.373E+07	9.225E+02	
2058	3.361E+04	2.692E+07	1.808E+03	8.979E+03	1.346E+07	9.042E+02	
2059	3.295E+04	2.638E+07	1.773E+03	8.801E+03	1.319E+07	8.863E+02	
2060	3.230E+04	2.586E+07	1.738E+03	8.626E+03	1.293E+07	8.688E+02	
2061	3.166E+04	2.535E+07	1.703E+03	8.456E+03	1.267E+07	8.516E+02	
2062	3.103E+04	2.485E+07	1.669E+03	8.288E+03	1.242E+07	8.347E+02	
2063	3.041E+04	2.435E+07	1.636E+03	8.124E+03	1.218E+07	8.182E+02	
2064	2.981E+04	2.387E+07	1.604E+03	7.963E+03	1.194E+07	8.020E+02	
2065	2.922E+04	2.340E+07	1.572E+03	7.806E+03	1.170E+07	7.861E+02	
2066	2.864E+04	2.294E+07	1.541E+03	7.651E+03	1.147E+07	7.705E+02	
2067	2.808E+04	2.248E+07	1.511E+03	7.499E+03	1.124E+07	7.553E+02	
2068	2.752E+04	2.204E+07	1.481E+03	7.351E+03	1.102E+07	7.403E+02	
2069	2.698E+04	2.160E+07	1.451E+03	7.205E+03	1.080E+07	7.257E+02	
2070	2.644E+04	2.117E+07	1.423E+03	7.063E+03	1.059E+07	7.113E+02	
2071	2.592E+04	2.075E+07	1.394E+03	6.923E+03	1.038E+07	6.972E+02	
2072	2.540E+04	2.034E+07	1.367E+03	6.786E+03	1.017E+07	6.834E+02	
2073	2.490E+04	1.994E+07	1.340E+03	6.651E+03	9.970E+06	6.699E+02	
2074	2.441E+04	1.955E+07	1.313E+03	6.520E+03	9.773E+06	6.566E+02	
2075	2.393E+04	1.916E+07	1.287E+03	6.391E+03	9.579E+06	6.436E+02	
2076	2.345E+04	1.878E+07	1.262E+03	6.264E+03	9.389E+06	6.309E+02	
2077	2.299E+04	1.841E+07	1.237E+03	6.140E+03	9.203E+06	6.184E+02	
2078	2.253E+04	1.804E+07	1.212E+03	6.018E+03	9.021E+06	6.061E+02	
2079	2.209E+04	1.769E+07	1.188E+03	5.899E+03	8.843E+06	5.941E+02	
2080	2.165E+04	1,733E+07	1.165E+03	5.782E+03	8.667E+06	5.824E+02	
2081	2.122E+04	1,699E+07	1,142E+03	5.668E+03	8.496E+06	5.708E+02	
2082	2.080E+04	1.666E+07	1,119E+03	5.556E+03	8.328E+06	5.595E+02	
2083	2.039E+04	1.633E+07	1.097E+03	5.446E+03	8.163E+06	5.485E+02	

V		Total landfill gas	_		Methane	
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2084	1.998E+04	1.600E+07	1.075E+03	5.338E+03	8.001E+06	5.376E+02
2085	1.959E+04	1.569E+07	1.054E+03	5.232E+03	7.843E+06	5.269E+02
2086	1.920E+04	1.537E+07	1.033E+03	5.129E+03	7.687E+06	5.165E+02
2087	1.882E+04	1.507E+07	1.013E+03	5.027E+03	7.535E+06	5.063E+02
2088	1.845E+04	1.477E+07	9.925E+02	4.928E+03	7.386E+06	4.963E+02
2089	1.808E+04	1.448E+07	9.729E+02	4.830E+03	7.240E+06	4.864E+02
2090	1.772E+04	1.419E+07	9.536E+02	4.734E+03	7.096E+06	4.768E+02
2091	1.737E+04	1.391E+07	9.347E+02	4.641E+03	6.956E+06	4.674E+02
2092	1.703E+04	1.364E+07	9.162E+02	4.549E+03	6.818E+06	4.581E+02
2093	1.669E+04	1.337E+07	8.981E+02	4.459E+03	6.683E+06	4.490E+02
2094	1.636E+04	1.310E+07	8.803E+02	4.370E+03	6.551E+06	4.401E+02
2095	1.604E+04	1.284E+07	8.629E+02	4.284E+03	6.421E+06	4.314E+02
2096	1.572E+04	1.259E+07	8.458E+02	4.199E+03	6.294E+06	4.229E+02
2097	1.541E+04	1.234E+07	8.290E+02	4.116E+03	6.169E+06	4.145E+02
2098	1.510E+04	1.209E+07	8.126E+02	4.034E+03	6.047E+06	4.063E+02
2099	1.480E+04	1.185E+07	7.965E+02	3.954E+03	5.927E+06	3.983E+02
2100	1.451E+04	1.162E+07	7.807E+02	3.876E+03	5.810E+06	3.904E+02
2101	1.422E+04	1.139E+07	7.653E+02	3.799E+03	5.695E+06	3.826E+02
2102	1.394E+04	1.116E+07	7.501E+02	3.724E+03	5.582E+06	3.751E+02
2103	1.367E+04	1.094E+07	7.353E+02	3.650E+03	5.472E+06	3.676E+02
2104	1.340E+04	1.073E+07	7.207E+02	3.578E+03	5.363E+06	3.604E+02
2105	1.313E+04	1.051E+07	7.064E+02	3.507E+03	5.257E+06	3.532E+02
2106	1.287E+04	1.031E+07	6.925E+02	3.438E+03	5.153E+06	3.462E+02
2107	1.262E+04	1.010E+07	6.787E+02	3.370E+03	5.051E+06	3.394E+02
2108	1.237E+04	9.902E+06	6.653E+02	3.303E+03	4.951E+06	3.327E+02
2109	1.212E+04	9.706E+06	6.521E+02	3.238E+03	4.853E+06	3.261E+02
2110	1.188E+04	9.514E+06	6.392E+02	3.173E+03	4.757E+06	3.196E+02
2111	1.165E+04	9.325E+06	6.266E+02	3.111E+03	4.663E+06	3.133E+02
2112	1.141E+04	9.141E+06	6.142E+02	3.049E+03	4.570E+06	3.071E+02
2113	1.119E+04	8.960E+06	6.020E+02	2.989E+03	4.480E+06	3.010E+02
2114	1.097E+04	8.782E+06	5.901E+02	2.930E+03	4.391E+06	2.950E+02
2115	1.075E+04	8.608E+06	5.784E+02	2.871E+03	4.304E+06	2.892E+02
2116	1.054E+04	8.438E+06	5.669E+02	2.815E+03	4.219E+06	2.835E+02
2117	1.033E+04	8.271E+06	5.557E+02	2.759E+03	4.135E+06	2.779E+02
2118	1.012E+04	8.107E+06	5.447E+02	2.704E+03	4.053E+06	2.724E+02
2119	9.924E+03	7.946E+06	5.339E+02	2.651E+03	3.973E+06	2.670E+02
2120	9.727E+03	7.789E+06	5.233E+02	2.598E+03	3.895E+06	2.617E+02
2121	9.535E+03	7.635E+06	5.130E+02	2.547E+03	3.817E+06	2.565E+02
2122	9.346E+03	7.484E+06	5.028E+02	2.496E+03	3.742E+06	2.514E+02
2123	9.161E+03	7.335E+06	4.929E+02	2.447E+03	3.668E+06	2.464E+02

Year	Carbon dloxide			NMOC			
	(Ma/year)	(m ³ /year)	(av ft^3/min)	(Mq/year)	(m ³ /year)	(av ft^3/min)	
1983	0	0	0	0	0	0	
1984	6.095E+01	3.330E+04	2.237E+00	1.158E-01	3.230E+01	2.170E-03	
1985	1.900E+02	1.038E+05	6.976E+00	3.610E-01	1.007E+02	6.766E-03	
1986	3.255E+02	1.778E+05	1.195E+01	6.182E-01	1.725E+02	1.159E-02	
1987	4.677E+02	2.555E+05	1.717E+01	8.884E-01	2.478E+02	1.665E-02	
1988	6.172E+02	3.372E+05	2.265E+01	1.172E+00	3.270E+02	2.197E-02	
1989	7.743E+02	4.230E+05	2.842E+01	1.471E+00	4.103E+02	2.757E-02	
1990	9.396E+02	5.133E+05	3.449E+01	1.785E+00	4.979E+02	3.345E-02	
1991	1.147E+03	6.265E+05	4.210E+01	2.178E+00	6.077E+02	4.083E-02	
1992	1.364E+03	7.450E+05	5.006E+01	2.590E+00	7.227E+02	4.856E-02	
1993	1.591E+03	8.692E+05	5.840E+01	3.022E+00	8.431E+02	5.665E-02	
1994	1.830E+03	9.997E+05	6.717E+01	3.476E+00	9.697E+02	6.515E-02	
1995	2.150E+03	1.175E+06	7.892E+01	4.084E+00	1.139E+03	7.655E-02	
1996	2.482E+03	1.356E+06	9.109E+01	4.714E+00	1.315E+03	8.836E-02	
1997	2.827E+03	1.545E+06	1.038E+02	5.370E+00	1.498E+03	1.007E-01	
1998	3.185E+03	1.740E+06	1.169E+02	6.050E+00	1.688E+03	1.134E-01	
1999	3.542E+03	1.935E+06	1.300E+02	6.728E+00	1.877E+03	1.261E-01	
2000	3.906E+03	2.134E+06	1.434E+02	7.420E+00	2.070E+03	1.391E-01	
2001	4.292E+03	2.345E+06	1.575E+02	8.153E+00	2.274E+03	1.528E-01	
2002	4.701E+03	2.568E+06	1.726E+02	8.930E+00	2.491E+03	1.674E-01	
2003	5.122E+03	2.798E+06	1.880E+02	9.729E+00	2.714E+03	1.824E-01	
2004	5.582E+03	3.049E+06	2.049E+02	1.060E+01	2.958E+03	1.987E-01	
2005	6.060E+03	3.311E+06	2.224E+02	1.151E+01	3.211E+03	2.158E-01	
2006	6.585E+03	3.598E+06	2.417E+02	1.251E+01	3.490E+03	2.345E-01	
2007	7.208E+03	3.938E+06	2.646E+02	1.369E+01	3.820E+03	2.566E-01	
2008	7.799E+03	4.261E+06	2.863E+02	1.481E+01	4.133E+03	2.777E-01	
2009	8.319E+03	4.545E+06	3.054E+02	1.580E+01	4.408E+03	2.962E-01	
2010	8.736E+03	4.772E+06	3.207E+02	1.659E+01	4.629E+03	3.110E-01	
2011	9.154E+03	5.001E+06	3.360E+02	1.739E+01	4.851E+03	3.259E-01	
2012	9.530E+03	5.206E+06	3.498E+02	1.810E+01	5.050E+03	3.393E-01	
2013	9.929E+03	5.424E+06	3.645E+02	1.886E+01	5.262E+03	3.535E-01	
2014	1.035E+04	5.657E+06	3.801E+02	1.967E+01	5.487E+03	3.687E-01	
2015	1.085E+04	5.927E+06	3.982E+02	2.061E+01	5.749E+03	3.863E-01	
2016	1.134E+04	6.197E+06	4.164E+02	2.155E+01	6.011E+03	4.039E-01	
2017	1.184E+04	6.468E+06	4.346E+02	2.249E+01	6.274E+03	4.215E-01	
2018	1.234E+04	6.739E+06	4.528E+02	2.343E+01	6.537E+03	4.392E-01	
2019	1.283E+04	7.011E+06	4.711E+02	2.438E+01	6.801E+03	4.569E-01	
2020	1.333E+04	7.284E+06	4.894E+02	2.532E+01	7.065E+03	4.747E-01	
2021	1.383E+04	7.557E+06	5.078E+02	2.628E+01	7.330E+03	4.925E-01	
2022	1.434E+04	7.831E+06	5.262E+02	2.723E+01	7.596E+03	5.104E-01	
2023	1.484E+04	8.106E+06	5.447E+02	2.819E+01	7.863E+03	5.283E-01	
2024	1.534E+04	8.383E+06	5.632E+02	2.915E+01	8.131E+03	5.463E-01	
2025	1.585E+04	8.660E+06	5.819E+02	3.011E+01	8.400E+03	5.644E-01	
2026	1.636E+04	8.938E+06	6.006E+02	3.108E+01	8.670E+03	5.825E-01	
2027	1.687E+04	9.218E+06	6.193E+02	3.205E+01	8.941E+03	6.008E-01	
2028	1.739E+04	9.499E+06	6.382E+02	3.303E+01	9.214E+03	6.191E-01	
2029	1.790E+04	9.781E+06	6.572E+02	3.401E+01	9.488E+03	6.375E-01	
2030	1.842E+04	1.007E+07	6.763E+02	3.500E+01	9.763E+03	6.560E-01	
2031	1.895E+04	1.035E+07	6.954E+02	3.599E+01	1.004E+04	6.746E-01	
2032	1.947E+04	1.064E+07	7.147E+02	3.699E+01	1.032E+04	6.933E-01	

ł

Year (Mg/year) (m³ /year) (av ft^3/min) (Mg/year) (ii) 2033 2,000E+04 1.093E+07 7.341E+02 3.799E+01 1	m ³ /year) (av ft^3/min) 060E+04 7 121E-01
2033 2.000E+04 1.093E+07 7.341E+02 3.799E+01 1	060E+04 7 121E-01
2034 2.053E+04 1.122E+07 7.536E+02 3.900E+01 1	.088E+04 7.310E-01
2035 2.107E+04 1.151E+07 7.733E+02 4.002E+01 1	.116E+04 7.501E-01
2036 2.161E+04 1.180E+07 7.930E+02 4.104E+01 1	.145E+04 7.693E-01
2037 2.215E+04 1.210E+07 8.129E+02 4.207E+01 1	.174E+04 7.886E-01
2038 2.269E+04 1.240E+07 8.330E+02 4.311E+01 1	.203E+04 8.080E-01
2039 2.324E+04 1.270E+07 8.532E+02 4.415E+01 1	.232E+04 8.276E-01
2040 2.380E+04 1.300E+07 8.735E+02 4.520E+01 1	.261E+04 8.473E-01
2041 2.436E+04 1.331E+07 8.940E+02 4.626E+01 1	.291E+04 8.672E-01
2042 2.490E+04 1.360E+07 9.141E+02 4.730E+01 1	.320E+04 8.867E-01
2043 2.544E+04 1.390E+07 9.338E+02 4.832E+01 1.	.348E+04 9.058E-01
2044 2.597E+04 1.419E+07 9.531E+02 4.932E+01 1	.376E+04 9.245E-01
2045 2.648E+04 1.447E+07 9.720E+02 5.030E+01 1	.403E+04 9.429E-01
2046 2.699E+04 1.474E+07 9.906E+02 5.126E+01 1.	.430E+04 9.608E-01
2047 2.748E+04 1.501E+07 1.009E+03 5.220E+01 1.	.456E+04 9.785E-01
2048 2.797E+04 1.528E+07 1.027E+03 5.312E+01 1.	.482E+04 9.958E-01
2049 2.844E+04 1.554E+07 1.044E+03 5.403E+01 1.	.507E+04 1.013E+00
2050 2.891E+04 1.579E+07 1.061E+03 5.491E+01 1.	.532E+04 1.029E+00
2051 2.834E+04 1.548E+07 1.040E+03 5.382E+01 1.	.502E+04 1.009E+00
2052 2.778E+04 1.517E+07 1.020E+03 5.276E+01 1.	.472E+04 9.889E-01
2053 2.723E+04 1.487E+07 9.993E+02 5.171E+01 1.	.443E+04 9.694E-01
2054 2.669E+04 1.458E+07 9.796E+02 5.069E+01 1.	.414E+04 9.502E-01
2055 2.616E+04 1.429E+07 9.602E+02 4.969E+01 1.	.386E+04 9.314E-01
2056 2.564E+04 1.401E+07 9.411E+02 4.870E+01 1.	.359E+04 9.129E-01
2057 2.513E+04 1.373E+07 9.225E+02 4.774E+01 1.	.332E+04 8.948E-01
2058 2.463E+04 1.346E+07 9.042E+02 4.679E+01 1.	.305E+04 8.771E-01
2059 2.415E+04 1.319E+07 8.863E+02 4.587E+01 1.	.280E+04 8.597E-01
2060 2.367E+04 1.293E+07 8.688E+02 4.496E+01 1.	.254E+04 8.427E-01
2061 2.320E+04 1.267E+07 8.516E+02 4.407E+01 1.	.229E+04 8.260E-01
2062 2.274E+04 1.242E+07 8.347E+02 4.320E+01 1.	.205E+04 8.097E-01
2063 2.229E+04 1.218E+07 8.182E+02 4.234E+01 1.	181E+04 7.936E-01
2064 2.185E+04 1.194E+07 8.020E+02 4.150E+01 1.	.158E+04 7.779E-01
2065 2.142E+04 1.170E+07 7.861E+02 4.068E+01 1.	.135E+04 7.625E-01
2066 2.099E+04 1.147E+07 7.705E+02 3.987E+01 1.	.112E+04 7.474E-01
2067 2.058E+04 1.124E+07 7.553E+02 3.908E+01 1.	.090E+04 7.326E-01
2068 2.017E+04 1.102E+07 7.403E+02 3.831E+01 1.	.069E+04 7.181E-01
2069 1.977E+04 1.080E+07 7.257E+02 3.755E+01 1.	.048E+04 7.039E-01
2070 1.938E+04 1.059E+07 7.113E+02 3.681E+01 1.	.027E+04 6.900E-01
2071 1.899E+04 1.038E+07 6.972E+02 3.608E+01 1.	.007E+04 6.763E-01
2072 1.862E+04 1.017E+07 6.834E+02 3.537E+01 9.	.866E+03 6.629E-01
2073 1.825E+04 9.970E+06 6.699E+02 3.466E+01 9.	.671E+03 6.498E-01
2074 1.789E+04 9.773E+06 6.566E+02 3.398E+01 9.	.479E+03 6.369E-01
2075 1.753E+04 9.579E+06 6.436E+02 3.331E+01 9.	292E+03 6 243E-01
2076 1.719E+04 9.389E+06 6.309E+02 3.265E+01 9.	108E+03 6.119E-01
2077 1.685E+04 9.203E+06 6.184E+02 3.200E+01 8.	.927E+03 5.998E-01
2078 1.651E+04 9.021E+06 6.061E+02 3.137E+01 8	.751E+03 5.879E-01
2079 1.619E+04 8.843E+06 5.941E+02 3.074E+01 8	.577E+03 5.763E-01
2080 1.587E+04 8.667E+06 5.824E+02 3.014E+01 8	407E+03 5 649E-01
2081 1 555E+04 8 496E+06 5 708E+02 2 954E+01 8	241E+03 5 537E-01
2082 1.524E+04 8.328E+06 5.595E+02 2.895E+01 8	.078E+03 5 427E-01
2083 1.494E+04 8.163E+06 5.485E+02 2.838E+01 7	.918E+03 5.320E-01

V		Carbon dioxide		NMOC		
Year	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2084	1.465E+04	8.001E+06	5.376E+02	2.782E+01	7.761E+03	5.215E-01
2085	1.436E+04	7.843E+06	5.269E+02	2.727E+01	7.607E+03	5.111E-01
2086	1.407E+04	7.687E+06	5.165E+02	2.673E+01	7.457E+03	5.010E-01
2087	1.379E+04	7.535E+06	5.063E+02	2.620E+01	7.309E+03	4.911E-01
2088	1.352E+04	7.386E+06	4.963E+02	2.568E+01	7.164E+03	4.814E-01
2089	1.325E+04	7.240E+06	4.864E+02	2.517E+01	7.022E+03	4.718E-01
2090	1.299E+04	7.096E+06	4.768E+02	2.467E+01	6.883E+03	4.625E-01
2091	1.273E+04	6.956E+06	4.674E+02	2.418E+01	6.747E+03	4.533E-01
2092	1.248E+04	6.818E+06	4.581E+02	2.371E+01	6.614E+03	4.444E-01
2093	1.223E+04	6.683E+06	4.490E+02	2.324E+01	6.483E+03	4.356E-01
2094	1.199E+04	6.551E+06	4.401E+02	2.278E+01	6.354E+03	4.269E-01
2095	1.175E+04	6.421E+06	4.314E+02	2.233E+01	6.228E+03	4.185E-01
2096	1.152E+04	6.294E+06	4.229E+02	2.188E+01	6.105E+03	4.102E-01
2097	1.129E+04	6.169E+06	4.145E+02	2.145E+01	5.984E+03	4.021E-01
2098	1.107E+04	6.047E+06	4.063E+02	2.103E+01	5.866E+03	3.941E-01
2099	1.085E+04	5.927E+06	3.983E+02	2.061E+01	5.750E+03	3.863E-01
2100	1.064E+04	5.810E+06	3.904E+02	2.020E+01	5.636E+03	3.787E-01
2101	1.042E+04	5.695E+06	3.826E+02	1.980E+01	5.524E+03	3.712E-01
2102	1.022E+04	5.582E+06	3.751E+02	1.941E+01	5.415E+03	3.638E-01
2103	1.002E+04	5.472Ê+06	3.676E+02	1.902E+01	5.307E+03	3.566E-01
2104	9.817E+03	5.363E+06	3.604E+02	1.865E+01	5.202E+03	3.495E-01
2105	9.623E+03	5.257E+06	3.532E+02	1.828E+01	5.099E+03	3.426E-01
2106	9.433E+03	5.153E+06	3.462E+02	1.792E+01	4.998E+03	3.358E-01
2107	9.246E+03	5.051E+06	3.394E+02	1.756E+01	4.899E+03	3.292E-01
2108	9.063E+03	4.951E+06	3.327E+02	1.721E+01	4.802E+03	3.227E-01
2109	8.883E+03	4.853E+06	3.261E+02	1.687E+01	4.707E+03	3.163E-01
2110	8.707E+03	4.757E+06	3.196E+02	1.654E+01	4.614E+03	3.100E-01
2111	8.535E+03	4.663E+06	3.133E+02	1.621E+01	4.523E+03	3.039E-01
2112	8.366E+03	4.570E+06	3.071E+02	1.589E+01	4.433E+03	2.979E-01
2113	8.200E+03	4.480E+06	3.010E+02	1.558E+01	4.345E+03	2.920E-01
2114	8.038E+03	4.391E+06	2.950E+02	1.527E+01	4.259E+03	2.862E-01
2115	7.879E+03	4.304E+06	2.892E+02	1.497E+01	4.175E+03	2.805E-01
2116	7.723E+03	4.219E+06	2.835E+02	1.467E+01	4.092E+03	2.750E-01
2117	7.570E+03	4.135E+06	2.779E+02	1.438E+01	4.011E+03	2.695E-01
2118	7.420E+03	4.053E+06	2.724E+02	1.409E+01	3.932E+03	2.642E-01
2119	7.273E+03	3.973E+06	2.670E+02	1.381E+01	3.854E+03	2.590E-01
2120	7.129E+03	3.895E+06	2.617E+02	1.354E+01	3.778E+03	2.538E-01
2121	6.988E+03	3.817E+06	2.565E+02	1.327E+01	3.703E+03	2.488E-01
2122	6.849E+03	3.742E+06	2.514E+02	1.301E+01	3.630E+03	2.439E-01
2123	6.714E+03	3.668E+06	2.464E+02	1.275E+01	3.558E+03	2.390E-01

APPENDIX 4-D LANDGEM MAXIMUM METHANE GENERATION RATES, 2015

Summary Report

Landfill Name or identifier: Pickles Butte Landfill

Date: Tuesday, September 01, 2015

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

 $Q_{CH4} = annual methane generation in the year of the calculation (m³/year)$

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

 $\mathbf{k} = \text{methane generation rate } (year^{-1})$

 L_0 = potential methane generation capacity (m^3/Mg)

 M_i = mass of waste accepted in the ith year (*Mg*) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (*decimal years*, e.g., 3.2 years)

LendGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/tinatw01/landfill/landfillg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS		
Landfilf Open Year	1983	
Landfill Closure Year (with 80-year limit)	2050	
Actual Closure Year (without limit)	2050	
Have Model Calculate Closure Year?	No	
Waste Design Capacity	39,909,972	short tons
MODEL PARAMETERS		
Methane Generation Rate, k	0.020	year ⁻¹
Potential Methane Generation Capacity, Lo	170	m ³ /Ma
NMOC Concentration	485	ppmv as hexane
Methane Content	50	% by volume
GASES / POLLUTANTS SELECTED		

GAGES/FOLLOTANTS SELECTED			
Gas / Pollutant #1:	Total landfill gas		
Gas / Pollutant #2:	Methane		
Gas / Pollutant #3:	Carbon dioxide		
Gas / Pollutant #4:	NMOC		

WASTE ACCEPTANCE RATES

	Waste Acr	cepted	Waste-/	n-Place
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1983	16,798	18,478	0!	0
1984	35,912	39,503	16,798	18,478
1985	38,369	42,206	52,710	57,981
1986	40,976	45,074	91,079	100,187
1987	43,743	48,117	132,055/	145,261
1988	46,677	51,345	175,798	193,378
1989	49,791	54,770	222,475	244,723
19 9 0	62,247	68,472	272,266	299,493
1991	66,045	72,649	334,514	367,965
1992	70,074	77,081	400,558	440,614
1993	74,527	81,980	470,632	517,695
1994	98,241	108,065	545,159	599,675
1995	103,113	113,424	643,400	707,740
1996	108,825	119,707	746,513	821,164
1997	113,990	125,389	855,337	940,871
1998	115,754	127,329	969,327	1,066,260
1999	119,748	131,723	1,085,081	1,193,589
2000	127,653	140,418	1,204,829	1,325,312
2001	136,172	149,789	1,332,482	1,465,730
2002	141,704	155,874	1,468,654	1,615,519
2003	154,645	170,110	1,610,357	1,771,393
2004	162,347	178,582	1,765,003	1,941,503
2005	177,793	195,572	1,927,350	2,120,085
2006	207,564	228,320	2,105,143	2,315,657
2007	202,250	222,475	2,312,706	2,543,977
2008	185,848	204,433	2,514,956	2,766,452
2009	160,258	176,284	2,700,805	2,970,885
2010	162,886	179,175	2,861,063	3,147,169
2011	153,761	169,137	3,023,949	3,326,344
2012	161,931	178,124	3,177,710	3,495,481
2013	171,465	188,611	3,339,641	3,673,605
2014	192,686	211,955	3,511,105	3,862,216
2015	195,577	215,134	3,703,792	4,074,171
2016	198,510	218,361	3,899,368	4,289,305
2017	201,488	221,637	4,097,879	4,507,667
2018	204,510	224,961	4,299,367	4,729,303
2019	207,578	228,336	4,503,877	4,954,265
2020	210,692	231,761	4,711,455	5,182,600
2021	213,852	235,237	4,922,147	5,414,361
2022	217.060	238,766	5,135,999	5,649,598

WASTE ACCEPTANCE RATES (Continued)

Voor	Waste Ac	cepted	Waste-In-Place		
1991	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
2023	220,316	242,347	5,353,058	5,888,364	
2024	223,620	245,982	5,573,374	6,130,711	
2025	226,975	249,672	5,796,994	6,376,694	
2026	230,379	253,417	6,023,969	6,626,366	
2027	233,835	257,219	6,254,348	6,879,783	
2028	237,343	261,077	6,488,183	7,137,002	
2029	240,903	264,993	6,725,526	7,398,079	
2030	244,516	268,968	6,966,429	7,663,071	
2031	248,184	273,002	7,210,945	7,932,039	
2032	251,907	277,097	7,459,129	8,205,042	
2033	255,685	281,254	7,711,035	8,482,139	
2034	259,521	285,473	7,966,721	8,763,393	
2035	263,413	289,755	8,226,241	9,048,866	
2036	267,365	294,101	8,489,655	9,338,620	
2037	271,375	298,513	8,757,019	9,632,721	
2038	275,446	302,990	9,028,394	9,931,234	
2039	279,577	307,535	9,303,840	10,234,224	
2040	283,771	312,148	9,583,418	10,541,759	
2041	283,771	312,148	9,867,189	10,853,907	
2042	283,771	312,148	10,150,960	11,166,056	
2043	283,771	312,148	10,434,731	11,478,204	
2044	283,771	312,148	10,718,502	11,790,352	
2045	283,771	312,148	11,002,273	12,102,500	
2046	283,771	312,148	11,286,044	12,414,648	
2047	283,771	312,148	11,569,815	12,726,796	
2048	283,771	312,148	11,853,586	13,038,944	
2049	283,771	312,148	12,137,357	13,351,093	
2050	0	0	12,421,128	13,663,241	
2051	0	0	12,421,128	13,663,241	
2052	0	0	12,421,128	13,663,241	
2053	0	0	12,421,128	13,663,241	
2054	0	0	12,421,128	13,663,241	
2055	0	0	12,421,128	13,663,241	
2056	0	0	12,421,128	13,663,241	
2057	0	0	12,421,128	13,663,241	
2058	0	0	12,421,128	13,663,241	
2059	0	0	12,421,128	13,663,241	
2060	0	0	12,421,128	13,663,241	
2061	0	0	12,421,128	13,663,241	
2062	0	0	12,421,128	13,663,241	

Pollutant Parameters

_	Gas / Polic	User-specified Poilutant Parameters:			
	Compound	Concentration (pomy)	Molecular Weight	Concentration (nomy)	Molecular Weight
_	Total landfill gas	(ppint)	0.00	(pp)iiii)	T manocular evergin
8	Methane		16.04		
8	Carbon dioxide		44.01		
G	NMOC	4.000	86.18		
-	1.1.1-Trichloroethane	4,000	00.10		T
	(methyl chloroform) - HAP	0.48	133.41		
	1,1,2,2- Tetrachloroethane -				
	HAP/VOC	1.1	167.85		
	1,1-Dichloroethane (ethylidene dichloride) - HAP/VOC	2.4	98.97		
	1,1-Dichloroethene (vinylidene chloride) - HAP/VOC	0.20	96.94		
	1,2-Dichloroethane (ethylene dichloride) - HAP/VOC	0.41	98.96		
	1,2-Dichloropropane (propylene dichloride) - HAP/VOC	0.18	112.99		
	2-Propanol (isopropyl alcohol) - VOC	50	60.11		
	Acetone	7.0	58.08		
	Acrylonitrite - HAP/VOC	6.3	53.06		
	Benzene - No or				1
	Unknown Co-disposal - HAP/VOC	1.9	78.11	l (
2	Benzene - Co-disposal - HAP/VOC		78.11		
	Bromodichloromethane -				
	VOC	3.1	163.03		
5	Butane - VOC	5.0	58.12		
	Carbon disulfide -				
	HAP/VOC	0.58	76.13		
	Carbon monoxide	140	28.01		
	Carbon tetrachloride - HAP/VOC	4.0E-03	153.84		
	Carbonyl sulfide -	0.40	00.07		
	Chlorobenzene -	0.49	60.07		
	HAP/VOC	0.25	112.56		
	Chlorodiffuoromethane	1.3	86.47		
	Chloroethane (ethyl				
	chloride) - HAP/VOC	1.3	64.52		
	Chloroform - HAP/VOC	0.03	119.39		
	Chloromethane - VOC	1.2	50.49		
	Dichlorobenzene - (HAP for para isomer/VOC)	0.21	147		
	Dichlorodifluoromethane	16	120.91		
	Dichtorofluoromethane -				
	VOC	2.6	102.92		
	Dichloromethane (methylene chloride) -				
	HAP	14	84.94		
	Dimethyl sulfide (methyl sulfide) - VOC	7.8	62.13		
	Ethane	890	30.07		
	Ethanol - VOC	27	46.08		

Pollutant Parameters (Continued)

	Concontrolion		User-specified Pollutaint Parameters:		
Comment of the second	Concentration		Concentration		
Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weigl	
Ethyl mercaptan					
(ethanethiol) - VOC	2.3	62.13			
Ethylbenzene -					
HADA/OC	16	106.16			
	4.0	100.10			
Ethylene dibromide -		1			
HAP/VOC	1.0E-03	187.88			
Fluorotrichloromethane -					
VOC	0.76	137.38			
Hexane - HAP/VOC	6.6	86,18			
Hudrogan culfide	36	34.08			
Manual (Astal)	0.05.04	000.01			
Mercury (total) - HAP	2.96-04	200.61			
Methyl ethyl ketone -					
HAP/VOC	7.1	72.11			
Methyl isobutyl ketone -					
HAP/VOC	1.9	100.16			
Methyl mercaptan - VOC	0.5	40.44			
	2.5	40.11			
Pentane - VOC	3.3	72.15			
Perchloroethylene					
(tetrachloroethviene) -					
HAP	3.7	165.83			
Propage - VOC	11	44.00			
riopane - voc		44.05			
-1,2-Dichloroethene -					
VOC	2.8	96.94		a second second	
Toluene - No or					
Unknown Co-disposal -					
HAPMOC	39	92.13			
Teluene Ce dieneral	00	UL. IU			
Toluene - Co-disposal -	1770	00.10			
HAP/VOC	170	92.13			
Trichloroethylene					
(trichloroethene) -					
HAP/VOC	2.8	131.40			
Vinyl chlorido -				+	
	7.0	60.50			
HAP/VUC	/.3	02.50			
Xylenes - HAP/VOC	12	106.16			
		-			
1					
and the second se					

Graphs

Results

		Total landfill gas			Methane						
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)					
1983	0	0	0	0	0	0					
1984	1.414E+02	1.132E+05	7.606E+00	3.776E+01	5.660E+04	3.803E+00					
1985	4.408E+02	3.530E+05	2.372E+01	1.177E+02	1.765E+05	1.186E+01					
1986	7.550E+02	6.046E+05	4.062E+01	2.017E+02	3.023E+05	2.031E+01					
1987	1.085E+03	8.687E+05	5.837E+01	2.898E+02	4.344E+05	2.919E+01					
1988	1.432E+03	1.146E+06	7.702E+01	3.824E+02	5.732E+05	3.851E+01					
1989	1.796E+03	1.438E+06	9.663E+01	4.797E+02	7.191E+05	4.832E+01					
1990	2.180E+03	1.745E+06	1,173E+02	5.822E+02	8.726E+05	5.863E+01					
1991	2.660E+03	2.130E+06	1.431E+02	7.106E+02	1.065E+06	7.156E+01					
1992	3.163E+03	2.533E+06	1.702E+02	8.450E+02	1.267E+06	8.510E+01					
1993	3.691E+03	2.955E+06	1.986E+02	9.858E+02	1.478E+06	9.928E+01					
1994	4.245E+03	3.399E+06	2.284E+02	1.134E+03	1.699E+06	1.142E+02					
1995	4.987E+03	3.994E+06	2.683E+02	1.332E+03	1.997E+06	1.342E+02					
1996	5.756E+03	4.610E+06	3.097E+02	1.538E+03	2.305E+06	1.549E+02					
1997	6.558E+03	5.252E+06	3.529E+02	1.752E+03	2.626E+06	1.764E+02					
1998	7.388E+03	5.916E+06	3.975E+02	1.973E+03	2.958E+06	1.987E+02					
1999	8.216E+03	6.579E+06	4.420E+02	2.195E+03	3.289E+06	2.210E+02					
2000]	9.061E+03	7.256E+06	4.875E+02	2.420E+03	3.628E+06	2.437E+02					
2001	9.956E+03	7.972E+06	5.356E+02	2.659E+03	3.986E+06	2.678E+02					
2002	1.090E+04	8.732E+06	5.867E+02	2.913E+03	4.366E+06	2.933E+02					
2003	1.188E+04	9.514E+06	6.392E+02	3.174E+03	4.757E+06	3.196E+02					
2004	1.295E+04	1.037E+07	6.966E+02	3.458E+03	5.184E+06	3.483E+02					
2005	1.406E+04	1.126E+07	7.563E+02	3.755E+03	5.628E+06	3.782E+02					
2006	1.528E+04	1.223E+07	8.219E+02	4.080E+03	6.116E+06	4.109E+02					
2007	1.672E+04	1.339E+07	8.996E+02	4.466E+03	6.694E+06	4.498E+02					
2008	1.809E+04	1.449E+07	9.733E+02	4.832E+03	7.243E+06	4.867E+02					
2009	1.930E+04	1.545E+07	1.038E+03	5.154E+03	7.726E+06	5.191E+02					
2010	2.026E+04	1.623E+07	1.090E+03	5.413E+03	8.113E+06	5.451E+02					
2011	2.123E+04	1.700E+07	1.142E+03	5.672E+03	8.501E+06	5.712E+02					
2012	2.211E+04	1.770E+07	1.189E+03	5.905E+03	8.851E+06	5.947E+02					
2013	2.303E+04	1.844E+07	1.239E+03	6.152E+03	9.221E+06	6.196E+02					
2014	2.402E+04	1.923E+07	1.292E+03	6.416E+03	9.617E+06	6.461E+02					
2015	2.516E+04	2.015E+07	1.354E+03	6.722E+03	1.008E+07	6.770E+02					
2016	2.631E+04	2.107E+07	1.416E+03	7.028E+03	1.053E+07	7.078E+02					
2017	2.746E+04	2.199E+07	1.478E+03	7.335E+03	1.100E+07	7.388E+02					
2018	2.861E+04	2.291E+07	1.540E+03	7.643E+03	1.146E+07	7.698E+02					
2019	2.977E+04	2.384E+07	1.602E+03	7.952E+03	1.192E+07	8.008E+02					
2020	3.093E+04	2.476E+07	1.664E+03	8.261E+03	1.238E+07	8.320E+02					
2021	3.209E+04	2.569E+07	1.726E+03	8.571E+03	1.285E+07	8.632E+02					
2022	3.325E+04	2.663E+07	1.789E+03	8.882E+03	1.331E+07	8.945E+02					
2023	3.442E+04	2.756E+07	1.852E+03	9.194E+03	1.378E+07	9.259E+02					
2024	3.559E+04	2.850E+07	1.915E+03	9.507E+03	1.425E+07	9.575E+02					
2025	3.677E+04	2.944E+07	1.978E+03	9.822E+03	1.472E+07	9.892E+02					
2026	3.795E+04	3.039E+07	2.042E+03	1.014E+04	1.520E+07	1.021E+03					
2027	3.914E+04	3.134E+07	2.106E+03	1.045E+04	1.567E+07	1.053E+03					
2028	4.033E+04	3.230E+07	2.170E+03	1.077E+04	1.615E+07	1.085E+03					
2029	4.153E+04	3.326E+07	2.234E+03	1.109E+04	1.663E+07	1.117E+03					
2030	4.274E+04	3.422E+07	2.299E+03	1.142E+04	1.711E+07	1.150E+03					
2031	4.395E+04	3.519E+07	2.364E+03	1.174±+04	1.760E+07	1.182E+03					
2032	4.517E+04	3.617E+07	2.430E+03	1.206E+04	1.808E+07	1.215E+03					

		Total landfill gas		Methane						
Tear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)				
2033	4.639E+04	3.715E+07	2,496E+03	1.239E+04	1.857E+07	1.248E+03				
2034	4.763E+04	3.814E+07	2.562E+03	1.272E+04	1.907E+07	1.281E+03				
2035	4.887E+04	3.913E+07	2.629E+03	1.305E+04	1.956E+07	1.315E+03				
2036	5.012E+04	4.013E+07	2.696E+03	1.339E+04	2.007E+07	1.348E+03				
2037	5.137E+04	4.114E+07	2.764E+03	1.372E+04	2.057E+07	1.382E+03				
2038	5.264E+04	4.215E+07	2.832E+03	1.406E+04	2.108E+07	1.416E+03				
2039	5.392E+04	4.317E+07	2.901E+03	1.440E+04	2.159E+07	1.450E+03				
2040	5.520E+04	4.420E+07	2,970E+03	1.474E+04	2.210E+07	1.485E+03				
2041	5.650E+04	4.524E+07	3.040E+03	1.509E+04	2.262E+07	1.520E+03				
2042	5.777E+04	4.626E+07	3.108E+03	1.543E+04	2.313E+07	1.554E+03				
2043	5.901E+04	4.725E+07	3.175E+03	1.576E+04	2.363E+07	1.587E+03				
2044	6.023E+04	4.823E+07	3.241E+03	1.609E+04	2.411E+07	1.620E+03				
2045	6.143E+04	4.919E+07	3.305E+03	1.641E+04	2.459E+07	1.652E+03				
2046	6.260E+04	5.013E+07	3.368E+03	1.672E+04	2.506E+07	1.684E+03				
2047	6.375E+04	5.105E+07	3.430E+03	1.703E+04	2.552E+07	1.715E+03				
2048	6.487E+04	5.195E+07	3.490E+03	1.733E+04	2.597E+07	1.745E+03				
2049	6.598E+04	5.283E+07	3.550E+03	1.762E+04	2.642E+07	1.775E+03				
2050	6.706E+04	5.370E+07	3.608E+03	1.791E+04	2.685E+07	1.804E+03				
2051	6.573E+04	5.263E+07	3.536E+03	1.756E+04	2.632E+07	1.768E+03				
2052	6.443E+04	5.159E+07	3.466E+03	1.721E+04	2.580E+07	1.733E+03				
2053	6.315E+04	5.057E+07	3.398E+03	1.687Ë+04	2.528E+07	1.699E+03				
2054	6.190E+04	4.957E+07	3.330E+03	1.653E+04	2.478E+07	1.665E+03				
2055	6.068E+04	4.859E+07	3.265E+03	1.621E+04	2.429E+07	1.632E+03				
2056	5.947E+04	4.762E+07	3.200E+03	1.589E+04	2.381E+07	1.600E+03				
2057	5.830E+04	4.668E+07	3.137E+03	1.557E+04	2.334E+07	1.568E+03				
2058	5.714E+04	4.576E+07	3.074E+03	1.526E+04	2.288E+07	1.537E+03				
2059	5.601E+04	4.485E+07	3.014E+03	1.496E+04	2.243E+07	1.507E+03				
2060	5.490E+04	4.396E+07	2.954E+03	1.466E+04	2.198E+07	1.477E+03				
2061	5.382E+04	4.309E+07	2.895E+03	1.437E+04	2.155E+07	1.448E+03				
2062	5.275E+04	4.224E+07	2.838E+03	1.409E+04	2.112E+07	1.419E+03				
2063	5.170E+04	4.140E+07	2.782E+03	1.381E+04	2.070E+07	1.391E+03				
2064	5.068E+04	4.058E+07	2.727E+03	1.354E+04	2.029E+07	1.363E+03				
2065	4.968E+04	3.978E+07	2.673E+03	1.327E+04	1.989E+07	1.336E+03				
2066	4.869E+04	3.899E+07	2.620E+03	1.301E+04	1.950E+07	1.310E+03				
2067	4.773E+04	3.822E+07	2,568E+03	1.275E+04	1.911E+07	1.284E+03				
2068	4.678E+04	3.746E+07	2.517E+03	1.250E+04	1.873E+07	1.259E+03				
2069	4.586E+04	3.672E+07	2.467E+03	1.225E+04	1.836E+07	1.234E+03				
2070	4.495E+04	3.599E+07	2.418E+03	1.201E+04	1.800E+07	1.209E+03				
2071	4.406E+04	3.528E+07	2.371E+03	1.177E+04	1.764E+07	1.185E+03				
2072	4.319E+04	3.458E+07	2.324E+03	1.154E+04	1.729E+07	1.162E+03				
2073	4.233E+04	3.390E+07	2.278E+03	1.131E+04	1.695E+07	1.139E+03				
2074	4.149E+04	3.323E+07	2.232E+03	1.108E+04	1.661E+07	1.116E+03				
2075	4.067E+04	3.25/E+0/	2.188E+03	1.086E+04	1.628E+07	1.094E+03				
2076	3.987E+04	3.192E+07	2.145E+03	1.065E+04	1.596E+07	1.072E+03				
2077	3.908E+04	3.129E+07	2.102E+03	1.044E+04	1.565E+07	1.051E+03				
2078	3.830E+04	3.067E+07	2.061E+03	1.023E+04	1.534E+07	1.030E+03				
2079	3.755E+04	3.006E+07	2.020E+03	1.003E+04	1.503E+07	1.010E+03				
2080	3.680E+04	2.94/E+07	1.980E+03	9.830E+03	1.4/3E+0/	9.900E+02				
2081	3.60/E+04	2.889E+07	1.941E+03	9.636E+03	1.444E+07	9.704E+02				
2082	3.536E+04	2.831E+0/	1.902E+03	9.445±+03	1.416E+0/	9.512E+02				
2083	3.466E+04	2.775E+07	1.865E+03	9.258E+03	1.388E+U/	9.324E+02				

		Total landfill gas			Methane				
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ^s /year)	(av ft^3/min)			
2084	3.397E+04	2.720E+07	1.828E+03	9.074E+03	1.360E+07	9,139E+02			
2085	3.330E+04	2.666E+07	1.792E+03	8.895E+03	1.333E+07	8.958E+02			
2086	3.264E+04	2.614E+07	1.756E+03	8.719E+03	1.307E+07	8.781E+02			
2087	3.199E+04	2.562E+07	1.721E+03	8.546E+03	1.281E+07	8.607E+02			
2088	3.136E+04	2.511E+07	1.687E+03	8.377E+03	1.256E+07	8.436E+02			
2089	3.074E+04	2.461E+07	1.654E+03	8.211E+03	1.231E+07	8.269E+02			
2090	3.013E+04	2.413E+07	1.621E+03	8.048E+03	1.206E+07	8.106E+02			
2091	2.953E+04	2.365E+07	1.589E+03	7.889E+03	1.182E+07	7.945E+02			
2092	2.895E+04	2.318E+07	1.558E+03	7.733E+03	1.159E+07	7.788E+02			
2093	2.838E+04	2.272E+07	1.527E+03	7.580E+03	1.136E+07	7.634E+02			
2094	2.781E+04	2.227E+07	1.496E+03	7.430E+03	1.114E+07	7.482E+02			
2095	2.726E+04	2.183E+07	1.467E+03	7.282E+03	1.092E+07	7.334E+02			
2096	2.672E+04	2.140E+07	1,438E+03	7.138E+03	1.070E+07	7,189E+02			
2097	2.619E+04	2.098E+07	1.409E+03	6.997E+03	1.049E+07	7.047E+02			
2098	2.568E+04	2.056E+07	1.381E+03	6.858E+03	1.028E+07	6.907E+02			
2099	2.517E+04	2.015E+07	1.354E+03	6.723E+03	1.008E+07	6.770E+02			
2100	2.467E+04	1.975E+07	1.327E+03	6.589E+03	9.877E+06	6.636E+02			
2101	2.418E+04	1.936E+07	1.301E+03	6.459E+03	9.681E+06	6.505E+02			
2102	2.370E+04	1.898E+07	1.275E+03	6.331E+03	9.490E+06	6.376E+02			
2103	2.323E+04	1.860E+07	1.250E+03	6.206E+03	9.302E+06	6.250E+02			
2104	2.277E+04	1.824E+07	1.225E+03	6.083E+03	9.118E+06	6.126E+02			
2105	2.232E+04	1.787E+07	1.201E+03	5.962E+03	8.937E+06	6.005E+02			
2106	2.188E+04	1.752E+07	1.177E+03	5.844E+03	8.760E+06	5.886E+02			
2107	2.145E+04	1.717E+07	1.154E+03	5.729E+03	8.587E+06	5.769E+02			
2108	2.102E+04	1.683E+07	1.131E+03	5.615E+03	8.417E+06	5.655E+02			
2109	2.061E+04	1.650E+07	1.109E+03	5.504E+03	8.250E+06	5.543E+02			
2110	2.020E+04	1.617E+07	1.087E+03	5.395E+03	8.087E+06	5.433E+02			
2111	1.980E+04	1.585E+07	1.065E+03	5.288E+03	7.926E+06	5.326E+02			
2112	1.941E+04	1.554E+07	1.044E+03	5.183E+03	7.769E+06	5.220E+02			
2113	1.902E+04	1.523E+07	1.023E+03	5.081E+03	7.616E+06	5.117E+02			
2114	1.864E+04	1.493E+07	1,003E+03	4.980E+03	7.465E+06	5.016E+02			
2115	1.828E+04	1.463E+07	9.833E+02	4.882E+03	7.317E+06	4.916E+02			
2116	1.791E+04	1.434E+07	9.638E+02	4.785E+03	7.172E+06	4.819E+02			
2117	1.756E+04	1.406E+07	9.447E+02	4.690E+03	7.030E+06	4.724E+02			
2118	1.721E+04	1.378E+07	9.260E+02	4.597E+03	6.891E+06	4.630E+02			
2119	1.687E+04	1.351E+07	9.077E+02	4.506E+03	6.754E+06	4.538E+02			
2120	1.654E+04	1.324E+07	8.897E+02	4.417E+03	6.621E+06	4.448E+02			
2121	1.621E+04	1.298E+07	8.721E+02	4.330E+03	6.490E+06	4.360E+02			
2122	1.589E+04	1.272E+07	8.548E+02	4.244E+03	6.361E+06	4.274E+02			
2123	1.557E+04	1.247E+07	8.379E+02	4.160E+03	6.235E+06	4.189E+02			

Year		Carbon dioxide			NMOC			
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)		
1983	0	0	0	0	0	0		
1984	1.036E+02	5.660E+04	3.803E+00	1.968E-01	5.490E+01	3.689E-03		
1985	3.231E+02	1.765E+05	1.186E+01	6.136E-01	1.712E+02	1.150E-02		
1986	5.533E+02	3.023E+05	2.031E+01	1.051E+00	2.932E+02	1.970E-02		
1987	7.951E+02	4.344E+05	2.919E+01	1.510E+00	4.213E+02	2.831E-02		
1988	1.049E+03	5.732E+05	3.851E+01	1.993E+00	5.560E+02	3.736E-02		
1989	1.316E+03	7.191E+05	4.832E+01	2.500E+00	6.975E+02	4.687E-02		
1990	1.597E+03	8.726E+05	5.863E+01	3.034E+00	8.465E+02	5.687E-02		
1991	1.950E+03	1.065E+06	7,156E+01	3.703E+00	1.033E+03	6.942E-02		
1992	2.318E+03	1.267E+06	8.510E+01	4.404E+00	1.229E+03	8.255E-02		
1993	2.705E+03	1.478E+06	9.928E+01	5.138E+00	1.433E+03	9.630E-02		
1994	3.111E+03	1.699E+06	1.142E+02	5.909E+00	1.648E+03	1.108E-01		
1995	3.655E+03	1.997E+06	1.342E+02	6.943E+00	1.937E+03	1.301E-01		
1996	4.219E+03	2.305E+06	1.549E+02	8.013E+00	2.236E+03	1.502E-01		
1997	4.807E+03	2.626E+06	1.764E+02	9.130E+00	2.547E+03	1.711E-01		
1998	5.414E+03	2.958E+06	1.987E+02	1.028E+01	2.869E+03	1.928E-01		
1999	6.021E+03	3.289E+06	2.210E+02	1.144E+01	3.191E+03	2.144E-01		
2000	6.641E+03	3.628E+06	2.437E+02	1.261E+01	3.519E+03	2.364E-01		
2001	7.296E+03	3.986E+06	2.678E+02	1.386E+01	3.866E+03	2.598E-01		
2002	7.992E+03	4.366E+06	2.933E+02	1.518E+01	4.235E+03	2.845E-01		
2003	8.708E+03	4.757E+06	3.196E+02	1.654E+01	4.614E+03	3.100E-01		
2004	9.489E+03	5.184E+06	3.483E+02	1.802E+01	5.028E+03	3.379E-01		
2005	1.030E+04	5.628E+06	3.782E+02	1.957E+01	5.459E+03	3.668E-01		
2006	1.120E+04	6.116E+06	4.109E+02	2.126E+01	5.932E+03	3.986E-01		
2007	1.225E+04	6.694E+06	4.498E+02	2.328E+01	6.493E+03	4.363E-01		
2008	1.326E+04	7.243E+06	4.867E+02	2.518E+01	7.026E+03	4.721E-01		
2009	1.414E+04	7.726E+06	5.191E+02	2.686E+01	7.494E+03	5.035E-01		
2010	1.485E+04	8.113E+06	5.451E+02	2.821E+01	7.870E+03	5.288E-01		
2011	1.556E+04	8.501E+06	5.712E+02	2.956E+01	8.246E+03	5.541E-01		
2012	1.620E+04	8.851E+06	5.947E+02	3.077E+01	8.585E+03	5.769E-01		
2013	1.688E+04	9.221E+06	6,196E+02	3.206E+01	8.945E+03	6.010E-01		
2014	1.760E+04	9.617E+06	6.461E+02	3.344E+01	9.328E+03	6.268E-01		
2015	1.844E+04	1.008E+07	6.770E+02	3.503E+01	9.773E+03	6.567E-01		
2016	1.928E+04	1.053E+07	7.078E+02	3.663E+01	1.022E+04	6.866E-01		
2017	2.013E+04	1.100E+07	7.388E+02	3.823E+01	1.067E+04	7.166E-01		
2018	2.097E+04	1.146E+07	7.698E+02	3.983E+01	1.111E+04	7.467E-01		
2019	2.182E+04	1.192E+07	8.008E+02	4.144E+01	1.156E+04	7.768E-01		
2020	2.267E+04	1.238E+07	8.320E+02	4.305E+01	1.201E+04	8.070E-01		
2021	2.352E+04	1.285E+07	8.632E+02	4.467E+01	1.246E+04	8.373E-01		
2022	2.437E+04	1.331E+07	8.945E+02	4.629E+01	<u>1.291E+04</u>	8.677E-01		
2023	2.523E+04	1.378E+07	9.259E+02	4.792E+01	1.337E+04	8.982E-01		
2024	2.609E+04	1.425E+07	9.575E+02	4.955E+01	1.382E+04	9.288E-01		
2025	2.695E+04	1.472E+07	9.892E+02	5.119E+01	1.428E+04	9.595E-01		
2026	2.781E+04	1.520E+07	1.021E+03	5.283E+01	1.474E+04	9.903E-01		
2027	2.868E+04	1.567E+07	1.053E+03	5.449E+01	1.520E+04	1.021E+00		
2028	2.956E+04	1.615E+07	1.085E+03	5.615E+01	1.566E+04	1.052E+00		
2029	3.044E+04	1.663E+07	1.117E+03	5.781E+01	1.613E+04	1.084E+00		
2030	3.132E+04	1.711E+07	1.150E+03	5.949E+01	1.660E+04	1.115E+00		
2031	3.221E+04	1.760E+07	1.182E+03	6.118E+01	1.707E+04	1.147E+00		
2032	3.310E+04	1.808E+07	1.215 <u>E+03</u>	6.288E+01	1.754E+04	1.179E+00		

V	<u> </u>	Carbon dioxide			NMOC	NMOC				
Tear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)				
2033	3.400E+04	1.857E+07	1.248E+03	6.458E+01	1.802E+04	1.211E+00				
2034	3.490E+04	1.907E+07	1.281E+03	6.630E+01	1.850E+04	1.243E+00				
2035	3.581E+04	1.956E+07	1.315E+03	6.803E+01	1.898E+04	1.275E+00				
2036	3.673E+04	2.007E+07	1.348E+03	6.977E+01	1.946E+04	1.308E+00				
2037	3.765E+04	2.057E+07	1.382E+03	7.152E+01	1.995E+04	1.341E+00				
2038	3.858E+04	2.108E+07	1.416E+03	7.328E+01	2.044E+04	1.374E+00				
2039	3.951E+04	2.159E+07	1,450E+03	7.506E+01	2.094E+04	1.407E+00				
2040	4.046E+04	2.210E+07	1.485E+03	7.684E+01	2.144E+04	1.440E+00				
2041	4.141E+04	2.262E+07	1.520E+03	7.865E+01	2.194E+04	1.474E+00				
2042	4.234E+04	2.313E+07	1.554E+03	8.041E+01	2.243E+04	1.507E+00				
2043	4.325E+04	2.363E+07	1.587E+03	8.215E+01	2.292E+04	1.540E+00				
2044	4.414E+04	2.411E+07	1.620E+03	8.385E+01	2.339E+04	1.572E+00				
2045	4.502E+04	2.459E+07	1.652E+03	8.551E+01	2.386E+04	1.603E+00				
2046	4.588E+04	2.506E+07	1.684E+03	8.714E+01	2.431E+04	1.633E+00				
2047	4.672E+04	2.552E+07	1,715E+03	8.874E+01	2.476E+04	1.663E+00				
2048	4.754E+04	2.597E+07	1.745E+03	9.031E+01	2.519E+04	1.693E+00				
2049	4.835E+04	2.642E+07	1.775E+03	9.184E+01	2.562E+04	1.722E+00				
2050	4.915E+04	2.685E+07	1.804E+03	9.335E+01	2.604E+04	1.750E+00				
2051	4.817E+04	2.632E+07	1.768E+03	9.150E+01	2.553E+04	1.715E+00				
2052	4.722E+04	2.580E+07	1.733E+03	8.969E+01	2.502E+04	1.681E+00				
2053	4.628E+04	2.528E+07	1.699E+03	8.791E+01	2.453E+04	1.648E+00				
2054	4.537E+04	2.478E+07	1.665E+03	8.617E+01	2.404E+04	1.615E+00				
2055	4.447E+04	2.429E+07	1.632E+03	8.447E+01	2.356E+04	1.583E+00				
2056	4.359E+04	2.381E+07	1.600E+03	8.279E+01	2.310E+04	1.552E+00				
2057	4.273E+04	2.334E+07	1.568E+03	8.115E+01	2.264E+04	1.521E+00				
2058	4.188E+04	2.288E+07	1.537E+03	7.955E+01	2.219E+04	1.491E+00				
2059	4.105E+04	2.243E+07	1.507E+03	7.797E+01	2.175E+04	1.462E+00				
2060	4.024E+04	2.198E+07	1.477E+03	7.643E+01	2.132E+04	1.433E+00				
2061	3.944E+04	2.155E+07	1.448E+03	7.492E+01	2.090E+04	1.404E+00				
2062	3.866E+04	2.112E+07	1.419E+03	7.343E+01	2.049E+04	1.376E+00				
2063	3.789E+04	2.070E+07	1.391E+03	7.198E+01	2.008E+04	1.349E+00				
2064	3.714E+04	2,029E+07	1.363E+03	7.055E+01	1.968E+04	1.322E+00				
2065	3.641E+04	1.989E+07	1.336E+03	6.916E+01	1.929E+04	1.296E+00				
2066	3.569E+04	1.950E+07	1.310E+03	6.779E+01	1.891E+04	1.271E+00				
2067	3.498E+04	1.911E+07	1.284E+03	6.644E+01	1.854E+04	1.245E+00				
2068	3.429E+04	1.873E+07	1.259E+03	6.513E+01	1.817E+04	1.221E+00				
2069	3.361E+04	1.836E+07	1.234E+03	6.384E+01	1.781E+04	1.197E+00				
2070	3.294E+04	1.800E+07	1.209E+03	6.257E+01	1.746E+04	1.173E+00				
2071	3.229E+04	1.764E+07	1.185E+03	6.134E+01	1.711E+04	1,150E+00				
2072	3.165E+04	1.729E+07	1.162E+03	6.012E+01	1.677E+04	1.127E+00				
2073	3.102E+04	1.695E+07	1.139E+03	5.893E+01	1.644E+04	1.105E+00				
2074	3.041E+04	1.661E+07	1.116E+03	5.776E+01	1.611E+04	1.083E+00				
2075	2.981E+04	1.628E+07	1.094E+03	5.662E+01	1.580E+04	1,061E+00				
2076	2.922E+04	1.596E+07	1.072E+03	5.550E+01	1.548E+04	1.040E+00				
2077	2.864E+04	1.565E+07	1.051E+03	5.440E+01	1.518E+04	1.020E+00				
2078	2.807E+04	1.534E+07	1.030E+03	5.332E+01	1.488E+04	9.995E-01				
2079	2.752E+04	1.503E+07	1.010E+03	5.227E+01	1.458E+04	9.797E-01				
2080	2.697E+04	1.473E+07	9.900E+02	5.123E+01	1.429E+04	9.603E-01				
2081	2.644E+04	1.444E+07	9.704E+02	5.022E+01	1,401E+04	9.413E-01				
2082	2.591E+04	1.416E+07	9.512E+02	4.922E+01	1.373E+04	9.227E-01				
2083	2.540E+04	1.388E+07	9.324E+02	4.825E+01	1.346E+04	9.044E-01				

Marti		Carbon dioxide			NMOC						
Tear	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)					
2084	2.490E+04	1.360E+07	9.139E+02	4.729E+01	1.319E+04	8.865E-01					
2085	2.441E+04	1.333E+07	8.958E+02	4.636E+01	1.293E+04	8.689E-01					
2086	2.392E+04	1.307E+07	8.781E+02	4.544E+01	1.268E+04	8.517E-01					
2087	2.345E+04	1.281E+07	8.607E+02	4.454E+01	1.243E+04	8.349E-01					
2088	2.298E+04	1.256E+07	8.436E+02	4.366E+01	1.218E+04	8.183E-01					
2089	2.253E+04	1.231E+07	8.269E+02	4.279E+01	1.194E+04	8.021E-01					
2090	2.208E+04	1.206E+07	8.106E+02	4.194E+01	1.170E+04	7.862E-01					
2091	2.165E+04	1.182E+07	7.945E+02	4.111E+01	1.147E+04	7.707E-01					
2092	2.122E+04	1.159E+07	7.788E+02	4.030E+01	1.124E+04	7.554E-01					
2093	2.080E+04	1.136E+07	7.634E+02	3.950E+01	1.102E+04	7.405E-01					
2094	2.038E+04	1.114E+07	7.482E+02	3.872E+01	1.080E+04	7.258E-01					
2095	1.998E+04	1.092E+07	7.334E+02	3.795E+01	1.059E+04	7.114E-01					
2096	1.959E+04	1.070E+07	7.189E+02	3.720E+01	1.038E+04	6.973E-01					
2097	1.920E+04	1.049E+07	7.047E+02	3.647E+01	1.017E+04	6.835E-01					
2098	1.882E+04	1.028E+07	6.907E+02	3.574E+01	9.972E+03	6.700E-01					
2099	1.844E+04	1.008E+07	6.770E+02	3.504E+01	9.774E+03	6.567E-01					
2100	1.808E+04	9.877E+06	6.636E+02	3.434E+01	9.581E+03	6.437E-01					
2101	1.772E+04	9.681E+06	6.505E+02	3.366E+01	9.391E+03	6.310E-01					
2102	1.737E+04	9.490E+06	6.376E+02	3.299E+01	9.205E+03	6.185E-01					
2103	1.703E+04	9.302E+06	6.250E+02	3.234E+01	9.023E+03	6.062E-01					
2104	1.669E+04	9.118E+06	6.126E+02	3.170E+01	8.844E+03	5.942E-01					
2105	1.636E+04	8.937E+06	6.005E+02	3.107E+01	8.669E+03	5.825E-01					
2106	1.604E+04	8.760E+06	5.886E+02	3.046E+01	8.497E+03	5.709E-01					
2107	1.572E+04	8.587E+06	5.769E+02	2.986E+01	8.329E+03	5.596E-01					
2108	1.541E+04	8.417E+06	5.655E+02	2.926E+01	8.164E+03	5.485E-01					
2109	1.510E+04	8.250E+06	5.543E+02	2.868E+01	8.002E+03	5.377E-01					
2110	1.480E+04	8.087E+06	5.433E+02	2.812E+01	7.844E+03	5.270E-01					
2111	1.451E+04	7.926E+06	5.326E+02	2.756E+01	7.689E+03	5.166E-01					
2112	1.422E+04	7.769E+06	5.220E+02	2.701E+01	7.536E+03	5.064E-01					
2113	1.394E+04	7.616E+06	5.117E+02	2.648E+01	7.387E+03	4.963E-01					
2114	1.366E+04	7.465E+06	5.016E+02	2.595E+01	7.241E+03	4.865E-01					
2115	1.339E+04	7.317E+06	4.916E+02	2.544E+01	7.098E+03	4.769E-01					
2116	1.313E+04	7.172E+06	4.819E+02	2.494E+01	6.957E+03	4.674E-01					
2117	1.287E+04	7.030E+06	4.724E+02	2.444E+01	6.819E+03	4.582E-01					
2118	1.261E+04	6.891E+06	4.630E+02	2.396E+01	6.684E+03	4.491E-01					
2119	1.236E+04	6.754E+06	4.538E+02	2.348E+01	6.552E+03	4.402E-01					
2120	1.212E+04	6.621E+06	4.448E+02	2.302E+01	6.422E+03	4.315E-01					
2121	1.188E+04	6.490E+06	4.360E+02	2.256E+01	6.295E+03	4.230E-01					
2122	1.164E+04	6.361E+06	4.274E+02	2.212E+01	6.170E+03	4.146E-01					
2123	1.141E+04	6.235E+06	4.189E+02	2.168E+01	6.048E+03	4.064E-01					

APPENDIX 4-E ESTIMATED METHANE GENERATION RATES BASED ON CARB AND NO BIOSOLIDS, 2015

			Compostion
		Type of Waste	% by wt
1		Dry Recoverable Fiber	17.60%
2		PET UBC's	0.60%
3		HDPE	0.80%
4		Film Plastics	5.30%
5		Mixed plastics	3.40%
6		Glass	0.90%
7		Aluminum UBC's	0.20%
8		Mixed Ferrous (Tin & Salvage)	1.70%
9		Mixed Non-Ferrous (Salvage)	0.10%
10		Inerts	7.30%
11		Hazardous Waste	0.30%
12		E-Waste	1.00%
13		Textiles	7.00%
14		Organics	43.00%
	а	Yard Waste	8.20%
	b	Food Waste	19.10%
	С	Clean Wood	3.40%
1	d	Treated/Painted Wood	3.30%
	е	Wet/Contaminated Fiber	6.10%
	f	Rubber	0.90%
	g	Allocated Organics	2.00%
15		Fines (<2" Items)	1.30%
16		Other	9.50%
	-	Total	100.00%
		Calculated	
		Methane Correction Factor (MCF)	1
		Degradable Organic Carbon (DOC)	0.187952
		Fraction of DOC Dissimilated (DOC _F)	0.494031

Pickles Butte Sanitary Landfill Assumed Waste Composition

ve
5
5
C
0
÷
La
Ð
C
Ð
U
S
σ
()

Summary Report	Landfill Name or Identifier: [Canyon County Pickles Butte Landfill	Date: Tuesday, September 01, 2015	Rate Constant "k" (year^-1) 0.02	Starting Year: [1983	Collection Efficiency:]95.00%	

First-Order Decomposition Rate Equation (From Equation HH-1 in Subpart HH):

 $L_{0,m,x} = MCF * DOC * DOC_F * F * \frac{16}{12}$ $L_{0,v,x} = \frac{\left(\frac{L_{0,m}}{16.04} * R * T_{std}\right)}{P_{std}}$

 $Q_{CH4} = \sum_{x=S}^{T-1} \{ W_x * L_{0,y,x} * \{ e^{-k(T-x-1)} - e^{-k(T-x)} \} \}$

Q_{CH4} = annual methane generation in the year of the calculation (m^3 /year)	
x = Year in which waste was disposed.	T = Reporting year for which emissions are calculated.
S = Start year of calculation.	WOutstitute of wasts discreted in the landfill in year v from (matrix tons as received (wet weight))
MCF = Methane correction factor (fraction).	W
DOC = Degradable organic carbon	$DOC_F = Fraction of DOC dissimilated (fraction)$
$L_{o,v}$ = potential methane generation capacity for year x (m^3/Mg)	F = Fraction by volume of CH4
$L_{o,m}$ = potential methane generation capacity for year x (Mg /Mg)	k = Rate constant (yr-1).
P _{stb} = Standard Pressure	T _{ett} = Standard Temperature

Methane Correction Factor (MCF)	Degradable Organit	c Carbon (DOC)	Fraction of DOC Dissimilated (DOC _F)	Fraction by volume of CH ₄ (F)
Fraction	Fracti	01 187952	Fraction 0.494031	Fraction 0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0.187952	0.494031	0.55
1		0 407050	LEONAN O	0 55

9/1/2015 7:39 AM H:\Pickles Butte\Waste Specif Gas Generation Curve_Pickles

0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031
2	2	2	2	2	2	2	2	2	5	2	2	2	2	2	2	5	2	5	2	2	2		i i i i i i i i i i i i i i i i i i i	2	5		5	ā	5	i i i i i i i i i i i i i i i i i i i			
0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952
1	1	1	1	I	I	1	1	I	T	1	1	I	I	1	1	1	1	I	I	T	1	1	1	I	1	1	1	1		1	1	1	1
154,784	165,114	171,822	187,514	196,853	215,581	251,680	245,237	225,349	194,320	197,507	186,442	196,348	207,908	233,640	237,145	240,702	244,313	247,977	251,697	255,473	259,305	263,194	267,142	271,149	275,216	279,345	283,535	287,788	292,105	296,486	300,934	305,448	310,029
140,418	149,789	155,874	170,110	178,582	195,572	228,320	222,475	204,433	176,284	179,175	169,137	178,124	188,611	211,955	215,134	218,361	221,637	224,961	228,336	231,761	235,237	238,766	242,347	245,982	249,672	253,417	257,219	261,077	264,993	268,968	273,002	277,097	281,254
2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033

Gas Generation Curve

Кеу	
Required User Input	

	Waste Tonnage	Waste Tonnage	
Year	(Short Tons)	(Metric Tons)	% CH4
1983	18,478	20,369	55.00%
1984	39,503	43,545	55.00%
1985	42,206	46,524	55.00%
1986	45,074	49,686	55.00%
1987	48,117	53,040	55.00%
1988	51,345	56,598	55.00%
1989	54,770	60,374	55.00%
1990	68,472	75,477	55.00%
1991	72,649	80,082	55.00%
1992	77,081	84,967	55.00%
1993	81,980	90,367	55.00%
1994	108,065	119,121	55.00%
1995	113,424	125,029	55.00%
1996	119,707	131,954	55.00%
1997	125,389	138,218	55.00%
1998	127,329	140,356	55.00%
1999	131,723	145,200	55.00%
2000	140,418	154,784	55.00%
2001	149,789	165,114	55.00%
2002	155,874	171,822	55.00%
2003	170,110	187,514	55.00%
2004	178,582	196,853	55.00%
2005	195,572	215,581	55.00%
2006	228,320	251,680	55.00%
2007	222,475	245,237	55.00%
2008	204,433	225,349	55.00%
2009	176,284	194,320	55.00%
2010	179,175	197,507	55.00%
2011	169,137	186,442	55.00%
2012	178,124	196,348	55.00%
2013	188,611	207,908	55.00%
2014	211,955	233,640	55.00%
2015	215,134	237,145	55.00%
2016	218,361	240,702	55.00%
2017	221,637	244,313	55.00%
2018	224,961	247,977	55.00%
2019	228,336	251,697	55.00%
2020	231,761	255,473	55.00%
2021	235,237	259,305	55.00%

A HD PF	ar	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
2 PET		Composition	Compostion	Composition	Composition	Composition	Composition								
1 Dry 2 PET 3 HD 5 Mi	be of Waste	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt
2 PET 3 HD 5 Mi	/ Recoverable Fiber	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%
S 4 3	T UBC's	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%
5 Mi	PE	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%
SM	n Plastics	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%
	xed plastics	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%
6 Gla	ISS	%06:0	%06.0	%06.0	%06'0	0.90%	0.90%	%06:0	%06:0	%06.0	%06.0	%06:0	%06.0	%06:0	%06.0
7 Alu	Iminum UBC's	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%
8 Mi	xed Ferrous (Tin & Salvage)	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%
9 Mi	xed Non-Ferrous (Salvage)	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%
10 Ine	irts	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%
11 Ha;	zardous Waste	0.30%	0:30%	0.30%	0.30%	0.30%	%0E.0	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%	0.30%
12 E-V	Vaste	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%
13 Te	dtiles	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%	7.00%
14 Or	ganics	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%
a Yar	d Waste	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%
b Foc	od Waste	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%	19.10%
c Cle	an Wood	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%
d Tre	ated/Painted Wood	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%	3.30%
e We	st/Contaminated Fiber	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%
f Ru	bber	%06.0	%06.0	%06.0	%06.0	0.90%	%06.0	%06:0	%06'0	%06.0	%06:0	%06:0	0.90%	%06.0	0.90%
g All	ocated Organics	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%
15 Fin	es (<2" Items)	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%
16 Oti	her	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%	9.50%
Tot	tal	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	%00'00T	100.00%	100.00%	100.00%	100.00%	200.001	100.00%

Key

Required User Input

Calculated						-								
Methane Correction Factor (MCF)	F	1	F	1	T	1	F	1	F	F	F	F	F	1
Degradable Organic Carbon (DOC)	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952
Fraction of DOC Dissimilated (DOCr)	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031
)					

		Type of Waste	MCF	DOC	DOCF
1		Dry Recoverable Fiber	100.00%	41.83%	40.70%
2		PET UBC's	100.00%	0.00%	50.00%
3	Γ	HDPE	100.00%	0.00%	50.00%
4		Film Plastics	100.00%	0.00%	50.00%
5		Mixed plastics	100.00%	0.00%	50.00%
6		Glass	100.00%	0.00%	50.00%
7		Aluminum UBC's	100.00%	1.00%	50.00%
8		Mixed Ferrous (Tin & Salvage)	100.00%	1.00%	50.00%
9		Mixed Non-Ferrous (Salvage)	100.00%	1.00%	50.00%
10		Inerts	100.00%	1.00%	50.00%
11		Hazardous Waste	100.00%	0.00%	50.00%
12		E-Waste	100.00%	1.00%	50.00%
13		Textiles	100.00%	24.00%	50.00%
14		Organics			
	a	Yard Waste	100.00%	19.20%	32.20%
	b	Food Waste	100.00%	11.70%	82.80%
	С	Clean Wood	100.00%	43.00%	23.30%
	d	Treated/Painted Wood	100.00%	43.00%	23.30%
	e	Wet/Contaminated Fiber	100.00%	27.90%	17.60%
	f	Rubber	100.00%	39.00%	50.00%
	g	Allocated Organics	100.00%	40.00%	50.00%
15		Fines (<2" Items)	100.00%	1.00%	50.00%
16		Other	100.00%	1.00%	50.00%

References

EPA Default Value Used
Landfill Emissions Tool Version 1.2
"Staff Report: Initial Statement of Reasons for Proposed
Rulemaking" from State of CaliforniaAir Resources Board. Appendix
C, May 8, 2009
http://www.arb.ca.gov/regact/2009/landfills09/landfills09.htm
"2006 IPCC Guidelines for National Greenhouse Gas Inventories
Volume 5 Waste" Chapter 2 Table 2.5

	95.00%
	Collection Efficiency
	Canyon County Pickles Butte Landfill
	Landfill Name or Identifier
	1983
	Starting Year
	0.02
From Federal Regis	Kate Constant K (year''-1) (From Table of Factors Tab)
Bulk Waste	(Fraction with Default Value of 0.5)
Sewage Sludge	Fraction by volume of methane in LFG
Diapers	
Textiles	(Fraction with Default Value of 0.5)
Wood and Straw	Degradable Organic Carbon Dissimilated
Garden	(Fraction From Table of Factors)
Food Waste	Degradable Organic Carbon (DOC)
Weigh Waste (Wet I	Methane Correction Factor (Fraction with Default Value of 1)
Table	

	Table of Factors Doc		
	Weight Fraction	×	
aste	(Wet Basis)	year^-1	
	low	hig	4
od Waste	0.15	0.06	0.185
arden	0.2	0.05	0.1
ther	0.4	0.04	0.06
ood and Straw	0.43	0.02	0.03
extiles	0.24	0.04	0.06
apers	0.24	0.05	0.01
wage Sludge	0.05	0.06	0.185
ulk Waste	0.2 ND	DN	

om Federal Register/Vol .74, No. 209/ Friday, October, 2009/ Rules and Regulations

			Gen	erated l	andfill G	Sas					Col	lected L	andfill G	as		
		Total Lar	ndfill Gas			Mei	hane			Total La	ndfill Gas			Me	thane	
Year	Mg/year	m³/year	ft³/year	ave scfm	Mg/year	m³/year	ft ³ /year	ave scfm	Mg/year n	n ³ /year	ft³/year	ave scfm	Mg/year	m³/year	ft ³ /year	ave scfm
1984	68	73,744	2,604,262	2	27	40,559	1,432,344	Ē	8	70,057	2,474,049	2 2	26 0	38,531	1,360,727	D m
1985	278	229,938	8,120,190	15	98	126,466	4,466,105	80	264	218,441	7,714,181	15	81	120,143	4,242,799	80
1986	476	393,826	13,907,852	26	147	216,604	7,649,319	ដ	452	374,135	13,212,459	25	139	205,774	7,266,853	14
1980	902	746,741	26,370,930	8 S	278	410.707	14,504,012	28	857 85	709,404	25.052,384	69 68 68	264	390.172	13,778,811	26
1989	1,132	936,869	33,085,241	63	349	515,278	18,196,882	35	1,076	890,025	31,430,978	60	331	489,514	17,287,038	33
1990	1,374	1,136,901	40,149,313	76	423	625,295	22,082,122	42	1,305	1,080,056	38,141,847	73	402	594,031	20,978,016	4
1991	1 007	1 650 116	49,004,648 58 372 325	111	21/	007 56A	20,952,556 37 050 334	17	1 804	1 557 610	40,554,415 55 359 668	105	491	725,050	30.447 218	49 F.g
1993	2,326	1,925,066	67,983,130	129	117	1,058,786	37,390,721	71	2,210	1,828,813	64,583,973	123	681	1,005,847	35,521,185	8 33
1994	2,676	2,214,124	78,191,116	149	825	1,217,768	43,005,114	82	2,542	2,103,418	74,281,560	141	283	1,156,880	40,854,858	78
1995	3,144	1 2,601,561	91,873,352	175	696	1,430,859	50,530,344	8	2,987	2,471,483	87,279,685	166	920	1,359,316	48,003,827	91
1996	3,625	3,002,714	106,039,952	202	1,118	1,651,493	58,321,973	H	3,447	2,852,579	100,737,954	192	1,062	1,568,918	55,405,875	105
1991	4,134	3,420,999	120,811,551	230	1,274	1,881,549	66,446,353 74 eco and	126	3,927	3,249,949	114,770,973	218	1,210	1,787,472	63,124,035	120
1999	4,00/	4.285.531	151 342,238	288	1.596	2.357.042	83.238.231	158	4,920	4.071.254	143.775.126	274	1,505	7.239.190	79.076 319	150
2000	5,712	4,726,369	166,910,309	318	1,760	2,599,503	91,800,670	175	5,426	4,490,051	158,564,794	302	1,672	2,469,528	87,210,637	166
2001	6,276	5,193,179	183,395,573	349	1,934	2,856,249	100,867,565	192	5,962	4,933,520	174,225,794	331	1,837	2,713,436	95,824,187	182
2002	6,874	1 5,688,145	200,875,141	382	2,118	3,128,480	110,481,328	210	6,530	5,403,738	190,831,384	363	2,012	2,972,056	104,957,261	200
5007	7,485	6,197,595	218,866,202	416	2,308	3,408,677	120,376,411	229	7,115	5,887,715	207,922,892		2,193	3,238,243	114,357,590	218
2005	8,152	7.332.746	258,507,417	454	2.731	4.033.011	142.424.558	271	8.418	6,966,109	246.006.054	451	2,594	3,831,360	135,303,330	257
2006	9,629	7,968,063	281,389,747	535	2,967	4,382,435	154,764,361	294	9,148	7,569,660	267,320,260	50S	2,819	4,163,313	147,026,143	280
2007	10,539	8,721,494	307,996,946	586	3,248	4,796,822	169,398,320	322	10,013	8,285,419	292,597,099	557	3,086	4,556,981	160,928,404	306
2005	11,404	1 9,436,679	333,253,501	634	3,514	5,190,174	183,289,426	349	10,834	8,964,845	316,590,826	602	3,339	4,930,665	174,124,954	331
200	12,164	10,065,699	355,467,130	676	3,749	5,536,134	195,506,921	372	11,556	9,562,414	337,693,773	642	3,561	5,259,328	185,731,575	353
1102	13 384	11 075,502,922	3/3,2/3,52U	DT/	3,250	701 634 7	169,002,CU2	TAC	1217 C1	10 521 914	256,600,955	2/02	3,/40	5,222,784	195,035,46/	360
2012	13,935	11,531,399	407,227,903	522	4,294	6,342,270	223,975,347	426	13,238	10,954,829	386,866,508	736	4,080	6,025,156	212,776,579	405
2013	14,518	1 12,013,943	424,268,788	807	4,474	6,607,669	233,347,834	444	13,792	11,413,246	403,055,349	767	4,250	6,277,285	221,680,442	422
2014	15,14C	12,528,784	442,450,264	842	4,666	6,890,831	243,347,645	463	14,383	11,902,345	420,327,751	808	4,433	6,546,290	231,180,263	440
201	15,863	3 13,126,596	463,561,791	882	4,889	7,219,628	254,958,985	485	15,070	12,470,266	440,383,702	838	4,644	6,858,646	242,211,036	461
2017	17 311	362,621,EL 0	484,/U3,3/2 505 881 132	276	5 335	7 878 720	200,380,853 778 734 673	102	16 445	13,038,995	450,458,204 480 587 076	8/9 914	4,85b	7 484 784	212,122,622	503
2016	18,037	14,925,829	527,101,178	1,003	5,559	8,209,206	289,905,648	552	17,135	14,179,538	500,746,119	556	5,281	7.798.746	275,410,365	524
2015	9 18,765	15,528,083	548,369,596	1,043	5,783	8,540,446	301,603,278	574	17,827	14,751,679	520,951,116	991	5,494	8,113,423	286,523,114	545
202	19,495	5 16,131,879	569,692,456	1,084	6,008	8,872,533	313,330,851	596	18,520	15,325,285	541,207,834	1,030	5,707	8,428,907	297,664,308	266
202	1 20,226	16,737,387	591,075,816	1,125	6,233	9,205,563	325,091,699	619	19,215	15,900,518	561,522,025	1,068	5,922	8,745,285	308,837,114	588
202	20,960	17 954 228	612,525,717 634 048 191	1 206	6,459 6,686	9,539,629 9,874,826	336,889,144 348 726 505	641	20612	17 056 517	581,899,431 607 345 781	1146	6,136 6 357	9,062,548	320,044,687	609
2024	1 22.436	18,565,902	655,649,261	1.247	6,914	10.211.246	360,607,094	686	21,314	17.637,607	622,866,798	1,185	6,569	9.700,684	342,576,739	652
202	23,178	19,179,972	677,334,942	1,289	7,143	10,548,984	372,534,218	602	22,019	18,220,973	643,468,195	1,224	6,786	10,021,535	353,907,507	673
2026	23,923	19,796,607	699,111,244	1,330	7,373	10,888,134	384,511,184	732	22,727	18,806,777	664,155,682	1,264	7,004	10,343,727	365,285,625	569
202	24,672	20,415,979	720,984,173	1,372	7 001	11,228,788	396,541,295	754	23,438	19,395,180	684,934,965 767 811 747	1,303	E27'1	10,667,349	376,714,231	
202	26.179	21,663,611	765.043.928	1.456	8.068	11,914,986	420.774.160	801	24.870	20,580,431	726,791,731	1,383	7,664	11,319,237	399,735,452	761
203(26,935	22,292,212	787,242,763	1,498	8,302	12,260,716	432,983,519	824	25,592	21,177,601	747,880,624	1,423	7,887	11,647,681	411,334,343	783
203.	27,705	3 22,924,228	809,562,247	1,540	8,537	12,608,326	445,259,236	847	26,318	21,778,017	769,084,135	1,463	8,110	11,977,909	422,996,274	805
2035	1 28,4/1	268,955,65	854 587 778	1.626	8,//4 9.012	13.309.556	470.022.975	894	27.781	22,989,233	811.857.866	1,545	8,562	12.644.078	434,724,380	850
2034	30,021	1 24,842,481	877,304,775	1,669	9,252	13,663,365	482,517,626	918	28,520	23,600,357	833,439,537	1,586	8,789	12,980,196	458,391,745	872
203:	30,803	3 25,489,869	900,167,078	1,713	9,493	14,019,428	495,091,893	942	29,263	24,215,376	855,158,724	1,627	9,018	13,318,457	470,337,298	895
2034	31,591	1 26,141,527	923,180,188	1,756	9,735	14,377,840	507,749,103 510,407,505	996	30,011	24,834,451	877,021,179	1,669	9,249	13,658,948	482,361,648	918
2036	33.182	27.458.342	969.683.113	1,845	3,300 10.226	15,102,088	533.325.712	1.015	31,523	26.085.425	921.198.957	1.753	9,715	14,001,/50 14,346,984	506,659,426	F.
2035	33,986	5 28,123,844	993,185,109	1,890	10,474	15,468,114	546,251,810	1,039	32,287	26,717,652	943,525,854	1,795	9,950	14,694,708	518,939,219	582
204	34,796	28,794,306	1,016,862,280	1,935	10,723	15,836,868	559,274,254	1,064	33,057	27,354,591	966,019,166	1,838	10,187	15,045,025	531,310,541	1,011
2043	36.413	30.132.121	1.064.106.819	2.025	11.222	16.572.667	585.258.750	1.114	34,592	28.625.515	1.010.901.478	1.923	10.661	15.744.033	555,995,813	1.058
204	37,196	30,781,227	1,087,029,799	2,068	11,463	16,929,675	597,866,389	1,137	35,338	29,242,166	1,032,678,309	1,965	10,890	16,083,191	567,973,070	1,081
204	1 37,966	5 31,417,480	1,109,498,874	2,111	11,700	17,279,614	610,224,380	1,161	36,068	29,846,606	1,054,023,930	2,005	11,115	16,415,633	579,713,161	1,103
204	38,720	32,041,134	1,131,523,031	2,153	11,933	17,622,624	622,337,667	1,184	36,784	30,439,077	1,074,946,879	2,045	11,336	16,741,492	591,220,784	1,125
20402	7 40.183	9 32,052,439 1 33 251 639	1,174,271,658	2,234	12,383	18.288.401	645.849.412	1.229	37,486	31.589.057	1.115.558.075	2,122	11.764	17.373.981	613.556.941	1,145
2048	40,895	33,838,974	1,195,013,228	2,274	12,602	18,611,436	657,257,275	1,250	38,848	32,147,026	1,135,262,566	2,160	11,972	17,680,864	624,394,412	1,188
2045	9 41,585	34,414,680	1,215,344,087	2,312	12,817	18,928,074	668,439,248	1,272	39,509	32,693,946	1,154,576,883	2,197	12,176	17,981,670	635,017,286	1,208
2051	42,27(34,978,985	1,235,272,369	2,350	13,027	19,238,442	679,399,803	1,293	40,157	33,230,036	1,173,508,750	2,233	12,375	18,276,520	645,429,813	1,228

APPENDIX 4-F ESTIMATED METHANE GENERATION RATES BASED ON CARB WITH BIOSOLIDS, 2015

		Compostion
	Type of Waste	% by wt
1	Dry Recoverable Fiber	17.60%
2	PET UBC's	0.609
3	HDPE	0.80%
4	Film Plastics	3.30%
5	Mixed plastics	3.409
6	Glass	0.909
7	Aluminum UBC's	0.209
8	Mixed Ferrous (Tin & Salvage)	1.709
9	Mixed Non-Ferrous (Salvage)	0.109
10	Inerts	2.309
11	Hazardous Waste	0.309
12	E-Waste	1.009
13	Textiles	7.009
14	Organics	55.009
a	Yard Waste	8.209
b	Food Waste	19.109
С	Clean Wood	3.409
d	Treated/Painted Wood	3.305
e	Wet/Contaminated Fiber	6.109
f	Rubber	0.909
g	Allocated Organics	14.009
15	Fines (<2" Items)	1.309
16	Other	4.50%
	Total	100.009
	Calculated	
	Methane Correction Factor (MCF)	
	Degradable Organic Carbon (DOC)	0.23495
	Fraction of DOC Dissimilated (DOC _F)	0.49403

Pickles Butte Sanitary Landfill Assumed Waste Composition with Additional Organics

-	Year	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
-		Composition	Composition	Composition	Compostion	Compostian	Composition	Composition	Composition	Composition	Composition	Compostion	Composition	Composition (ampostion
-	Type of Waste	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	% by wt	6 by wt
4	Dry Recoverable Fiber	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	17.60%	\$603'11	17.60%	17.60%	17.60%	17.60%	17.50%
2	PET UBC's	0.60%	0.60%	%09'0	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%	0.60%
m	HDPE	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%	0.80%
4	Film Plastics	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%	5.30%
5	Mixed plastics	3.40%	3.40%	3.40%	3.40%	3.40%	3:40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%
6	Glass	%06.0	3606.0	%06:0	0.90%	%05'0	0:00%	%06'0	%06'0	%06.0	%06'0	%06/0	%06.0	9606.0	%06.0
~	Aluminum UBC's	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%
80	Mixed Ferrous (Tin & Salvage)	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	1.70%	7.70%	1.70%	1.70%	1.70%	1.70%	1.70%
6	Mixed Non-Ferrous (Salvage)	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	9601.0	0.10%	0.10%
9	Inerts	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%	7.30%
11	Hazardous Waste	0.30%	0.30%	0.30%	0.30%	0:30%	0:30%	0.30%	0.30%	%0£.0	0:30%	0.30%	0:30%	0:30%	0.30%
11	E-Waste	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%
Ę	Textiles	7.00%	7.00%	7.00%	2,00%	2.00%	2,00%	7.00%	%00%	%00°2	7.00%	7.00%	2.00%	7.00%	2.00%
14	Organics	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%	43.00%
n	Yard Waste	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8.20%	8,20%	8.20%	8.20%	8.20%	8.20%	8.20%
2	Food Waste	19.10%	19.10%	301.01	3601.01	19.10%	19,10%	19.10%	19,10%	19.10%	19.10%	19.10%	3601.21	39.10%	19.10%
4	Clean Wood	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%	3.40%
P	Treated/Painted Wood	3:30%	3.30%	3.30%	3.30%	3.30%	3,30%	3,30%	3.30%	3.30%	3:30%	3.30%	3.30%	3.30%	3.30%
9	Wet/Contaminated Fiber	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%	6.10%
*	Rubber	0.90%	%06'0	%06'0	0.90%	%06'0	9606.0	%06:0	%05'0	0:90%	%05:0	0.90%	%06'0	9606.0	0.90%
tag	Allocated Organics	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%	2.00%
15	Fines (<2" Items)	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%
16	Other	9.50%	9.50%	9.50%	9.50%	9.50%	6.50%	9 50%	9.50%	9.50%	9,50%	9.50%	9.50%	9.50%	9.50%
	Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%

Κeγ

Required User Input

Calculated														
Methane Correction Factor (MCF)	F	T	1	1	1	1	F	1	ਜ	1	Т	П	F	1
Degradable Organic Carbon (DOC)	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952	0.187952
Fraction of DOC Dissimilated (DOC)	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0.494031	0 494031	0.494031

2014	Composition	6 by wr	17.60%	0.60%	0.80%	5.30%	3.40%	0.90%	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	2,00%	43.00%	8.20%	19.10%	3,40%	3.30%	6.10%	0:90%	2.00%	1.30%	9.50%	100.00%
2013	Composition (% by wt 9	17.60%	0.60%	0.80%	5.30%	3,40%	%06'0	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	2.00%	43.00%	8.20%	19.10%	3.40%	3,30%	6.10%	0.90%	2.00%	1.30%	9.50%	100.00%
2012	Compastion (16 by wt	17.60%	0.60%	0.80%	5.30%	3.40%	0.90%	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	301.01	3.40%	3.30%	6.10%	0.90%	2.00%	1.30%	9,50%	100.00%
2011	Composition (% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	806.0	0.20%	1.70%	0.10%	7.30%	0:30%	1.00%	2.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	2.00%	1.30%	9.50%	100.00%
2010	Compastion	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	%06.0	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06:0	2.00%	1.30%	9.50%	100.00%
2009	Composition	% by wt	17,60%	0.60%	0.80%	5.30%	3.40%	9606'0	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%05'0	2.00%	1.30%	9.50%	100.00%
2008	Compastion	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	%06'0	0.20%	%02'T	0 10%	308.7	0.30%	1.00%	%00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06:0	2.00%	1.30%	9.50%	100.00%
2007	Composition	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	0.90%	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	2.00%	1.30%	9.50%	100.00%
2006	Composition	% by wt	17.60%	0.60%	0.80%	5.30%	3 40%	0.90%	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0:00%	2.00%	1.30%	9.50%	100.00%
2005	Compostian	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	0.90%	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7,00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	2.00%	1.30%	9,50%	100.00%
2004	Compostion	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	%06'0	0.20%	1.70%	0,10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6,10%	0.90%	2.00%	1.30%	9.50%	100.00%
2003	Composition	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	%06/0	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	2.00%	1.30%	9.50%	100.00%
2002	Composition	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	0.90%	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	2.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	2.00%	%0ET	9.50%	100.00%
2001	Campastion	% by wr	17.60%	0.60%	0.80%	5.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	2600°Z	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	2.00%	1.30%	9.50%	100.00%
2000	Compostian	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	%06'0	0.20%	1.70%	0.10%	7.30%	0:30%	1.00%	3600.7	43.00%	8.20%	19.10%	3,40%	3.30%	6.10%	%06'0	2.00%	1.30%	9.50%	100.00%
1999	Composition	% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	0.90%	0.20%	1.70%	960E.0	7.30%	0.30%	1.00%	%00.7	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06.0	2.00%	1.30%	9-50%	100.00%
1998	Composition (% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	%06.0	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	7.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	2.00%	1.30%	9.50%	100.00%
1997	Composition (% by wt	17.60%	0.60%	0.80%	5.30%	3.40%	%06'0	0.20%	1.70%	0.10%	7.30%	0.30%	1.00%	2.00%	43.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	2.00%	1.30%	9.50%	100.00%

_			_
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	F	0.187952	0.494031
	F	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	F	0.187952	0.494031
	F	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031
	1	0.187952	0.494031

2032	Compostion	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	0:90%	0.20%	1.70%	0.10%	2.30%	%0E.0	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2031	Compostion	Xe by with	17.60%	0.60%	0.80%	3.30%	3.40%	%05'0	0.20%	1.70%	0.10%	2.30%	0:30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	200,00K
2030	Composition	6 by wr	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0:30%	1.00%	7.00%	\$5.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06.0	14.00%	1.30%	4.50%	100.00%
2029	Compostion (% by wt	17,60%	0.60%	0.80%	3.30%	3.40%	%05'0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2028	Compostion (% by wt	17.50%	0.60%	0.80%	3.30%	3.40%	0:30%	0.20%	1.70%	0.10%	2.30%	%0E.0	1.00%	7.00%	55.00%	8.20%	3601.61	3.40%	3.30%	6.10%	806.0	14.00%	1.30%	4.50%	100.00%
2027	Composition	% by we	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0:30%	1.00%	7.00%	\$600.22	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2026	Composition	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06'0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	301.01	3.40%	3.30%	6.10%	%06.0	14.00%	1.30%	4.50%	100.00%
2025	Compostion	% by wr	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7,00%	\$5.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100,00%
2024	Composition	% by wit	17.50%	0.60%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	9606:0	14.00%	1.30%	4.50%	100.00%
2023	Compostion	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	2,00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4 50%	100.00%
2022	Composition	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06'0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	3601.61	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100,00%
2021	Composition	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	25.00%	8.20%	301.91	3.40%	3.30%	6.10%	%06'0	14 00%	1.30%	4.50%	100,00%
2020	Composition	% by wit	17.60%	0.60%	0.80%	3.30%	3.40%	%06:0	0.20%	1.70%	0.10%	2.30%	%02:0	9600 T	2.00%	\$5.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2019	Compostian	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	%06.0	1.00%	7.00%	\$5.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06:0	14.00%	1.30%	4.50%	300.005
2018	Composition	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06'0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	%00%	25.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06:0	14.00%	1.30%	%05'*	100.00%
2017	Compostion	% by wr	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0:30%	3,00%	7.00%	\$5.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2016	Composition	% by wr	17.60%	0.60%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0:30%	1.00%	2.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100 005
2015	Compostion	6 by wt	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	\$55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06.0	14.00%	1.30%	4.50%	100.00%

	1	4952	4031																							
		0.23	0.49																							
	1	0.234952	0.494031																							
	1	0.234952	0.494031																							
	1	0.234952	0.494031																							
	1	0.234952	0.494031																							
	1	0.234952	0.494031																							
	1	0.234952	0.494031																							
		0.234952	0.494031																							
	1	0.234952	0.494031																							
	1	0.234952	0.494031																							
	1T	0.234952	0 494031																							
	1	0.234952	0.494031																							
	Т	0.234952	0.494031																							
	F	0.234952	0.494031																							
	1	0.234952	0.494031																							
	F	0.234952	0.494031																							
	1	0.234952	0.494031																							
	1	0.234952	0,494031																							
2049	Composition	% by we	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	\$5.00%	8.20%	19.10%	3.40%	3,30%	6.10%	0.90%	14.00%	1.30%	4.50%	200,001
------	---------------	------------	--------	-------	-------	-------	-------	--------	-------	-------	--------	-------	-------	-------	-------	---------	-------	--------	-------	-------	-------	--------	--------	-------	-------	---------
2048	Composition	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%05'0	0.20%	1.70%	0.10%	2.30%	0:30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	960610	14.00%	1.30%	4.50%	100.00%
2047	Compostion	% by wt	17.60%	0.60%	0.80%	3,30%	3.40%	%05'0	0.20%	1.70%	0.10%	2.30%	0:30%	1.00%	%00'2	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06.0	14.00%	1.30%	4.50%	100,00%
2046	Composition	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06'0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	\$5.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2045	Compostion	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	\$5.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2044	Compostion	% by we	17.60%	0.60%	0.80%	3,30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3:30%	6.10%	3606.0	14.00%	1.30%	4.50%	100.00%
2043	Compostion	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	%00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2042	Compostion	% by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0°30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2041	Composition (6 by wt	17.50%	0.50%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2040	ampostion (6 by wt 3	17.60%	0.60%	0.80%	3.30%	3.40%	0.90%	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2039	Composition (6 by wt 9	17.60%	0.60%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2038	Compostion (16 by wrt	17.60%	0.60%	0.80%	3.30%	3.40%	%06'0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	2,00%	55.00%	8.20%	19.10%	3.40%	3,30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2037	Composition (K by wt 5	17.60%	0.60%	0.80%	3.30%	3.40%	9605.0	0.20%	1.70%	960E'0	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2036	Composition (K by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06'0	14.00%	1.30%	4.50%	100.00%
2035	Compostion (16 by wt	17.60%	0.60%	0.80%	3.30%	3.40%	%06:0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	%06.0	14.00%	1.30%	4.50%	100.00%
2034	Composition (6 by wrt 5	17.60%	0.60%	0.80%	3.30%	3.40%	%06.0	0.20%	1.70%	9601.0	2.30%	0.30%	1,00%	7.00%	55.00%	8.20%	19.10%	3.40%	3.30%	6.10%	0.90%	14.00%	1.30%	4.50%	100.00%
2033	ompostian (6 by wt 3	17.60%	0.60%	0.80%	3.30%	3.40%	%06:0	0.20%	1.70%	0.10%	2.30%	0.30%	1.00%	7.00%	55.00%	8.20%	301.01	3.40%	3.30%	6.10%	%06.0	14.00%	1.30%	4.50%	100.00%

	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
-	1	0.234952	0.494031
ſ	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	1	0.234952	0.494031
	T	0.234952	0.494031
	1	0.234952	0.494031
	H	0.234952	0.494031

		we softm	0	20	ĒĒ	41		e 19		130	151	121	200	230	560	গ্ন	320	16F	415	448	485	523	565	616	663	707	728	754	776	262	825	828	656	1,008	1,056		1,149	1,154	Eac (1 1277	1374	1412	1451	1,496	1,537	1,578	1,619	1,660	1,700	1 781	1.821	1,861	1,901	1,940	1,981	2,019	2,20,2 2,000 C	2,122	2,153	2,183	2,211	2,238	20217
	hahe	r'/year a	3.351.465	10,352,906	17,503,141	24,824,842	32,341,580 40.076.016	40,070,020	58.131.661	68,473,327	79,114,482	90,125,223	105,330,155	120,765,527	136,587,693	152,668,780	100 000 001	DOD AQA EGA	217,884,448	235,529,892	254,896,825	274,855,838	296,923,016	323,853,664	348,410,747	368,497,782	382,499,609	396,342,917	407,690,428	420,114,539	433,809	477 905 2/5/2/3/5	SOM DOB 438	529,765,304	554,934,162	579,640,607	603,918,669	627, BUU,846	CONSTRAINTS	016,000,010	801 720 612	742,318,317	764,434,565	786,346,984	808,078,637	829,651,658	851,087,303	872,405,993	893,627,358	514,//U/252 015 853 018	956.892.829	977,906,821	591,116,802	1,019,921,611	1,040,953,267	1,060,959,197	1,005 001 540	115.310,804	1.131.690,274	1,147,270,908	1,162,091,665	1,176,189,606	706'546'591'1
35	Met	n'/year f	94.903	293,161	495,633	702,961	CD9'CT2	1 360 700	1.646.104	1,938,947	2,240,271	2,552,060	2,982,615	3,419,696	3,867,729	4,323,094	CT7 00/ 1	5 677 26R	6,169.795	6,669,458	7,217,867	EM0,E37,7	8,407,916	9,170,506	9,865,884	0,434,685	E71,1E8,01	171,522,11	11,544,496	11,896,308	12,284,822	12 537 EAM	4 774 465	15,001,269	15,713,971	16,413,579	950'01'101'1	25,11,11	10 000 733	ATT STORE	UNAT THE DO	020.094	21.646,356	22,266,846	22,882,217	72,493,097	24,100,085	24,703,763	25,304,685	C3C 100, 305	27.096.162	27,691,211	28,285,988	28,880,937	29,475,486	30,042,991	Adda, Lacius	11.582,055	32,045,870	32,487,064	32,906,740	13,305,949	loos'cos'rr
andfill Ga		Mg/year r	3	199	336	476	070	100/	111	1,313	1,517	1,728	2,020	2,316	2,619	2,927	3,22,6	AAA	4.178	4,516	4,887	5,270	5,693	6,210	6,680	7,066	7,334	7,599	118'1	8,055	8,318	8,03U	1996	10,158	10,540	11,114	6/9/11	100/21	1 1 0 643	LLE EL	13,805	14.733	14,657	15,077	15,494	15,908	16,319	16,727	17.134	Thec'll	18.347	18,750	19,153	19,556	19,959	20,343	21 055	21,385	21,699	21,998	22,282	22,552	1200/33
lected La		ave scfm	11	36	5	98	ZTT		201	237	274	312	364	418	472	528	202	102	754	815	882	951	1,027	1,120	1,205	1,275	1,323	1/371	1,410	1,453	105'1	15/31	1.744	1,833	1,920	2,005	2,089	2/1/2	EEE C	2.412	LPA C	2.569	2,644	2,720	2,795	2,870	2,944	3,018	3,091	75C 5	3.310	3,383	3,455	3,528	3,601	3,670	96/ E	3,858	3,915	3,969	4,020	4,069	1174
3	Ifil Gas	/year	6.093,572	18,823,465	31,823,893	45,136,077	125,200,865 730 866 057	DEP ATA GROUP	105,693,928	124,496,958	143,844,513	163,864,041	191,509,372	219,573,686	248,341,259	009'6/5'//Z	CEVITENIONE	JEA 515 LEG	396, 153, 542	428,236,167	463,448,772	499,737,887	539,860,029	588,824,844	633,474,086	669,995,967	695,453,835	720,623,486	741,255,323	763,844,616	788,790,561	520,615425,132	916.542.615	963,209,643	,008,971,203	EL0,268,E20	098,033,944	CTOCHTAT	736 965 400	267, 958, 429	TOP FAD FAD	799,669,64C	389,881,027	,429,721,789	,469,233,885	508,457,560	.547,431,460	566,192,714	.624,777,015	2015,022,007,000,000	739,805,143	778,012,402	,816,202,150	,854,402,929	,892,642,303	.929,016,721	PTL / LD 200	027.837,825	057,518,680	085,947,105	,112,893,937	,138,526,556	onninne 'son'
	Total Lan	Wear 4	172.551	533,021	901,151	1,278,110	026 250 L	2 474 180	2,992,916	3,525,358	4,073,219	4,640,109	5,422,936	6,217,629	7,032,255	7,860,172	0.473 359	10.977.498	608,712,11	12,126,286	39E,EZ1,EL	14,150,988	15,287,119	16,673,647	17,937,972	18,972,155	19,693,041	20,405,765	20,989,993	21,629,650	22,336,040	505'677'67	25,953,572	27,275,034	28,570,856 1	29,842,870 1	1 67976015	1 9116 203 55	1 7.756 769 1	35 904 550 1	37,067,963,11	38.213.353 1	39,357,011	40,485,174 1	41,604,031 1	42,714,721 1	43,818,338,1	44,915,933 1	46,008,518 1	48 182 507 1	49,265,749 1	50,347,657 1	51,429,069 1	52,510,794 1	53,593,611	54,623,619 1	1 566'609'CC	57.421,918 2	58,265,218 2	59,067,389 2	59,830,437 2	60,556,271 2	- Inn / 0
		Mg/year R	5	644	1,089	1,545	2102	066.2	3,617	4,260	4,922	5,607	6,553	7,514	8,498	9,499	11 440	12.474	13,55,EI	14,654	15,859	17,101	18,474	20,149	21,677	22,927	23,798	24,659	25,365	26,13B	Z6,992	20 733	31.364	32,960	34,526	36,064	6/C/2	25,000	41 966	43.389	44.795	46.105	47,561	48,924	50,276	51,619	52,952	54,279	55,599	56,226	565,92	60,843	62,149	63/A57	64,765	66,010	BCL.N	69.391	70,411	71,380	72,302	73,179	lorn/tu
		ave scfm	-	ន	52	នៅ៖	8 8	8 8	116	761	158	180	211	242	274	906	1096	407	964	472	015	550	595	673	863	738	766	794	815	841	869	567	1.010	1,061	1,111		1,205	127'T	1 36.1	1.397	CAS 1	1.487	1,531	1,575	1,518	1,662	1,704	1,747	1,790	1,878	1,916	1,958	2,001	2,043	580'2	2,125	201.2	2,234	2,266	2,298	2,327	2,356	Pace's
	aner	Y'/year	a,527,858	10,897,795	18,424,359	26,131,413	200'000'00'	167 282 05	61,191,222	72,077,186	83,278,402	94,868,656	110,873,847	127,121,608	143,776,519	160,703,979	102 604 107	211.046 908	229,352,051	247,926,202	268,312,447	269,321,935	312,550,543	840,898,594	366,748,155	387,892,402	402,631,168	417,203,071	429,147,819	442,225,830	456,668,220	5/14/0031.423	530.629.935	557,647,688	584,141,223	510,148,008	535, /03,862	BRU, 643, UHU	710,001,021	734,081,196	757,867,577	781,387,702	804,667,963	827,733,667	850,609,091	5E2,71E,E 7 8	895,861,372	918,322,097	940,660,377	9515, 201, 202	1.007.255,609	1,029,375,601	1,051,485,455	1,073,501,696	1,095,740,281	1,116,799,155	C/12,0150,051,1	1.174.011,372	1,191,252,920	1,207,653,587	1,223,254,384	1,238,054,322	
as	Meth	n'/year	368,66	165'80E	521,719	739,959	1 104 577	1.432,420	1,732,741	2,040,997	2,358,180	2,686,379	3,139,595	3,599,680	4.071.294	4,550,526	S'ARA E18	5,976,177	6,494,521	7,020,482	7,597,755	8,192,677	8,850,437	9,653,164	10,385,141	10,983,879	11,401,234	11,813,864	12,152,101	12,522,429	12,931,392	14 744 741	15.025.752	15,790,809	16,541,022	17,277,451	16,001,112	5/5/2T/2T	179 101 00	20.786.845	21.460.400	22.126.415	22,785,638	287,856,52	24,086,544	24,729,575	25,368,511	26,003,961	26,636,510	77 RUS 136	28,522,276	29,148,544	29,774,724	30,400,986	31,027,880	31,624,201	B64/161/25	33,244,269	33,732,494	34,196,909	34,638,674	35,058,894	- avalactics
andfill G		Mg/year	- 86	60Z	353	5	608	019	1,173	1,382	1,597	1,819	2,126	2,437	2,757	3,081		4.047	4,398	4,754	S,145	5,547	5,993	6,536	7,032	7,437	7,720	666'2	B,22B	8,479	8,756	COT'S	10.174	10,692	11,200	11,699	12,185	T/0/71	13 613	14.075	14.531	14.982	15,429	15,871	16,309	26,745	17,177	17,608	16,036	18.ABR	ELE.CI	19,737	20,161	20,585	21,010	E14,12	22.162	22.510	22,841	23,155	23,454	23,739	177760
Generated La		ave scfm	12	38	3	8	971	175	212	249	285	328	384	440	497	35	970	052	262	858	928	1,001	1,061	1,179	1,269	1,342	E0E(1	1,443	1,485	1,530	1,580	1 740	1.836	1,929	120'2	2111	2,199	6407 ⁴ 7	2 45.5	2.539	2.62.2	2.703	2,784	2, 863	2,942	3,021	660'E	3,177	3,254	SOF E	3,484	3,561	3,637	3,714	3,790	3,863	3005 E	4,061	4,121	4,178	4,232	4,283	Nere's T
	difil Gas	17./year	6,414,286	19,814,173	33,498,835	47,511,660 21 807 300	76 702 050	91.973.620	111,256,767	131,049,429	151,415,277	172,488,465	201,588,813	231,130,196	261,411,852	292,189,053	210 (21 (28	383,721,651	417,003,729	450,774,912	487,840,813	\$26,039,881	568,273,715	619,815,526	666,814,827	705,258,913	732,056,669	758,551,038	780,268,761	804,046,965	830,305,854	BUL ARA LO	964,781,700	1,013,904,887	1,062,074,951	1,109,360,014	1,155,825,204	1 116 112 112 12	1 290 910 947	1.334.693.083	1.377 941 049	1.420.704.912	1,463,032,660	1,504,970,304	1,546,551,984	1,587,850,063	1,628,875,221	1,669,676,541	1,710,291,594	1.791.106.101	1,831,373,835	1,871,592,003	1,911,791,737	1,952,003,083	1,992,255,056	2,030,543,91/	2,000,300,403 7 101 610 602	2 134,566,131	2.165,914,400	2,195,733,795	2,224,098,881	2,251,080,585	
	Total Lan	T/Year 1	181,632	561,074	948,580	1.345,379	121,251,1	2.604.400	3, 150, 438	3,710,903	4,287,599	4,884,325	5,708,354	6,544,872	7,402,352	8,2/3,865	D 071 851	10.865.777	11,808,219	12,764,512	13,814,100	14,895,777	16,091,704	17,551,207	18,882,075	19,970,690	20,729,517	21,479,753	22,094,730	22,768,053	23,511,621	26,800,385	27 319 550	28,710,562	30,074,585	31,413,548	32,729,294	211 202 32	36 554 AGE	PSC PoL 22	39.018.909	40.229.845	41,428,432	42,615,973	43,793,717	44,962,864	46,124,566	47,279,930	48,430,015	PCA.815.62	51.858.683	52,997,534	54,135,862	55,274,520	56,414,328	57,498,546	188/124/86/	60.444,125	808,1EE,13	62,176,198	62,979,407	63,743,444	117/116/20
		Mg/year r	219	678	1,146	1,526	2 6.75	3.147	3,807	4,484	5,181	5,902	6,B9B	7,909	8,945	9999.9	13 050	13.131	14,270	15,425	16,694	100,81	19,446	21,210	22,818	24,134	25,051	25,957	26,700	27,514	26,413	21 708	33.014	34,695	36,344	37,962	39,52	41,116	PCD/72	45.677	47.152	48,616	50.064	51,499	52,922	54,335	55,739	57,135	58,525	101219	62,669	64,045	65,420	66,796	68,174	69,484	71 916	73,044	74,116	75,137	76,107	77,031	1-1-C(1)
		lear.	1984	1985	1986	1987	90CT	1990	1991	1992	1993	1994	1995	1996	138	1995	CCC VIAL	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014		2017	2018	2019			7707	PLUC	1202	202	202	2028	<u>ମ</u> ମ	2030	2031	2032	2033		SEU2	2037	2038	2039	2040	2041	2042	2045	SHO2	2046	2047	2048	2049	140.75

APPENDIX 4-G GAS GENERATION GRAPHS

APPENDIX 6-A CONCEPTUAL FILL PLAN CROSS SECTIONS

APPENDIX 7 –A ISOPLUVIAL MAP

APPENDIX 7-B STORMWATER PLANS

10/26/2015 10:17:17 MA - F:/DATA/CLIENTS/TETRATECH/PICKLES BUTTE LANDFILL/STORMMATER/PICKLES-BUTTE-STORMMATER_X.DWC - LIVERMORE, TODD

^{10/26/2015 10:16:35} AM - F:/DATA/CLENTS/TETRATECH/PICKLES BUTTE LANDFILL/STORMMATER/PICKLES-BUTTE-STORMMATER_X.DWC - LIVERMORE, TODD

^{10/26/2015 10:19:08} AM - F:/DATA/CILENTS/TETRATECH/PICKLES BUTTE LANDFILL/STORNMATER/FICKLES-BUTTE-STORNMATER_X.DWG - UVERWORE, TODD

APPENDIX 7-C FLOWMASTER CALCULATIONS

Cross Section for CPA1-CULVERT

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024		
Channel Slope	0.04700	ft/ft	
Normal Depth	0.78	ft	
Diameter	1.00	ft	
Discharge	4.00	ft³/s	

Cross Section Image

V::1 ∖ H:1

	Worksheet for	r CPA1-C	ULVERT	
Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient Channel Slope Diameter Discharge		0.024 0.04700 1.00 4.00	ft/ft ft ft⁼/s	
Results				
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full Flow Type	SuperCritical	0.78 0.66 2.17 0.30 0.82 0.85 78.3 0.04064 6.06 0.57 1.35 1.20 4.50 4.18 0.04297	ft ft ² ft ft ft ft ft/ft ft/ft ft/s ft ft ft ³ /s ft ³ /s ft ³ /s ft ³ /s ft ³ /s	
GVF Input Data				
Downstream Depth Length Number Of Steps		0.00 0.00 0	ft ft	
GVF Output Data				
Upstream Depth Profile Description Profile Headloss Average End Depth Over Rise		0.00 0.00 0.00	ft ft %	
Normal Depth Over Rise		78.28 Infinity	% ft/s	

Bentley Systems, Inc. Haestad Methods SolBteotid@cFilmwMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPA1-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.78	ft
Critical Depth	0.85	ft
Channel Slope	0.04700	ft/ft
Critical Slope	0.04064	ft/ft

Cross Section for CPA2*-CULVERT

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

	0.004	
Roughness Coefficient	0.024	
Channel Slope	0.11100	ft/ft
Normal Depth	0.66	ft
Diameter	1.00	ft
Discharge	5.00	ft³/s

Cross Section Image

V 1 ∖ H 1

Worksheet for CPA2*-CULVERT

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
input Data		
Roughness Coefficient	0.024	
Channel Slope	0.11100	ft/ft
Diameter	1.00	ft
Discharge	5.00	ft³/s
Results		
Normal Depth	0.66	ft
Flow Area	0.55	ft²
Wetted Perimeter	1.90	ft
Hydraulic Radius	0.29	ft
Top Width	0.95	ft
Critical Depth	0.92	ft
Percent Full	66.3	%
Critical Slope	0.05837	ft/ft
Velocity	9.04	ft/s
Velocity Head	1.27	ft
Specific Energy	1.93	ft
Froude Number	2.09	
Maximum Discharge	6.92	ft*/s
Discharge Full	6.43	ft*/s
Slope Full	0.06713	ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Unetroom Depth	0.00	A
Profile Description	0.00	n.
Profile Headloss		ft
Average End Denth Over Rise	0.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Normal Depth Over Rise	66.30	%
Downstream Velocity	Infinity	ft/s
Downstream velocity		100

Bentley Systems, Inc. Haestad Methods SolBibatie@efiter/Master V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 10:50:10 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPA2*-CULVERT

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	0.66	ft
Critical Depth	0.92	ft
Channel Slope	0.11100	ft/ft
Critical Slope	0.05837	ft/ft

Cross Section for CPA3-CULVERT

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.024		
Channel Slope	0.05100	ft/ft	
Normal Depth	0.33	ft	
Diameter	1.00	ft	
Discharge	1.00	ft³/s	

Cross Section Image

	Worksheet for	CPA3-C	ULVERT
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.024	
Channel Slope		0.05100	ft/ft
Diameter		1.00	ft
Discharge		1.00	ft³/s
Results			
Normal Depth		0.33	ft
Flow Area		0.22	ft²
Wetted Perimeter		1.21	ft
Hydraulic Radius		0.18	ft
Top Width		0.94	ft
Critical Depth		0.42	ft
Percent Full		32.6	%
Critical Slope		0.01980	ft/ft
Velocity		4.51	ft/s
Velocity Head		0.32	ft
Specific Energy		0.64	ft
Froude Number		1.63	
Maximum Discharge		4.69	ft³/s
Discharge Full		4.36	ft³/s
Slope Full		0.00269	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		32.56	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc.
 Haestad Methods SolBteatidgeFilter/Master V8i (SELECTseries 1) [08.11.01.03]

 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

10/26/2015 10:48:52 AM

Worksheet for CPA3-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.33	ft
Critical Depth	0.42	ft
Channel Slope	0.05100	ft/ft
Critical Slope	0.01980	ft/ft

Cross Section for CPA4*-CULVERT

Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.04400	ft/ft	
Normal Depth		0.78	ft	
Diameter		1.50	ft	
Discharge		6.40	ft³/s	
Cross Section Image				

Worksheet for CPA4*-CULVERT

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.04400	ft/ft	
Diameter		1.50	ft	
Discharge		6.40	ft³/s	
Results				
Normal Depth		0.78	ft	
Flow Area		0.93	ft²	
Wetted Perimeter		2.42	ft	
Hydraulic Radius		0.38	ft	
Top Width		1.50	ft	
Critical Depth		0.98	ft	
Percent Full		52.1	%	
Critical Slope		0.02189	ft/ft	
Velocity		6.87	ft/s	
Velocity Head		0.73	ft	
Specific Energy		1.52	ft	
Froude Number		1.54		
Maximum Discharge		12.84	ft³/s	
Discharge Full		11.93	ft³/s	
Slope Full		0.01265	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		52.12	%	
Downstream Velocity		Infinity	ft/s	

 Bentley Systems, Inc. Haestad Methods SolBteadl@eintervMaster V8i (SELECTseries 1) [08.11.01.03]

 10/26/2015 10:49:30 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPA4*-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.78	ft
Critical Depth	0.98	ft
Channel Slope	0.04400	ft/ft
Critical Slope	0.02189	ft/ft

Cross Section for CPA5*-CULVERT

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	

Roughness Coefficient	0.024	
Channel Slope	0.03600	ft/ft
Normal Depth	0.91	ft
Diameter	1.50	ft
Discharge	7.40	ft³/s

Cross Section Image

V: 1 L H' 1

Worksheet for CPA5*-CULVERT

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.024	
Channel Slope	0.03600	ft/ft
Diameter	1.50	ft
Discharge	7.40	ft³/s
Results		
Normal Depth	0.91	ft
Flow Area	1.12	ft²
Wetted Perimeter	2.68	ft
Hydraulic Radius	0.42	ft
Top Width	1.46	ft
Critical Depth	1.05	ft
Percent Full	60.8	%
Critical Slope	0.02390	ft/ft
Velocity	6.58	ft/s
Velocity Head	0.67	ft
Specific Energy	1.58	ft
Froude Number	1.32	
Maximum Discharge	11.61	ft³/s
Discharge Full	10.80	ft³/s
Slope Full	0.01692	ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	60.80	%
Deveretee and Malasity	Infinity	ft/e

 Bentley Systems, Inc. Haestad Methods SolBitatid@eFitawMaster V8i (SELECTseries 1) [08.11.01.03]

 10/26/2015 10:50:47 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPA5*-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.91	ft
Critical Depth	1.05	ft
Channel Slope	0.03600	ft/ft
Critical Slope	0.02390	ft/ft

Cross Section for CPA6*-CULVERT

Project Description						
Friction Method Solve For	Mann Norm	ing Formula al Depth				
Input Data						
Roughness Coefficient			0.024			
Channel Slope			0.07800	ft/ft		
Normal Depth			0.85	ft		
Diameter			1.50	ft		
Discharge			9.70	ft*/s		
Cross Section Image						

V 1 A H 1

Worksheet for CPA6*-CULVERT

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
	0.024	
Roughness Coefficient	0.024	
Channel Slope	0.07800	
Diameter	1.50	
Discharge	5.70	1(75
Results		
Normal Depth	0.85	i ft
Flow Area	1.03	ft ^s
Wetted Perimeter	2.55	i ft
Hydraulic Radius	0.40	î fi
Top Width	1.49	ft.
Critical Depth	1.20) ft
Percent Full	56.4	%
Critical Slope	0.03031	ft/ft
Velocity	9.44	ft/s
Velocity Head	1.38	i ft
Specific Energy	2.23	i ft
Froude Number	2.00	1
Maximum Discharge	17.09	ft³/s
Discharge Full	15.89	ft³/s
Slope Full	0.02907	'n ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	l ft
Length	0.00	۱ ft
Number Of Steps	C	1
GVF Output Data		
Upstream Depth	0.00) ft
Profile Description		
Profile Headloss	0.00) ft
Average End Depth Over Rise	0.00)%
Normal Depth Over Rise	56.43	8 %
Downstream Velocity	Infinity	fl/s

 Bentley Systems, Inc.
 Haestad Methods SolBibotid@GPitew/Master V8i (SELECTseries 1) [08.11.01.03]

 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPA6*-CULVERT

GVF Output Data			
Upstream Velocity	Infinity	ft/s	
Normal Depth	0.85	ft	
Critical Depth	1.20	ft	
Channel Slope	0.07800	ft/ft	
Critical Slope	0.03031	ft/ft	

Cross Section for CPC1-CULVERT

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	

Roughness Coefficient	0.024	
Channel Slope	0.04200	ft/ft
Normal Depth	0.65	ft
Diameter	1.00	ft
Discharge	3.00	ft³/s

Cross Section Image

V 1 N H

· · · · · · · · · · · · · · · · · · ·	Worksheet fo	r CPC1-C	ULVERT	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.04200	ft/ft	
Diameter		1.00	ft	
Discharge		3.00	ft³/s	
Results				
Normal Depth		0.65	ft	
Flow Area		0.54	ft"	
Wetted Perimeter		1.88	ft	
Hydraulic Radius		0.29	ft	
Top Width		0.95	ft	
Critical Depth		0.74	ft	
Percent Full		65.1	%	
Critical Slope		0.02975	ft/ft	
Velocity		5.54	ft/s	
Velocity Head		0.48	ft	
Specific Energy		1.13	ft	
Froude Number		1.29		
Maximum Discharge		4.25	ft"/s	
Discharge Full		3.95	ft"/s	
Slope Full		0.02417	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		65.14	%	
Downstream Velocity		Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods SolBibatiogenitawMaster V8I (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPC1-CULVERT

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	0.65	ft
Critical Depth	0.74	ft
Channel Slope	0.04200	ft/ft
Critical Slope	0.02975	ft/ft

Cross Section for CPD2*-CULVERT

Project	Descri	ption
---------	--------	-------

Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient		0.024			
Channel Slope		0.04100	ft/ft		
Normal Depth		1.31	ft		
Diameter		2.00	ft		
Discharge		19.00	ft³/s		
weather the state of the					

Cross Section Image

	Worksheet for	CPD2*-C	ULVERT	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.04100	ft/ft	
Diameter		2.00	ft	
Discharge		19.00	ft*/s	
Results				
Normal Depth		1.31	ft	
Flow Area		2.18	ft²	
Wetted Perimeter		3.77	ft	
Hydraulic Radius		0.58	ft	
Top Width		1.90	ft	
Critical Depth		1.57	ft	
Percent Full		65.6	%	
Critical Slope		0.02620	ft/ft	
Velocity		8.70	ft/s	
Velocity Head		1.18	ft	
Specific Energy		2.49	ft	
Froude Number		1.43		
Maximum Discharge		26.69	ft³/s	
Discharge Full		24.81	ft³/s	
Slope Full		0.02404	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		65.57	%	

Infinity ft/s

10/26/2015 10:52:34 AM

Downstream Velocity

Bentley Systems, Inc. Haestad Methods SolBtentleGentuer/Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD2*-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.31	ft
Critical Depth	1.57	ft
Channel Slope	0.04100	ft/ft
Critical Slope	0.02620	ft/ft

Cross Section for CPD3*-CULVERT

Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.06500	ft/ft	
Normal Depth		1.20	ft	
Diameter		2.00	ft	
Discharge		21.00	ft³/s	
Cross Section Image				

Bentley Systems, Inc. Haestad Methods SolBtoold@eRitervMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 10:53:28 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for CPD3*-CULVERT

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.024	
Channel Slope		0.06500	ft/ft
Diameter		2.00	ft
Discharge		21.00	ft³/s
Results			
Normal Depth		1.20	ft
Flow Area		1.97	ft²
Wetted Perimeter		3.55	ft
Hydraulic Radius		0.56	ft
Top Width		1.96	ft
Critical Depth		1.64	ft
Percent Full		60.0	%
Critical Slope		0.02928	ft/ft
Velocity		10.66	ft/s
Velocity Head		1.77	ft
Specific Energy		2.97	ft
Froude Number		1.88	
Maximum Discharge		33.60	ft²/s
Discharge Full		31.24	ft²/s
Slope Full		0.02937	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		60.03	%
Downstream Velocity		Infinity	ft/s

 Bentley Systems, Inc. Haestad Methods SolBtiotle@cillaryMaster V8i (SELECTseries 1) [08.11.01.03]

 10/26/2015 10:53:08 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD3*-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.20	ft
Critical Depth	1.64	ft
Channel Slope	0.06500	ft/ft
Critical Slope	0.02928	ft/ft

Cross Section for CPD4-CULVERT

2.50 ft

14.00 ft³/s

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.024		
Channel Slope	0.00800	ft/ft	
Normal Depth	1.55	ft	

Discharge

Diameter

Cross Section Image

V: 1 📐 H: 1

	Worksheet for	r CPD4-C	ULVERT	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.00800	ft/ft	
Diameter		2.50	ft	
Discharge		14.00	ft³/s	
Results				
Normal Depth		1.55	ft	
Flow Area		3.19	ft²	
Wetted Perimeter		4.53	ft	
Hydraulic Radius		0.70	ft	
Top Width		2.43	ft	
Critical Depth		1.26	ft	
Percent Full		61.9	%	
Critical Slope		0.01547	ft/ft	
Velocity		4.39	ft/s	
Velocity Head		0.30	ft	
Specific Energy		1.85	ft	
Froude Number		0.67		
Maximum Discharge		21.38	ft³/s	
Discharge Full		19.87	ft³/s	
Slope Full		0.00397	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		61.91	%	
Downstream Velocity		Infinity	ft/s	

 Bentley Systems, Inc. Haestad Methods SolBtott@efitewMaster V8i (SELECTseries 1) [08.11.01.03]

 10/26/2015 10:54:44 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD4-CULVERT

Infinity	ft/s				
1.55	ft				
1.26	ft				
0.00800	ft/ft				
0.01547	ft/ft				
	Infinity 1.55 1.26 0.00800 0.01547	Infinity ft/s 1.55 ft 1.26 ft 0.00800 ft/ft 0.01547 ft/ft			

Cross Section for CPD6*-CULVERT

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	

Roughness Coefficient	0.024	
Channel Slope	0.06700	ft/ft
Normal Depth	1.60	ft
Diameter	2.00	ft
Discharge	31.00	ft³/s

Cross Section Image

V 1 ⊾ H 1

Worksheet for CPD6*-CULVERT

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
	* (¹	0.024	
Roughness Coefficient		0.024	5/B
Channel Slope		2.00	1011 A
Diameter		31.00	11 63/c
Discharge		01.00	1.75
Results			
Normal Depth		1.60	ft
Flow Area		2.69	ft²
Wetted Perimeter		4.43	ft
Hydraulic Radius		0.61	ft
Top Width		1.60	ft
Critical Depth		1.88	ft
Percent Full		80.0	%
Critical Slope		0.05531	ft/ft
Velocity		11.51	ft/s
Velocity Head		2.06	ft
Specific Energy		3.66	ft
Froude Number		1.56	
Maximum Discharge		34.12	ft³/s
Discharge Full		31.72	ft*/s
Slope Full		0.06401	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ſt
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		80.00	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SolBitoticgeRiter Master V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 10:55:17 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
Worksheet for CPD6*-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.60	ft
Critical Depth	1.88	ft
Channel Slope	0.06700	ft/ft
Critical Slope	0.05531	ft/ft

Cross Section for CPD7-CULVERT

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.024	
Channel Slope		0.01100	ft/ft
Normal Depth		1.05	ft
Diameter		2.00	ft
Discharge		7.00	ft³/s

Cross Section Image

	Worksheet for	CPD7-C	ULVERT	
Project Description			. 🕅	76 <u>(77</u> 7
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.01100	ft/ft	
Diameter		2.00	ft	
Discharge		7.00	ft³/s	
Results				
Normal Depth		1.05	ft	
Flow Area		1.68	ft²	
Wetted Perimeter		3.25	ft	
Hydraulic Radius		0.52	ft	
Top Width		2.00	ft	
Critical Depth		0.94	ft	
Percent Full		52.6	%	
Critical Slope		0.01622	ft/ft	
Velocity		4.18	ft/s	
Velocity Head		0.27	ft	
Specific Energy		1.32	ft	
Froude Number		0.80		
Maximum Discharge		13.82	ft³/s	
Discharge Full		12.85	ft³/s	
Slope Full		0.00326	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		52.61	%	
Downstream Velocity		Infinity	ft/s	

 Bentley Systems, Inc.
 Haestad Methods SolBtiotl@cFilewMaster V8i (SELECTseries 1) [08.11.01.03]

 10/26/2015 10:56:45 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD7-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s	
Normal Depth	1.05	ft	
Critical Depth	0.94	ft	
Channel Slope	0.01100	ft/ft	
Critical Slope	0.01622	ft/ft	

Cross Section for CPD8*-CULVERT

Рго	ject	Descri	ption
-----	------	--------	-------

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024	24	
Channel Slope	0.01900	00 ft/ft	
Normal Depth	1.4	17 ft	
Diameter	2.00	00 ft	
Discharge	15.00	00 ft³/s	
	10950 STRS		

Cross Section Image

V 1 L H 1

	Worksheet for CPD8*-CULVERT						
Project Description				ana an			
Friction Method	Manning Formula						
Solve For	Normal Depth						
Input Data							
Roughness Coefficient		0.024					
Channel Slope		0.01900	ft/ft				
Diameter		2.00	ft				
Discharge		15.00	ft*/s				
Results							
Normal Depth		1.47	ft				
Flow Area		2.47	ft ^s				
Wetted Perimeter		4.11	ft				
Hydraulic Radius		0.60	ft				
Top Width		1.77	ft				
Critical Depth		1.40	ft				
Percent Full		73.4	%				
Critical Slope		0.02154	ft/ft				
Velocity		6.07	ft/s				
Velocity Head		0.57	ft				
Specific Energy		2.04	ft				
Froude Number		0.91					
Maximum Discharge		18.17	ft³/s				
Discharge Full		16.89	ft³/s				
Slope Full		0.01499	ft/ft				
Flow Type	SubCritical						
GVF Input Data							
Downstream Depth		0.00	ft				
Length		0.00	ft				
Number Of Steps		0					
GVF Output Data							
Upstream Depth		0.00	ft				
Profile Description							
Profile Headloss		0.00	ft				
Average End Depth Over Rise		0.00	%				
Normal Depth Over Rise		73.35	%				
Downstream Velocity		Infinity	ft/s				

 Bentley Systems, Inc. Haestad Methods SolBteatidgenitesvMaster V8I (SELECTseries 1) [08.11.01.03]

 10/26/2015 11:09:06 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD8*-CULVERT								
GVF Output Data			39288 19288					
Upstream Velocity				Infinity	ft/s			
Normal Depth				1.47	ft			
Critical Depth				1.40	ft			
Channel Slope				0.01900	ft/ft			
Critical Slope				0.02154	ft/ft			

Cross Section for CPD9*-CULVERT

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.024	
Channel Slope		0.05900	ft/ft
Normal Depth		1.44	ft
Diameter		2.50	ft
Discharge		34.00	ft³/s
allowed and a second state of the second			

Cross Section Image

	Worksheet for	CPD9*-C	ULVERT	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.05900	ft/ft	
Diameter		2.50	ft	
Discharge		34.00	ft³/s	
Results				
Normal Depth		1.44	ft	
Flow Area		2.93	ft²	
Wetted Perimeter		4.31	ft	
Hydraulic Radius		0.68	ft	
Top Width		2.47	ft	
Critical Depth		1.98	ft	
Percent Full		57.6	%	
Critical Slope		0.02494	ft/ft	
Velocity		11.62	ft/s	
Velocity Head		2.10	ft	
Specific Energy		3.54	ft	
Froude Number		1.88		
Maximum Discharge		58.05	ft³/s	
Discharge Full		53.96	ft³/s	
Slope Full		0.02343	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		57.58	%	
Downstream Velocity		Infinity	ft/s	

 Bentley Systems, Inc.
 Haestad Methods SolBtoold@cFitewMaster V8I (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD9*-CULVERT							
GVF Output Data							
Upstream Velocity		Infinity	ft/s				
Normal Depth		1.44	ft				
Critical Depth		1.98	ft				
Channel Slope		0.05900	ft/ft				
Critical Slope		0.02494	ft/ft				

Cross Section for CPD11*-CULVERT

Project Description

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.024	
Channel Slope	0.10900 ft/ft	
Normal Depth	0.76 ft	
Diameter	1.50 ft	
Discharge	9.60 ft³/s	
Cross Section Image		

V: 1 📐 H: 1

	Worksheet for	CPD11*-	CULVERT	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.10900	ft/ft	
Diameter		1.50	ft	
Discharge		9.60	ft³/s	
Results				
Normal Depth		0.76	ft	
Flow Area		0.90	ft³	
Wetted Perimeter		2.38	ft	
Hydraulic Radius		0.38	ft	
Top Width		1.50	ft	
Critical Depth		1.20	ft	
Percent Full		50.6	%	
Critical Slope		0.02996	ft/ft	
Velocity		10.69	ft/s	
Velocity Head		1.78	ft	
Specific Energy		2.54	ft	
Froude Number		2.44		
Maximum Discharge		20.21	ft³/s	
Discharge Full		18.78	ft³/s	
Slope Full		0.02847	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		50.64	%	
Downstream Velocity		Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods SolBisotidgeRawMaster V8i (SELECTseries 1) [08.11.01.03] ompany Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

10/26/2015 11:12:44 AM

Worksheet for CPD11*-CULVERT

GVF Output Data			
Upstream Velocity	Infinity	ft/s	
Normal Depth	0.76	ft	
Critical Depth	1.20	ft	
Channel Slope	0.10900	ft/ft	
Critical Slope	0.02996	ft/ft	

Cross Section for CPD12*-CULVERT

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	

Roughness Coefficient	0.024	
Channel Slope	0.07800	ft/ft
Normal Depth	0.96	ft
Diameter	1.50	ft
Discharge	11.70	ft³/s

Cross Section Image

V: 1 H: 1

Worksheet for CPD12*-CULVERT

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
input bata				
Roughness Coefficient		0.024	D 10	
Channel Slope		0.07800	n/n	
Diameter		1.50	11. 61/c	
Discharge		11.70	11.75	
Results				
Normal Depth		0.96	ft	
Flow Area		1.19	ft"	
Wetted Perimeter		2.78	ft	
Hydraulic Radius		0.43	ft	
Top Width		1.44	ft	
Critical Depth		1.30	ft	
Percent Full		63.8	%	
Critical Slope		0.03869	ft/ft	
Velocity		9.83	π/s	
Velocity Head		1.50	π	
		2.40	π	
		17.00	ft³/e	
		15.89	ft³/s	
Slope Full		0.04229	ft/ft	
Flow Type	SuperCritical			
CV/E Input Data				
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		63.78	%	
Downstream Velocity		Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods SolBiendlegeritewMaster V8I (SELECTseries 1) [08.11.01.03] 10/26/2015 11:13:26 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD12*-CULVERT

GVF Output Data			
Upstream Velocity	Infinity	ft/s	
Normal Depth	0.96	ft	
Critical Depth	1.30	ft	
Channel Slope	0.07800	ft/ft	
Critical Slope	0.03869	ft/ft	

Cross Section for CPD13-CULVERT

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			

Roughness Coefficient	0.024	
Channel Slope	0.06700	ft/ft
Normal Depth	0.30	ft
Diameter	1.00	ft
Discharge	1.00	ft³/s

Cross Section Image

V: 1 \(H: 1)

Project Description Manning Formula **Friction Method** Normal Depth Solve For Input Data 0.024 **Roughness Coefficient** 0.06700 ft/ft Channel Slope 1.00 ft Diameter Discharge 1.00 ft³/s Results Normal Depth 0.30 ft Flow Area 0.20 ft³ Wetted Perimeter 1.17 ft 0.17 ft Hydraulic Radius Top Width 0.92 ft 0.42 ft **Critical Depth** 30.3 % Percent Full **Critical Slope** 0.01979 ft/ft Velocity 4.97 ft/s Velocity Head 0.38 ft 0.69 ft Specific Energy Froude Number 1.87 5.37 ft³/s Maximum Discharge 5.00 ft³/s **Discharge Full** 0.00269 ft/ft Slope Full Flow Type SuperCritical **GVF Input Data** 0.00 ft Downstream Depth 0.00 ft Length 0 Number Of Steps **GVF** Output Data 0.00 ft Upstream Depth

Worksheet for CPD13-CULVERT

Profile Description
Profile Headloss
Average End Depth Over Rise
Normal Depth Over Rise
Downstream Velocity

Bentley Systems, Inc. Haestad Methods SolBteatlegeRitervMaster V8I (SELECTseries 1) [08.11.01.03] M 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

0.00 ft 0.00 %

30.34 %

Infinity ft/s

10/26/2015 11:14:00 AM

Worksheet for CPD13-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.30	ft
Critical Depth	0.42	ft
Channel Slope	0.06700	ft/ft
Critical Slope	0.01979	ft/ft

Cross Section for CPD14*-CULVERT

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data	** D1 **		
Roughness Coefficient		0.024	
Channel Slope		0.12500	ft/ft
Normal Depth		0.86	ft
Diameter		1.50	ft
Discharge		12.70	ft³/s

Cross Section Image

V: 1 L H: 1

	Worksheet for CPD14*-CULVERT								
Project Description									
Friction Method	Manning Formula								
Solve For	Normal Depth								
Input Data		North I. States and States and S							
Roughness Coefficient		0.024							
Channel Slope		0.12500	ft/ft						
Diameter		1.50	ft						
Discharge		12.70	ft³/s						
Results									
Normal Depth		0.86	ft						
Flow Area		1.06	ft²						
Wetted Perimeter		2.59	ft						
Hydraulic Radius		0.41	ft						
Top Width		1.48	ft						
Critical Depth		1.34	ft						
Percent Full		57.7	%						
Critical Slope		0.04412	ft/ft						
Velocity		12.04	ft/s						
Velocity Head		2.25	ft						
Specific Energy		3.12	ft						
Froude Number		2.52							
Maximum Discharge		21.64	ft³/s						
Discharge Full		20.12	ft³/s						
Slope Full		0.04983	ft/ft						
Flow Type	SuperCritical								
GVF Input Data									
Downstream Depth		0.00	ft						
Length		0.00	ft						
Number Of Steps		0							
GVF Output Data									
Upstream Depth		0.00	ft						
Profile Description									
Profile Headloss		0.00	ft						
Average End Depth Over Rise		0.00	%						
Normal Depth Over Rise		57.65	%						
Downstream Velocity		Infinity	ft/s						

Bentley Systems, Inc. Haestad Methods SolBteatlegenitewMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:14:30 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD14*-CULVERT

GVF Output Data				
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.86	ft	
Critical Depth		1.34	ft	
Channel Slope		0.12500	ft/ft	
Critical Slope		0.04412	ft/ft	

Cross Section for CPD15-CULVERT

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.024	
Channel Slope	0.11900 ft/ft	
Normal Depth	0.38 ft	
Diameter	1.00 ft	
Discharge	2.00 ft³/s	
Cross Section Image		

Project Description		194 - 194 - I			
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient		0.024			
Channel Slope		0.11900	ft/ft		
Diameter		1.00	ft		
Discharge		2.00	ft³/s		
Results					
Normal Depth		0.38	ft		
Flow Area		0.27	ft"		
Wetted Perimeter		1.32	ft		
Hydraulic Radius		0.20	ft		
Top Width		0.97	ft		
Critical Depth		0.60	ft		
Percent Full		37.6	%		
Critical Slope		0.02341	ft/ft		
Velocity		7.41	ft/s		
Velocity Head		0.85	ft		
Specific Energy		1.23	ft		
Froude Number		2.48			
Maximum Discharge		7.16	ft³/s		
Discharge Full		6.66	ft³/s		
Slope Full		0.01074	ft/ft		
Flow Type	SuperCritical				
GVF Input Data				,	
Downstream Depth		0.00	ft		
Length		0.00	ft		
Number Of Steps		0			
GVF Output Data					
Upstream Depth		0.00	ft		
Profile Description					
Profile Headloss		0.00	ft		
Average End Depth Over Rise		0.00	%		
Normal Depth Over Rise		37.58	%		
Downstream Velocity		Infinity	ft/s		

Worksheet for CPD15-CULVERT

Bentley Systems, Inc. Haestad Methods SolBtattegeNawMaster V8i (SELECTseries 1) [08.11.01.03] company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for CPD15-CULVERT

GVF Output Data		The second s
Upstream Velocity	Infinity	y ft/s
Normal Depth	0.38	3 ft
Critical Depth	0.60) fi
Channel Slope	0.11900) ft/ft
Critical Slope	0.02341	ft/ft

Cross Section for CPD17*-CULVERT

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.024	
Channel Slope	0.06800 ft/ft	
Normal Depth	1.40 ft	
Diameter	2.50 ft	
Discharge	35.00 ft⁰ /s	
Cross Section Image		

	WORKSHEEL IVI	VIDI/ -	OVEVENI	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data		77	a alle a	2. 2. 14A
Roughness Coefficient		0.024		
Channel Slope		0.06800	ft/ft	
Diameter		2.50	ft	
Discharge		35.00	ft³/s	
Results				
Normal Depth		1.40	ft	
Flow Area		2.83	ft ^a	
Wetted Perimeter		4.23	ft	
Hydraulic Radius		0.67	ft	
Top Width		2.48	ft	
Critical Depth		2.01	ft	
Percent Full		56.1	%	
Critical Slope		0.02574	ft/ft	
Velocity		12.36	ft/s	
Velocity Head		2.37	ft	
Specific Energy		3.77	ft	
Froude Number		2.04		
Maximum Discharge		62.32	ft³/s	
Discharge Full		57.93	ft³/s	
Slope Full		0.02482	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		56.07	%	
Downstream Velocity		Infinity	ft/s	

Worksheet for CPD17*-CUI VERT

Bentley Systems, Inc. Haestad Methods SolBisotidgePiter/Master V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:18:05 AM 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD17*-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.40	ft
Critical Depth	2.01	ft
Channel Slope	0.06800	ft/ft
Critical Slope	0.02574	ft/ft

Cross Section for CPD19*-CULVERT

Project Description

Friction Method	Manning Formula					
Solve For	Normal Depth	Normal Depth				
Input Data						
Roughness Coefficient		0.024				
Channel Slope		0.04300	ft/ft			
Normal Depth		1.80	ft			
Diameter		2.50	ft			
Discharge		40.00	ft³/s			

Cross Section Image

	Worksheet for	r CPD19*-	CULV	ERT	
Project Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient		0.024			
Channel Slope		0.04300	ft/ft		
Diameter		2.50	ft		
Discharge		40.00	ft³/s		
Results					
Normal Depth		1.80	ft		
Flow Area		3.78	ft²		
Wetted Perimeter		5.07	ft		
Hydraulic Radius		0.75	ft		
Top Width		2.24	ft		
Critical Depth		2.13	ft		
Percent Full		72.0	%		
Critical Slope		0.03044	ft/ft		
Velocity		10.57	ft/s		
Velocity Head		1.74	ft		
Specific Energy		3.54	ft		
Froude Number		1.43			
Maximum Discharge		49.56	ft³/s		
Discharge Full		46.07	ft³/s		
Slope Full		0.03242	ft/ft		
Flow Type	SuperCritical				
GVF Input Data					
Downstream Depth		0.00	ft		
Length		0.00	ft		
Number Of Steps		0			
GVF Output Data					
Upstream Depth		0.00	ft		
Profile Description					
Profile Headloss		0.00	ft		
Average End Depth Over Rise		0.00	%		
Normal Depth Over Rise		72.02	%		
Downstream Velocity		Infinity	ft/s		

Bentley Systems, Inc. Haestad Methods SolBHatl@eNinwMaster V8I (SELECTseries 1) [08.11.01.03]

10/26/2015 11:18:45 AM

5 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD19*-CULVERT

GVF Output Data				
Upstream Velocity		Infinity	ft/s	
Normal Depth		1.80	ft	
Critical Depth		2.13	ft	
Channel Slope		0.04300	ft/ft	
Critical Slope		0.03044	ft/ft	

Cross Section for CPD20-CULVERT

Project Description	で変			
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.03200	ft/ft	
Normal Depth		0.74	ft	
Diameter		1.50	ft	
Discharge		5.00	ft³/s	
Cross Section Image				

	Worksheet for CPD20-CULVERT					
Project Description			707		7876	
Friction Method Solve For	Manning Formula Normal Depth					
Input Data	۹.		· · · · · · · · · · · · · · · · · · ·	第3 名		
Roughness Coefficient Channel Slope Diameter Discharge		0.024 0.03200 1.50 5.00	4 D ft/ft D ft D ft*/s			
Results						
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	SuperOritical	0.74 0.87 2.34 0.37 1.50 0.86 49.5 0.01968 5.74 0.51 1.25 1.33 10.95 10.18 0.00772	 ft ft³ ft ft ft ft ft/ft ft/ft ft³/s ft/ft 			
GVE loout Data	SuperChitcal					
Downstream Depth Length Number Of Steps		0.00 0.00 0) ft) ft			
GVF Output Data						
Upstream Depth Profile Description		0.00	ft.			
Profile Headloss Average End Depth Over Rise Normal Depth Over Rise		0.00 0.00 49.47) ft) % ' %			
Downstream Velocity		Infinity	ft/s			

Bentley Systems, Inc. Haestad Methods SolBeotlegeRiter/Master V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:19:14 AM 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD20-CULVERT

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.74	ft
Critical Depth	0.86	ft
Channel Slope	0.03200	fi/ft
Critical Slope	0.01968	ft/ft

Cross Section for CPA1-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		

Input Data

Roughness Coefficient	0.024	
Channel Slope	0.06600	ft/ft
Normal Depth	0.54	ft
Diameter	1.50	ft
Discharge	4.00	ft³/s

Cross Section Image

Worksheet for CPA1-CHANNEL-HALF-CMP

Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient Channel Slope Diameter Discharge		0.024 0.06600 1.50 4.00	ft/ft ft ft³/s	
Results				
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Percent Full Critical Slope Velocity Velocity Head Specific Energy Froude Number Maximum Discharge Discharge Full Slope Full	SuperCritical	0.54 0.57 1.92 0.30 1.44 0.77 35.8 0.01844 7.05 0.77 1.31 1.98 15.72 14.62 0.00494	ft ft ² ft ft ft ft ft/ft ft/s ft ft ft ft s ft ft ft ft ft	
GVF Input Data				
Downstream Depth Length Number Of Steps		0.00 0.00 0	ft ft	
GV/F Output Data				
Upstream Depth Profile Description		0.00	ft	
Profile Headloss Average End Depth Over Rise Normal Depth Over Rise		0.00 0.00 35.75	ft % %	
Downstream Velocity		Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods SolBtoold@cFitawMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:19:54 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2
Worksheet for CPA1-CHANNEL-HALF-CMP

GVF Output Data

Infinity	ft/s
0.54	ft
0.77	ft
0.06600	ft/ft
0.01844	ft/ft
	Infinity 0.54 0.77 0.06600 0.01844

Cross Section for CPA1-CHANNEL-V-DITCH-6"-RIPRAP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.069			
Channel Slope	0.06600	ft/ft		
Normal Depth	0.83	ft		
Left Side Slope	2.00	ft/ft (H:V)		
Right Side Slope	2.00	ft/ft (H:V)		
Discharge	4.00	ft³/s		
and a second				

Cross Section Image

V-1 ||_____ H=1

Works	heet for CPA1-CH	ANNEL-V	-DITCH-6"-RIPRAP	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.069		
Channel Slope		0.06600	ft/ft	
Left Side Slope		2.00	ft/ft (H:V)	
Right Side Slope		2.00	ft/ft (H:V)	
Discharge		4.00	ft³/s	
Results				
Normal Depth		0.83	ft	
Flow Area		1.39	ft ^a	
Wetted Perimeter		3.73	ft	
Hydraulic Radius		0.37	ft	
Top Width		3.34	ft	
Critical Depth		0.76	ft	
Critical Slope		0.11129	ft/ft	
Velocity		2.87	ft/s	
Velocity Head		0.13	ft	
Specific Energy		0.96	ft	
Froude Number		0.78		
Flow Type	Subcritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.83	ft	
Critical Depth		0.76	ft	
Channel Slope		0.06600	ft/ft	
Critical Slope		0.11129	ft/ft	

Bentley Systems, Inc. Haestad Methods SolBiootlageRiterrMaster V8I (SELECTseries 1) [08.11.01.03] Page 1 of 1 10/26/2015 11:22:48 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for CPA2*-CHANNEL-HALF-CMP

Project Description

Friction Method Mann	ning Formula					
Solve For Norm	nal Depth					
Input Data	u u		.45°	1911	£	
Roughness Coefficient	0.024					
Channel Slope	0.04800	ft/ft				
Normal Depth	0.66	ft				
Diameter	1.50	ft				
Discharge	5.00	ft³/s				
Cross Section Image			With Markey			

Bentley Systems, Inc. Haestad Methods SolBteatlegetHawMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:20:11 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for CPA2*-CHANNEL-HALF-CMP

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data		<i>b</i> ,		
Poughness Coefficient		0.024		
Channel Slope		0.04800	升/骨	
Diameter		1.50	ft	
Discharge		5.00	ft³/s	
Results				
Normal Daath		0.66		
Normai Depth		0.00	n. Anz	
Netted Perimeter		2 18	ff	
Hydraulic Radius		0.34	Ĥ	
Top Width		1.49	ft	
Critical Depth		0.86	ft	
Percent Full		44.1	%	
Critical Slope		0.01967	ft/ft	
Velocity		6.66	ft/s	
Velocity Head		0.69	ft	
Specific Energy		1.35	ft	
Froude Number		1.66		
Maximum Discharge		13.41	ft³/s	
Discharge Full		12.47	ft³/s	
Slope Full		0.00772	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		44.06	%	
Downstream Velocity		Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods SolBisotlegenitesvMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:20:24 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPA2*-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s	
Normal Depth	0.66	ft	
Critical Depth	0.86	ft	
Channel Slope	0.04800	ft/ft	
Critical Slope	0.01967	ft/ft	

Cross Section for CPA2*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.069		
Channel Slope	0.04800	ft/ft	
Normal Depth	0.96	ft	
Left Side Slope	2.00	ft/ft (H:V)	
Right Side Slope	2.00	ft/ft (H:V)	
Discharge	5.00	ft³/s	

Cross Section Image

Worksheet for CPA2*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data					
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge		0.069 0.04800 2.00 2.00 5.00	ft/ft ft/ft (H:V) ft/ft (H:V) ft³/s		
Results					
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	Subcritical	0.96 1.86 4.31 0.43 3.86 0.83 0.10803 2.69 0.11 1.08 0.68	ft ft² ft ft ft ft/ft ft/ft ft/s ft		
GVF Input Data					
Downstream Depth Length Number Of Steps		0.00 0.00 0	ft ft		
GVF Output Data					
Upstream Depth Profile Description		0.00	ft		
Profile Headloss Downstream Velocity Upstream Velocity		0.00 Infinity Infinity	ft ft/s ft/s		
Normal Depth Critical Depth Channel Slope		0.96 0.83 0.04800	ft ft ft/ft		
Critical Slope		0.10803	ft/ft		

Bentley Systems, Inc. Haestad Methods SolBtooticgeRiter/Master V8i (SELECTseries 1) [08.11.01.03]

10/26/2015 11:23:15 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPA3-CHANNEL-HALF-CMP

1.00 ft³/s

Project Description	281 (<u>171</u>)				
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient	0.024	ŧ.			
Channel Slope	0.02900) ft/ft			
Normal Depth	0.38	3 ft			
Diameter	1.00) ft			

Discharge

Worksheet for CPA3-CHANNEL-HALF-CMP

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.02900	ft/ft	
Diameter		1.00	ft	
Discharge		1.00	ft³/s	
Results				
Normal Depth		0.38	ft	
Flow Area		0.27	ft²	
Wetted Perimeter		1.32	ft	
Hydraulic Radius		0.21	ft	
Top Width		0.97	ft	
Critical Depth		0.42	ft	
Percent Full		37.8	%	
Critical Slope		0.01980	ft/ft	
Velocity		3.67	ft/s	
Velocity Head		0.21	ft	
Specific Energy		0.59	ft	
Froude Number		1.22		
Maximum Discharge		3.54	ft³/s	
Discharge Full		3.29	ft³/s	
Slope Full		0.00269	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		37.83	%	
Downstream Velocity		Infinity	ft/s	

Bentley Systems, Inc. Haestad Methods SolBtiatl@geRinnvMaster V8I (SELECTseries 1) [08.11.01.03] 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPA3-CHANNEL-HALF-CMP

GVF Output Data				
Upstream Velocity	Infinity	ft/s		
Normal Depth	0.38	ft		
Critical Depth	0.42	ft		
Channel Slope	0.02900	ft/ft		
Critical Slope	0.01980	ft/ft		

Cross Section for CPA3-CHANNEL-V-DITCH-EARTHEN

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.020	
Channel Slope	0.02900	ft/ft
Normal Depth	0.36	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	1.00	ft³/s

Cross Section Image

V-1 L H-1

Worksheet for CPA3-CHANNEL-V-DITCH-EARTHEN

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Inout Data				
input bala				
Roughness Coefficient		0.020		
Channel Slope		0.02900	ft/ft	
Left Side Slope		2.00	ft/ft (H:V)	
Right Side Slope		2.00	ft/ft (H:V)	
Discharge		1.00	ft³/s	
Results				
Normal Depth		0.36	ft	
Flow Area		0.27	ft²	
Wetted Perimeter		1.63	ft	
Hydraulic Radius		0.16	ft	
Top Width		1.46	ft	
Critical Depth		0.43	ft	
Critical Slope		0.01125	ft/ft	
Velocity		3.77	ft/s	
Velocity Head		0.22	ft	
Specific Energy		0.59	ft	
Froude Number		1.56		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Unstance Douth		0.00	A	
Opstream Depth		0.00	п	
Profile Description		0.00	A	
Profile Headloss		lofinity	n Arc	
Downstream velocity		Infinity	fivs file	
Opsileam velocity		0.35	4	
Critical Depth		0.30	44	
Chapped Slope		0.45	ft/ft	
Critical Slope		0.02300	6/6	
Chucal Slope		0.01125	ion	

Bentley Systems, Inc. Haestad Methods SolBiotHogeFilawMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPA4*-CHANNEL-HALF-CMP

Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data	4 4			4a.6	
Roughness Coefficient		0.024			
Channel Slope		0.00800	ft/ft		
Normal Depth		0.98	ft		
Diameter		2.50	ft		
Discharge		6.40	ft³/s		
	and the second				

Cross Section Image

Worksheet for CPA4*-CHANNEL-HALF-CMP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		and the second
input Data		
Roughness Coefficient	0.024	
Channel Slope	0.00800	ft/ft
Diameter	2.50	ft
Discharge	6.40	ft³/s
Results		
Normal Depth	0.98	ft
Flow Area	1.77	ft²
Wetted Perimeter	3.37	ft
Hydraulic Radius	0.53	ft
Top Width	2.44	ft
Critical Depth	0.84	ft
Percent Full	39.0	%
Critical Slope	0.01413	ft/ft
Velocity	3.61	ft/s
Velocity Head	0.20	ft
Specific Energy	1.18	ft
Froude Number	0.75	
Maximum Discharge	21.38	ft³/s
Discharge Full	19.87	ft³/s
Slope Full	0.00083	ft/ft
Flow Type	SubCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	39.03	%
-		1. See

 Bentley Systems, Inc.
 Haestad Methods SolBtotle@efitervMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPA4*-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.98	ft
Critical Depth	0.84	ft
Channel Slope	0.00800	ft/ft
Critical Slope	0.01413	ft/ft

Cross Section for CPA4*-CHANNEL-V-DITCH-EARTHEN

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.020		
Channel Slope	0.00800	ft/ft	
Normal Depth	0.93	ft	
Left Side Slope	2.00	ft/ft (H:V)	
Right Side Slope	2.00	ft/ft (H:V)	
Discharge	6.40	ft³/s	

Cross Section Image

Worksheet for CPA4*-CHANNEL-V-DITCH-EARTHEN

Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge		0.020 0.00800 2.00 2.00 6.40	ft/ft ft/ft (H:V) ft/ft (H:V) ft³/s	
Results				
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number	Substitical	0.93 1.73 4.16 0.42 3.72 0.91 0.00878 3.70 0.21 1.14 0.96	ft ft ³ ft ft ft ft/ft ft/s ft ft	
GVF Input Data				
Downstream Depth Length Number Of Steps		0.00 0.00 0	ft ft	
GVF Output Data				
Upstream Depth Profile Description		0.00	ft	
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Intinity	ft/s	
Critical Depth		0.93	ft.	
		0.00800	ft/ft	
Critical Slope		0.00878	ft/ft	

Bentley Systems, Inc. Haestad Methods SolBeotlegeritewMaster V8I (SELECTseries 1) [08.11.01.03]

10/26/2015 11:24:14 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPA5*-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024		
Channel Slope	0.03600	ft/ft	
Normal Depth	0.78	ft	
Diameter	2.00	ft	
Discharge	7.40	ft³/s	

Cross Section Image

Worksheet for CPA5*-CHANNEL-HALF-CMP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		v . v .
Roughness Coefficient	0.02	4
Channel Slope	0.0360	0 ft/ft
Diameter	2.0	0 ft
Discharge	7.4	0 ft³/s
Results		
Normal Depth	0.7	8 ft
Flow Area	1.1:	3 ft²
Wetted Perimeter	2.6	9 ft
Hydraulic Radius	0.43	2 ft
Top Width	1.9	5 ft
Critical Depth	0.9	7 ft
Percent Full	38.	8 %
Critical Slope	0.0163	8 ft/ft
Velocity	6.5	7 ft/s
Velocity Head	0.6	7 ft
Specific Energy	1.4	5 ft
Froude Number	1.5	3
Maximum Discharge	25.0	1 ft²/s
Discharge Full	23.2	5 ft²/s
Slope Full	0.0036	5 ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.0	0 ft
Length	0.0	0 ft
Number Of Steps		0
GVF Output Data		
Upstream Depth	0.0	0 ft
Profile Description		
Profile Headloss	0.0	0 ft
Average End Depth Over Rise	0.0	0 %
Normal Depth Over Rise	38.7	8 %
Downstream Velocity	Infinit	y ft/s

 Bentley Systems, Inc. Haestad Methods SolBtiotidgeRimmMaster V8I (SELECTseries 1) [08.11.01.03]

 10/26/2015 11:21:48 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPA5*-CHANNEL-HALF-CMP

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	0.78	ft
Critical Depth	0.97	ft
Channel Slope	0.03600	ft/ft
Critical Slope	0.01638	ft/ft

Cross Section for CPA5*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.069	
Channel Slope	0.03600	ft/ft
Normal Depth	1.18	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	7.40	ft³/s

Cross Section Image

V-1 _ H-1

Worksheet for CPA5*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.069	
Channel Slope	0.03600	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	7.40	ft³/s
Results		
Normal Depth	1.18	ft
Flow Area	2.78	ft*
Wetted Perimeter	5.27	ft
Hydraulic Radius	0.53	ft
Top Width	4.71	ft
Critical Depth	0.97	ft
Critical Slope	0.10252	ft/ft
Velocity	2.67	fl/s
Velocity Head	0.11	ft
Specific Energy	1.29	ft
Froude Number	0.61	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.18	ft
Critical Depth	0.97	ft
Channel Slope	0.03600	ft/ft
Critical Slope	0.10252	ft/ft

Bentley Systems, Inc. Haestad Methods SolBieotle@ePitawMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:24:43 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPA6*-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024	
Channel Slope	0.00300	ft/ft
Normal Depth	1.48	ft
Diameter	3.00	ft
Discharge	9.70	ft³/s

Cross Section Image

Worksheet for CPA6*-CHANNEL-HALF-CMP

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data	,			
input Data				
Roughness Coefficient		0.024		
Channel Slope		0.00300	ft/ft	
Diameter		3.00	ft	
Discharge		9.70	ft³/s	
Results				
Normal Depth		1.48	ft	
Flow Area		3.48	ft ³	
Wetted Perimeter		4.68	ft	
Hydraulic Radius		0.74	ft	
Top Width		3.00	ft	
Critical Depth		0.98	ft	
Percent Full		49.4	%	
Critical Slope		0.01329	ft/ft	
Velocity		2.79	ft/s	
Velocity Head		0.12	ft	
Specific Energy		1.60	ft	
Froude Number		0.46		
Maximum Discharge		21.29	ft³/s	
Discharge Fuli		19.79	ft³/s	
Slope Full		0.00072	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		49.42	%	
Downstream Velocity		Infinity	ft/s	
-				

Bentley Systems, Inc. Haestad Methods SolBtiotl@cRuwMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:22:17 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPA6*-CHANNEL-HALF-CMP

GVF Output Data				
Upstream Velocity	Infinity	ft/s		
Normal Depth	1.48	ft		
Critical Depth	0.98	ft		
Channel Slope	0.00300	ft/ft		
Critical Slope	0.01329	ft/ft		

Cross Section for CPA6*-CHANNEL-V-DITCH-EARTHEN

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.020		
Channel Slope	0.00300	ft/ft	
Normal Depth	1.31	ft	
Left Side Siope	2.00	ft/ft (H:V)	
Right Side Slope	2.00	ft/ft (H:V)	
Discharge	9.70	ft³/s	

Cross Section Image

V:1 ∖ H:1

Worksheet for CPA6*-CHANNEL-V-DITCH-EARTHEN

Project Description				
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge		0.020 0.00300 2.00 2.00 9.70	fl/ft ft/ft (H:V) ft/ft (H:V) ft ³ /s	
Results				
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number		1.31 3.41 5.84 0.58 5.22 1.08 0.00831 2.84 0.13 1.43 0.62	ft ft ft ft ft ft/ft ft/ft ft/s ft	
Flow Type	Subcritical			
GVF Input Data Downstream Depth Length Number Of Steps		0.00 0.00 0	ft ft	
GVF Output Data				
Upstream Depth Profile Description		0.00	ft	
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Critical Depth		1.08	ft	
Channel Slope		0.00300	ft/ft	
Critical Slope		0.00831	ft/ft	

Bentley Systems, Inc. Haestad Methods SolBtiotlageRinevMaster V8i (SELECTseries 1) [08.11.01.03]

10/26/2015 11:31:18 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Section for CPD2*-CHANNEL-V-DITCH-EARTHEN

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.020		
Channel Slope	0.02000	ft/ft	
Normal Depth	1.51	ft	
Left Side Slope	2.00	ft/ft (H:V)	
Right Side Slope	2.00	ft/ft (H:V)	
Discharge	37.10	ft³/s	

Cross Section Image

V 1 L H 1

Worksheet for CPD2*-CHANNEL-V-DITCH-EARTHEN

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.02	20	
Channel Slope	0.0200	00	ft/ft
Left Side Slope	2.0	00	ft/ft (H:V)
Right Side Slope	2.0	00	ft/ft (H:V)
Discharge	37.1	0	ft³/s
Results			
Normal Depth	1.5	51	ft
Flow Area	4.5	58	ft³
Wetted Perimeter	6.7	7	ft
Hydraulic Radius	0.6	68	ft
Top Width	6.0)5	ft
Critical Depth	1.8	5	ft
Critical Slope	0.0069	95	ft/ft
Velocity	8.1	0	ft/s
Velocity Head	1.0)2	ft
Specific Energy	2.5	53	ft
Froude Number	1.6	64	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth	0.0	0	ft
Length	0.0	0	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth	0.0	00	ft
Profile Description			
Profile Headloss	0.0	00	ft
Downstream Velocity	Infini	ty	ft/s
Upstream Velocity	Infini	ty	fi/s
Normal Depth	1.5	51	ft
Critical Depth	1.6	95	ft
Channel Slope	0.0200	00	ft/ft
Critical Slope	0.0069	95	ft/ft

Bentley Systems, Inc. Haestad Methods SolBeotlegenewMaster V8i (SELECTseries 1) [08.11.01.03]

10/26/2015 11:31:49 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Cross Se	ction for CPD3*-C	HANNE	L-V-I	DITCH-EAR	THEN	
Project Description						
Friction Method Solve For	Manning Formula Normal Depth					
Input Data		10 7.10				
Roughness Coefficient		0.020				
Channel Slope		0.01300	ft/ft			
Normal Depth		1.72	ft			
Left Side Slope		2.00	ft/ft (H	1:V)		
Right Side Slope		2.00	ft/ft (H	l:V)		
Discharge		41.90	ft³/s			
Cross Section Image						1

Worksheet for CPD3*-CHANNEL-V-DITCH-EARTHEN

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.020	
Channel Slope	0.01300	fi/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	41.90	ft³/s
Results		
Normal Depth	1.72	ft
Flow Area	5.90	ft²
Wetted Perimeter	7.68	ft
Hydraulic Radius	0.77	ft
Top Width	6.87	ft
Critical Depth	1.94	ft
Critical Slope	0.00684	fi/ft
Velocity	7.10	fi/s
Velocity Head	0.78	ft
Specific Energy	2.50	ft
Froude Number	1.35	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.72	ft
Critical Depth	1.94	ft
Channel Slope	0.01300	ft/ft
Critical Slope	0.00684	ft/ft

Bentley Systems, Inc. Haestad Methods SolBibotleScritervMaster V8i (SELECTseries 1) [08.11.01.03] 10/26/2015 11:32:16 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD4-CHANNEL-V-DITCH-EARTHEN

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.020	
Channel Slope	0.02200	ft/ft
Normal Depth	1.03	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H∶V)
Discharge	14.00	ft³/s

Cross Section Image

V:1 ∖ H:1

Worksheet for CPD4-CHANNEL-V-DITCH-EARTHEN

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.020	
Channel Slope	0.02200	ft/ft
Left Side Slope	2.00	ft∕ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	14.00	ft³/s
Results		
Normal Depth	1.03	ft
Flow Area	2.13	ft²
Wetted Perimeter	4.61	ft
Hydraulic Radius	0.46	ft
Top Width	4.13	ft
Critical Depth	1.25	ft
Critical Slope	0.00791	ft/ft
Velocity	6.58	ft/s
Velocity Head	0.67	ft
Specific Energy	1.70	ft
Froude Number	1.62	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.03	ft
Critical Depth	1.25	ft
Channel Slope	0.02200	ft/ft
Critical Slope	0.00791	ft/ft

Bentley Systems, Inc. Haestad Methods SolBteatl@cPterrMaster V8I (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

10/26/2015 11:32:48 AM

Cross Section for CPD6*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

input sutu		
Roughness Coefficient	0.069	
Channel Slope	0.01800	ft/ft
Normal Depth	2.97	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	61.50	ft³/s

Cross Section Image

V: 1 \ H: 1

Worksheet for CPD6*-CHANNEL-V-DITCH-6"-RIPRAP

Fieldon Method Solve ForMenning FormulaSolve ForNormal DepthInput Data0.669Channel Slope0.1600Channel Slope0.1600trik Side Slope2.00trik Side Slope2.01trik Side Slope2.01trik Side Slope2.01trik Side Slope2.02trik Side Slope2.07trik Side Slope2.07trik Side Slope2.07trik Side Slope2.07flow Area17.62trik Slope1.33trik Slope0.0773trik Slope0.0773trik Slope0.0773Valocity Head0.10trik Slope0.01trik Slope0.01Specific Energy3.16trik Slope3.16Troute Number0.00trik Slope0.00Subcritical1.00Brow Stream Depth0.00trig Slope0.00trik Slope0.00<	Project Description				
Solve For Normal Depth Input Data 0.0699 Roughness Coefficient 0.0699 Channel Slope 0.01600 Ich Side Slope 0.01 Bight Side Slope 0.01 FourArea 17.62 FourArea 17.62 FourArea 17.62 FourArea 17.62 FourArea 17.63 FourA	Friction Method	Manning Formula			
Input Data Roughness Coefficient 0.069 Channel Slope 0.01800 that Side Slope 2.00 Right Side Slope 2.00 Bicharge 0.01800 Right Side Slope 2.00 Bicharge 0.01800 Results 0 Normal Depth 2.97 Right Side Slope 13.27 Results 13.32 Normal Depth 1.187 Right Side Slope 0.07731 Hydraulic Radius 1.33 Top Width 11.87 Top Width 11.87 Critical Slope 0.07731 Velocity 3.49 Yos 1.05 Specific Energy 3.16 Row Type Subcritical GVF Input Data 0.00 GVF Unput Data 1.00 Cystream Depth 0.00 Profile Description 1	Solve For	Normal Depth			
Roughness Coefficient0.069Channel Slope0.01800fr/ftLeft Side Slope2.00fr/ft (ft /v)Right Side Slope2.00fr/ft (ft /v)Discharge6.157/sTestultsNormal Deptih2.97fFlow Area7.62f²Wetted Perimeter13.27fHydraulic Radius1.33fTop Width11.87fCritical Slope0.07731fr/ftCritical Slope0.07731fr/ftVelocity3.49f/sVelocity3.49f/sSpecific Energy3.16Flow Area0.19Flow Area0.19Flow Area0.19Critical Slope0.07731Mumber Of Steps0.01Portifical Depth0.01Length0.00Number Of Steps0Profile Headloss0.01Profile Headloss0.01Curry1.01Profile Headloss0.01Curry1.01Profile Headloss0.01Critical Depth2.97Critical Slope0.07731Konnal Depth2.97Profile Description1.92Profile Description1.92Critical Slope1.01Critical Slope2.02Critical Slope2.04Critical Slope0.07731Kritt1.92Critical Slope1.92Critical Slope2.92<	Input Data				
Channel Slope0.01800ft/ftLeft Side Slope2.00ft/ft (H·V)Right Side Slope2.00ft/ft (H·V)Discharge61.50ft/ftResults2.97ftFlow Area17.62ftWetted Perimeter13.27ftHydraulic Radius1.03ftTop Width11.87ftCritical Slope0.07731ft/ftCritical Slope0.07731ft/ftVelocity3.49fv/sVelocity3.49fv/sVelocity Head0.19ftSpecific Energy3.16ftFroude Number0.51ftFroude Number0.51ftFroude Number0.00ftLength0.00ftLength0.00ftProfile DescriptionftProfile DescriptionftProfile Descriptionft/sProfile Descriptionft/sProfile Descriptionft/sCritical Slope0.00ftCritical Slope0.01600ft/sCritical Slope0.01600Critical Slope0.01600ft/sCritical Slope0.01600ft/sCritical Slope0.01600ft/sCritical Slope0.01600ft/sCritical Slope0.01600ft/sCritical Slope0.01600ft/sCritical Slope0.01600ft/s	Roughness Coefficient		0.069		
Left Side Slope2.00ft/ft (H·V)Right Side Slope2.00ft/ft (H·V)Discharge61.50ft/ftResultsFftNormal Depth2.97ftFlow Area17.62ftMydtaulic Radius13.33ftTop Width11.87ftTop Width11.87ftCritical Slope0.07731ftVelocity3.49ftVelocity3.49ftSpecific Energy3.16Froude Number0.51Flow TypeSubcriticalOwnstream Depth0.00ftLength0.00ftNumber Of Steps0.00ftProfile Description0.00ftProfile Description15ftProfile Description15ftProfile DescriptionftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.00ftCritical Stope0.0100ftCritical Stope0.0100ftCritical Stope0.0100ftCritical Stope0.0100ftCritical Stope0.0100ftCritical Stope0.0100ft <td>Channel Slope</td> <td></td> <td>0.01800</td> <td>ft/ft</td> <td></td>	Channel Slope		0.01800	ft/ft	
Right Side Slope 2.00 ft/ft (H:V) Discharge 61.50 ft/fs Results 2.97 ft Normal Depth 2.97 ft Flow Area 17.62 ft* Wetted Perimeter 13.27 ft Hydraulic Radius 1.33 ft Top Width 11.87 ft Critical Sope 0.07731 ft/ft Critical Sope 0.07731 ft/ft Velocity 3.49 ft Velocity Head 0.19 ft Specific Energy 3.16 ft Frow Type Subcritical ft Bownstream Depth 0.60 ft Length 0.00 ft Number Of Steps 0 ft Profile Description 100 ft Profile Description 100 ft Profile Description 101 ft/s Profile Description 110 ft/s Profile Description 110 ft/s Profile Description 110 ft/s	Left Side Slope		2.00	ft/ft (H:V)	
Discharge 61.50 ft*/s Results	Right Side Slope		2.00	ft/ft (H:∨)	
ResultsNormal Depth2.97ftFlow Area17.62ft²Wetted Perimeter13.27ftHydraulic Radius1.33ftTop Width11.87ftCritical Depth2.26ftCritical Stope0.07731ft/ftVelocity3.48ft/sVelocity Head0.19ftSpecific Energy3.16ftFroude Number0.51ftFroude Number0.51ftFlow TypeSubcriticalGVF Input DataOwnstream Depth0.00ftftProfile DescriptionftProfile DescriptionftProfile Headioss0.00ftDownstream VelocityInfinityft/sft/sNormal Depth2.97ftCritical Stope0.0100ft/ftCritical Stope0.01000ftCritical Stope0.01000ft/ftCritical Stope0.01000ft/ftCritical Stope0.01000ft/ft	Discharge		61.50	ft³/s	
Normal Depth2.97ftFlow Area17.62ftWetted Perimeter13.27ftHydraulic Radius1.33ftTop Width11.87ftCritical Depth2.26ftCritical Stope0.07731ft/ftVelocity3.49ft/sVelocity Head0.19ftSpecific Energy3.16ftFroude Number0.51ftFroude Number0.51ftFroude Number0.00ftLength0.00ftLength0.00ftVelocity DetaftOVF Unput DataftProfile Descriptionft/sProfile Headloss0.00ftProfile Headloss0.00ftNormal Depth2.97ftNormal Depth2.97ftCritical Stope0.0160ft/ftCritical Stope0.01600ft/ftCritical Stope0.01600ft/ftCritical Stope0.01600ft/ftCritical Stope0.01600ft/ftCritical Stope0.01600ft/ft	Results				
Flow Area 17.62 R ⁴ Wetted Perimeter 13.27 R Hydraulic Radius 1.33 R Top Width 11.87 R Critical Depth 2.26 R Critical Slope 0.07731 R/T Velocity 3.49 R/S Velocity Head 0.19 R Specific Energy 3.16 R Froude Number 0.51 F Flow Type Subcritical R Ownstream Depth 0.00 R Length 0.00 R Number Of Steps 0 R Profile Description 1 F Profile Headloss 0.00 R Ownstream Velocity Infinity R/S Normal Depth 2.95 R Profile Headloss 0.00 R Output Data 1 F Cuttor 1 R Profile Description 1 F Profile Headloss 0.00 R Ormal Depth 2.95	Normal Depth		2.97	ft	
Wetted Perimeter 13.27 ft Hydraulic Radius 1.33 ft Top Width 11.87 ft Critical Depth 2.26 ft Critical Slope 0.07731 ft/ft Velocity 3.49 ft/s Velocity Head 0.19 ft Specific Energy 3.16 ft Froude Number 0.51 ft Froude Number 0.51 ft Flow Type Subcritical ft Bownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft Profile Description ft/s ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Number Of Steps 0.00 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 2.26 ft Critical Stope 0.01800f	Flow Area		17.62	ft²	
Hydraulic Radius 1.33 ft Top Width 11.87 ft Critical Depth 2.26 ft Critical Slope 0.07731 ft/ft Velocity 3.49 ft/s Velocity Head 0.19 ft Specific Energy 3.16 ft Froude Number 0.51 ft Specific Energy 3.16 ft Froude Number 0.51 ft GVF Input Data ft ft Length 0.00 ft Number Of Steps 0 ft Profile Description ft ft Profile Description ft ft Normal Depth 2.67 ft Normal Depth 2.63 ft Critical Depth 2	Wetted Perimeter		13.27	ft	
Top Width11.87ftCritical Depth2.26ftCritical Slope0.07731ft/ftVelocity3.49ftSpecific Energy3.16ftFroude Number0.51ftFlow TypeSubcriticalftGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftFrolie DescriptionProfile DescriptionftProfile Headloss0.00ftQuestream VelocityInfinityMystream VelocityInfinityNormal Depth2.97ftCritical Depth2.97ftCritical Depth2.96ftCritical Depth2.97ftCritical Depth2.96ftCritical Stope0.01800ft	Hydraulic Radius		1.33	ft	
Critical Depth2.26ftCritical Slope0.07731ft/ftVelocity3.49ft/sVelocity Head0.19ftSpecific Energy3.16ftFroude Number0.51ftFlow TypeSubcriticalOwnstream Depth0.001ftLength0.00ftNumber Of Steps0ftOffer Cutput DataOverstream Depth0.00ftOperationsProfile DescriptionProfile Headloss0.00Downstream VelocityInfinityft/sQuestream VelocityInfinityft/sCritical Depth2.97ftCritical Depth2.96ftCritical Depth2.97ftCritical Stope0.01800ft/ft	Top Width		11.87	ft	
Critical Slope 0.07731 ft/ft Velocity 3.49 ft/s Velocity Head 0.19 ft Specific Energy 3.16 ft Froude Number 0.51 ft Froude Number 0.51 ft Flow Type Subcritical ft Ownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft Pofile Description ft ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 2.07 ft Critical Depth 2.97 ft Critical Depth 2.26 ft Critical Stope 0.01800 ft/ft	Critical Depth		2.26	ft	
Velocity Head 3.49 ft/s Velocity Head 0.19 ft Specific Energy 3.16 ft Froude Number 0.51 it Flow Type Subcritical it GVF Input Data 0.00 ft Length 0.00 ft Number Of Steps 0 ft OVF Output Data ft Vupstream Depth 0.00 ft Profile Description ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 2.07 ft Critical Depth 2.26 ft Critical Stope 0.01800 ft/ft	Critical Slope		0.07731	ft/ft	
Velocity Head 0.19 ft Specific Energy 3.16 ft Froude Number 0.51 F Flow Type Subcritical Subcritical Subcritical GVF Input Data 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data ft Subcritical Vestream Depth 0.00 ft Profile Description ft Subcritical Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 2.97 ft Critical Depth 2.26 ft Critical Stope 0.01800 ft/ft	Velocity		3.49	fi/s	
Specific Energy3.16ftFroude Number0.51Flow TypeSubcriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Velocity Head		0.19	ft	
Froude Number0.51Flow TypeSubcriticalGVF Input Data0.00ftDownstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataftPofile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityItypatream VelocityInfinityNormal Depth2.97Rotard Depth2.97Critical Depth2.96Channel Slope0.01800ftyft	Specific Energy		3.16	ft	
Flow Type Subcritical GVF Input Data 0.00 ft Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 it GVF Output Data 0 ft Profile Description ft it Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Normal Depth 2.97 ft Critical Depth 2.96 ft Channel Slope 0.01800 ft/ft	Froude Number		0.51		
GVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth2.97ftCritical Slope0.01800ft/ftCritical Slope0.07731ft/ft	Flow Type	Subcritical			
Downstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sCritical Depth2.97ftCritical Slope0.01800ft/ftCritical Slope0.07731ft/ft	GVF Input Data				
Length0.00ftNumber Of Steps00GVF Output DataUpstream Depth0.00ftProfile DescriptionitProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftCritical Slope0.01800ft/ft	Downstream Depth		0.00	ft	
Number Of Steps0GVF Output Data0.00ftUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Length		0.00	ft	
GVF Output DataUpstream Depth0.00ftProfile Description7Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Number Of Steps		0		
Upstream Depth0.00ftProfile Description0.00ftProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	GVF Output Data				
Profile DescriptionProfile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Upstream Depth		0.00	ft	
Profile Headloss0.00ftDownstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Profile Description				
Downstream VelocityInfinityft/sUpstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Profile Headloss		0.00	ft	
Upstream VelocityInfinityft/sNormal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Downstream Velocity		Infinity	fl/s	
Normal Depth2.97ftCritical Depth2.26ftChannel Slope0.01800ft/ftCritical Slope0.07731ft/ft	Upstream Velocity		Infinity	ft/s	
Critical Depth 2.26 ft Channel Slope 0.01800 ft/ft Critical Slope 0.07731 ft/ft	Normal Depth		2.97	ft	
Channel Slope 0.01800 ft/ft Critical Slope 0.07731 ft/ft	Critical Depth		2.26	ft	
Critical Slope 0.07731 ft/ft	Channel Slope		0.01800	ft/ft	
	Critical Slope		0.07731	ft/ft	

Bentley Systems, Inc. Haestad Methods SolBieodi Geriller Master V8I (SELECTseries 1) [08.11.01.03]

10/26/2015 11:33:15 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
Cross Section for CPD7-CHANNEL-V-DITCH-6"-RIPRAP

Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient		0.069	
Channel Slope		0.04400	fi/ft
Normal Depth		1.44	ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Discharge		14.00	ft³/s

Cross Section Image

Worksheet for CPD7-CHANNEL-V-DITCH-6"-RIPRAP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.069	
Channel Slope		0.04400	ft/ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft∕ft (H:V)
Discharge		14.00	ft³/s
Results			
Normal Depth		1.44	ft
Flow Area		4.15	ft²
Wetted Perimeter		6.44	ft
Hydraulic Radius		0.64	ft
Top Width		5.76	ft
Critical Depth		1.25	ft
Critical Slope		0.09417	ft/ft
Velocity		3.37	ft/s
Velocity Head		0.18	ft
Specific Energy		1.62	ft
Froude Number		0.70	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.44	ft
Critical Depth		1.25	ft
Channel Slope		0.04400	ft/ft
Critical Slope		0.09417	ft/ft

Bentley Systems, Inc. Haestad Methods Sol Beotlegeritan/Master V8I (SELECTseries 1) [08.11.01.03]

10/26/2015 11:33:46 AM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 P

Cross Section for CPD8*-CHANNEL-V-DITCH-6"-RIPRAP Project Description Friction Method Manning Formula Normal Depth Solve For Input Data 0.069 **Roughness Coefficient** 0.05100 ft/ft Channel Slope 1.44 Normal Depth ft 2.00 ft/ft (H:V) Left Side Slope 2.00 ft/ft (H:V) **Right Side Slope** 15.00 ft³/s Discharge **Cross Section Image**

V 1 ∖ H:1

Worksheet for CPD8*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.069	
Channel Slope		0.05100	ft/ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft∕ft (H:V)
Discharge		15.00	ft³/s
Results			
Normal Depth		1.44	ft
Flow Area		4.14	ft²
Wetted Perimeter		6.43	ft
Hydraulic Radius		0.64	ft
Top Width		5.75	ft
Critical Depth		1.28	ft
Critical Slope		0.09331	ft/ft
Velocity		3.62	ft/s
Velocity Head		0.20	ft
Specific Energy		1.64	ft
Froude Number		0.75	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.44	ft
Critical Depth		1.28	ft
Channel Slope		0.05100	ft/ft
Critical Slope		0.09331	ft/ft

Bentley Systems, Inc. Haestad Methods SolBtoold@eFilowMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD9*-CHANNEL-HALF-CMP

Project Description	a support of the second				
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data			87.2	and then in a	The states
Roughness Coefficient	0.0	24			
Channel Slope	0.034	00	ft/ft		
Normal Depth	1.	92	ft		
Diameter	4.	00	ft		
Discharge	66.	80	ft³/s		
Cross Section Image					

Project Description Manning Formula Solve For Normal Depth Input Data 0.024 Roughness Coefficient 0.024 Channel Slope 0.03400 Diameter 0.024 Diameter 0.024 Channel Slope 0.03400 Diameter 0.024 Diameter 0.024 Dicharge 66.80 Results 11 Normal Depth 1.92 ft Flow Area 5.96 ft ⁴ Vetted Perimeter 6.12 ft Hydraulic Radius 0.97 ft Top Width 4.00 ft Ortical Slope 0.01500 ft/ft Vetocity 11.21 ft/s Vetocity 11.21 ft/s Vetocity 11.21 ft/s Vetocity 11.21 ft/s Discharge 16.2 ft Maximu Discharge 16.2 ft Otoper Fuil 0.00 ft Slope Fuil 0.000 ft	Wor	ksheet for CPD9*-	CHAN	NEL-	HALF-CN	1P	
Friction Method Solve ForManning Formula Normal DepthInput Data0.024 Channel Slope0.03400 fthRoughness Coefficient0.024 fthDianeter4.00 fthDianeter6.80 fth/sResults1.92 ftRow Area5.96 fthFlow Area5.96 fthFlow Area6.97 ftTop Width4.00 fthOrbital Parimeter6.12 ftChitcal Depth2.47 ftPercent Full4.80 fthVelocity Head0.01500 fthVelocity Head1.95 ftSpecific Energy3.87 ftFroude Rumber1.64 fthStope Full0.00737 fthStope Full0.00737 fthStope Full0.00737 fthStope Full0.00 fthStope Full0.00 fthCVF Unput Data0.00 fthUpstream Depth0.00 fthUpstream Depth Over Rise0.00 fth <th>Project Description</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Project Description						
Salve For Normal Depth Input Data 0.024 Roughness Coefficient 0.03400 Channel Slope 0.03400 Diancher 0.00 Dianter 0.00 Dianter 0.00 Dianters 0.00 Results 192 Normal Depth 192 Hydraulic Radius 0.97 Top Width 4.00 Hydraulic Radius 0.97 Top Width 4.00 Hydraulic Radius 0.97 Top Width 4.00 Vetoch Perimeter 6.12 Hydraulic Radius 0.97 Top Width 4.00 Vetoch Perimeter 6.12 Hydraulic Radius 9.97 Top Width 4.00 Vetoch Perimeter 1.12 Vetoch Perimeter 1.12 Vetoch Perimeter 1.12 Specific Energy 3.87 Froude Number 1.62 Discharge Full 0.007 Ibicharg	Friction Method	Manning Formula					
Input Data 0.024 Roughness Coefficient 0.03400 fr/ft Channel Stope 0.03400 fr/ft Diameter 4.00 ft Discharge 66.80 ft/rs Results 192 ft Reversion 61.81 ft Flow Area 5.95 ft* Vetted Perimeter 61.12 ft Top Width 4.00 ft Top Width 4.00 ft Critical Sope 0.01500 ft/ft Vetocity 11.21 ft/s Vetocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Stope Full 0.00737 ft/ft Discharge Full 0.00737 ft Stope Full 0.000 ft Lergth 0.00 ft Number Of Steps 0 ft Profile Description 1 ft Profile Headloss <td>Solve For</td> <td>Normal Depth</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Solve For	Normal Depth					
Roughness Coefficient0.024Channel Slope0.03400ftDimener0.03400ftDischarge66.80ft/sResultsftNormal Depth1.92ftFlow Area5.92ftWetted Perimeter6.12ftHydraulic Radius0.97ftCritical Depth2.47ftForwarea0.01500ftCritical Depth0.01500ftPercent Full48.0%Critical Sope0.01500ftVelocity11.21f/sVelocity Head1.95ftSpecific Energy3.87ftSope Full0.0070ft/ftVelocity Head1.95ftStope Full0.0070ft/ftUpstream Depth0.00ftLength0.00ftNumber Of Steps0ftProfile Dectpforo0ftProfile Dectpforo1ftProfile Dectpforo1ftNormal Depth Over Rise0.00ftNormal Depth Over Rise1/50%Normal Depth Over Rise1/50%Normal Depth Veror Rise1/50%Normal Depth Over Rise1/50%	Input Data						
Channel Slope0.03400ft/ftDiameter4.00ftDiacharge66.80ft/sResultsResultsNormal Depth1.92ftFlow Area5.96ftWetted Perimeter6.12ftTop Width4.00ftCritical Radius0.97ftCritical Slope0.01500ft/ftCritical Slope0.01500ft/ftVelocity11.21f/sVelocity Head1.95ftSpecific Energy3.87ftFroude Number1.62ftSlope Full0.00737ft/ftSlope Full0.00737ft/ftSlope Full0.00737ft/ftFlow TypeSuperCriticalftSuper SuperCritical0.00ftLangth0.00ftNumber Of Steps0ftProfile DescriptionftProfile DescriptionftProfile Headloss0.00ftNormal Depth Over Rise0.00ftNormal Depth Over Rise1.93ftProfile Headloss0.00ftNormal Depth Over Rise1.93ftProfile Headloss0.00ftNormal Depth Over Rise1.93ftProfile Headloss0.00ftNormal Depth Over Rise1.93ftProfile Headloss0.00ftNormal Depth Over Rise1.93ftProfile He	Roughness Coefficient		0.024				
Diameter4.00ftDischarge68.80ftResults1.92ftFlow Area5.66ftWetted Perimeter6.12ftHydraulic Radius0.97ftTop Width4.00ftCritical Depth2.47ftCritical Slope0.01500WftVelocity11.21K/sVelocity11.21K/sVelocityHead1.95ftSperfic Energy3.87ftFroude Number1.62K/sSlope Full0.0737t/ttSlope Full0.0737t/ttFlow TypeSuperCriticalftOwnstream Depth0.00ftLength0.00ftNumber Of Steps0ftProfile Description0ftProfile DescriptionftProfile DescriptionftProfile Headloss0.00ftNomal Depth Over Rise0.00ftNomal Depth Over Rise0.00ftProfile Headloss0.00ftNomal Depth Over Rise0.00ftProfile Headloss0.00ftNomal Depth Over Rise1.9.6ftNomal Depth Over Rise1.9.6 <td< td=""><td>Channel Slope</td><td></td><td>0.03400</td><td>ft/ft</td><td></td><td></td><td></td></td<>	Channel Slope		0.03400	ft/ft			
Discharge 66.80 ft*/s Results 1.92 ft Normal Depth 1.92 ft Flow Area 5.96 ft* Wetted Perimeter 6.12 ft Hydraulic Radius 0.97 ft Top Width 4.00 ft Oritical Depth 2.47 ft Percent Full 4.00 % Critical Stope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Flowa Number 1.43 ft*/s Discharge Full 14.346 ft*/s Stope Full 0.00737 ft/ft Flow Type SuperCritical ft Overstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft Profile Description F F Profile Headloss 0.00 ft <t< td=""><td>Diameter</td><td></td><td>4.00</td><td>ft</td><td></td><td></td><td></td></t<>	Diameter		4.00	ft			
Results Normal Depth 1.92 ft Flow Area 5.96 ft* Wetted Perimeter 6.12 ft Hydraulic Radius 0.97 ft Top Width 4.00 ft Critical Depth 2.47 ft Percent Full 48.0 % Critical Stope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 Maximum Discharge Discharge Full 0.00737 ft/ft Flow Type SuperCritical ft* Ownstream Depth 0.00 ft Length 0.000 ft Vumber Of Steps 0 ft Profile Description 1 ft Profile Description 1 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft Profile Description 5 ft Downstream Velocity	Discharge		66.80	ft³/s			
Normal Depth 1.92 f Flow Area 5.96 ft Wetted Perimeter 6.12 ft Hydraulic Radius 0.97 ft Top Width 4.00 ft Ortical Depth 2.47 ft Percent Full 48.0 % Critical Stope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 Velocity Head 1.95 ft/s Specific Energy 3.87 ft Froude Number 1.62 Waximum Discharge 154.32 ft/s Spope Full 0.007 ft Flow Type Super Critical ft/s Ownstream Depth 0.00 ft Length 0.00 ft Vumber Of Steps 0 ft Profile Description Ft Profile Headloss 0.00 ft Average End Depth Over	Results				· · · · · · · · · · · · · · · · · · ·	* 71	
Flow Area5.96R*Wetted Perimeter6.12RHydraulic Radius0.97RTop Width4.00RCritical Depth2.44RPercent Full44.0%Critical Slope0.01500KrRVelocity11.21R/sVelocity Head1.95RSpecific Energy3.87RFroude Number1.62YSlope Full0.0737R/sDischarge Full0.0737R/sSlope Full0.00RLength0.00RLength0.00RStope Full0.00RCVF Input Data0.00RUpstream Depth0.00RVerarge End Depth Over Rise0.00RProfile DescriptionYYProfile Description%NNormal Depth Over Rise0.00%Normal Depth Over Rise%%Normal Depth Over Rise<	Normal Depth		1.92	ft			
Wetted Perimeter 6.12 ft Hydraulic Radius 0.97 ft Top Width 4.00 ft Critical Depth 2.47 ft Percent Full 4.80 % Critical Slope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 Maximum Discharge 154.32 ft/s Discharge Full 0.00737 ft/ft Frow Type SuperCritical ft/ft GVF Input Data 0.00 ft Length 0.00 ft Number Of Steps 0 ft Profile Description 0 ft Profile Description 7 ft Profile Description 9 ft Normal Depth Over Rise 0.00 ft Average End Depth Over Rise 0.00 ft Normal Depth Over Rise <	Flow Area		5.96	ft²			
Hydraulic Radius 0.97 ft Top Width 4.00 ft Critical Depth 2.47 ft Percent Full 48.0 % Critical Slope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 Maximum Discharge 154.32 ft/s Discharge Full 0.037.04 ft/ft Stope Full 0.037.05 ft/ft Flow Type SuperCritical ft/ft Stope Full 0.037.05 ft/ft Flow Type SuperCritical ft/ft Stope Full 0.000.0 ft Length 0.000 ft Number Of Steps 0 ft OVF Output Data 100 ft Profile Description F F Profile Description F F Profile Headloss 0.00 ft Normal Depth Over Rise 0.00 ft	Wetted Perimeter		6.12	ft			
Top Width4.00fCritical Depth2.47fPercent Full48.0%Critical Slope0.01500f/tVelocity11.21f/sVelocity Head1.95fSpecific Energy3.87fFroude Number154.32f*/sDischarge Full0.07f/tSlope Full6f*/sSlope Full0.07f/tFlow TypeSuperCriticalf*/sDownstream Depth0.00fNumber Of Steps0fProfile DescriptionfProfile DescriptionfProfile Depth Over Rise0.00fNormal Depth Over Rise0.00fDownstream Velocity1.01fStream Velocity1.01f<	Hydraulic Radius		0.97	ft			
Critical Depth 2.47 ft Percent Full 48.0 % Critical Slope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 Maximum Discharge 154.32 ft/s Discharge Full 0.00737 ft/ft Flow Type SuperCritical 64/s Stope Full 0.00737 ft/ft Flow Type SuperCritical ft/ft Stope Full 0.00737 ft/ft Flow Type SuperCritical ft GVF Input Data 0.00 ft Length 0.00 ft Number Of Steps 0 ft OVF Output Data 1 ft Profile Description 1 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft Normal Depth Over Rise 47.96 % Downstream Velocity Infinity <t< td=""><td>Top Width</td><td></td><td>4.00</td><td>ft</td><td></td><td></td><td></td></t<>	Top Width		4.00	ft			
Percent Full 48.0 % Critical Slope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 Maximum Discharge 154.32 ft/s Discharge Full 143.46 ft/s Stope Full 0.00737 ft/ft Flow Type SuperCritical ft/s Ownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft Profile Description 1 ft Profile Leadloss 0.00 ft Average End Depth Over Rise 0.00 ft Normal Depth Over Rise 0.00 ft Normal Depth Over Rise 0.00 ft	Critical Depth		2.47	ft			
Critical Slope 0.01500 ft/ft Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 Maximum Discharge 154.32 ft/s Discharge Full 143.46 ft/s Slope Full 0.00737 ft/ft Frow Type SuperCritical GVF Input Data Boystream Depth 0.00 Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 1 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Percent Full		48.0	%			
Velocity 11.21 ft/s Velocity Head 1.95 ft Specific Energy 3.87 ft Froude Number 1.62 rt Froude Number 1.62 rt Maximum Discharge 154.32 ft*s Discharge Full 143.46 ft*s Slope Full 0.00737 ft/ft Flow Type SuperCritical rt*s GVF Input Data 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data rt*s Profile Description ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Critical Slope		0.01500	ft/ft			
Velocity Head1.95ftSpecific Energy3.87ftFroude Number1.62ftMaximum Discharge154.32ft'sDischarge Full143.46ft'sStope Full0.0073ft/ftFlow TypeSuperCriticalftBuperCriticalft ftBuperCriticalftFtP	Velocity		11.21	ft/s			
Specific Energy3.87ftFroude Number1.62Maximum Discharge154.32ft/sDischarge Full143.46ft/sSlope Full0.00737ft/ftFlow TypeSuperCriticalftOVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftOVF Output DataUpstream Depth0.00Forfile DescriptionftProfile DescriptionftProfile Headloss0.00ftAverage End Depth Over Rise0.00ftNormal Depth Over Rise17.96%Normal Depth Over Rise17.96%Normal Depth Over Rise11.91ft/s	Velocity Head		1.95	ft			
Froude Number1.62Maximum Discharge154.32ft*/sDischarge Full143.46ft*/sSlope Full0.00737ft/ftFlow TypeSuperCriticalGVF Input DataOwnstream Depth0.00Length0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00Profile DescriptionftProfile Headloss0.00ftNumal Depth Over Rise0.00ftNormal Depth Over Rise0.00ftNo	Specific Energy		3.87	ft			
Maximum Discharge154.32ft/sDischarge Full143.46ft/sStope Full0.00737ft/tFlow TypeSuperCriticalGVF Input Data000ftLength0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftAverage End Depth Over Rise0.00ftNormal Depth Over Rise0.00ftDownstream VelocityInfinityft/s	Froude Number		1.62				
Discharge Full143.46ft*/sSlope Full0.00737ft/ftFlow TypeSuperCriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00Profile DescriptionftProfile Headloss0.00ftAverage End Depth Over Rise0.00ftNormal Depth Over Rise0.00ftDownstream VelocityInfinityft/s	Maximum Discharge		154.32	ft³/s			
Slope Full0.00737ft/ftFlow TypeSuperCriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Output DataUpstream Depth0.00ftProfile DescriptionftProfile Headloss0.00ftAverage End Depth Over Rise0.00ftNormal Depth Over Rise47.96%Downstream VelocityInfinityft/st	Discharge Full		143.46	ft³/s			
Flow Type SuperCritical GVF Input Data 0.00 ft Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data 0 ft Profile Description 1 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 ft Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Slope Full		0.00737	ft/ft			
GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 0 GVF Output Data 0 ft Upstream Depth 0.00 ft Profile Description 1 1 Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Flow Type	SuperCritical					
Downstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output Data0Upstream Depth0.00ftProfile Description0.00ftAverage End Depth Over Rise0.00%Normal Depth Over Rise47.96%Downstream VelocityInfinityft/s	GVF Input Data						
Length 0.00 ft Number Of Steps 0 0 GVF Output Data 0.00 ft Upstream Depth 0.00 ft Profile Description 1 Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Downstream Depth		0.00	ft			
Number Of Steps 0 GVF Output Data 0.00 ft Upstream Depth 0.00 ft Profile Description 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Length		0.00	ft			
GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Number Of Steps		0				
Upstream Depth 0.00 ft Profile Description 0.00 ft Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	GVF Output Data						
Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Upstream Depth		0.00	ft			
Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Profile Description						
Average End Depth Over Rise0.00%Normal Depth Over Rise47.96%Downstream VelocityInfinityft/s	Profile Headloss		0.00	ft			
Normal Depth Over Rise 47.96 % Downstream Velocity Infinity ft/s	Average End Depth Over Rise		0.00	%			
Downstream Velocity Infinity ft/s	Normal Depth Over Rise		47.96	%			
	Downstream Velocity		Infinity	ft/s			

10/29/2015 8:03:58 AM

 Bentley Systems, Inc.
 Haestad Methods SolBtiotidgeRinewMaster V8I (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD9*-CHANNEL-HALF-CMP

GVF Output Data				
Upstream Velocity	Infinity	ft/s		
Normal Depth	1.92	ft		
Critical Depth	2.47	ft		
Channel Slope	0.03400	ft/ft		
Critical Slope	0.01500	ft/ft		

Cross Section for CPD9*-CHANNEL-V-DITCH-6"-RIPRAP

Proj	ect	Descr	ipt	ion
------	-----	-------	-----	-----

Friction Method	Manning Formula		
Solve For	Normal Depth		

Input Data

· · · · · · · · · · · · · · · · · · ·		
Roughness Coefficient	0.069	
Channel Slope	0.03400	ft/ft
Normal Depth	2.72	π
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	66.80	ft³/s

Cross Section Image

V 1 1 H

Worksheet for CPD9*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.069	
Channel Slope	0.03400	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	66.80	ft³/s
Results		
Normal Depth	2.72	ft
Flow Area	14.77	ft²
Wetted Perimeter	12.15	ft
Hydraulic Radius	1.22	ft
Top Width	10.87	ft
Critical Depth	2.33	ft
Critical Slope	0.07646	ft/ft
Velocity	4.52	ft/s
Velocity Head	0.32	ft
Specific Energy	3.04	ft
Froude Number	0.68	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.72	ft
Critical Depth	2.33	ft
Channel Slope	0.03400	ft/ft
Critical Slope	0.07646	ft/ft

Bentley Systems, Inc. Haestad Methods SolBtindigeRiter Master V8I (SELECTseries 1) [08.11.01.03] 10/26/2015 11:34:41 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD11*-CHANNEL-HALF-CMP

Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data			,		
Roughness Coefficient		0.024			
Channel Slope		0.10600	ft/ft		
Normal Depth		0.67	ft		
Diameter		2.00	ft		
Discharge		9.60	ft³/s		
Internet of the second second second second second	A STREET ALL AND A STREET AND A ST				

Cross Section Image

Worksheet for CPD11*-CHANNEL-HALF-CMP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data	· · · · · · · · · · · · · · · · · · ·		
Roughness Coefficient	0.02		
Channel Slope	0.1060) ft/ft	
Diameter	2.0) ft	
Discharge	9.6) ft³/s	
Results	nad fair - na ean		511
Normal Depth	0.6	ft	
Flow Area	0.9	2 ft²	
Wetted Perimeter	2.4	i ft	
Hydraulic Radius	0.3	/ ft	
Top Width	1.8) ft	
Critical Depth	1.1	ft	
Percent Full	33.	%	
Critical Slope	0.0174	ft/ft	
Velocity	10.4	ft/s	
Velocity Head	1.6) ft	
Specific Energy	2.3	îft	
Froude Number	2.6	Ļ	
Maximum Discharge	42.9	ft³/s	
Discharge Full	39.8	ft³/s	
Slope Full	0.0061	ft/ft	
Flow Type	SuperCritical		
GVF input Data			
Downstream Depth	0.0) ft	
Length	0.0) ft	
Number Of Steps)	
GVF Output Data			
Upstream Depth	0.0	ft	
Profile Description			
Profile Headloss	0.0) ft	
Average End Depth Over Rise	0.0) %	
Normal Depth Over Rise	33.4	%	
Downstream Velocity	Infinit	ft/s	

Bentley Systems, Inc. Haestad Methods SolBiboti@cFitewMaster V8I (SELECTseries 1) [08.11.01.03] 10/29/2015 8:05:14 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD11*-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.67	ft
Critical Depth	1.11	ft
Channel Slope	0.10600	ft/ft
Critical Slope	0.01749	ft/ft

Cross Sec	tion for CPD11*-C	HANNE	L-V-DITCH-6"-RIPRAP	
Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.069		
Channel Slope		0.10600	ft/ft	
Normal Depth		1.06	ft	
Left Side Slope		2.00	ft/ft (H:∨)	
Right Side Slope		2.00	ft/ft (H:V)	
Discharge		9.60	ft³/s	
Cross Section Image				

Worksheet for CPD11*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data		- 200 NSA			
Roughness Coefficient		0.069			
Channel Slope		0.10600	ft/ft		
Left Side Slope		2.00	ft/ft (H:V)		
Right Side Slope		2.00	ft/ft (H:V)		
Discharge		9.60	ft³/s		
Results			75.	ch	.4 4
Normal Depth		1.06	ft		
Flow Area		2.25	ft³		
Wetted Perimeter		4.74	ft		
Hydraulic Radius		0.47	ft		
Top Width		4.24	ft		
Critical Depth		1.07	ft		
Critical Slope		0.09903	ft/ft		
Velocity		4.27	ft/s		
Velocity Head		0.28	ft		
Specific Energy		1.34	ft		
Froude Number		1.03			
Flow Type	Supercritical				
GVF Input Data					
Downstream Depth		0.00	ft		
Length		0.00	ft		
Number Of Steps		0			
GVF Output Data					
Upstream Depth		0.00	ft		
Profile Description					
Profile Headloss		0.00	ft		
Downstream Velocity		Infinity	ft/s		
Upstream Velocity		Infinity	ft/s		
Normal Depth		1.06	ft		
Critical Depth		1.07	ft		
Channel Slope		0.10600	fi/ft		
Critical Slope		0.09903	ft/ft		

Bentley Systems, Inc. Haestad Methods SolBieddegelinewMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD12*-CHANNEL-HALF-CMP

|--|

Friction Method Solve For	Marining Formula Normal Depth					
Input Data						
Roughness Coefficient		0.024				
Channel Slope		0.01000	ft/ft			
Normal Depth		1.17	ft			
Diameter		3.00	ft			
Discharge		11.70	ft³/s			

Cross Section Image

V: 1 \(H: 1)

Worksheet for CPD12*-CHANNEL-HALF-CMP

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.024		
Channel Slope		0.01000	ft/ft	
Diameter		3.00	ft	
Discharge	٠	11.70	ft³/s	
Results				A C Print Pr
Normal Depth		1.17	ft	
Flow Area		2.56	ft²	
Wetted Perimeter		4.06	ft	
Hydraulic Radius		0.63	ft	
Top Width		2.93	ft	
Critical Depth		1.09	ft	
Percent Full		39.1	%	
Critical Slope		0.01340	ft/ft	
Velocity		4.56	ft/s	
Velocity Head		0.32	ft	
Specific Energy		1.50	ft	
Froude Number		0.86		
Maximum Discharge		38.86	ft²/s	
Discharge Full		36.13	ft*/s	
Slope Full		0.00105	ft/ft	
Flow Type	SubCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		39.14	%	
Downstream Velocity		Infinity	ft/s	

 Bentley Systems, Inc. Haestad Methods SolBtiotid@eMawMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD12*-CHANNEL-HALF-CMP

GVF Output Data

Infinity	ft/s
1.17	ft
1.09	ft
0.01000	ft/ft
0.01340	ft/ft
	Infinity 1.17 1.09 0.01000 0.01340

Cross Section for CPD12*-CHANNEL-V-DITCH-6"-RIPRAP

Eriction Method	Manning Formula				
Solvo For	Normal Depth				
Solve For	Nomai Depti				
Input Data					
Roughness Coefficient		0.069			
Channel Slope		0.01000	ft/ft		
Normal Depth		1.78	ft		
Left Side Slope		2.00	ft/ft (H:V)		
Right Side Slope		2.00	ft/ft (H:V)		
Discharge		11.70	ft³/s		
Cross Section Image		A	19 19 19		
	-				
	V.	/	T		
		/			
	/		1.76 ft		

V:1 ∖ H:1

Worksheet for CPD12*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data	·		
Roughness Coefficient		0.069	
Channel Slope		0.01000	ft/ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Discharge		11.70	ft³/s
Results			
Normal Depth		1.78	ft
Flow Area		6.33	ft²
Wetted Perimeter		7.95	ft
Hydraulic Radius		0.80	ft
Top Width		7.12	ft
Critical Depth		1.16	ft
Critical Slope		0.09645	ft/ft
Velocity		1.85	ft/s
Velocity Head		0.05	ft
Specific Energy		1.83	ft
Froude Number		0.35	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.78	ft
Critical Depth		1.16	ft
Channel Slope		0.01000	ft/ft
Critical Slope		0.09645	ft/ft

10/29/2015 8:05:52 AM

Bentley Systems, Inc. Haestad Methods SolBteatleQePtervMaster V8I (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD13-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.024
Channel Slope	0.08800 ft/ft
Normal Depth	0.40 ft
Diameter	1.00 ft
Discharge	1.90 ft ³/s
Cross Section Image	

V:1 L H:1

Worksheet for CPD13-CHANNEL-HALF-CMP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data	A Charles and the second s	
Roughness Coefficient	0.024	
Channel Slope	0.08800	ft/ft
Diameter	1.00	ft
Discharge	1.90	ft³/s
Results		
Normal Depth	0.40	e
Flow Area	0.40	n n 2
Wetted Perimeter	1.36	ft
Hydraulic Radius	0.21	ft
Top Width	0.98	ft
Critical Depth	0.59	ft
Percent Full	39.7	%
Critical Slope	0.02293	ft/ft
Velocity	6.55	ft/s
Velocity Head	0.67	ft
Specific Energy	1.06	ft
Froude Number	2.12	
Maximum Discharge	6.16	ft³/s
Discharge Full	5.72	ft³/s
Slope Full	0.00969	ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	39.68	%
Downstream Velocity	Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SolBleotid@cFilmr/Master V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD13-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.40	ft
Critical Depth	0.59	ft
Channel Slope	0.08800	ft/ft
Critical Slope	0.02293	ft/ft

Cross Section for CPD13-CHANNEL-V-DITCH-6"-RIPRAP

Pro	ject	Descri	ption
-----	------	--------	-------

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.069	
Channel Slope	0.08800	ft/ft
Normal Depth	0.60	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	1.90	ft³/s
	Toronto an a state - source and a state of the	

Cross Section Image

V 1 A H 1

Worksheet for CPD13-CHANNEL-V-DITCH-6"-RIPRAP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.06	9	
Channel Slope	0.0880	00 ft/ft	
Left Side Slope	2.0	00 ft/ft (H:V)	
Right Side Slope	2.0	00 ft/ft (H:V)	
Discharge	1.9	90 ft³/s	
Results			13
Normal Depth	0.6	60 ft	
Flow Area	0.7	'2 ft²	
Wetted Perimeter	2.6	38 ft	
Hydraulic Radius	0.2	27 ft	
Top Width	2.3	9 ft	
Critical Depth	0.5	i6 ft	
Critical Slope	0.1229	90 ft/ft	
Velocity	2.6	5 ft/s	
Velocity Head	0.1	1 ft	
Specific Energy	0.7	'1 ft	
Froude Number	0.8	6	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth	0.0	0 ft	
Length	0.0	10 ft	
Number Of Steps		0	
GVF Output Data			
Upstream Depth	0.0	0 ft	
Profile Description			
Profile Headloss	0.0	i0 ft	
Downstream Velocity	Infinit	ty ft/s	
Upstream Velocity	Infinit	ty ft/s	
Normal Depth	0.6	io ft	
Critical Depth	0.5	6 ft	
Channel Slope	0.0880	10 ft/ft	
Critical Slope	0.1229	0 ft/ft	

10/29/2015 8:10:25 AM

Bentley Systems, Inc. Haestad Methods SolBeatleGenter Wai (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD14*-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024		
Channel Slope	0.12000	ft/ft	
Normal Depth	0.75	ft	
Diameter	2.00	ft	
Discharge	12.70	ft³/s	

Cross Section Image

V 1 A

Worksheet for CPD14*-CHANNEL-HALF-CMP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			a and a second sec
Roughness Coefficient		0.024	
Channel Slope		0.12000	ft/ft
Diameter		2.00	ft
Discharge		12.70	ft³/s
Results	and a second	and and a second se	
Normal Depth		0.75	ft
Flow Area		1.08	ft²
Wetted Perimeter		2.64	ft
Hydraulic Radius		0.41	ft
Top Width		1.94	ft
Critical Depth		1.28	ft
Percent Full		37.5	%
Critical Slope		0.01955	ft/ft
Velocity		11.80	ft/s
Velocity Head		2.17	ft
Specific Energy		2.92	ft
Froude Number		2.79	
Maximum Discharge		45.66	ft³/s
Discharge Full		42.45	ft³/s
Slope Full		0.01074	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		37.50	%
Downstream Velocity		Infinity	ft/s

Bentley Systems, Inc. Haestad Methods SolBiendegeRiter/Master V8I (SELECTseries 1) [08.11.01.03] 16:44 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

10/29/2015 8:16:44 AM

Worksheet for CPD14*-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.75	ft
Critical Depth	1.28	ft
Channel Slope	0.12000	ft/ft
Critical Slope	0.01955	ft/ft

Cross Section for CPD14*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description

Friction Method	Manning Formula	
Solve For	Normal Depth	

Input Data

د می سد.	2-1 ·	
Roughness Coefficient	0.069	
Channel Slope	0.12000	ft/ft
Normal Depth	1.15	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	12.70	ft*/s

Cross Section Image

V: 1 \(H' 1)

Worksheet for CPD14*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data					
Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Discharge		0.069 0.12000 2.00 2.00 12.70	ft/ft ft/ft (H:V) ft/ft (H:V) ft³/s		
Results	77			· Paralle	
Normal Depth Flow Area Wetted Perimeter Hydraulic Radius Top Width Critical Depth Critical Slope Velocity Velocity Head Specific Energy Froude Number Flow Type	Supercritical	1.15 2.65 5.15 0.51 4.60 1.20 0.09540 4.79 0.36 1.51 1.11	ft ft ² ft ft ft ft/ft ft/ft ft/s ft ft		
GVF Input Data		ιχ.			
Downstream Depth Length Number Of Steps		0.00 0.00 0	ft ft		
GVF Output Data					
Upstream Depth Profile Description		0.00	ft		
Profile Headloss Downstream Velocity Upstream Velocity		0.00 Infinity Infinity	ft ft/s ft/s		
Normal Depth Critical Depth Channel Slope		1.15 1.20 0.12000	ft ft ft/ft		
Critical Slope		0.09540	ft/ft		

 Bentley Systems, Inc.
 Haestad Methods SolBibati@eFitawMaster V8i (SELECTseries 1) [08.11.01.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

10/29/2015 8:17:14 AM

Cross Section for CPD15-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024	
Channel Slope	0.09100	ft/ft
Normal Depth	0.40	ft
Diameter	1.00	ft
Discharge	2.00	ft³/s

Cross Section Image

Worksheet for CPD15-CHANNEL-HALF-CMP

Project Description		2
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.024	
Channel Slope	0.09100	ft/ft
Diameter	1.00	ft
Discharge	2.00	ft³/s
Results		
Normal Depth	0.40	ft
Flow Area	0.30	ft²
Wetted Perimeter	1.38	ft
Hydraulic Radius	0.22	ft
Top Width	0.98	ft
Critical Depth	0.60	ft
Percent Full	40.4	%
Critical Slope	0.02337	ft/ft
Velocity	6.72	ft/s
Velocity Head	0.70	ft
Specific Energy	1.11	ft
Froude Number	2.15	
Maximum Discharge	6.26	ft³/s
Discharge Full	5.82	ft³/s
Slope Full	0.01074	ft/ft
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	40.44	%
Downstream Velocity	Infinity	fl/s

 Bentley Systems, Inc. Haestad Methods SolBtiotic@charmediaster V8I (SELECTseries 1) [08.11.01.03]

 10/29/2015 8:17:45 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD15-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	0.40	ft
Critical Depth	0.60	ft
Channel Slope	0.09100	ft/ft
Critical Slope	0.02337	ft/ft

Cross Section for CPD15-CHANNEL-V-DITCH-6"-RIPRAP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.069	
Channel Slope	0.09100	ft/ft
Normal Depth	0.61	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	2.00	ft³/s

Cross Section Image

V:1 📐 H:1

WORKS	neet for CPD15-CR	ANNEL-	V-DITCH-0 -KIFKAF
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.069	
Channel Slope		0.09100	ft/ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Discharge		2.00	ft³/s
Results			
Normal Depth		0.61	ft
Flow Area		0.74	ft²
Wetted Perimeter		2.71	ft
Hydraulic Radius		0.27	ft
Top Width		2.43	ft
Critical Depth		0.57	ft
Critical Slope		0.12208	ft/ft
Velocity		2.72	ft/s
Velocity Head		0.11	ft
Specific Energy		0.72	ft
Froude Number		0.87	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.61	ft
Critical Depth		0.57	ft
Channel Slope		0.09100	ft/ft
Critical Slope		0.12208	ft/ft

Worksheet for CPD15-CHANNEL-V-DITCH-6"-RIPRAP

 Bentley Systems, Inc. Haestad Methods SolBtiotidgeFitzer/Master V8i (SELECTseries 1) [08.11.01.03]

 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Cross Section for CPD16-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024		
Channel Slope	0.07000	ft/ft	
Normal Depth	0.60	ft	
Diameter	1.50	ft	
Discharge	5.00	ft³/s	

Cross Section Image

Worksheet for CPD16-CHANNEL-HALF-CMP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			· ·
Roughness Coefficient		0.024	
Channel Slope		0.07000	ft/ft
Diameter		1.50	ft
Discharge		5.00	ft³/s
Results		建规	
Normal Depth		0.60	ft
Flow Area		0.65	ft²
Wetted Perimeter		2.04	ft
Hydraulic Radius		0.32	ft
Top Width		1.47	ft
Critical Depth		0.86	ft
Percent Full		39.7	%
Critical Slope		0.01968	ft/ft
Velocity		7.66	ft/s
Velocity Head		0.91	ft
Specific Energy		1.51	ft
Froude Number		2.02	
Maximum Discharge		16.19	ft³/s
Discharge Full		15.05	ft³/s
Slope Full		0.00772	ft/ft
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		39.69	%
Downstream Velocity		infinity	ft/s

Bentley Systems, Inc. Haestad Methods Sol8Hotl@eHitewMaster V8i (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

10/29/2015 8:18:43 AM
Worksheet for CPD16-CHANNEL-HALF-CMP

GVF Output Data

Infinity	ft/s	
0.60	ft	
0.86	ft	
0.07000	ft/ft	
0.01968	ft/ft	
	Infinity 0.60 0.86 0.07000 0.01968	Infinity ft/s 0.60 ft 0.86 ft 0.07000 ft/ft 0.01968 ft/ft

Cross Section for CPD16-CHANNEL-V-DITCH-6"-RIPRAP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.069		
Channel Slope	0.07000	ft/ft	
Normal Depth	0.90	ft	
Left Side Slope	2.00	ft/ft (H:V)	
Right Side Slope	2.00	ft/ft (H:V)	
Discharge	5.00	ft³/s	

Cross Section Image

V: 1 \(H' 1)

Worksheet for CPD16-CHANNEL-V-DITCH-6"-RIPRAP

Maning Formula Solve For Normal Depth Input Data 0.069 Roughness Coefficient 0.0700 1/t Left Side Slope 0.0700 1/t Left Side Slope 0.000 1/t Right Side Slope 0.000 1/t Right Side Slope 0.000 1/t Right Side Slope 0.000 1/t Rownal Depth 0.000 1/t Flow Area 0.10 1 Vetted Perimeter 4.01 1 Vetted Perimeter 0.03 1 Voltch Joeph 0.03 1 Ortikal Slope 0.04 1 Vetted Perimeter 0.03 1 Vetted Perimeter 0.04 1 Vetted Perimeter 0.04 1 Vetted Perimeter 0.04 1 Vetted Y 0.04 1	Project Description				
Solve For Normal Depth Input Data 0.069 Roughness Coefficient 0.069 Channel Slope 0.07000 h/ft Left Side Slope 0.00 f/ft Left Side Slope 2.00 f/ft (H'.V) Discharge 5.00 f*/ft Normal Depth 0.00 ft Flow Area 1.61 f* Wetted Perimeter 4.00 ft Hydraulic Radius 0.1062 ftf Critical Slope 0.10822 ftf Velocity 3.10 f/s Velocity Head 0.16 ft Specific Energy 1.05 ft Froude Number 0.16 ft Specific Energy 1.05 ft Froude Number 0.00 ft Flow Type Subcritical ft Downstream Depth 0.00 ft Length 0.00 ft Length 0.00 ft Length 0.0<	Friction Method	Manning Formula			
Input Data Roughness Coefficient 0.069 Channel Slope 0.07000 ft/ft Left Side Slope 2.00 ft/ft (H:V) Right Side Slope 5.00 ft/fr Discharge 5.00 ft/fr Normal Depth 0.90 ft Flow Area 1.61 ft* Wetted Perimeter 4.01 ft Hydraulic Radius 0.40 ft Critical Depth 0.83 ft Critical Slope 0.10802 ft/ft Velocity 3.10 ft/s Velocity 3.10 ft/s Velocity Head 0.15 ft Specific Energy 1.05 ft Flow Type Subcritical ft Downstream Depth 0.00 ft Length 0.00 ft Length <td>Solve For</td> <td>Normal Depth</td> <td></td> <td></td>	Solve For	Normal Depth			
Roughness Coefficient0.069Channel Slope0.07000ft/ftLeft Side Slope2.00ft/ft (H:V)Right Side Slope2.00ft/ft (H:V)Discharge5.00ft/ftResultsNormal Depth0.90ftFlow Area1.61ftVetted Perimeter4.01ftHydraulic Radius0.40ftCritical Depth0.83ftCritical Depth0.83ftCritical Slope0.10802ft/ftVetocity Head0.15ftSpecific Energy0.65ftFlow TypeSubcriticalCVF Input DataDownstream Depth0.00Length0ftLength0ftLength0ftStore Colspan0ftCVF Output Data0ftCVF Output Data0ftCVF Output Data0ftCVF Output Data0ftCVF Output Data0ftCVF Output Data0ftOver SubcriticalCVF Output Data0CVF Output Data0ftCVF Output Data0ftOve	Input Data			3	
Channel Slope0.07000ft/ftLeft Side Slope2.00ft/ftRight Side Slope2.00ft/ftDischarge5.00ft/ftResultsNormal Depth0.90ftFlow Area1.61ftWetted Perimeter4.01ftHydraulic Radius0.400ftCritical Depth0.833ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82FDownstream Depth0.00ftLength0.00ftLength0.00ftLength0.00ftCVF Output Data0ftGVF Output Data	Roughness Coefficient		0.069		
Left Side Slope2.00ft/ft (H:V)Right Side Slope2.00ft/ft (H:V)Discharge5.00ft/ftResultsNormal Depth0.90ftFlow Area1.61ft*Wetted Perimeter4.01ftHydraulic Radius0.40ftTop Width3.59ftCritical Depth0.83ftCritical Slope0.1082ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82FFour TypeSubcriticalftDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Output Data0ftGVF Outp	Channel Slope		0.07000	ft/ft	
Right Side Slope2.00ft/ft (H:V)Discharge5.00ft/ft (H:V)Results7Normal Depth0.90ftFlow Area1.61ftWetted Perimeter4.01ftHydraulic Radius0.40ftTop Width3.59ftCritical Depth0.83ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82Flow TypeSubcriticalDownstream Depth0.00ftLength0.00ftNumber Of Steps00OVF Output Data	Left Side Slope		2.00	ft/ft (H:V)	
Discharge5.00ft*/sResultsNormal Depth0.90ftFlow Area1.61ft*Wetted Perimeter4.01ftHydraulic Radius0.40ftTop Width3.59ftCritical Depth0.83ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82FFlow TypeSubcriticalDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Loutput DataOVER </td <td>Right Side Slope</td> <td></td> <td>2.00</td> <td>ft/ft (H:V)</td>	Right Side Slope		2.00	ft/ft (H:V)	
ResultsNormal Depth0.90ftFlow Area1.61ft*Wetted Perimeter4.01ftHydraulic Radius0.40ftTop Width3.59ftCritical Depth0.83ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82FFlow TypeSubcriticalDownstream Depth0.00ftLength0.00ftNumber Of Steps0CVF Output Data	Discharge		5.00	ft³/s	
Normal Depth 0.90 ft Flow Area 1.61 ft Wetted Perimeter 4.01 ft Hydraulic Radius 0.40 ft Top Width 3.59 ft Critical Depth 0.83 ft Critical Slope 0.10802 ft/ft Velocity 3.10 ft/s Velocity Head 0.15 ft Specific Energy 1.05 ft Froude Number 0.82 ft Flow Type Subcritical ft Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data 0 ft	Results			2	
Flow Area 1.61 ft Wetted Perimeter 4.01 ft Hydraulic Radius 0.40 ft Top Width 3.59 ft Critical Depth 0.83 ft Critical Slope 0.10802 ft/ft Velocity 3.10 ft/s Velocity Head 0.15 ft Specific Energy 1.05 ft Froude Number 0.82 rt Flow Type Subcritical ft Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft	Normal Depth		0.90	ft	
Wetted Perimeter4.01ftHydraulic Radius0.40ftTop Width3.59ftCritical Depth0.83ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82FFlow TypeSubcriticalOwnstream DepthLength0.00ftNumber Of Steps0ftGVF Output DataOUT StepsOUT Steps <td c<="" td=""><td>Flow Area</td><td></td><td>1.61</td><td>ft²</td></td>	<td>Flow Area</td> <td></td> <td>1.61</td> <td>ft²</td>	Flow Area		1.61	ft²
Hydraulic Radius0.40ftTop Width3.69ftCritical Depth0.83ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82FFlow TypeSubcriticalOwnstream Depth0.00Length0.00ftNumber Of Steps0ftOVF Output DataOVF Output DataOVF Output Data	Wetted Perimeter		4.01	ft	
Top Width3.59ftCritical Depth0.83ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82Flow TypeSubcriticalGVF Input DataDownstream Depth0.00Length0.00ftNumber Of Steps0GVF Output Data0	Hydraulic Radius		0.40	ft	
Critical Depth0.83ftCritical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82ftFlow TypeSubcriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0ftGVF Output Data	Top Width		3.59	ft	
Critical Slope0.10802ft/ftVelocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.82Flow TypeSubcriticalGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output Data	Critical Depth		0.83	ft	
Velocity3.10ft/sVelocity Head0.15ftSpecific Energy1.05ftFroude Number0.820.82Flow TypeSubcriticalVelocityGVF Input DataDownstream Depth0.00ftLength0.00ftNumber Of Steps0VelocityGVF Output Data0ft	Critical Slope		0.10802	ft/ft	
Velocity Head0.15ftSpecific Energy1.05ftFroude Number0.820.82Flow TypeSubcriticalCVF Input DataOwnstream Depth0.00ftLength0.00ftNumber Of Steps0CVF Output DataGVF Output Data	Velocity		3.10	ft/s	
Specific Energy 1.05 ft Froude Number 0.82 0.82 Flow Type Subcritical CVF Input Data Oownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft	Velocity Head		0.15	ft	
Froude Number 0.82 Flow Type Subcritical GVF Input Data 0.00 Downstream Depth 0.00 Length 0.00 Number Of Steps 0	Specific Energy		1.05	ft	
Flow Type Subcritica! GVF Input Data 0.00 Downstream Depth 0.00 Length 0.00 Number Of Steps 0	Froude Number		0.82		
GVF Input Data 0.00 ft Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 0 GVF Output Data Uter Data Uter Data	Flow Type	Subcritical			
Downstream Depth0.00ftLength0.00ftNumber Of Steps0GVF Output Data	GVF Input Data				
Length 0.00 ft Number Of Steps 0 GVF Output Data 0	Downstream Depth		0.00	ft	
Number Of Steps 0 GVF Output Data 0	Length		0.00	ft	
GVF Output Data	Number Of Steps		0		
	GVF Output Data				
Upstream Depth 0.00 ft	Upstream Depth		0.00	ft	
Profile Description	Profile Description				
Profile Headloss 0.00 ft	Profile Headloss		0.00	ft	
Downstream Velocity Infinity ft/s	Downstream Velocity		Infinity	ft/s	
Upstream Velocity Infinity ft/s	Upstream Velocity		Infinity	ft/s	
Normal Depth 0.90 ft	Normal Depth		0.90	ft	
Critical Depth 0.83 ft	Critical Depth		0.83	ft	
Channel Slope 0.07000 ft/ft	Channel Slope		0.07000	ft/ft	
Critical Slope 0.10802 ft/ft	Critical Slope		0.10802	ft/ft	

Bentley Systems, Inc. Haestad Methods SolBtentlegeFilter/Master V8I (SELECTseries 1) [08.11.01.03] 9:15 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD17*-CHANNEL-HALF-CMP

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.024	
Channel Slope	0.09300	ft/ft
Normal Depth	1.56	ft
Diameter	3.50	ft
Discharge	68.30	ft³/s

Cross Section Image

Worksheet for CPD17*-CHANNEL-HALF-CMP

Project Description					
Friction Method Solve For	Manning Formula Normal Depth				
Input Data	11 - 11 - 11 - 11 - 12 - 12 - 12 - 12 -				
Roughness Coefficient		0.024			
Channel Slope		0.09300	ft/ft		
Diameter		3.50	ft		
Discharge		68.30	ft³/s		
Results					
Normal Depth		1.56	ft		
Flow Area		4.16	ft³		
Wetted Perimeter		5.12	ft		
Hydraulic Radius		0.81	ft		
Top Width		3.48	ft		
Critical Depth		2.59	ft		
Percent Full		44.7	%		
Critical Slope		0.01949	ft/ft		
Velocity		16.43	ft/s		
Velocity Head		4.19	ft		
Specific Energy		5.76	ft		
Froude Number		2.65			
Maximum Discharge		178.77	ft³/s		
Discharge Full		166.18	ft³/s		
Slope Full		0.01571	ft/ft		
Flow Type	SuperCritical				
GVF Input Data					
Downstream Depth		0.00	ft		
Length		0.00	ft		
Number Of Steps		0			
GVF Output Data					
Upstream Depth		0.00	ft		
Profile Description					
Profile Headloss		0.00	ft		
Average End Depth Over Rise		0.00	%		
Normal Depth Over Rise		44.66	%		
Downstream Velocity		Infinity	ft/s		

Bentley Systems, Inc. Haestad Methods SolBienti GeninewMaster V8I (SELECTseries 1) [08.11.01.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

10/29/2015 8:47:22 AM

Worksheet for CPD17*-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.56	ft
Critical Depth	2.59	ft
Channel Slope	0.09300	ft/ft
Critical Slope	0.01949	ft/ft

Cross Section for CPD17*-CHANNEL-V-DITCH-6"-RIPRAP Project Description Manning Formula **Friction Method** Solve For Normal Depth Input Data 0.069 **Roughness Coefficient** 0.09300 ft/ft Channel Slope 2.27 ft Normal Depth 2.00 ft/ft (H:V) Left Side Slope 2.00 ft/ft (H:V) **Right Side Slope** 68.30 ft*/s Discharge **Cross Section Image**

V 1 ∖ H 1

Worksheet for CPD17*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data	7796		
Roughness Coefficient		0.069	
Channel Slope		0.09300	ft/ft
Left Side Slope		2.00	ft/ft (H:V)
Right Side Slope		2.00	ft/ft (H:V)
Discharge		68.30	ft³/s
Results			
Normal Depth		2.27	ft
Flow Area		10.30	ft²
Wetted Perimeter		10.15	ft
Hydraulic Radius		1.01	ft
Top Width		9.08	ft
Critical Depth		2.36	ft
Critical Slope		0.07623	ft/ft
Velocity		6.63	ft/s
Velocity Head		0.68	ft
Specific Energy		2.95	ft
Froude Number		1.10	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		2.27	ft
Critical Depth		2.36	ft
Channel Slope		0.09300	ft/ft
Critical Slope		0.07623	ft/ft

Bentley Systems, Inc. Haestad Methods SolBiintle@chimwMaster V8i (SELECTseries 1) [08.11.01.03] :09 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

10/29/2015 8:20:09 AM

Cross Section for CPD18*-CHANNEL-HALF-CMP

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data	90 97 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		
Roughness Coefficient		0.024	
Channel Slope		0.09100	ft/ft
Normal Depth		1.71	ft
Diameter		3.50	ft
Discharge		79.00	ft³/s
Cross Section Image		- Starle	* ************************************

Worksheet for CPD18*-CHANNEL-HALF-CMP

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data		19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -		
Roughness Coefficient		0.024		
Channel Slope		0.09100	ft/ft	
Diameter		3.50	ft	
Discharge		79.00	ft³/s	
Results				
Normal Depth		1.71	ft	
Flow Area		4.67	ft²	
Wetted Perimeter		5.42	ft	
Hydraulic Radius		0.86	ft	
Top Width		3.50	ft	
Critical Depth		2.78	ft	
Percent Full		48.9	%	
Critical Slope		0.02234	ft/ft	
Velocity		16.92	ft/s	
Velocity Head		4.45	ft	
Specific Energy		6.16	ft	
Froude Number		2.58		
Maximum Discharge		176.83	ft³/s	
Discharge Full		164.39	ft³/s	
Slope Full		0.02102	ft/ft	
Flow Type	SuperCritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Average End Depth Over Rise		0.00	%	
Normal Depth Over Rise		48.85	%	
Downstream Velocity		Infinity	ft/s	

 Bentley Systems, Inc. Haestad Methods SolBteatt@cPitanvMaster V8i (SELECTseries 1) [08.11.01.03]

 0:44 AM
 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for CPD18*-CHANNEL-HALF-CMP

GVF Output Data		
Upstream Velocity	Infinity	ft/s
Normal Depth	1.71	ft
Critical Depth	2.78	ft
Channel Slope	0.09100	ft/ft
Critical Slope	0.02234	ft/ft

Cross Section for CPD18*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description

Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data					
Roughness Coefficient		0.069			
Channel Slope		0.09100	ft/ft		
Normal Depth		2.41	ft		
Left Side Slope		2.00	ft/ft (H:V)		
Right Side Slope		2.00	ft/ft (H:V)		
Discharge		79.00	ft*/s		
	Perfective				100 June 100

Cross Section Image

V 1 ⊾ H 1

Worksheet for CPD18*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.069	
Channel Slope	0.09100	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H∶V)
Discharge	79.00	ft³/s
Results		
Normal Depth	2.41	ft
Flow Area	11.58	ft ³
Wetted Perimeter	10.76	ft
Hydraulic Radius	1.08	ft
Top Width	9.63	ft
Critical Depth	2.50	ft
Critical Slope	0.07477	ft/ft
Velocity	6.82	ft/s
Velocity Head	0.72	ft
Specific Energy	3.13	ft
Froude Number	1.10	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.41	ft
Critical Depth	2.50	ft
Channel Slope	0.09100	ft/ft
Critical Slope	0.07477	ft/ft

Bentley Systems, Inc. Haestad Methods SolBeatlegeniuwMaster V8i (SELECTseries 1) [08.11.01.03] 10/29/2015 8:21:15 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD19*-CHANNEL-HALF-CMP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.024	
Channel Slope	0.12600	ft/ft
Normal Depth	1.56	ft
Diameter	3.50	ft
Discharge	79.20	ft³/s
Cross Section Image		

Worksheet for CPD19*-CHANNEL-HALF-CMP

Project Description					
Friction Method	Manning Formula				
Solve For	Normal Depth				
Input Data	tese anna an an an an				
Roughness Coefficient		0.024			
Channel Slope	0.1	12600 ft/1	t		
Diameter		3.50 ft			
Discharge		79.20 ft³/	s		
Results	42			-milit.	
Normal Depth		1.56 ft			
Flow Area		4.15 ft²			
Wetted Perimeter		5.12 ft			
Hydraulic Radius		0.81 ft			
Top Width		3.48 ft			
Critical Depth		2.78 ft			
Percent Full		44.6 %			
Critical Slope	0.0	02240 ft/f	t		
Velocity		19.10 ft/s	5		
Velocity Head		5.67 ft			
Specific Energy		7.23 ft			
Froude Number		3.08			
Maximum Discharge	2	08.08 ft²/	s		
Discharge Full	1	93.43 ft ³ /	s		
Slope Full	0.0	02112 ft/f	t		
Flow Type	SuperCritical				
GVF Input Data					
Downstream Depth		0.00 ft			
Length		0.00 ft			
Number Of Steps		0			
GVF Output Data					
Upstream Depth		0.00 ft			
Profile Description					
Profile Headloss		0.00 ft			
Average End Depth Over Rise		0.00 %			
Normal Depth Over Rise		44.57 %			

 Bentley Systems, Inc. Haestad Methods SolBtiotle@cPituwMaster V8i (SELECTseries 1) [08.11.01.03]

 M
 27 Slemons Company Drive Sulte 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

10/29/2015 8:21:46 AM

Worksheet for CPD19*-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.56	ft
Critical Depth	2.78	ft
Channel Slope	0.12600	ft/ft
Critical Slope	0.02240	ft/ft

Cross Section for CPD19*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description			54 -						
Friction Method Solve For		Manning Fo	ormula pth						
Input Data	a. 2.	國建設				9.939	19. I	8898 BBS	
Roughness Coefficient Channel Slope Normal Depth Left Side Slope Right Side Slope Discharge				0.069 0.12600 2.27 2.00 2.00 79.20	ft/ft ft ft/ft (H:V) ft/ft (H:V) ft ³ /s				
Cross Section Image			/	/	2.27 ft	*			

V-1 A H-1

Worksheet for CPD19*-CHANNEL-V-DITCH-6"-RIPRAP

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.069		
Channel Slope		0.12600	ft/ft	
Left Side Slope		2.00	ft/ft (H:V)	
Right Side Slope		2.00	ft/ft (H:V)	
Discharge		79.20	ft³/s	
Results				1
Normal Depth		2.27	ft	
Flow Area		10.27	ft³	
Wetted Perimeter		10.13	ft	
Hydraulic Radius		1.01	ft	
Top Width		9.06	ft	
Critical Depth		2.50	ft	
Critical Slope		0.07474	ft/ft	
Velocity		7.71	ft/s	
Velocity Head		0.92	ft	
Specific Energy		3.19	ft	
Froude Number		1.28		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		2.27	ft	
Critical Depth		2.50	ft	
Channel Slope		0.12600	ft/ft	
Critical Slope		0.07474	ft/ft	

Bentley Systems, Inc. Haestad Methods SolBiotidgeFilter/Master V8I (SELECTseries 1) [08.11.01.03] 13 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Cross Section for CPD20-CHANNEL-HALF-CMP

Project Description	·常志》(現444年)		
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.024	
Channel Slope		0.06600	ft/ft
Normal Depth		0.65	ft
Diameter		1.50	ft
Discharge		5.70	ft³/s
Cross Section Image			

Worksheet for CPD20-CHANNEL-HALF-CMP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.024	
Channel Slope	0.06600	ft/ft
Diameter	1.50	ft
Discharge	5.70	ft ³ /s
Results		
Tresuits		
Normal Depth	0.65	ft
Flow Area	0.73	ft²
Wetted Perimeter	2.16	ft -
Hydraulic Radius	0.34	ft
Top Width	1.49	π.
Critical Depth	0.92	rt.
Percent Full	43.4	%
	0.02071	π/π 8/2
Velocity	7.76	ft/s
Velocity Head	0.93	π
	1.59	π
Froude Number	1.94	AN-
	15.72	π'/s
	14.62	π/s
	0.01004	τσπ
Flow Type	SuperCritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	43.37	%
Downstream Velocity	infinity	ft/s

Bentley Systems, Inc. Haestad Methods SolBiedd Genter Master V8I (SELECTseries 1) [08.11.01.03] 10/29/2015 8:22:42 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for CPD20-CHANNEL-HALF-CMP

GVF Output Data

Upstream Velocity	Infinity	
Normal Depth	0.65	ft
Critical Depth	0.92	ft
Channel Slope	0.06600	ft/ft
Critical Slope	0.02071	ft/ft

Cross Section for CPD20-CHANNEL-V-DITCH-6"-RIPRAP

Project Description		1
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		525) · · · · ·
Roughness Coefficient	0.069	
Channel Slope	0.06600	ft/ft
Normal Depth	0.95	ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	5.70	ft³/s
Cross Section Image	สุดที่สุด การการสังการการก	
~	V	
	/	

V 1 ∖ H 1

Worksheet for CPD20-CHANNEL-V-DITCH-6"-RIPRAP

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.069	
Channel Slope	0.06600	ft/ft
Left Side Slope	2.00	ft/ft (H:V)
Right Side Slope	2.00	ft/ft (H:V)
Discharge	5.70	ft³/s
Results		
Normal Depth	0.95	ft
Flow Area	1.82	ft²
Wetted Perimeter	4.26	ft
Hydraulic Radius	0.43	ft
Top Width	3.81	ft
Critical Depth	0.87	ft
Critical Slope	0.10615	ft/ft
Velocity	3.14	ft/s
Velocity Head	0.15	ft
Specific Energy	1.11	ft
Froude Number	0.80	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.95	ft
Critical Depth	0.87	ft
Channel Slope	0.06600	ft/ft
Critical Slope	0.10615	ft/ft

Bentley Systems, Inc. Haestad Methods SolBtead @eliterr/Master V8i (SELECTseries 1) [08.11.01.03] M 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

APPENDIX 7-D RETENTION BASIN CALCULATIONS

PICKLES BUTTE LANDFILL STORMWATER RETENTION ANALYSIS

Contributing Drainage Areas: Retention Basin(s):	BASIN A (CPA BASIN A	7*) - 25-YEAR, 24	4-HOUR STORM E\	/ENT			
VOLUME REQUIRED CALCULAT	IONS				[
	Area		'C' Coefficient	Precipitation	Retention Require		uired
Туре	(ft ²)	(Ac)	С	(Inches)	(ft ³)		(Ac-ft)
Landscaped	905,233	20.78	0.70	1.80	95,049		2.18
Total	905,233	20.78			95,049		2.18
RETENTION BASIN CALCULATION	ONS						
Elevation	Delta Depth	Surface Area		۱ ۱	/olume Prov	vided	
	(ft)	(ft ²)		(ft ³)	Σ (ft ³)	(Ac-ft)	Σ (Ac-ft)
2904.0	4.0	30,814		102,082	102,082	2.34	2.34
2900.0		20,571			102,082		2.34
			Provided		102,082		2.34
			Required		95,049		2.18
Basin HWE	Basin Depth		Balance		7,033		0.16
2903.72	3.72						
Contributing Drainage Areas: Retention Basin(s):	BASIN B (CPB BASIN B	1) - 25-YEAR, 24	HOUR STORM EV	ENT			
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT	BASIN B (CPB BASIN B IONS	1) - 25-YEAR, 24	HOUR STORM EV	ENT	Reter	ntion Reg	uired
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT	BASIN B (CPB BASIN B IONS (ft ²)	1) - 25-YEAR, 24 rea (Ac)	HOUR STORM EV	ENT Precipitation (Inches)	Reter (ft ³)	ntion Req	uired (Ac-ft)
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped	BASIN B (CPB BASIN B IONS (ft ²) 258,732	1) - 25-YEAR, 24- rea (Ac) 5.94	HOUR STORM EV 'C' Coefficient C 0.70	ENT Precipitation (Inches) 1.80	Reter (ft ³) 27,167	ntion Req	uired (Ac-ft) 0.62
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94	HOUR STORM EV 'C' Coefficient C 0.70	ENT Precipitation (Inches) 1.80	Reter (ft ³) 27,167 27,167	ntion Req	uired (Ac-ft) 0.62
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIO	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 DNS	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94	HOUR STORM EV 'C' Coefficient C 0.70	ENT Precipitation (Inches) 1.80	Reter (ft ³) 27,167 27,167	ntion Req	uired (Ac-ft) 0.62
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIC Elevation	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 0NS Delta Depth	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94 Surface Area	HOUR STORM EV 'C' Coefficient C 0.70	ENT Precipitation (Inches) 1.80	Reter (ft ³) 27,167 27,167 /olume Prov	ntion Req	uired (Ac-ft) 0.62
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIC Elevation	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 0NS Delta Depth (ft)	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94 5.94 Surface Area (ft ²)	HOUR STORM EV	ENT Precipitation (Inches) 1.80 (ft ³)	Reter (ft ³) 27,167 27,167 /olume Prov Σ (ft ³)	ntion Req vided (Ac-ft)	uired (Ac-ft) 0.62 0.62 Σ (Ac-ft)
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIC Elevation 2912.0	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 0NS Delta Depth (ft) 2.0	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94 5.94 Surface Area (ft ²) 21,119	HOUR STORM EV	ENT Precipitation (Inches) 1.80 (ft ³) 37,745	Reter (ft³) 27,167 27,167 27,167 Σ (ft³) 37,745	vided (Ac-ft) 0.87	uired (Ac-ft) 0.62 0.62 Σ (Ac-ft) 0.87
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIO Elevation 2912.0 2910.0	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 0NS Delta Depth (ft) 2.0	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94 Surface Area (ft ²) 21,119 16,712	HOUR STORM EV	ENT Precipitation (Inches) 1.80 (Inches) 1.80 (Inches) 37,745	Reter (ft³) 27,167 27,167 27,167 27,167 37,745 37,745	vided (Ac-ft) 0.87	uired (Ac-ft) 0.62 0.62 Σ (Ac-ft) 0.87 0.87
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIC Elevation 2912.0 2910.0	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 0NS Delta Depth (ft) 2.0	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94 5.94 5.94 (ft ²) 21,119 16,712	HOUR STORM EV 'C' Coefficient C 0.70 Provided	ENT Precipitation (Inches) 1.80 (ft ³) 37,745	Reter (ft³) 27,167 27,167 27,167 5,167 27,167 37,745 37,745 37,745	vided (Ac-ft) 0.87	uired (Ac-ft) 0.62 0.62 Σ (Ac-ft) 0.87 0.87 0.87
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIC Elevation 2912.0 2910.0	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 0NS Delta Depth (ft) 2.0	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94 5.94 5.94 (ft ²) 21,119 16,712	HOUR STORM EV 'C' Coefficient C 0.70 Provided Required	ENT Precipitation (Inches) 1.80 (ft ³) 37,745	Reter (ft³) 27,167 27,167 27,167 5 37,745 37,745 37,745 27,167	vided (Ac-ft) 0.87	uired (Ac-ft) 0.62 0.62 Σ (Ac-ft) 0.87 0.87 0.87 0.87 0.62
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIO Elevation 2912.0 2910.0 Basin HWE	BASIN B (CPB BASIN B IONS (ft ²) 258,732 258,732 258,732 DNS Delta Depth (ft) 2.0 Basin Depth	1) - 25-YEAR, 24 rea (Ac) 5.94 5.94 5.94 (ft ²) 21,119 16,712	HOUR STORM EV 'C' Coefficient C 0.70 Provided Required Balance	ENT Precipitation (Inches) 1.80 (ft ³) 37,745	Reter (ft³) 27,167 27,167 27,167 37,745 37,745 37,745 37,745 37,745 37,745 37,745 37,745 37,745	vided (Ac-ft) 0.87	uired (Ac-ft) 0.62 0.62 Σ (Ac-ft) 0.87 0.87 0.87 0.87 0.87 0.82 0.25

PICKLES BUTTE LANDFILL STORMWATER RETENTION ANALYSIS

Contributing Drainage Areas:	BASIN C (CPC	1) - 25-YEAR, 24	-HOUR STORM EV	ENT			
Notention Basin(s).	B/(GIIV C						
VOLUME REQUIRED CALCULAT	IONS			I			
	Area		'C' Coefficient	Precipitation	Retention Required		
Туре	(ft²)	(Ac)	С	(Inches)	(ft³)		(Ac-ft)
Landscaped	81,064	1.86	0.70	1.80	8,512		0.20
Total	81,064	1.86			8,512		0.20
RETENTION BASIN CALCULATION	ONS						
Elevation	Delta Depth	Surface Area		Volume Provided			
	(ft)	(ft ²)		(ft ³)	Σ (ft ³)	(Ac-ft)	Σ (Ac-ft)
2922.0	2.0	5,692		8,681	8,681	0.20	0.20
2920.0		3,117			8,681		0.20
			Provided		8,681		0.20
			Required		8,512		0.20
Basin HWE	Basin Depth		Balance		169		0.00
2921.96	1.96						
Contributing Drainage Areas: Retention Basin(s):	BASIN D (CPD BASIN D	21*) - 25-YEAR, 2	24-HOUR STORM E	EVENT			
Contributing Drainage Areas: Retention Basin(s):	BASIN D (CPD BASIN D	21*) - 25-YEAR, :	24-HOUR STORM E	EVENT			
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT	BASIN D (CPD BASIN D IONS	21*) - 25-YEAR, :	24-HOUR STORM E	EVENT			
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT	BASIN D (CPD BASIN D IONS	21*) - 25-YEAR, 1	24-HOUR STORM E	EVENT Precipitation	Reter	ntion Req	uired
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT	BASIN D (CPD BASIN D TONS (ft ²)	21*) - 25-YEAR, ; rea (Ac)	24-HOUR STORM E 'C' Coefficient C	EVENT Precipitation (Inches)	Reter (ft ³)	ntion Req	uired (Ac-ft)
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped	BASIN D (CPD BASIN D TONS (ft ²) 4,990,573	21*) - 25-YEAR, 1 rea (Ac) 114.57	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80	Reter (ft ³) 524,010	ntion Req	uired (Ac-ft) 12.03
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total	BASIN D (CPD BASIN D 10NS (ft ²) 4,990,573 4,990,573	21*) - 25-YEAR, 2 rea (Ac) 114.57 114.57	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80	Reter (ft ³) 524,010 524,010	ntion Req	uired (Ac-ft) 12.03
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total	BASIN D (CPD BASIN D TONS (ft ²) 4,990,573 4,990,573	21*) - 25-YEAR, 1 rea (Ac) 114.57	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80	Reter (ft ³) 524,010 524,010	ntion Req	uired (Ac-ft) 12.03
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total	BASIN D (CPD BASIN D TONS 4,990,573 4,990,573	21*) - 25-YEAR, 1 rea (Ac) 114.57 114.57	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80	Reter (ft ³) 524,010 524,010	ntion Req	uired (Ac-ft) 12.03 12.03
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIO Elevation	BASIN D (CPD BASIN D 10NS (ft ²) 4,990,573 4,990,573 0NS Delta Depth	21*) - 25-YEAR, 2 rea (Ac) 114.57 114.57 Surface Area	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80	Reter (ft ³) 524,010 524,010 Volume Prov	ntion Req	uired (Ac-ft) 12.03 12.03
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIO Elevation	BASIN D (CPD BASIN D TONS (ft ²) 4,990,573 4,990,573 DNS Delta Depth (ft)	21*) - 25-YEAR, rea (Ac) 114.57 114.57 Surface Area (ft ²)	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80	Reter (ft³) 524,010 524,010 524,010 Volume Prov Σ (ft³)	ntion Req vided (Ac-ft)	uired (Ac-ft) 12.03 12.03 Σ (Ac-ft)
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATION Elevation	BASIN D (CPD BASIN D TONS (ft ²) 4,990,573 4,990,573 DNS Delta Depth (ft) 16.0	21*) - 25-YEAR, : rea (Ac) 114.57 114.57 Surface Area (ft ²) 65,448	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80 (ft ³) 574,884	Reter (ft ³) 524,010 524,010 524,010 524,010 524,010 574,884	vided (Ac-ft) 13.20	uired (Ac-ft) 12.03 12.03 Σ (Ac-ft) 13.20
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATION Elevation 2690.0 2674.0	BASIN D (CPD BASIN D 10NS (ft ²) 4,990,573 4,990,573 0NS Delta Depth (ft) 16.0	21*) - 25-YEAR, 2 rea (Ac) 114.57 114.57 Surface Area (ft ²) 65,448 13,082	24-HOUR STORM E 'C' Coefficient C 0.70	Precipitation (Inches) 1.80 (ft ³) 574,884	Reter (ft³) 524,010 524,010 524,010 524,010 524,010 574,884 574,884	vided (Ac-ft) 13.20	uired (Ac-ft) 12.03 12.03 Σ (Ac-ft) 13.20 13.20
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATIO Elevation 2690.0 2674.0	BASIN D (CPD BASIN D 10NS 4,990,573 4,990,573 0NS Delta Depth (ft) 16.0	21*) - 25-YEAR, rea (Ac) 114.57 114.57 Surface Area (ft ²) 65,448 13,082	24-HOUR STORM E 'C' Coefficient C 0.70 Provided	Precipitation (Inches) 1.80 (ft ³) 574,884	Reter (ft ³) 524,010 524,010 524,010 574,81 574,884 574,884 574,884	vided (Ac-ft) 13.20	<u>uired</u> (Ac-ft) 12.03 12.03 Σ (Ac-ft) 13.20 13.20 13.20
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATION Elevation 2690.0 2674.0	BASIN D (CPD BASIN D TONS 4,990,573 4,990,573 0NS Delta Depth (ft) 16.0	21*) - 25-YEAR, : rea (Ac) 114.57 114.57 Surface Area (ft ²) 65,448 13,082	24-HOUR STORM E 'C' Coefficient C 0.70 Provided Required	Precipitation (Inches) 1.80 (ft ³) 574,884	Reter (ft³) 524,010 524,010 524,010 574,81 574,884 574,884 574,884 574,884 574,884 574,884	vided (Ac-ft) 13.20	uired (Ac-ft) 12.03 12.03 Σ (Ac-ft) 13.20 13.20 13.20 13.20 12.03
Contributing Drainage Areas: Retention Basin(s): VOLUME REQUIRED CALCULAT Type Landscaped Total RETENTION BASIN CALCULATION Elevation 2690.0 2674.0 Basin HWE	BASIN D (CPD BASIN D TONS 4,990,573 4,990,573 0NS Delta Depth (ft) 16.0 Basin Depth	21*) - 25-YEAR, : rea (Ac) 114.57 114.57 Surface Area (ft ²) 65,448 13,082	24-HOUR STORM E 'C' Coefficient C 0.70 Provided Required Balance	Precipitation (Inches) 1.80 (ft ³) 574,884	Reter (ft³) 524,010 524,010 524,010 574,81 574,884 574,884 574,884 574,884 574,884 574,884 574,884 574,884 574,884	vided (Ac-ft) 13.20	<u>uired</u> (Ac-ft) 12.03 12.03 Σ (Ac-ft) 13.20 13.20 13.20 13.20 12.03 1.17

3380 Americana Terrace Suite 201 Boise, Idaho 83706

tetratech.com