APPENDIX G: SEISMIC INVESTIGATION REPORT

Pickles Butte Sanitary Landfill 3D Seismic Survey Report

Nampa, Idaho

Project No. 114-571040-2022 February 21, 2022

PRESENTED TO

Mr. David Loper Canyon County Solid Waste Director 15500 Missouri Avenue Nampa, ID 83686

PRESENTED BY

Tetra Tech 350 Indiana Street, Suite 500 Golden, CO 80401

(303) 217-5700 tetratech.com

Prepared by:

Lincoln Steele Project Geophysicist February 21, 2022

Reviewed by:

Dan O'Connèll PhD Principal Geophysicist

February 21, 2022

DISCLAIMER

The subsurface conditions and recommendations presented in this document are based on conditions encountered at the specific geophysical survey locations at the time they were conducted. Due to the complexity and variability of natural earth and rock formations and materials, significant variations may occur between and around these locations or with time. Because these data represent a very small statistical sampling of subsurface conditions, it is possible that conditions may be encountered that are substantially different from those indicated. In these instances, modification and adjustment to the recommendations presented may be warranted.

TABLE OF CONTENTS

1.	INTR	RODUCTION	1
	1.1	Background	1
	1.2	Purpose	1
	1.3	Geologic Background of the Western Snake River Plane Fault System	1
2.	SEIS	MIC IMAGING	3
	2.1	Seismic Data Acquisition	3
	2.2	Seismic Data Processing	3
	2.3	Seismic Data and Interpretations	4
3.	CON	CLUSIONS AND RECOMMENDATIONS	6
4.	REF	ERENCES	7

FIGURES

Figure 1	Faults Manned Near the Project Area
Figure 1.	Faults Mapped Near the Froject Area
Figure 2.	PBSL3D Seismic Survey
Figure 3.	PBSL 3D Survey Area and Seismic Node Positions
Figure 4.	PBSL 3D Seismic Field Data Example
Figure 5.	PBSL 3D Seismic Source and Inline Profile Positions
Figure 6a.	Seismic Reflection Two-Way-Time Cross-Section along Western Inline 1033
Figure 6b.	Interpreted Seismic Reflection Two-Way-Time Cross-Section along Western Inline 1033
Figure 7a.	Seismic Reflection Two-Way-Time Cross-Section along Middle Inline 1040
Figure 7b.	Interpreted Seismic Reflection Two-Way-Time Cross-Section Along Middle Inline 1040
Figure 8a.	Seismic Reflection Two-Way-Time Cross-Section Along Eastern Inline 1053
Figure 8b.	Interpreted Seismic Reflection Two-Way-Time Cross-Section Along Eastern Inline 1053
Figure 9.	3D Perspective of Mapped Western Snake River Plain Fault Surfaces
Figure 10.	Examples of Normal Faulting and Splay Faulting Distributions
Figure 11.	3D Map Perspective (3x Vertical Exaggeration)
Figure 12.	Example of Flexure Leading to Fault Offsetting
Figure 13.	Field Example

1. INTRODUCTION

Acronyms		
Ft	Feet	
ka	Kiloannum (thousand years)	
mm	millimeters	
PBSL	Pickles Butte Sanitary Landfill	
QC	Quality Control	
USGS	United States Geologic Survey	
WSRP	Western Snake River Plain	

1.1 Background

The Pickles Butte Sanitary Landfill (PBSL) is an operational landfill site in southwestern Canyon County Idaho (**Figure 1**). The county is in the process of expanding the footprint of the landfill, primarily to the northwest of the current landfill site. The site is located within the Western Snake River Plain (WSRP) fault system and a portion of an undifferentiated Quaternary aged northeast-dipping WSRP normal fault is mapped within the project boundaries, extending northwest through the proposed expansion area (**Figure 1**). The mapped fault is labeled as a normal fault with an approximate slip rate of less than 0.2 mm/year. Proposed excavations within the fault areas are expected to extend up to 150 ft below ground surface, potentially intercepting this fault.

1.2 Purpose

This report presents results from an active-source 3D seismic survey conducted at the PBSL site in Nampa Idaho. Tetra Tech was contacted to support and provide technical insight for the ongoing expansion program at the PBSL site. Tetra Tech developed a technical approach and an expedited timeline for a seismic survey to help delineate a mapped fault at the site. The seismic survey was designed to image and delineate a suspected fault in support of the proposed expansion program at the PBSL (**Figure 1**). Seismic imaging over the suspected fault area was attained by using 3D seismic velocity tomography and reflection processing. Seismic reflection is a reliable method for imaging the faults when present and can help to orient the faults and subsurface structure as well. The 3D seismic tomography provides the information needed to accurately convert seismic reflection data in time to depth and elevation. The information gained from this survey was used to direct the final proposed boring of the larger geotechnical investigation at the site.

1.3 Geologic Background of the Western Snake River Plane Fault System

The fault segments from the Western Snake River Plain (WSRP) fault system were extracted from Personius (2003). The WRSP faults closest to the project are shown as red lines in **Figure 1**, herein referred to as USGS WSRP faults. From Personius (2003), "The Western Snake River Plain fault system consists of numerous northwest-striking, northeast- and southwest-dipping normal faults that offset older (Plio-Pleistocene) fluvial deposits (Glenns Ferry Formation, Tuana Gravels, Tenmile Gravel) associated with the Snake River, and isolated volcanic and sedimentary rocks of the Snake River Group, in southwestern Idaho. Some faults form asymmetric linear ridges as much as 30-m-high of Plio-Pleistocene deposits and some early Quaternary deposits and surfaces are tilted or downwarped, but most have subdued expressions on the floor of the Snake River Plain. No detailed studies on the age of faulted deposits have been published, but most fault traces are confined to older Quaternary deposits on the western Snake River Plain, so the faults are herein assigned a Quaternary age until further detailed studies are conducted." Measured fault dips are 55-88° NE from the subset of exposed USGS WSRP fault segments mapped by Wood and Anderson (1981).

The USGS WSRP faults are subdued and do not show evidence of activity within the past ~100 ka (Wood and Anderson, 1981). From Personius (2003), "Most faults in this zone have subdued expressions on the floor of the

Snake River Plain, and some are mapped in the subsurface and have little surface expression. Faults form asymmetric linear ridges as much as 30 m high of Plio-Pleistocene deposits, and some early Quaternary deposits and surfaces are tilted or down-warped (Wood and Anderson, 1981; Othberg and Stanford, 1992; Ostenaa, October 2, 1985). Faults in the Western Snake River Plain fault system offset older (Plio-Pleistocene) fluvial deposits (Glenns Ferry Formation, Tuana Gravels, Tenmile Gravel) associated with the Snake River, and isolated volcanic and sedimentary rocks of the Snake River Group (Wood and Anderson, 1981; Gilbert and others, 1983; Othberg and Stanford, 1992; Othberg, 1994). Othberg (1994) noted that fault movements are older than the sediments underlying the Whitney Terrace; Wood and Anderson (1981) used soil development to infer an age of more than 100 ka for these deposits." A caution is that inferred ages based on soil development of 100ka could really be as little as 20ka or as long as 500 ka). Consequently, it is prudent to map WSRP fault system structure that is mapped to extend within the project site (Personius, 2003).

In the project area the USGS WSRP fault segments approach the site from the northwest as a northeast dipping normal fault, making a right step to the south to another USGS NE-dipping WSRP fault segment, and then stepping southwest to a second SW dipping USGS WSRP fault segment (**Figure 2**). Consequently, within or close to the project site USGS WSRP fault deformation is expected to splay to accommodate the right step in the USGS WSRP fault system across the project site (**Figure 1**). Further there is another USGS WSRP fault segment mapped northeast of the project site (**Figure 2**) so the USGS NW-striking NE-dipping WSRP fault segment that approaches the project site from the northwest would be expected to also possibly split or step left (northeast) at some position close to or within the project site. If the USGS NW-striking NE-dipping WSRP fault segment (red line in **Figure 2**) is splaying out then in addition to fault structure complexity like splays, steps, and horsetails, this fault segment might become locally steep or even change dip direction along strike, structures typical near the ends of normal faults, and may partition slip between normal slip and strike slip deformation (Mandl, 1988; pgs. 24-44).

2. SEISMIC IMAGING

2.1 Seismic Data Acquisition

In December 2021 Vantage Geo LLC. with support from and under the direction of Tetra Tech deployed a 3D array of single component, wireless seismic nodes over an approximate 9-acre area at the PBSL site. The primary objective was to intercept the suspected fault trace with the geophone array and provide meaningful imagery of the fault (**Figure 3**). Seismic stations were positioned within the seismic array using a proprietary in-house method developed to produce surveys with high fold data while also minimizing source points and total number of receiver stations. A total of 285 GTI© single channel wireless nodes were deployed over the surveys area and installed into the ground surface. The installation of the GTI nodes below grade provides excellent geophone-ground coupling while also reducing acoustic noise thereby increasing seismic signal relative to noise. To further reduce noise at the site Tetra Tech timed the survey to coincide with a non-operational day at the landfill along with posting signage to temporarily restrict access to the site. Both measures helped to improve the signal against noise in the data, which was critical for imaging a weak fault trace in low-contrast unconsolidated geologic conditions (**Figure 4**).

Once installed, the GTI nodes run self-diagnostic routines to ensure high data quality and proper installation. The nodes also record GPS positions, instrument tolerances, and assigned station numbers for efficient data processing. Tetra Tech chose to utilize an IVI© Envirovibe2 (EV2) as the active source vehicle for the survey. The EV2 provides excellent signal and can provide custom sweep lengths and frequencies which help to overcome site and geologic conditions that may interfere with data quality. Based on the geologic conditions at the PBSL site, Tetra Tech chose a linear sweep table with a limited frequency range of 5-75Hz. The relatively low sweep frequencies allow energy to better penetrate the slow materials at the site, mainly the loose unconsolidated overburden and weathered bedrock profile. Pre-plot source positions were provided to the EV2 operator via a heads-up display in the cab of the EV2. The EV2 operator recorded 440 individual shot locations within and around the survey area (Figure 5). A portion of the proposed shot locations were inaccessible for the EV2 primarily due to steep terrain along the western half of the of the site. To ensure safe operation of the EV2 most of the western source points were confined to road tracks and relatively flat areas (Figure 5). The 440 EV2 shot points and 285 receiver stations provided 124,224 receiver traces for data processing.

Data were acquired over the course of two days following the installation and QC of the GTI nodes. The nodes were then picked up from the survey area and data were harvested from using the EV2 shot records as the data harvest template. The nodes record data continuously for up to 21 days and EV2 source files are used to re-create individual shot records from each node for processing. No data QC or health and safety issues were noted during the field work at PBSL.

2.2 Seismic Data Processing

To provide rapid data turnaround, Tetra Tech utilized the services of Agile Seismic LLC to provide 3D seismic velocity tomography and reflection processing. Seismic data were assigned geometry based on the measured survey parameters and imported into a GeoTomo[®] database to QC the raw shot gathers and the project geometry. A processing grid was established with a 3-meter nominal spacing between stations to calculate fold from the survey and assign inline numbering and crossline numbering. First arrival times were straightforward to pick and with the GeoTomo[®] 3D traveltime P-wave velocity tomography software to estimate 3D P-wave velocities. The 3D P-wave velocity model provided refraction statics and the information required to convert seismic reflection two-way time images to depth and elevation. 3D P-wave are critical for seismic reflection migration processing since it is not possible to derive shallow (near-surface) velocities from reflection analyses and provide an initial 3D velocity model for seismic reflection processing. Seismic reflection velocity analyses updated the 3D velocity model to calculate residual statics and create the initial stack to produce 3D reflection-two-way-time volume. Several iterations of velocity analyses and denoising were used to improve imaging of stratigraphic horizons before final time migration were completed. Post Stack Time Migration (PoSTM) was selected to produce the final reflection results based on testing by Agile. The PoSTM data were produced using true amplitude processing to improve imaging of structural

truncations produced by faulting. All seismic processing is performed using NAD83 UTM Zone 11 positions in meters and elevations in meters to ensure a processing is accurate; state plane coordinates use a foot (U.S. survey foot) which has a different length than the standard international foot used for vertical coordinates. Details of seismic processing steps are provided in **Appendix A**.

Overall, the data acquired at PBSL was relatively clean data with little environmental noise but strong surface waves (**Figure 4**). Denoising was used to attenuate the surface waves and provide clean data with good first breaks picks for the 3D P-wave travel time velocity tomography. Initial interpretations using early processing of the seismic data and final PoSTM interpretations was used to select a boring location to intercept faulting at similar depths.

2.3 Seismic Data and Interpretations

The seismic reflection data are relatively low frequency in spite of the 5-75 Hz vibroseis sweep (**Appendix B**). The combination of a deep water table, thick surficial dry sediments, and weathered rock strongly attenuate high frequency reflections. However, the broadband low-frequency data provide good signal-to-noise and good resolution of first order fault structure as discussed below.

Two tip splay fault structures are identified and mapped in 3D using seismic inlines (SSW-NNE cross sections) spanning the range of inline 1033 (northwest extent of good continuous 3D imaging) to inline 1053 (southeast extent of good continuous 3D imaging). Uninterpreted seismic reflection two-way-time cross sections are presented first in **Figures 6A-8A** paired with the same data with fault picks in **Figures 6B-8B**. The positions of inlines 1033, 1040, and 1053 in **Figures 6-8** are provided in **Figure 5**. The signed energy reflection attribute is used in **Figures 6-8** because it provides the sharpest delineation of fault structure (**Figures 6B-8B**). The central horst between the two faults (**Figure 9**) is likely less deformed, resulting in high amplitudes within the horst relative to the hanging wall (downthrown) sides of the two faults to the south and north (**Figures 6B-8B**). Conventional true amplitude color wiggle travel reflection cross sections with fault picks are provided from inline 1033 to inline 1053 in **Appendix B** for reference.

Both mapped 3D fault segments correspond to tip splay faults since they have substantially different strikes than the N34°W strike of northwest NE-dipping WSRP fault segment postulated to run through the project site (**Figure 5**). This is best illustrated in 3D perspective (**Figure 9**) with comparison to observed normal-faulting termination structures in **Figure 10**. Perrin et al (2016) provide field scale examples near the termini of normal faulting tip splay faults that develop and extend beyond main normal fault traces (**Figure 10**). We interpreted the southwest dipping fault (medium green fault in **Figure 9**) that strikes N47°W is a tip splay fault since it changes strike 15° and changes dip direction to the southwest whereas the USGS NW-striking WSRP fault is mapped as dipping northeast. The second, north-northeast dipping tip splay fault (blue fault in **Figure 9**) strikes N69°W which cuts off the main USGS NW-striking WSRP fault further west than the SW-dipping tip splay fault (**Figure 11**).

Preliminary borehole data are used from Boring B2021-5, abbreviated as borehole B5 in this report. Borehole B5 provided preliminary geotechnical and geologic data at depth within the extent of the 3D seismic volume (Figure 9). The 3D mapping of the two tip splay faults in Figures 6-9 and 11 demonstrates that main USGS NW-striking WSRP fault deformation terminates northwest of borehole B5 and splinters into a series of tip splay faults within the project site. These tip splay faults are typical of normal-fault termination structures observed for normal faults (Figure 10). Thus, the mostly likely scenario is that primary USGS NW-striking WSRP normal-faulting deformation is unlikely to occur within the project site. Since the USGS WSRP normal faults are not observed to display ~100 ka deposits, the likelihood of primary WSRP normal fault deformation occurring within the project site likely has a very small probability. It is possible that main USGS NW-striking WSRP normal fault deformation transfers to a southwest-dipping right-stepping splay fault segment west of the project site (cyan fault in Figure 11). This would produce uplift between the main USGS NW-striking WSRP normal fault and the right-step to the SW-dipping fault segment producing a topographic fault-parallel horst ridge (outlined in yellow in Figure 11). It is clear from the 3D fault mapping that primary USGS NW-striking WSRP faulting is decreasing west of the project site as faulting splinters to splay faults (Figure 11), typical of the terminus regions of normal faults (Figure 10). Where main USGS NW-striking WSRP faulting ends is constrained to be no further southeast than the west extent of the NE-dipping tip splay fault (blue fault in Figure 11).

The shallow limit of faulting of the tip splay faults within the project site is not directly constrained by the 3D fault mapping in **Figure 9** because fault structure does not produce consistently discernable seismic signatures above the water table. However, combining the seismic 3D tip splay fault mapping with observations from borehole B5 provides a constraint on the potential shallower manifestations of tip splay fault deformation along the SW-dipping tip splay fault. Three possible cases to considers for the upward progression of the tip splay faults from the mapped position in the 3D seismic volume are:

- 1. Fault deformation continues upward at a SW dip of 71° through borehole B5 as a narrow fault plane
- 2. Fault deformation becomes complex in the 66-86-foot depth interval of clay (shale) between sands (sandstones) in borehole B5 due to flexure and complex faulting within the clay (shale) interval like deformation in this case from Mandl (1988) (see Figure 12).
- 3. Fault deformation does not extend above the elevation of the water table and does not intercept borehole B5, but instead produces flexure in strata located above the water table.

Case 2 seems most likely since it explains the observed broken pieces of consolidated clay observed in borehole B5 and general lack of deformation in the overlying and deeper sands, e.g. the WSRP southwest-dipping tip splay fault intersects borehole B5 near the base of the silty clay at a depth of 81 feet in **Figure 9** producing complex deformation and low blow counts within the 66-86-foot deep clay interval in a pattern similar to the shale interval in **Figure 12**. Based on age constraints on WSRP faulting, deformation observed within the 66-86-foot depth interval in borehole B5 may be older than ~100 ka (Personius, 2003).

It may seem unrealistic to consider that a right-stepping splay normal fault could develop with a southwest dip on the southwest side of the main USGS NW-striking NE-dipping WSRP normal fault, but this has been observed at other sites. For instance, Marchal et al. (2003) provide marine seismic reflection data with exactly this style of normal faulting with a southwest-dipping spay fault developing on the southwest side of a northeast-dipping primary normal fault (**Figure 13**). The important point is that primary normal-faulting deformation from the main NW WSRP fault is clearly decreasing toward its terminus no further southeast than the west side of the northeast-dipping (blue) tip splay fault in **Figure 11**, although primary faulting may already be decreasing prior to entering the far western side of the project site with fault slip partitioning to the southwest dipping right stepping splay fault further west (cyan fault in **Figure 11**).

The 3D seismic fault mapping clearly shows there is no single continuous NW-SE northeast-dipping normal fault extending through the entire 3D seismic volume extent (**Figure 11**). There may be additional unmapped limited extent (lengths < 200 feet) fault splays or relay faults within or outside of the 3D seismic volume extent shown in **Figure 11**. Distributed small stepover and relay faults commonly occur between large fault stepovers, like the less than one-mile right step from the northwest USGS NE-dipping WSRP fault (red fault in **Figure 1**) to the southwest USGS NE-dipping WSRP fault (purple fault in **Figure 1**) (Marchal et al., 2003; Perrin et al., 2016). The primary conclusion of these investigations is that any primary normal faulting deformation on the USGS northwest-striking NE-dipping WSRP normal fault (red line in **Figure 2**) will be confined to the northwest 800 feet of the fault's extension within the project site boundary. Any slip on the USGS northwest-striking NE-dipping WSRP normal fault (red line in **Figure 2**) will be confined to the northwest 800 feet of the fault's extension within the project site since this investigation shows that the primary fault terminates before reaching the area near borehole B5 in the project site (**Figure 11**).

3. CONCLUSIONS AND RECOMMENDATIONS

Seismic reflection results from the Pickle Butte 3D survey revise the location and structure of the USGS mapped NW-striking NE-dipping WSRP normal fault across the project site (**Figure 11**). The new 3D imaging of fault structure (**Figure 9**) demonstrates that faulting along the USGS NW-striking NE-dipping WSRP normal fault is tapering to zero west of borehole B5 and that residual fault deformation is distributed amongst a network of tip splay faults across the project site (**Figure 11**). Thus, primary normal fault slip is unlikely east of the west edges of the tip splay faults mapped in **Figures 9 and 11**. Instead, any fault slip associated with earthquakes along the USGS mapped NW-striking NE-dipping WSRP normal fault will likely partition into attenuated fault slip among the splay faults within the project site. There may be additional limited extent (strike lengths < 200 feet) fault splays and relay faults commonly occur between large fault stepovers, like the less than one-mile right step from the northwest NE-dipping WSRP fault (red fault in **Figure 1**) to the southwest NE-dipping WSRP fault (purple fault in **Figure 1**) (Marchal et al., 2003; Perrin et al., 2016).

Typically, in highly weathered rock or in poorly consolidated sediments, fault slip transitions to distributed deformation or bedding flexure prior to reaching the ground surface. Tip splay faulting may decrease with decreasing depth above the water table (**Figure 9**) and transition to flexure or distributed deformation (**Figure 12**). This is the most likely scenario for the PBSL project site. The projected intersection of the SW-dipping tip splay fault at a depth of 81 feet in borehole B5 (**Figure 9**) near the base of a zone of distributed broken clay deformation, suggests the fault has produced distributed deformation in the 66-86-foot depth interval of borehole B5. Since the age of this depth interval in borehole B5 is probably much greater than the ~100 ka overlying unfaulted geologic strata used by Personius (2003) to constrain the most recent age of active faulting along the WSRP normal faults, this possible fault deformation observed in borehole B5 in the 66-86-foot depth interval is likely older than 100 ka.

The USGS NW-striking NE-dipping WSRP normal fault that is mapped as extending into the project site from the northwest does not appear to displace ~100ka age sedimentary units (Personius, 2003). From a probabilistic perspective there seems to be little possibility of significant shallow (< 200 feet) faulting within the project site southeast of the west edges of the mapped tip splay faults in **Figure 11** (negligible nonzero fault slip for annual exceedance probabilities greater than 0.01%). To best characterize the potential movement and absolute location of faulting would require geologic mapping during excavation of the future landfill cell. This area of the proposed landfill expansion would be constructed in >50 years in the future. When the area is excavated for cover material in the future before waste is placed in this area it is recommended that geologic mapping of the fault is conducted, with particular attention to identifying narrow fault zones with evidence of recent activity and areas of potential distributed deformation. Careful sampling can yield materials suitable to date the most recent age of fault activity to determine if any detected fault activity is recent (unlikely) or > 100 ka in age (most likely).

4. **REFERENCES**

- Breckenridge, R.M., Lewis, R.S., Adema, G.W., and Weisz, D.W., 2003, Miocene and younger faults in Idaho: Idaho Geological Survey Map 8, 1 sheet, scale 1:1,000,000.
- Dahlen, F.A., Hung, S.-H. & Nolet, G., 2000, Frechet kernels for finite-frequency traveltimes—I. Theory, Geophys. J. Int., 141, 157–174.
- Gilbert, J.D., Piety, L., and LaForge, R., 1983, Seismotectonic study for Black Canyon Dam, Boise project, Idaho: U.S. Bureau of Reclamation Seismotectonic Report 83-7, 73 p., 8 pl.
- Mandl, G., 1988, Mechanics of Tectonic Faulting, Models and Basic Concepts, Elsevier, Amsterdam, 407 pp.
- Marchal, D., M. Guiraud, and T. Rives, 2003, Geometric and morphologic evolution of normal fault planes and traces from 2D to 4D data, Journal of Structural Geology, 25, 135-158.
- Ostenaa, D., 1985, Memorandum to Chief, Division of Dam and Waterway Design, U.S. Bureau of Reclamation, Seismotectonic considerations for Modification Decision Analysis-Deer Flat Dams-Boise Project, Idaho, dated October 2, 1985, p. 10.
- Othberg, K.L., 1994, Geology and geomorphology of the Boise Valley and adjoining areas, western Snake River Plain, Idaho: Idaho Geological Survey Bulletin 29, 54 p.
- Othberg, K.L., and Stanford, L.R., 1992, Geologic map of the Boise Valley and adjoining areas, western Snake River Plain, Idaho: Idaho Geological Survey Geologic Map Series, scale 1:100,000.
- Perrin, C., I. Manighetti, and Y. Gaudemer, 2016, Off-fault tip splay networks: A genetic and generic property of faults indicative of their long-term propagation, Comptes Rendus Geoscience, 348, 52-60.
- Personius, S.F., compiler, 2003, Fault number 635, Western Snake River Plain fault system, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults.
- Savage, C.N., 1958, Geology and mineral resources of Ada and Canyon Counties: Idaho Bureau of Mines and Geology County Report No. 3, 94 p., 2 pls., scale 1:125,000.
- Wood, S.H., and Anderson, J.E., 1981, Chapter 2-Geology, in Mitchell, J.C., ed., Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho: Idaho Department of Water Resources Water Information Bulletin No. 30, Geothermal Investigations in Idaho, Part 11, p. 9-31.

FIGURES

DATE 2/16/2022

Note: Illustration from Mandl, 1988 (pg. 45)

Appendix A

Seismic Processing Agile Seismic LLC

Pickles Butte 3D Seismic Survey Report Pickles Butte, Idaho Project No. 114-571040-2022

Tetra Tech 350 Indiana Street, Suite 500 Golden, CO 80401

(303) 217-5700 tetratech.com

Pickles Butte

Seismic Processing

Final Report

January 16th 2022

Agile Seismic LLC

Processing Steps

• Pickles Butte seismic processing are shown below:

D1_IMPORT

D2_GEOMETRY

- 64_NO_REFRACTION_STATICS
- 65_DENOISE
- 6_SCAC_1
- DECON
- 68_SCAC_2
- D9_RESIDUAL_STATICS_1
- Description 10_Q-COMPENSATION
- E 11_FINAL_PROCESSING
- 12_PoSTM
- > 13_PSTM

Data Import

- Seismic source was vibroseis
- Receivers were GTI nodes
- Pilot sweep frequency range is 5-75 hz.
- Seismic data was acquired at 2 ms and resampled to 4 ms.
- Total number of shots is 440
- Total number of receivers is 285
- Total number of traces is 125224
- All data had coordinates and elevations for sources and receivers in the headers.
- Vibroseis data was mostly clean with strong ground-roll and occasional noise from water pumps.

Geometry

- Seismic data already had source and receiver coordinates and elevations in the headers.
- Processing grid was created with the following parameters:
 - Inline range 1001-1061
 - Crossline range 3001-3125
 - Inline and crossline spacing was set to 3 m
 - Fixed datum 850 m and replacement velocity 1500 m/sec
- Geometry was built using coordinates and elevations in the headers.
- Geometry brute stack was shown for select inlines only since good fold was very narrow in xline direction.
- Following processing was done for Geometry brute stack:
 - Sparse velocity analysis
 - AGC
 - Spiking Decon
 - Stack
 - FXYDecon 5-75 Hz
 - Low Cut Filter 12-20-- Hz

Processing Grid

W Use a processing grid Mode: Inline Spacing: 10 Crossline Spacing: 10 Crossline Spacing: 10 Crossline Spacing: 10 Crossline Spacing: 101 XUNE Origin: 101 XUNE (jool) 101 XUNE (jool) 101 101 101 XUNE (jool) 101 101 <	Coordin	ate Transfori	mation—									-			
Mode: origin.angle, and spacing • Inline Spacing: 3.0 Crossline Spacing: 3.0 Angle (degrees): 78.0 Vorigin (easting): 52302.0 Y Origin (northing): 4816155.0 ILINE Origin: 3001 Yudate from Matrix Mode Update from Three Points Grid Limits ILINE: ILINE: 1001 Yudate gridding parameters 1 utomatically estimate gridding parameters utoma	Use	a processin	g grid												
Inline Spacing: 3.0 Angle (degrees): 78.0 Crossline Spacing: 3.0 Angle (degrees): 78.0 Vorigin (easting): 523020.0 V Origin (northing): 4816155.0 ILINE Origin: 300.1 Update from Matrix Mode Update from Three Points Grid Units Intel Comparity RIST LAST ILINE: 100.1 100.1 1061 110.1	Mode:	origin, angl	e, and spa	acing 🔻								-			
Angle (degrees): 78.0 Left Handed Right Handed X Origin (easting): 523020.0 Y Origin (northing): 4816155.0 LLNE Origin: 1001 XLINE Origin: 3001 Update from Matrix Mode Update from Three Points Grid Limits FIRST LAST INCREMENT ILLNE: 1001 1 1061 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Inline 9	Spacing:	3.0				Cro	ssline Spacing	: 3.0			120			
x Origin (easting): 523020.0 Y Origin (northing): 4816155.0 ILINE Origin: 101 XLINE Origin: 3001 Update from Matrix Mode Update from Three Points Grid Limits HIST LAST INCREMENT ILINE: 3001 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Angle	(degrees):	78.0				•	Left Handed	🔿 Righ	t Handed		1,816,4			
ILINE Origin: 1001 Yudate from Matrix Mode Update from Three Points Grid Limits IRST INCREMENT ILINE 001 1001 1001 1001 1001 1001 1001 1001 101 <td>X Origi</td> <td>n (easting):</td> <td>523020</td> <td>.0</td> <td></td> <td></td> <td>Y O</td> <td>rigin (northing</td> <td>): 481</td> <td>6155.0</td> <td></td> <td></td> <td></td> <td></td> <td></td>	X Origi	n (easting):	523020	.0			Y O	rigin (northing): 481	6155.0					
Update from Matrix Mode Update from Three Points Grid Limits FIRST LAST Increment ULNE: 1001 1061 1 add midpoints from a database or dataset utomatically estimate multi-line gridding parameters mouse Editing (crossplot in pick mouse mode) Men pivot is set, mouse: mouse Editing (crossplot in pick mouse mode) Men pivot is set, mouse: mouse is ext, mouse: Trates and resizes when pivot is set, mouse: Text set, mouse: Trates and resizes	ILINE C	Drigin: 100	1	XLINE Origin:	300	1						-			
Grid Limits FIRST LAST INCREMENT ILINE: 1001 I 1 KUNE: 3001 I 1 I 1 I 1 I 1 I 1 I 1 I 1	Upda	ite from Mat	rix Mode	Update from '	Three	Points						-			
FIRST LAST ID01 ILINE: 1001 1001 11 11 </td <td>Grid Lin</td> <td>nits</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>316,35</td> <td></td> <td></td> <td></td>	Grid Lin	nits										316,35			
ILINE: 1001 XLINE: 3001 3125 1 xuine: 3001 3125 1 yuinationality estimate gridding parameters wine: wine: wine: wine: yuinationality estimate multi-line gridding parameter wine: wine: wine: wine: yuinationality estimate multi-line gridding parameter wine: wine: wine: wine: wine: yuination: wine: yuination: wine: yuination: wine:		FIRST				LAST				INCREMENT		4			
XLINE: 3001 3125 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ILINE:	1001			-	1061			-	1	* *				,
oead midpoints from a database or dataset uutomatically estimate gridding parameters wutomatically estimate multi-line gridding parameter mport multi-line geometry from csv file Mune 30 Mune 31 Multiparameter be min/max MB1 on an edge changes the min/max MB1 in the interior translates SHIFT +MB1 sets the pivot point M22 delete the	XLINE:	3001			•	3125			*	1	*	MPT_Y			хi
utomatically estimate gridding parameters mport multi-line geometry from csv file Mouse Editing (crossplot in pick mouse mode) MB1 on an edge changes the min/max MB1 on the interior translates SHIFT+MB1 sets the pivot point SHIFT+MB2 pans When pivot is set, mouse: rotates and resizes	oad mid	points from	a databas	se or dataset								1 50			зdir
mport multi-line geometry from csv file xline xline 30 xline 30 Mouse Editing (crossplot in pick mouse mode) a MB1 on an edge changes the min/max mouse Editing (crossplot in pick mouse mode) MB1 in the interior translates a SHIFT +MB1 sets the pivot point a MB2 delete the pivot point c When pivot is set, mouse: rotates and resizes •	Automati Automati	cally estima cally estima	<u>te griddir</u> te multi-l	ig parameters ine gridding par	ramet	er						,816,2			xline
Mouse Editing (crossplot in pick mouse mode) MB1 on an edge changes the min/max MB1 on the interior translates SHIFT+MB1 sets the pivot point MB2 delete the pivot point CTRL+MB2 pans When pivot is set, mouse: rotates and resizes	<u>mport m</u>	ulti-line geo	<u>metry fro</u>	<u>m csv file</u>								4			xdine
Mouse Editing (crossplot in pick mouse mode) MBI on an edge changes the min/max MBI in the interior translates SHIFT+MB1 sets the pivot point MB2 delete the pivot point MB2 delete the pivot point CTRL+MB2 pans When pivot is set, mouse: rotates and resizes												-			^{xdine} 3
Mouse Editing (crossplot in pick mouse mode) MBL on an edge changes the min/max MB1 in the interior translates SHIFT +MB1 sets the pivot point MB2 delete the pivot point CTRL+MB2 pans When pivot is set, mouse: rotates and resizes WHY X 522,900 522,950 523.												-			^{xline} зо
Mouse Editing (crossplot in pick mouse mode) MB1 on an edge changes the min/max MB1 in the interior translates SHIFT+MB1 sets the pivot point MB2 delete the pivot point CTRL+MB2 pans When pivot is set, mouse: rotates and resizes WMPT X 522,900 522,950 523.												5,150			
Mouse Editing (crossplot in pick mouse mode) MBI on an edge changes the min/max MBI in the interior translates SHIFT+MB1 sets the pivot point MB2 delete the pivot point CTRL+MB2 pans When pivot is set, mouse: rotates and resizes ▼												4,81(
MB1 on an edge changes the min/max MB1 in the interior translates SHIFT+MB1 sets the pivot point MB2 delete the pivot point CTRL+MB2 pans When pivot is set, mouse: rotates and resizes	Mouse E	diting (cross	plot in pic	k mouse mode)										
CTRL+MB2 pans When pivot is set, mouse: rotates and resizes ▼ MPT x 522,900 522,950 523.	MB1 on a MB1 in t SHIFT+N MB2 dela	an edge cha he interior tr 4B1 sets the ete the pivot	nges the i anslates pivot poi t point	min/max nt								-			
When pivot is set, mouse: rotates and resizes MPT X 522,900 522,950 523.	CTRL+M	IB2 pans	_												
	When pi	vot is set, m	ouse: ro	otates and resiz	es 🔻							MPT X	522,900	522.950	523 (

Geometry: Sources

Geometry: Receivers

Geometry: Fold

Geometry: Surface Elevation

Geometry: Floating Datum Elevation

Geometry: Brute Stack

Velocity Analysis

Geometry: Velocity Analysis

Geometry: Brute Stack

Inlines

Refraction Tomography

- Refraction Tomography was used to produce near surface velocity as well as refraction statics.
- Refraction statics were not used and instead statics were handled in residual Statics processing.
- Refraction tomography velocity was used in all stacks and for migration since it is not possible to derive very shallow velocity from reflection data.

Inlines

Inlines

Denoise

- This data is clean as far as burst/environmental noise is concerned.
- Surface waves are strong.
- Main goal of denoising was to attenuate surface noise.

Denoise: Stack

Inlines

XLINE	3,020 3,040 3,060 3,080 3,100	Navigate
	5_denoise_geotomo_vel_brute_stack_ta_decon_fxydecon_lcfilter.seis	TIME : XLINE
		ILINE 1030
200		Skip 1
		Repeat: None 🔹
0	State of the second	C X Flipped Y Flipped
40		Scaling
IIME		● Percentile ○ Min/max
0		Percentile 95.0 Recent
1 60		Gain 1.0
-		● Panel ○ Trace ○ TVGain
800	A STORAGE STORAG	Invert Polarity
		Display
		● Color/grayscale ○ Wiggle
-	and the second	🗹 Smooth 🗌 Colorbar

XLINE	3,020	3,040	3,060	3,080	3,100	Navigate
5	_denoise_geoto	mo_vel_brut	e_stack_ta_o	decon_fxyde	con_lcfilter.sei	TIME : XLINE
÷ -	Service of the servic	2.62	-	200	1.000	
	C	100	1.0	- 61	AN 6.	ILINE 1035
200	Sec. all				1. S. A.	Skip 1
-		18.0				Repeat: None 🔻
0	100	1000	8426		Sec. 2	🗌 X Flipped 🗌 Y Flipped
40	100 M	diam'r		11 - A	1.1	Scaling
- IME	1.150	10.00		14.20	43.5	● Percentile ◯ Min/max
- 1	20				114	Percentile 95.0
99			10		223	Gain 1.0
-	1.1.1	1000	11.		chie a	● Panel ◯ Trace ◯ TVGain
800	Rep (1)	1	1.	6.00	11445	Invert Polarity
-	1990 (M	30.53	1000	600	1000	Display
1	343 m	A marine	1.00	the last	120.00	● Color/grayscale ○ Wiggle
-	2.841	326	C. P. C. M	1000	Sec. 1.	Smooth 🗌 Colorbar

XLINE	3,020	3,040	3,060	3,080	3,100	Navigate
-	5_denoise_geoto	mo_vel_brut	e_stack_ta_	decon_fxyd	econ_lcfilter.se	HIME : XLINE
k -	Sec. 19.	1.10	6000	Sector A	- 23	
	C-MARINE -	Sec.	1 24		of the	ILINE 1040
200	10000		2	200	10.00	Skip 1
	200.00	1000		100	100	Banasti Nana
-	1000	22.03	342	10.25	73.E	Repeat:
0	20.455	3.00	2.94	100		X Flipped 🗌 Y Flipped
40	CONTRACT,	20.00	c:06	200	0.00	Scaling
₩ -	10000	2.2	991	1125	100	💿 Percentile 🔵 Min/max
F -			100	S	202	Percentile 95.0 Recent
600	10000		1200			
-	Sec. and	10.10	240	53.52	·	Gain 1.0
	100		100	362	110	● Panel ◯ Trace ◯ TVGain
8	S	0025	110	12.2	6.00	Invert Polarity
- 00	Sec. and	10 A E	2.2.2	11.00	1.24	Display
-	and the second	1.1.1.1	SUCE	6.950	42320	
	10000000	1. Jost	all the	1200	199.430	Color/grayscale O Wiggle
	Service and	A. 1000	6 3000	A Station	Contraction of	Smooth 🗌 Colorbar

Surface Consistent (SC) Deconvolution

- Surface Consistent (SC) Deconvolution was used to compress the seismic wavelet and broaden frequency band of the data.
- SC Decon parameters used were:
- Gap: 0 ms (Spiking Decon)
- Operator Length: 180 ms

Surface Consistent (SC) Deconvolution: Stack

Inlines

SC Decon: Stack - IL 1030

XLINE	3,020	3,040	3,060	3,080	3,100	Navigate
	15_9	scdecon_geot	omo_vel_st	ack_ta_fxyde	con_lcfilter.sei	
-	Section.	ALC: NO	1000 Late	-	10	TIME : XLINE
	1.1.1	and the second second	CANT	100	100	11 INE 1020
		1000	-	and the later	1000	1030
8_	And in the lot	a second		100	1000	Skin 1
~	0.000	1999 B	1	1000	and the second second	
-	1.1.1	MARCHA	3.500	Carlo States	1257	Repeat: None 👻
- 1	A.4. 4404	1000	62 C - 1	1 200	1000	
	A	C200-0	PAC 1	Sec. 151	1000	🗌 X Flipped 🗌 Y Flipped
400	1.	1040	100.00	8. APR 11	1000	
-	500 M (Sec.)	ALC: NO.	1000	ಮಿಂಗಳ	10.00	Scaling
₩ -	Contraction of the	22.12	$c \sim c$	نانا الحث		💿 Percentile 🔘 Min/max
F -	Sector Sector	970 G.	86.65	22.023	1.10.0	
0	123.077.00	8 a 675	253.05	51.57	A VERY	Percentile 95.0 Recenti
60	COLUMN AND	COARC	Y 544	10000	200 C	
	0007 miles	COR. THE	2020	ST 2074	660 M C	
	A ANY A STATE	$m \sim m$	20.2	240204		Panel Trace Truce Truce
	100000	1204.05	- C. C.	10.361		Parler O hace O hodani
8_	00000	100.000	900 A.	and some of	1000	🗌 Invert Polarity
- ⁰⁰	Decicities and	6.00000	1000	1000	200 C	Display
-	1000000	100000	Plane.	A-4.00.04	6.00 m	Display
-	10000044	20 million	100.50	12400	h0524	● Color/grayscale ○ Wiggle
-	1000000	1000	100.00	100.000	0.000	Smooth Colorbar
_	and the second sec	APR DO L	10 L T 10 L 1	10 M 10 M 10	100	

SC Decon: Stack - IL 1035

SC Decon: Stack - IL 1040

XLINE	3,020	3,040	3,060	3,080	3,100	Navigate
	15_s	cdecon_geot	tomo_vel_st	ack_ta_fxyd	econ_lcfilter.se	
- 2	10.00	1000	100	12-12-	1000	
- 2	-5,8 P	1.10	21-11-1	10 A.	1. A. A.	ILINE 1040
0	10.0	6-24 H	10.00	100	1000	
50	3.000		1.00	-	200	Skip 1
- 12	223-2	10000	10.00	200 A	100	Repeat: None 🗸
- 10	Wat St.	19 Mar 2	942	2000	10.00	
0	100	26 M 1	1.30	20.00	1000	X Flipped Y Flipped
40	100	C. See	6900	dis	1367.246	Scaling
¥ -	A 44.	1000	224	2.5%	1415.2	Percentile Min/max
F -	1000-0	50 Pr 1 3	a 196	22.52	120.5	
8	1.26.6	0.000	62.5	8-11 C	0.00	Percentile 95.0 Recenti
9	1000	6924	67566	1.100	40.00	Gain 1.0
- 20	-	2.0464	998 Z	10.00	A Come	
- 10	2000	in or in	9,5548		were a	● Panel ○ Trace ○ TVGain
8_	1000	1000	80 m	\$12.289		Invert Polarity
∞ _	Sec. 1.	10.0	Sec. 35	12985	AND & S	Display
- 10	10000	0.000	1.365	10.000	w w	
- 14	1000	102.000	A news	A-107.W	Million of	• Color/grayscale • Wiggle
	ACM N	A	1000	AC\$2.00	March Charles	Smooth 🗌 Colorbar
SC Decon: Stack - IL 1045

Residual Statics and Q-Compensation

- Residual Statics was done to enhance continuity of horizons.
- Q-Compensation was done to compensate for loss of frequency due to low Q (Quality Factor).

Final Processing

- Final processing steps included Residual Statics and Q-Compensation.
- Residual Statics was done to enhance continuity of horizons.
- Q-Compensation was done to compensate for loss of frequency due to low Q (Quality Factor).
- Often, additional denoising is done in the final stage of processing. However, in this case because the data was clean no additional denoising was done.

XLINE	3,020	3,040	3,060	3,080	3,100	Navigate
	43	_final_geoto	mo_vel_sta	ack_ta_fxyde	con_lcfilter.seis	TIME · YLINE
	and the second	19. 19.	1.0	1.199		
-	No.	60 M S	- 90	100	100	ILINE 1030
-	Sec. 10	-	100	100		
20	100	-	4	100		Skip 1
	The second	S-0.5		1. 19. 19.	10.00	Banasti Nana
_	20.3650	$r \sim 2$	100 1	2.2.62		Repeat:
	State of the local division of the local div	1.00	8.40	26.CX	5-5-C	🗌 X Flipped 🗌 Y Flipped
40(Sec. 1	Sec. 1	2000	100	Series .	Cooling
ш [–]	- James	299.7		2.58		Scaling
WIL	and the second second	400.00	27			Percentile Min/max
-	3622	C	Sec.4	1.000	- 20 C	Percentile 95.0 Recent
600	Contraction of	200	100	C. 19	100	
-	Start succession	200	1. All 1.	(Second		Gain 1.0
	1.002222	2.62	1000	CONSIS	10 A.	Panel Trace TVGain
-	1.942	6.C. P	30.02	1000	ALC: NO	
800	States and and	1000	1000	10000	1000	Invert Polarity
-	Ser all street	1000	al solar i	1000	and in	Display
1	1000	10.00.00	2,550	1000	1000	● Color/grayscale ○ Wiggle
_	Constant of the	1000	1000	2.000	1242	
_	No. Walk	144.14	States.	ALC: NO	APR - COL	Smooth Colorbar

Time Migration

- Migration is done in order collapse diffraction hyperbolas at reflectors and faults as well as to correctly position steeply dipping seismic events.
- Two types of seismic time migration were tested:
 - Kirchhoff Post-stack Time Migration (PoSTM)
 - Kirchhoff Pre-stack Time Migration (PSTM)
- Better results were produced by Kirchhoff PoSTM.

XLINE	3,020	3,040	3,060	3,080	3,100	3,12(Navigate
			1	12_final_postm	_ta_stack_lcf	ilter.seis	TIME : XLINE
0							ILINE 1030
1				24			Skip 1
00	-	~	22	200			Repeat: None 🔹
- 3	1000		-	-			X Flipped Y Flipped
₩o	1				10		O Percentile Min/max
E %	3			20	~	Ē	Percentile 95.0
400		-	2			2	Gain 1.0 — — — —
						-	● Panel ◯ Trace ◯ TVGain
8						2	Invert Polarity
- 5							Display
-							Smooth Colorbar

XLINE	3,020 3,040 3,060 3,080 3,100 3,120	Navigate
	12_final_postm_ta_stack_lcfilter.seis	TIME : XLINE
0	No. of Concession, Name of Con	ILINE 1035
110	and the second second	Skip 1
0		Repeat: None 🔹
2(X Flipped Y Flipped
-	the second se	Scaling
IME	and the second se	● Percentile ○ Min/max
- ⁽¹⁾		Percentile 95.0 Recent
400		Gain 1.0
-		● Panel ◯ Trace ◯ TVGain
_		🗌 Invert Polarity
50(Display
		● Color/grayscale ○ Wiggle
-		Smooth 🗌 Colorbar

XLINE	3,020 3,040 3,060 3,080 3,100 3,120	Navigate
	12_final_postm_ta_stack_lcfilter.seis	TIME : XLINE
-	And and a second se	ILINE 1040
10	and the second sec	Skip 1
-		Repeat: None 👻
20		C X Flipped Y Flipped
-	Carl and the second sec	Scaling-
300	and the second sec	• Percentile () Min/max
		Percentile 95.0 Recent
100		Gain 1.0
-		Panel Trace TVGain
		Invert Polarity
50(Display
-		● Color/grayscale ○ Wiggle
-		Smooth 🗌 Colorbar

XLINE	3,020 3,040 3,060 3,080 3,100 3,120	Navigate
	12_final_postm_ta_stack_lcfilter.seis	TIME : XLINE
-	The second se	ILINE 1045
10	and the second sec	skip 1
		Repeat: None 🔹
1 20	the second se	C X Flipped Y Flipped
-	A A A A A A A A A A A A A A A A A A A	Scaling
300		● Percentile ○ Min/max
		Percentile 95.0 Recent
400		Gain 1.0
-		● Panel ◯ Trace ◯ TVGain
		Invert Polarity
50		Display
		● Color/grayscale ○ Wiggle
-		🖌 Smooth 🗌 Colorbar

Final Deliverables

• Pickles Butte seismic processing Final Deliverables are shown below:

- ▼ → CMP_GATHERS

Pickles_Butte_Final_True_Amplitude_CMP_Gathers.segy 506M

GEOTOMO_VELOCITY

Pickles_Butte_GeoTomo_Velocity.segy 3312K

- PoSTM_STACK
 - 🔻 🗁 AGC

Pickles_Butte_Final_PoSTM_AGC_Stack.segy 4M

Pickles_Butte_Final_PoSTM_AGC_Stack_90_perc_velocity.segy 4M

▼ > TRUE_AMPLITUDE

Pickles_Butte_Final_PoSTM_True_Amplitude_Stack.segy 4M

Pickles_Butte_Final_PoSTM_True_Amplitude_Stack_90_perc_velocity.segy 4M

- STACK
 - 🔻 🔁 AGC

Pickles_Butte_Final_AGC_Stack.segy 5M

Pickles_Butte_Final_True_Amplitude_Stack.segy 5M

Conclusions

- Pickles Butte seismic surveys was processed through time migration.
- Data was clean as far as environmental noise is concerned but it had strong surface waves.
- Clean data enabled good First Break (FB) picks and that is important for refraction Tomography.
- Denoising goal was to attenuate surface waves.
- SC Decon improved resolution of the data.
- Residual statics improved continuity of the data.
- Both Kirchhoff PoSTM and PSTM were tested. PoSTM results were better.

Appendix B

True Amplitude Inline Snapshots With Fault Picks

Pickles Butte 3D Seismic Survey Report Pickles Butte, Idaho Project No. 114-571040-2022

Tetra Tech 350 Indiana Street, Suite 500 Golden, CO 80401

