Phase 5 Landfill Lateral Expansion Application Pickles Butte Sanitary Landfill

Canyon County, Idaho

Tetra Tech Project# 114-571040-2024

Version 1: October 7, 2024 Version 2: January 23, 2025

PRESENTED TO

Canyon County Solid Waste

15500 Missouri Avenue Nampa, Idaho 83686

Prepared By:

PRESENTED BY

Tetra Tech

3380 Americana Terrace, Suite 201

Boise, Idaho 83706

P +1-406-489-2826

tetratech.com

Ron Philly.

10/07/24

Richard Salas, PE.

Date:

10/07/24

Ron Phillips, P.G. Project Scientist

Date:

Civil/Environmental Engineer

Maureen McGraw, PhD, PE

Date:

01/23/25

Sr. Hydrologist/Civil Engineer

16021

DAN CREW 1/2

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Purpose	1
1.2 Arid Design Regulatory Compliance	2
1.3 Site Certification	4
1.3.1 Original	4
1.3.2 DBS&A	4
1.3.3 Current	4
2.0 SITE CHARACTERISTICS	4
2.1 Climate	4
2.2 Geology	5
2.3 Topography	7
2.4 Stratigraphy	7
2.4.1 Unclassified Sediments	8
2.4.2 Bruneau Formation	8
2.4.3 Tuana Gravel	9
2.4.4 Glenns Ferry Formation	10
2.5 Area Faulting	11
2.6 Soil and Rock Properties	12
2.6.1 Test Pit Investigations	12
2.6.2 Drilling Investigations	14
2.7 Groundwater	15
2.7.1 Groundwater Conditions	16
2.7.2 Upper Aquifer	17
2.7.3 Middle Confined Aquifer	17
2.7.4 Lower Confined Aquifer	18
2.7.5 Aquifer Recharge	18
2.7.6 Groundwater Quality	18
2.7.7 Groundwater Quantity	19
2.8 Vertical distance – waste to water	19
2.9 Geotechnical Evaluation	19
2.10 Seismic Study	20
3.0 LATERAL EXPANSION DESIGN	21

3.1 Landfill Gas System	22
3.1.1 Regulatory Framework	22
3.1.2 Gas Collection and Control System	22
3.1.3 Expansion of the Landfill Gas System	23
3.2 Hydrologic Analysis	23
3.2.1 Rainfall Data	23
3.2.2 Drainage Area Delineation	24
3.2.3 Time of Concentration	24
3.2.4 Hydrologic Model (HEC-HMS)	24
3.3 Hydraulic Analysis	25
3.3.1 Regulations	25
3.3.2 Stormwater Channels and Run-On Control	25
3.3.3 Stormwater Retention	27
3.3.4 Stormwater Culverts	30
3.4 Groundwater Monitoring Update	30
3.4.1 PB-8 Abandonment	
3.4.2 New Upgradient Well Installation	
4.0 SUPPLEMENTAL REPORTS	
5.0 REFERENCES	
TABLES	
Table 1: Summary of Regulatory Requirements and Location in Application	
Table 2: Summary of Annual PBSL Weather Station Data	
Table 3: Idano Group Formations	
Table 5: Area Domestic Wells, Post 1994	
Table 6: Test Pit Data Summary	
Table 7: Summary of Drilling Investigations	
Table 8: Summary of Monitoring Well Construction Information	
Table 9: Stormwater Channels Design Properties	
Table 10: Northwest Folid Stage-Storage	
Table 12: Southeast Pond Stage-Storage	
Table 13: Southeast Overflow Pond Stage Storage	
Table 14: Stormwater Culvert Properties	30

APPENDICES

Appendix A: Figures

Appendix B: Site Certification

Appendix C: Soils Data

Appendix D: Geologic Cross Sections Appendix E: Well and Boring Logs

Appendix F: Geotechnical Investigation Report
Appendix G: Seismic Investigation Report

Appendix H: Landfill Expansion Design Drawings Appendix I: Hydrology and Hydraulic Calculations

ACRONYMS/ABBREVIATIONS

Acronyms/Abbreviations	Definition
AMSL	Above mean sea level
bgs	Below ground surface
CCSW	Canyon County Solid Waste
CFR	Code of Federal Regulations
CMP	Corrugated Metal Pipes
CN	Curve Number
DBS&A	Daniel B. Stephens & Associates
DEQ	Idaho Department of Environmental Quality
EPA	U.S. Environmental Protection Agency
GCCS	Gas Collection and Control System
HELP	Hydrologic Evaluation of Landfill Performance (model)
IDWR	Idaho Department of Water Resources
ISWFA	Idaho Solid Waste Facilities Act
LFG	Landfill Gas
MPH	Miles Per Hour
MSW	Municipal Solid Waste
MSWLF	Municipal Solid Waste Landfill
NOAA	National Oceanic and Atmospheric Administration
NMOC	Non-Methane Organic Compounds
NPDES	National Pollutant Discharge Elimination System
NRCS	National Resource Conservation Service
O&M	Operations and Maintenance
OHV	Off-highway Vehicle
PBSL	Pickles Butte Sanitary Landfill
scfm	Standard Cubic Feet per Minute
SCS	Soil Conservation Service
SWDH	Southwest District Health
USACE	United States Army Corps of Engineers
U.S. BLM	United States Bureau of Land Management
USCS	Unified Soil Classification System
USGS	United States Geological Survey

1.0 INTRODUCTION

The Pickles Butte Sanitary Landfill (PBSL) is located in rural Canyon County, Idaho, approximately 6 miles south of the City of Nampa and serves Canyon and Owyhee Counties. **Figure 1** (**Appendix A**) shows location of the Landfill in relation to Nampa and Lake Lowell. The Landfill is located within approximately 1300 acres of county-owned property covering parts of Sections 20, 21, 28, and 29 of Township 2 North, Range 3 West of the Boise Meridian. The current landfill footprint is in the east-central portion of the county-owned land. **Figure 1** also shows the extent of the county-owned land and the location of the landfill within that area. Much of the adjacent land is used for farming, dairy operations, and/or the Jubilee Park off highway vehicle (OHV) area, except for areas where the topography is unsuitable for these uses.

The Idaho Department of Environmental Quality (DEQ) approved the original design and operating plan for PBSL as a Municipal Solid Waste Landfills (MSWLF) in June 1973, and reconfirmed approval in May 1975 (Holladay, 1994). Southwest District Health (SWDH) approved the landfill in December 1979 (Holladay 1994). The landfill initially began accepting municipal solid waste (MSW) in April 1983. With the implementation of Subtitle D, the County obtained site certification for the landfill from the DEQ in August 1993. The DEQ subsequently approved a Hydrogeologic Characterization, Ground Water Monitoring Plan and Facility Design Report prepared by Holladay Engineering Company (Holladay, 1994). The approval included exemptions from the requirements for a liner/leachate collection system and groundwater monitoring. This technical decision was based on the depth to groundwater, characteristics of native soils, and the arid climate at the facility. The PBSL Operations and Maintenance (O&M) manual for the facility was recertified by Southwest District Health (SWDH) on July 19, 2024 and the plan is valid through July 2027.

Waste disposed of at the PBSL consists primarily of residential municipal solid waste, construction and demolition (C&D) materials, biosolids, and other nonhazardous waste. The landfill work to divert waste for recycling or reuse, including white goods, metal, tires, clean wood waste, and green waste.

1.1 PURPOSE

This document has been prepared to support the lateral expansion of the PBSL. Based on the aerial survey conducted on September 30, 2023, there was approximately 7.5 years of air space remaining in Phase 3 and 4 years of air space remaining in Phase 4. Phase 3 and Phase 4 are part of the approved waste footprint of 116.7 acres. However, during the five-year period between October 2018 and October 2023, the waste acceptance rate has increased an average of 4.3%, which reflects the population growth that has occurred in Canyon and Owyhee Counties, as well as the greater Treasure Valley. Therefore, to continue to provide MSW disposal services it is necessary to expand the landfill capacity. The requested lateral expansion of the landfill is designated Phase 5.

Canyon County worked with Holladay Engineering Company (Holladay) to expand the characterization of the area surrounding the landfill beginning in 1992 as part of the investigation described in their 1994 report. Seven wells were installed that were designated PB-2 through PB-8. The designation PB-1 was applied to an existing domestic well located adjacent to the shop building at the Landfill. Holladay installed monitoring wells PB-9 and PB-10 in 1995. Daniel B. Stephens & Associates (DBS&A) installed wells PB-10 through PB-15 in 2011 as part of their investigation for a future expansion. The County also commissioned significant hydrogeologic investigations between 2010 and 2014 for the future expansion of the landfill. DBS&A conducted this work. The County commissioned additional borings, a geotechnical investigation, and a seismic investigation in 2021 to address additional data gaps identified. The data from all these investigations provide the foundation for the expansion design application.

There have been several different conceptual expansion designs, which is reflected in some of the data gaps analysis reports conducted for the expansion including the geotechnical evaluation and seismic evaluation. The various conceptual expansion designs do not reflect the design as submitted in this application, nor does it alter the value of the data collected during previous investigations. This document serves as the application for a lateral

expansion of the PBSL using an arid design that is in compliance with the Idaho Solid Waste Facilities Act (ISWFA) §39-7409 and §39-7410.

This application is organized into the following Sections:

- **Section 1** of this report presents an introduction and regulatory requirements for the lateral expansion application under the arid design requirements.
- **Section 2** provides background information on the site characteristics of the landfill, including the climate, geology, soils, groundwater, geotechnical stability and seismic conditions.
- Section 3 provides the lateral expansion design, including a hydrologic and hydraulic analysis of the final conditions.
- **Section 4** summarizes the supporting documentation provided electronically with this application. The supporting documents are an essential part of the application and provide the background studies and modeling conducted as the landfill prepared for a lateral expansion. They are referenced in this application but are not included as appendices in the application.
- Section 5 provides the references for material used in the development of this document.

Appendix A provides figures. Appendix B provides copies of the Site Certification Approval. Appendix C provides data on site soils and site-specific laboratory data. Appendix D provides geologic cross section to show the geology as well as the distance to the water bearing zone. Appendix E contains copies of well and boring logs from the site. Appendix F contains a geotechnical report for the site. Appendix G contains a copy of the seismic investigation report conducted for the site. Appendix H contains the lateral expansion design drawings. Appendix I contains a copy of the Hydrology and Hydraulic calculations.

1.2 ARID DESIGN REGULATORY COMPLIANCE

The design of a lateral expansion for a MSW landfill is regulated by 40 CFR §258.40 Design criteria for MSWLFs on the Federal level and by the ISWFA §39-7409 on the State of Idaho. **Table 1** provides information on where the required information in located in the application.

Table 1: Summary of Regulatory Requirements and Location in Application

Regulation	Title/Requirement	Location in Application and Supporting Documents
ISWFA §39- 7407, §39-7408	Location Restrictions – Site Certification	The submittal and approval of the site certification was previously conducted by PBSL. Section 1.3 discuss the Site Certification approval and copies of the approval letters are provided in Appendix B.
ISWFA §39- 7409	Standards for Design	
ISWFA §39- 7409(1)	Applicability	The PBSL is subject to the MSWLF design standards as an existing landfill, and under this regulation for a lateral expansion.
ISWFA §39- 7409(2)	Liner designs	The regulations allow for a (a) Composite liner, (b) Alternative liner design, or (c) Arid design. This application is for use of an arid design.
ISWFA §39- 7409(2)(c)	This design will apply to locations with less than twenty-five (25) inches of precipitation annually, net evaporative losses greater than thirty (30) inches annually,	Section 2.1 discuss the local climate and presents site-specific data demonstrating these conditions have been met.

Regulation	Title/Requirement	Location in Application and Supporting Documents
	holding capacity in native soils greater than annual absorbance;	The holding capacity of soil is the equivalent to laboratory measurement known as the field capacity, which represent how much water the soil can hold against gravity. <i>Section 2.6</i> provides information from laboratory testing that demonstrates the site has sufficient holding capacity.
ISWFA §39- 7409(2)(c)(i)	solid waste is deposited no less than fifty (50) feet above the seasonal high level of ground water in the uppermost aquifer	The distance between the waste and the upper most water bearing zone is greater than 300 feet. <i>Section 2.4</i> discusses the site stratigraphy and <i>Section 2.8</i> discusses the vertical distance to water bearing zone. Appendix D contains cross-sections that show the proposed bottom of waste, potentiometric surface and top of water bearing zone.
ISWFA §39- 7409(2)(c)(ii) and (iii)	the geologic formation beneath the site and above the uppermost aquifer must have capillary capacities greater than the projected maximum volume of leachate generated during the active life of the MSWLF unit; "no potential for migration" is demonstrated when the geologic formation beneath the site and above the uppermost aquifer has sufficient hydrogeological characteristics and holding capacity adequate to contain all hazardous constituents generated during the active life, closure and post-closure care periods.	The Hydrogeologic Characterization Report prepared by Daniel B Stephens & Associates in 2014 (and included as supplemental material for this application) describes work conducted to characterize the geology in and around the PBSL to aid in evaluating the potential for landfill leachate to impact groundwater. Consistent with earlier work conducted by Holliday (1994) and additional characterization work conducted by Tetra Tech (Appendices F and G) a very low permeability siltstone and claystone is present beneath the entire site and serves as a confining unit. As discussed in the report, the siltstone has a low hydraulic conductivity (average of 3.99 x 10-8 cm/s) and overlies the first occurrence of groundwater (average of 297 feet). The report estimates that migration of leachate to first groundwater would take thousands of years. The report provides extensive discussions on the geology, hydrogeology, and infiltration modeling with HELP and HYDRUS. There are two volumes to the report. Volume 2 contains a table upfront of all of the laboratory testing conducted including hydraulic conductivity, moisture content, particle size, and Atterberg limits. The extensive laboratory testing of soil properties was used to document and support the analysis conducted in Volume 1 of the report. The geologic conditions are also discussed in Section 2.2 to Section 2.6 Geotechnical and Seismic evaluations are provided in Section 2.9 and 2.10 as well as Appendices F and G.
ISWFA §39- 7409(3)	Point of compliance	The point of compliance is the site certification boundary shown in Figure 3 (Appendix A). The figure also shows the additional property owned by Canyon County beyond the site certification boundary. Groundwater flows to the southwest, so monitoring wells MW-11 through MW-15 on the south side of the landfill that are downgradient of the currently approved landfill footprint, as well as the proposed lateral expansion ensure that there are no impacts to groundwater upgradient of the compliance boundary.
ISWFA §39- 7409(4)	Leachate discharge	The PBSL does not have a leachate collection system, and therefore does not have any discharges that fall under the Clean Water act (40 CFR 122)
ISWFA §39- 7410	Ground water monitoring design	Although the PBSL currently operates under an arid exemption, the landfill voluntarily conducts bi-annual groundwater, monitoring and submits the reports to DEQ for review. Details

Regulation	Title/Requirement	Location in Application and Supporting Documents
		on groundwater at the site, including a summary of groundwater monitoring, are provided in <i>Section 2.7. Section 3.4</i> provides details on updates to the monitoring program associated with the proposed expansion.

1.3 SITE CERTIFICATION

There have been three different Site Certifications for the PBSL. All three Site Certifications meet the requirements for the lateral expansion of the landfill under §39-7407, Idaho Code. Copies of the approval letters are provided in **Appendix B**.

1.3.1 Original

On June 24, 1993, Holiday Engineering Company filed a Site Certification for the PBSL on behalf of Canyon County to comply with the new state requirements for an MSWLF pursuant to §39-7407, Idaho Code. At the time it had been accepting waste for approximately 10 years, the Site Certification Boundary encompassed approximately 260 acres although only 116 acres was approved to accept waste. The approval was received from the DEQ on August 9, 1993.

1.3.2 DBS&A

On June 17, 2010, Daniel B Stephens and Associates filed a Site Certification Application on behalf of Canyon County for the PBSL in preparation for an expansion design (DBS&A, 2010). The Site Certification boundary was expanded to include additional land purchased by the County and expand the area that could be included in the expansion design application. The Site Certification increased the acreage from approximately 260 acres to 490 acres. The approval was received from the DEQ on August 2, 2010.

1.3.3 Current

On November 19, 2020, Tetra Tech filed a Site Certification Application on behalf of Canyon County for the PBSL in preparation for an expansion design. The Site Certification was expanded to include additional land purchased by the County and included areas that were part of a conceptual expansion design developed in 2017 to vet the overall scope and configuration of the expansion with the County, and to be able to identify potential data gaps and design constraints. The Site Certification increased the acreage from approximately 490 acres to 600 acres. The approval was received from the DEQ on February 26, 2021.

2.0 SITE CHARACTERISTICS

Information from site investigations have been used to characterize the soil and geologic conditions at the Landfill. The investigations include those conducted for the original site certification and design, work conducted to develop the groundwater monitoring program, shallow investigations for cover material (1994, 2016, 2022), a geotechnical investigation to support landfill expansion, a seismic study, and groundwater monitoring conducted since 2017.

Additional information on the geologic setting of southeastern Canyon County has been garnered from reports and maps published through the Idaho Geological Survey, Idaho Department of Water Resources (IDWR) and the United States Bureau of Land Management (U.S. BLM).

2.1 CLIMATE

The PBSL is located in Nampa, which is a high desert that is bordered to north by the Rocky Mountain front range and to the south by the Owyhee mountains. The average precipitation in the region is 11.6 inches per year (City of Nampa, 2024). The winters are typically cooler and wetter. January is generally the coolest month. The summers

are hot and dry. The warmest month is generally July. **Figure 2** (**Appendix A**) shows the wind rose for Nampa, Idaho. The data indicates that the prevailing wind direction is from the northwest, but that wind also occurs from the west and the southeast.

The PBSL installed a weather station in 2017 to determine site specific conditions. **Table 2** shows the annual data from 2018 to the present. The site-specific data indicates that the location of the landfill has less precipitation than the City of Nampa. Both the City of Nampa data and the site-specific data indicate that the site meets the requirements for an arid design in §39-7409(2)(c), Idaho code that requires an arid design to be sited in a location that has less than twenty-five (25) inches of precipitation annually.

Year	Annual Precipitation (inches)	Minimum Annual Temperature (°F)	Average Annual Temperature (°F)	Maximum Annual Temperature (°F)	Average Annual Wind Speed (mph)	Maximum Annual Wind Speed (mph)
2018	7.3	9.3	54.6	107.9	7.9	39.5
2019	8.2	14.3	53.0	99.1	7.9	41.9
2020	10.6	17.2	54.5	101.5	7.7	41.5
2021	5.3	16.0	55.6	106.7	8.1	38.8
2022	5.9	4.5	53.1	106.5	7.8	41.8
2023	9.0	8.3	53.8	103.7	8.2	40.4
2024 (thru 9/9)	6.1	-1.2	58.2	106.9	8.1	35.8

Table 2: Summary of Annual PBSL Weather Station Data

Table 2 also provides the minimum, average, and maximum temperatures, as well as the average and maximum windspeeds. The site weather station does not measure pan evaporation. Therefore, to evaluate the evaporation at the site, the Evapotranspiration and Consumptive Irrigation Water Requirements for Idaho available on the IDWR website (IDWR, 2024) was used to determine the potential evapotranspiration (ET). Selecting Nampa, ID and range grasses – long season to represent the vegetation at the site indicates that the annual potential ET was 728 ± 53 mm (28.7 ± 2.1 inches). Based on the lower precipitation at the site, maximum wind speeds, elevated summer temperatures, and the need to apply water for dust control, the actual net ET is likely on the higher range of the standard deviation which infers that the site meets the requirements for an arid design in §39-7409(2)(c), Idaho code that requires an arid design to be sited in a location that has net evaporative losses greater than thirty (30) inches annually.

2.2 GEOLOGY

The PBSL is located within a geologic structure known as the Western Snake River Plain. The Snake River Plain is a broad, arc shaped depression extending across southern Idaho. While the eastern portion of the Snake River Plain is considered to be a function of the movement of the North American Plate relative to an underlying heat source ("the Yellowstone Hotspot"), the Western Snake River Plain was formed by different geologic processes. The Western Snake River Plain is generally regarded as being a rift zone, where the earth's crust was pulled apart by tensional forces. In this case, the forces were pulling the crust to the northeast and southwest, resulting in a

thinning of the crust in the middle of the northwest/southeast trending rift zone. Fault zones developed on the borders of the rift zone, perpendicular to the direction of the tensional forces. Evidence suggests this process for the Western Snake River Plain began between approximately 12 million (U.S. BLM n.d.) and 17 million years ago (Mabey, 1982), during the Miocene epoch.

The fault zone on the northeast side of the Western Snake River Plain is called the Boise Front Fault, sometimes referred to as the Boise Foothills Fault zone. The system of faults on the southwest side of the basin is often called the Owyhee Mountains Fault zone. Both are recognized as normal faults, though strike-slip movement has also been postulated for the Owyhee Mountains Fault Zone (Mayo et. al., 1984). Normal faults are those in which the hanging wall moves downward relative to the footwall. In this way, the interior of the basin (a graben or graben-like structure) decreased in elevation compared to the Boise Front on the northeast and the Owyhee Range on the southwest. The normal faults on either side of the Western Snake River Plain have an average orientation of approximately North 50° West.

The total relative vertical movement of the graben relative to the ranges on either side is not known. The Western Snake River Plain is a current topographical basin, but erosion on the ranges and filling of the basin with sediments and upwelling basalt has obscured the total vertical movement. In addition to vertical movement along the fault lines, subsidence or downwarping in the interior of the basin has likely occurred because of the weight of the sediments and volcanic rocks that have filled the depression (Swirydczuk, et. al. 1982). Malde (1959) suggests that there may have been 5000 feet of vertical displacement along the faults and an additional 4000 feet of subsidence. This is consistent with the findings of deep wells referenced by Mabey (1982) where lacustrine sediments and basalt flows accounted for more than 6000 feet of material above granite bedrock. The lithology from a deep well (Anshutz Federal No.1) in the Western Snake River Plain showed that there was 11,150 feet of sediment and basalt above granite (Maley, 1987). The granite could be an extension of the late-Cretaceous Idaho batholith. Otherwise, there is no evidence that the pre-Cenozoic rocks on the borders of the plain have been downfaulted under the plain (Digital Atlas of Idaho, 2023)

Basalt flows in the Western Snake River Plain began approximately 11 million years ago (Shervais, et.al., 2002). The basalt eruptions appear to have been a direct result of the tectonic forces that created the basin.

Most of the Western Snake River Plain basin was eventually covered by ancient Lake Idaho, possibly because of basalt flows forming a dam at the western end. Kimmell (1982) theorizes that the basin was occupied by two large lakes in succession. The sizes of the lakes may have been controlled by tectonics and changes in climate. The Western Snake River Plain basin has been largely filled with sedimentary materials from this depositional environment. Lacustrine sedimentation appears to have occurred largely between 8.5 and 2 million years ago, during the Pliocene and upper Miocene epochs (Wood, 1994). These sediments become more lithified at depth because of the weight of overlying materials. The type and nature of the sediments are important factors in preventing migration of landfill leachate through the sediments beneath the current and future landfill cells.

Later sedimentation in the Western Snake River Plain basin included fluvial and possibly eolian deposits. These are generally coarser and less indurated than the underlying lacustrine sediments. Basalt eruptions occasionally intercalate with these sediments (Digital Atlas of Idaho, 2023).

The materials filling the Western Snake River Plain basin are part of the Idaho Group, a designation first provided by Malde and Powers (1962). They divided the Idaho Group into seven formations and provided a lithologic sequence. These are shown in **Table 3**, along with ages provided by Savage (1968). The Idaho group is underlain by volcanics (rhyolite and basalt) of the Idavada Group and covered by the Snake River Group; both contacts are unconformable (Ruez, 2009; Wood and Anderson, 1981).

Wood and Anderson (1981) add a division to the Idaho Group, designating the Chalk Hills and older formations as the Lower Idaho Group and the Glenns Ferry Formation and younger materials as the Upper Idaho Group. This latter group comprises the near surface and subsurface geologic materials that have been encountered during the investigations at PBSL.

Table 3: Idaho Group Formations

Formation (Young to Old)	Rock and/or Soil Types	Geologic Age		
Black Mesa Gravel	Sand and Gravel	Middle Pleistocene		
Bruneau Formation	Basalt, Sand, Gravel	Middle Pleistocene		
Tuana Gravel	Sandy Gravel	Lower Pleistocene		
Glenns Ferry Formation	Sand, Silt, Clay, Siltstone, Claystone, some Sandstone.	Upper Pliocene to Lower Pleistocene		
Chalk Hills Formation	Silt and Sand; some Ash content	Middle Pliocene		
Banbury Basalt	Basalt with Tuff Beds	Middle Pliocene		
Poison Creek Formation	Ash and Tuff with some Sands and Gravel	Lower Pliocene		

2.3 TOPOGRAPHY

Pickles Butte and Deadhorse Canyon are the two prominent topographic features near the landfill. Pickles Butte is at the eastern end of a 1.25 mile long ridge that trends slightly north of west. The elevation at the top of the ridge ranges from 2996 to 3083 feet above mean seal level (AMSL). Much of the north face of this ridge slopes steeply into Deadhorse Canyon at a slope of approximately 30% (18 degrees). The slope decreases toward the base of Deadhorse Canyon. The northern base of the ridge essentially forms the southern extent of the current landfill footprint and the expansion area.

Deadhorse Canyon trends toward the northwest on the north side of Pickles Butte. The canyon was historically 0.5 to 0.75 miles wide as shown on topographic maps, through road construction and the landfill have altered the natural topography in the eastern and northern parts of it. Gently rolling landscape is present east and northeast of the landfill and Deadhorse Canyon. The elevation of the eastern and northern rim of the historic Deadhorse Canyon ranged from approximately 2800 to 2900 feet AMSL. The slope along the east wall of the historic canyon was approximately 30 to 35%, then decreasing to approximately 10% in the lower part of the canyon (USGS, 1958). The steep natural slope of the east wall is visible now only in a location south of Deer Flat Road where this road descends into the canyon.

The canyon funnels into a narrow outlet, approximately 200 feet wide at an approximate elevation of 2590 feet AMSL. This is near the current western boundary of Canyon County owned property. From here, the canyon opens up into a gently sloping plain, approximately 0.5 mile wide, that is used for agriculture.

2.4 STRATIGRAPHY

Stratigraphic information specific to the PBSL has been collected during several investigations beginning in 1992. These include monitoring well installations in 1992, 1995, 2011, and 2020, site specific geologic mapping by Holladay, regional geologic mapping, geotechnical drilling programs in 1998 and 2021, and observations of surface geologic materials and outcrops.

Based on the information from the site investigations, a stratigraphic sequence of geologic materials near to and underlying the landfill has been developed. **Table 4** presents the basic information for the stratigraphic sequence of the generalized soil and rock units present within the investigated areas at the landfill.

Table 4: Site Lithologic Sequence

Formation	Rock and/or Soil Types	Thickness (feet)			
Unclassified (Quaternary Deposits)	Sand, non-lithified	Up to 25			
Bruneau	Basalt; Sandy Silt to Silty Sand	Up to 50			
Tuana Gravel	Sandy Gravel	Up to 50			
Glenns Ferry	Sand, silt, clay, siltstone, claystone	Possibly >2000 feet total, 893 penetrated by monitoring well PB-14			

The Bruneau Formation, Tuana Gravel, and Glenns Ferry Formation are considered the Upper Idaho Group. The formations of the Lower Idaho Group (including the Poison Creek Formation, Banbury Basalt, and the Chalk Hills Formation) lie at depths that are beyond the depths explored at the landfill. Descriptions of the geologic materials in the study area are provided below.

Six geologic cross sections across the landfill area were developed using information from the drilling investigations. The locations of the cross-section lines, identified as A through F, are shown on **Sheet X-100** (**Appendix D**). The cross sections are included as **Sheets X-101** through **Sheet X-110** (**Appendix D**).

2.4.1 Unclassified Sediments

The youngest sediments in the study area are likely the light tan to buff-colored sands found in the northern and central parts of the investigated study area. The sand is described by the National Resource Conservation Service (NRCS) as being derived from alluvium, eolian, or lacustrine sediments (NRCS, 2023). The sand appears to be most prominent on the eastern/northeastern rim of Deadhorse Canyon, generally east and north of the original landfill cell. Holladay (1994) designated these as "minor sand dunes" that are the most recent deposit in the area. Their mapping included a low ridge in the central part of the study area, west of PB-1 and south of PB-8, in the minor sand dunes classification. This would indicate deposition after most, or all of the erosion had occurred to create Deadhorse Canyon. The sand north and east of the landfill is outside of the expansion area, and the ridge of sand in Deadhorse Canyon is above the base of the future landfill cells. These younger sands, therefore, have not been further investigated or evaluated for the current study.

2.4.2 Bruneau Formation

Sediments of the Bruneau Formation include fine-grained sandy silt to silty fine-grained sand. Much of the native material in the area east of Phase 1 of the landfill, in the locations of monitoring wells PB-6, PB-7, PB-9 and PB-10, is typical of the Bruneau Formation. The silt and sand layers at these locations varies in thickness with up to 25 feet above gravel and sand deposits of the Tuana Formation (described below). In other places, little of the Bruneau Formation sand/silt is present above the Tuana Gravel. This silt and sand are generally tan-white colored.

The sediments of the Bruneau Formation are mostly unconsolidated. Test pits excavated in April and July 2016 to evaluate soil for cover material encountered loose to slightly lithified soil, except when calcium carbonate cementation was present. The amount and strength of cementation varied laterally. The thickness of the Bruneau Formation at most of the test pit locations exceeded the depth of the test pit; however, gravel belonging to the Tuana Formation was found in the five test pits along the eastern site boundary. The depth to gravel ranged from 1.4 feet in the southernmost test pit (T31) to 12.5 feet in test pit T20, located at the northeast corner of the property.

Observations from the test pits east of the eastern rim of Deadhorse Canyon indicate the soil in the Bruneau Formation grades coarser with depth. The majority of the soil found near the surface in the 2016 test pits consisted of silt with varying levels of clay. Sandy silt to silty sand was often found at depth in the test pits.

The coarsening with depth was further viewed in test pits collected on the western slope of the eastern canyon wall, north of the existing landfill. In many cases, the near surface soil was sand or silty sand, with a coarsening seen with depth. The surface elevation of these test pits was several feet lower than those east of the rim of the canyon, and thus the soil seen in them is representative of soil lower in the geologic profile.

A relatively thin layer of basalt belonging to the Bruneau Formation is present on the top of Pickles Butte and on Canyon County property in areas south and southwest of Pickles Butte. To date, the only boring that has intercepted the basalt is PB-13 which was drilled on Pickles Butte southwest of the active landfill. The upper 20 feet of this boring was in the Bruneau Formation basalt. The surface of the basalt is generally covered by loess except on the top Pickles Butte ridge, at the edge of a linear ledge southeast of the ridge, and in a small canyon further to the southeast. The top of basalt in these latter two features ranges from approximately 2900 to 3000 feet AMSL. The lack of basalt in similar depths at monitoring well locations PB-13 and PB-14 suggest that the area to the southwest may be on the downthrown side of a normal fault on the southwest side of the ridge, trending toward the northwest. This is consistent with information from various geologic maps. The geographic extent of the basalt does not coincide with the proposed landfill expansion area, and thus further investigation of the rock including hydrogeologic characteristics has not been conducted.

2.4.3 Tuana Gravel

The Tuana Gravel underlies the Bruneau Formation, though the type of contact between them is not clear. Wood and Anderson (1981) suggest that it is an unconformable contact. This has not been confirmed by the limited observations made during investigations at the landfill. The best visual exposure of the Tuana Gravel at the site is in a borrow pit located east of the southern extent of Phase 1 of the landfill (northeast of the shop and equipment staging area). Landfill personnel use this as a source of gravel for roadbuilding or other construction needs. The Tuana Gravel is also exposed in some of the road cuts near Pickles Butte, and in a Jubilee Park parking area at the west end of Missouri Avenue. Holladay (1994) also describe a 30-foot-thick exposure along the eastern rim of Deadhorse Canyon. The filling of the canyon in this area by Phase 1 of the landfill has covered this exposure, leaving the aforementioned areas as the best exposures of Tuana Gravel on the property.

Holladay indicated that the exposure along the eastern rim of Deadhorse Canyon as being moderately well cemented by calcium carbonate. This level of cementation is not seen in the gravel pit area, nor in the road cuts and parking area near Pickles Butte. The gravel is generally subround, with some cobbles ranging in size up to approximately 6 inches, though much of the gravel is less than 3 inches in diameter. Interbedded lenses of sand and/or silt intervals may locally comprise substantial portions of the Tuana Gravel profile.

Tuana Gravel was encountered in the borings east of the landfill (PB-5, PB-6, PB-7, PB-9, and PB-10), in the three monitoring wells on the Pickles Butte ridge (PB-13, PB-14 and PB-15), and at monitoring wells PB-4 and PB-16 which are located in the south-central part of the landfill area. As noted above, the top of the Tuana Gravel was encountered in several test pits east of Phase 1 of the landfill. A comparison of the elevation of the top of the gravel at PB-13, the wells east of the landfill, and the 2016 test pits, shows that the upper surface of the gravel slopes to the northeast at 2.6 degrees. This correlates with observations made by Holladay where a slope of 3 degrees was reported.

Comparing the elevation of the bottom of the gravel shows a slightly smaller slope to the northeast of 1.7 degrees. This indicates a thinning of the layer from southwest to northeast. This agrees with the findings presented by Holladay, where they indicated the thickness of the unit ranges from less than 10 feet along parts of the northeastern rim of Deadhorse Canyon to nearly 100 feet on Pickles Butte.

More importantly, the bottom of gravel elevation, which ranges from approximately elevation 2988 to 2865 feet AMSL, is well above the base of the landfill cells in the expansion area. The Tuana Gravel therefore has no bearing on the hydrogeologic issues related to the landfill expansion.

2.4.4 Glenns Ferry Formation

Upper (younger) Glenns Ferry Formation soils are the majority of geologic materials exposed on the northern flank of Pickles Butte and in the walls of Deadhorse Canyon. This formation underlies the Tuana Gravel, where present. The Glenns Ferry Formation extends beneath the landfill beyond the total depths explored in the groundwater and geotechnical investigations conducted to date.

Malde (1972), in a study of the stratigraphy of the Western Snake River Plain, made extensive observations of the Glenns Ferry Formation. They indicate that it consists of lacustrine (lake deposited), fluvial (stream deposited) and flood plain facies that intertongue, often complexly. The lacustrine facies is the most dominant, both in terms of volume and extent. It consists mostly of massive layers of tan colored silt. The fluviatile facies is composed mainly of thick beds of pale brown-grey sand and silt. The flood plain facies is mostly thin beds of silt and clay with intermittent layers of shale and sand (Malde and Powers, 1972).

Information gathered during drilling for monitoring well installation indicates that the textural composition and physical properties of the Glenns Ferry Formation at the landfill site vary with depth. In general, the material becomes finer grained and more consolidated or indurated with increasing depth. The properties may also vary somewhat laterally, and the Holladay (1994) report mentioned that the lithification in correlating beds was seen to vary between borings.

The upper part of the Glenns Ferry Formation encountered in the borings is comprised primarily of sand and silt. DBS&A described the sand beds as ranging from poorly to well sorted, from very fine grained to coarse-grained, and having little or no consolidated structure to a well-lithified sandstone. The grain size of the upper Glenns Ferry Formation tends to decrease with depth, and in the lower depths explored the Glenns Ferry Formation consists primarily of siltstone or claystone. The change from upper portion of the Glenns Ferry Formation showing little consolidation to the more lithified sediments at depth is often abrupt, as described by DBS&A (2014a).

These lithified sediments are considered a hydraulic confining layer. This laterally extensive zone in the Glenns Ferry Formation has been found in all areas that have been explored to a sufficient depth at the landfill. The layer is usually described as a siltstone or claystone on the lithologic logs prepared by field geologists. The material is most often described as clay on lithologic logs prepared by drillers. Contained within this layer is a boundary at which the sediments below may have been deposited in an anoxic or oxygen deficient state. This condition gives them a characteristic blue green or blue grey color. This distinguishing characteristic is easily seen, so the layer is often referred to as the "blue clay," and can be identified on boring logs and traced laterally across the entire landfill area. This anoxic layer is not limited to the areas explored at the landfill. Wood and Anderson (1981) indicate that the layer has been found as far to the west as Parma and as far to the east as Boise. The widespread presence of this layer is important for two reasons. First, its lateral continuity shows the uninterrupted nature of the middle Glenns Ferry Formation across the entire study area. This is consistent with the depositional environment proposed by Kimmel (1982) that the lower part of the Glenns Ferry Formation was formed in lacustrine setting across a large part of the Western Snake River Plain.

Secondly, the blue clay is postulated as acting as an impermeable or nearly impermeable layer limiting groundwater movement. Wood and Anderson (1981), as part of a geothermal investigation in southwestern Idaho, found significant temperature differences in wells completed above and below the blue clay indicating that it is acting as a cap above deeper warm water aquifers.

In their discussion of area groundwater conditions, Holladay (1994) compiled a table showing how the presence of blue clay can be traced throughout the general area. That table is designated as Table 1 in their report. They inspected the drillers logs for 72 wells located in the general vicinity of the landfill. The blue clay (or a lithologic feature that correlates to it) was identified on the majority of the logs. Those that did not specifically indicate blue colored clay nonetheless showed a thick sequence of clay and similar material (e.g. claystone, mudstone, siltstone) at depth in the area south of Lake Lowell. A recent search of well logs in the IDWR database found nine additional wells within approximately 1.3 miles of the landfill that have been installed since the Holladay research. Two of these (Stuart and Snell) are on property now owned by Canyon County Solid Waste. Four others (Helfrich, Lowry,

Riggs, and Sevy) are downgradient of the expansion area based on the piezometric surface measured at the PBSL monitoring wells. These are summarized on **Table 5**.

Well Owner	Address	Top of Redox Zone Elevation (AMSL)	Top of Confining Layer Elevation (AMSL)		
Esther Helfrich	16666 Deer Flat	2372	2392		
Chad Lowry	17626 Deer Flat	2270	2397		
Lonnie Riggs	8018 Bale Lane	2402	2402		
Daniel Sevy	17957 Deer Flat	2320	2355		
David Snell ¹ 16141 Deer Flat		2417	2587		
Don Stuart ¹	16241 Deer Flat	>2264²	Unknown ²		

Table 5: Area Domestic Wells, Post 1994

Interpreting the lithology from driller's logs should be considered an approximation; in many cases there is no differentiation between silt and clay, or reliable information about the consolidation. Nonetheless, an inspection of the six1 logs for the wells shown in **Table 5** does provide useful information to show that that conditions encountered in monitoring wells at the landfill extend beneath and beyond the expansion area. The redox layer is discernible from each of the well logs. The elevation of the redox layer can be estimated by subtracting the depth to the redox layer from the approximate ground surface elevation at each well location. The elevation of the top of the claystone/siltstone can also be estimated, though there is more uncertainty because of the lack of descriptive information on the consolidation of the material.

Overall, the information shows that the fine-grained material (silt and clay) of the Glenns Ferry Formation is present at depth across the area, as is the redox boundary with a slight gradient to the northwest. The redox boundary in the western part of the landfill area ranges from an approximate elevation of 2417 feet at the Snell well to 2527 feet at monitoring well PB-13. The elevation of the redox boundary at the Daniel Sevy domestic well located approximately 1.3 miles west of the land fill is approximately 2320 feet. The redox boundary elevations at the Riggs and Helfrich wells (approximately 1 mile west-southwest and one-half mile west of the landfill) are approximately 2402 and 2372 feet respectively. Using these four points as a reference, the redox boundary slopes to the northwest with a gradient of 185 feet per mile.

As discussed above, the transition from less compacted sediments of the upper Glenns Ferry Formation to the more consolidated claystone and siltstone is not easily discernible from the driller's logs. Using a best interpretation of when the confining layer starts also shows a slope of that surface to the northwest though the gradient is slightly flatter than the redox boundary at approximately 155 feet per mile.

The northwestward slope in the top of the confining layer across the western part of the study area is consistent with the information shown on Cross Section A in **Appendix D**. This cross section is constructed roughly parallel to the apparent slope of the confining layer and shows a slope toward the northwest from the center of the landfill at PB-1 toward PB-11. In the northeastern part of the landfill, the apparent slope is toward the northeast, which is consistent the findings from the Holladay analysis.

2.5 AREA FAULTING

The USGS Quaternary Fault and Fold Database of the United States indicates that the Western Snake River Plain (WSRP) fault system is present in the general area, and a portion of an undifferentiated Quaternary-aged northeast-

^{1 -} Now owned by Canyon County.

^{2 –} Only the portion of the log below 485 feet deep is available. The elevation of the top of the redox zone and confining layer cannot be determined.

dipping normal fault is mapped within the project boundaries. The mapped location shows it extending northwest through the proposed expansion area. It is labeled as a normal fault with an approximate slip rate of less than 0.2 mm/year. The approximate location, as indicated by USGS, is shown on Figure 1 in a Seismic Survey Report prepared by Tetra Tech in 2022. This report is included as **Appendix G**. The WSRP fault system consists of northwest-striking, northeast- and southwest-dipping normal faults. Most of these faults are described as having subdued expressions on the floor of the Snake River Plain. The USGS information indicates that detailed studies on the age of faulted deposits have not been published, but most fault traces are confined to older Quaternary deposits. The USGS thus assigns a Quaternary age to the faults until further detailed studies are conducted.

The fault locations are from various sources, mapped at scales ranging from 1:250,000-scale to 1:62,500-scale mapping. Mapping at the latter scale was conducted by Wood and Anderson (1981). The USGS information indicates that slip rates have not been described, but the weak geomorphic expression of these faults indicates very low rates of long-term slip (Personius 2003).

Two faults mapped by the sources listed above are on the northeast and southwest sides of the Pickles Butte ridge and are outside of the expansion area. Cross Section X-108 (**Appendix D**) shows the approximate location of the fault on the northeast side of the ridge. The USGS database shows one fault that is potentially present near the expansion area. It is shown with a length of approximately 3.4 miles with a strike of approximately North 37° West. The southern terminus is shown in the northern part of the active landfill area. A seismic survey was conducted in 2022 to collect more information on this fault. This is discussed in *Section 2.10* below.

2.6 SOIL AND ROCK PROPERTIES

Samples of soil and rock have been collected during three test pit investigations and during three of the drilling efforts to characterize the hydrogeologic and geotechnical properties of the materials. In some cases, the samples were collected and analyzed to use in slope stability calculations for landfill design. Other samples were specifically collected to provide data for use in Hydrologic Evaluation of Landfill Performance (HELP) and HYDRUS models. Still other samples were analyzed for various physical properties for final cover design purposes.

2.6.1 Test Pit Investigations

Holladay collected 25 soil samples from 13 test pits in 1994 to evaluate the material for a final landfill cover. The test pits were excavated in the area east of Phase 1 of the landfill. The sample depths ranged from 2 to 10.5 feet deep. Holladay had each of the samples tested for grain size analysis. Four of the samples were tested for Atterberg Limits. Holladay estimated ranges of field capacity and wilting point but did not provide specific values for individual samples.

Tetra Tech also collected soil samples during two investigations (April and July 2016) to evaluate near-surface soils for suitability as use for final cover material. Five test pits were excavated east and northeast of Phase 1 of the landfill in April. Thirteen additional test pits were excavated in July to provide additional spatial coverage of the area extending further south and west. The second round of testing pitting focused on identifying the upper and lower bounds of the silt loam layer target for the final cover. The maximum depth of the test pits was 13.5 feet. Nine samples were submitted for grain size analysis, two samples for Atterberg Limits, and four for Proctor compaction testing (moisture-density relationship). Four samples were also analyzed for permeability, field capacity, and wilting point. This data was presented as part of an alternative cover evaluation (Tetra Tech 2016) that was approved by SWDH on December 8, 2016 and by the DEQ on December 9, 2016. This document is provided in the supplemental material provided as part of the application.

Tetra Tech conducted another test pit investigation in October 2022 to evaluate soils in the County-owned property south of Missouri Avenue as part of the expansion investigation to ensure sufficient, suitable cover material would be available for closure. Fifteen samples were collected for grain size analysis and Proctor compaction tests, three samples were tested for permeability, eight samples were analyzed for field capacity, wilting point, and porosity, and five samples were tested for Atterberg limits. The soils from the 2022 investigation have lower permeability and would be better for final closure then the soils used for the alternative cover application. Therefore, the combination

of the originally identified soils for final closure evaluated in 2016, as well as the additional soils available south of Missouri Avenue would ensure sufficient final cover material is available for closure of Phase 5.

Table 6 summarizes the results of the testing of the shallow soil samples from the three test pit investigations. Laboratory analysis included measurements of field capacity (holding capacity) that represents the amount of moisture the soil can hold against drainage by gravity. As the particle surface area (e.g. finer material) and organic matter increases, the moisture retention capacity of the soil increases resulting in a higher field capacity. The test pit samples from 2016 were collected to the east and northeast of the active landfill and showed an average field capacity of 13.8%. The test pit samples from 2022 collected south of Missouri Avenue had an average field capacity of 37.9%. The difference between these two areas is a higher sand content in the area east and northeast of the active landfill but may also reflect a higher organic content in the southern soils. The difference is field capacity is also reflected in the lower hydraulic conductivity for the southern soils. Given the low precipitation in the area around the landfill and the thickness of soil above the water bearing zone, there is more than sufficient capacity in the soil to retain the annual precipitation.

Table 6: Test Pit Data Summary

Sample No.	Depth (ft)	Soil Type (USCS)	Perme- ability (cm/s)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Passing No. 200	Field Capacity (% Moisture)	Wilting Point (% Moisture)	Porosity (%)	Atterberg Limits PL/LL/PI
1A	2	ML	-	-	-	55%	-	-	-	20/22/2
2A	2	ML	-	-	-	55%	-	-	-	-
2B	10	SM	-	-	-	15%	-	-	-	-
3A	2	SM	-	-	-	49%	-	-	-	-
3B	9	SM	-	-	-	20%	-	-	-	-
4A	2	ML	-	-	-	53%	-	-	ı	18/20/2
4B	10	SM	-	-	-	29%	-	-	-	-
5A	2	SM	-	-	-	47%	-	-	ı	-
5B	9.5	SM	ı	-	-	18%	-	-	ı	-
6A	2	ML	-	-	-	53%	-	-	-	-
6B	10	SM	ı	-	-	23%	-	-	ı	-
7A	2	ML	1	-	-	70%	-	-	1	NP/17/NP
7B	10	SM	ı	-	-	16%	-	-	ı	-
8A	2	ML	-	-	-	60%	-	-	1	NP/24/NP
8B	9.5	SM	-	-	-	26%	-	-	1	-
9A	2	ML	ı	-	-	68%	-	-	ı	15/20/5
9B	10.5	SM	ı	-	-	15%	-	-	ı	-
10A	2	SM	1	-	-	33%	-	-	1	-
10B	6.5	SM	-	-	-	22%	-	-	-	-
11A	2	ML	-	-	-	60%	-	-	-	NP/25/NP
11B	9	SM	-	-	-	36%	-	-	-	-
12A	2	SM	ı	-	-	27%	-	-	ı	-
12B	9	SM	-	-	-	12%	-	-	-	-
13A	2	SM	Ī	-	-	15%	-	-	-	-
13B	5	SM	-	-	-	20%	-	-	-	-

Sample No.	Depth (ft)	Soil Type (USCS)	Perme ability (cm/s)	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Passing No. 200	Field Capacity (% Moisture)	Wilting Point (% Moisture)	Porosity (%)	Atterberg Limits PL/LL/PI
14A	1-3	SM	-	-	-	34.0%	-	-	-	-
14B	4-5	SM	5.63E-04	109.5	15.0%	23.0%	13.13	8.59	-	NP/NP/NP
15A	1-4	ML	4.24E-05	111.0	13.9%	65.0%	17.84	4.37	ı	NP/NP/NP
16A	0.5-1.5	ML	Ī	-	1	64.0%	-	-	ı	-
16B	4-5.5	SM	1.74E-04	113.5	11.9%	41.0%	11.53	6.09	ı	NP/NP/NP
16C	8.5-9.5	SM	-	-	-	36.0%	-	-	1	-
17A	1.5-5.5	ML	-	-	-	51.0%	12.80	6.52	-	-
18A	2-3.2	ML	-	-	ı	67.0%	-	-	ı	-
18B	7-8	SM	1.22E-05	86.0	31.8%	15.0%	-	-	1	42/64/22
TP-1	2-3	ML	-	98.4	18.6%	71.5%	-	-	-	NP/NP/NP
TP-2	6-8	ML	-	96.3	20.5%	67.3%	-	-	ı	NP/NP/NP
TP-3	2-3	SM	2.11E-07	98.9	20.5%	40.2%	35.2	8.85	48.44	-
TP-4	4-5	ML	2.54E-07	91.8	14.4%	64.8%	37.6	6.1	51.82	-
TP-5	2-3	SM	ı	102.9	17.3%	49.0%	-	-	ı	NP/NP/NP
TP-6	2-3	ML	-	97.6	19.3%	71.6%	-	-	1	-
TP-7	4-5	ML	1.87E-07	99.2	19.0%	76.1%	36.3	6.6	48.67	-
TP-8	2-3	SM	-	98.5	18.7%	49.6%	-	-	-	-
TP-9	4-8	ML	-	90.9	22.4%	77.2%	41.6	7.15	53.14	-
TP-10	5-6	ML	-	94.1	21.4%	66.7%	37.4	8.43	49.85	-
TP-13B	0-1	SM	ı	91.7	23.8%	32.6%	-	-	ı	-
TP-14	4-5	ML	Ī	101.6	17.4%	78.4%	36.9	10.8	50.86	NP/NP/NP
TP-15	2-3	CL-ML	=	104.3	16.1%	77.1%	-	-	-	-
TP-16	4-8	ML	-	95.7	20.7%	75.3%	40.8	8.11	53.68	NP/NP/NP
TP-17	1-3	ML	-	97.0	19.9%	72.4%	37.7	6.96	51.15	-

Notes:

Samples 1A through 13B collected by Holladay Engineering Company, ca. 1994; Samples 14A through 18B collected by Tetra Tech, April 2016; Samples TP-1 through TP-17 collected by Tetra Tech, October 2022.

ML - silt; SM - silty sand; CL - lean clay

Atterberg Limits Abbreviations: PL=Plastic Limit, LL=Liquid Limit, PI=Plasticity Index, NP=Non-Plastic.

2.6.2 Drilling Investigations

Several subsurface investigations have been conducted since the early 1990s. These generally served one of two purposes: obtaining information on the hydrogeologic properties of the subsurface materials (usually during groundwater monitoring well installation) and collecting information for geotechnical engineering studies.

Holladay conducted a geotechnical investigation that included five borings drilled in November 1996. Over 80 samples from these borings were collected for various analyses; many of them were tested only for moisture content (Holladay, 1998). The results are included in Appendices E and F of the 1998 Holladay report.

Tetra Tech collected samples from 8 borings drilled in 2021 as part of a geotechnical slope stability evaluation. 21 samples were submitted to a geotechnical soils laboratory for Atterberg limits, 19 samples were submitted for grain size analysis, 9 samples were tested for Proctor compaction testing, 11 samples were tested for friction angle and cohesion, and 5 for unconfined compressive strength. 46 samples were also tested for natural moisture content.

⁻ Indicates test not conducted.

The complete report for the slope stability evaluation is included **Appendix F**. The results of the testing are included in Appendix C of the Tetra Tech report.

Holladay collected 11 core samples from three of the monitoring well borings drilled in 1992. DBS&A collected 56 samples from the five monitoring well borings they drilled in 2011. Sample analysis from both of these investigations concentrated on physical properties of the soil and rock relative to hydrogeologic characteristics of the material.

The samples collected by Holladay ranged from 206 to 479 feet deep. These represent elevations ranging from approximately 2621 to 2320 feet AMSL. The lithologic descriptions of the materials included clayey silt, silty clay, and claystone. Table 5 of the 1994 Holladay report summarizes the pertinent tests and results from their testing. Saturated hydraulic conductivities in these samples ranged from 1.8x10⁻⁹ to 1.0x10⁻⁴ centimeters per second (cm/sec).

The 56 samples from the DBS&A drilling program in 2011 ranged from 39 to 750 feet deep. The elevations represented by the samples ranged from approximately 2793 to 2294 feet AMSL. The samples were analyzed for moisture content, dry bulk density, saturated hydraulic conductivity, moisture characteristics, grain size distribution, specific gravity, porosity (calculated), and Atterberg limits (DBS&A 2014a). The range of saturated hydraulic conductivity across all of the samples ranged from 4.29x10⁻⁹ to 7.24x10⁻⁴ cm/sec. These closely match the range from the 1992 Holladay investigation.

Table 7 presents a summary of the drilling investigations described above. These reports can be reviewed for additional details including the locations of the geotechnical borings.

Reference Report	Borings Drilled	Purpose	Number of Samples Collected	Tests Conducted
Holladay 1994	PB-2 through PB-8 ^(A)	Monitoring Well Installation and Hydrogeologic Characterization	11	Moisture, bulk density, wilting point, specific retention, porosity, absolute and saturated hydraulic conductivity
Holladay 1998	GT-1 through GT-5 ^(B)	Geotechnical Evaluation	87	Grain size distribution, Atterberg limits, bulk density, moisture, triaxial compression
DBS&A 2014a and 2014b	PB-11 through PB- 15	Monitoring Well Installation and Hydrogeologic Characterization	56	Moisture, dry bulk density, saturated hydraulic conductivity, moisture characteristics, grain size distribution, specific gravity, porosity (calculated), Atterberg limits
Tetra Tech 2022	B2021-1 through B2021-8	Geotechnical Evaluation	68	Moisture, grain size distribution, Atterberg limits, friction angle/cohesion, Proctor compaction testing, consolidation, unconfined compressive strength

Table 7: Summary of Drilling Investigations

2.7 GROUNDWATER

Groundwater beneath the Landfill has been comprehensively studied beginning with the Holladay investigations described above and listed in **Table 7**. The Holladay work was followed by investigations conducted by DBS&A, and then by Tetra Tech. **Figure 3** (**Appendix A**) shows the location of the site wells and other wells in the area. Fifteen monitoring wells and one former water supply well have provided information on the site's hydrogeology.

⁽A) Lab samples collected only from PB-2, PB-3, and PB-4

⁽B) Core samples saved from PB-2 were also submitted for analysis

Canyon County has been granted a waiver for conducting groundwater monitoring at the Landfill, but has voluntarily conducted quarterly or semi-annual monitoring. This groundwater monitoring program has been used to study the groundwater flow characteristics and groundwater composition beneath and adjacent to the Landfill. Groundwater at the Landfill has a unique chemistry and is greater than 400 feet deep. The potential for impacts to groundwater from the Landfill are negligible because of the depth to groundwater and the geologic stratigraphy described above.

2.7.1 Groundwater Conditions

Holladay identified three water bearing zones during a literature review and their investigation and referred to them as the Upper Aquifer (UA), Middle Aquifer (MA), and Bottom Aquifer (BA). It should be noted that while these names may correspond to subsurface intervals that produce water, they are not necessarily considered aquifers because of low production rates or quality concerns. DBS&A acknowledged the naming convention used by Holladay and used similar reference names in their 2014 report (uppermost-unconfined aquifer or unconfined aquifer, middle confined aquifer, or confined aquifer, and bottom aquifer).

Monitoring wells have been constructed to characterize the first groundwater encountered at each location. Monitoring wells on the eastern part of the project area are completed in the Upper Aquifer in unconfined conditions. The remainder of the project wells are completed in the Middle Aquifer in confined conditions. The uppermost (unconfined) aquifer has been characterized at monitoring wells PB-5, PB-6, PB-7, PB-9, and PB-10. This water bearing zone is not present beneath the entire Landfill area; it is limited to the area at the northeast corner of the active Landfill and certification area; it is not present above the expansion area. The Middle Aquifer has been characterized by the former shop domestic well (PB-1), former monitoring wells PB-2, PB-3 and PB-4, and current monitoring wells PB-8 and PB-11 through PB-16. **Table 8** is a summary of monitoring well construction information.

Table 8: Summary of Monitoring Well Construction Information

Well Number	Groundwater Source	Screened Interval(s)	Depth to Top of Confining Layer	Total Depth Drilled	Approx. Depth First Water Encountered	Depth to Potentiometric Surface* (March 2023)
PB-1	Glenns Ferry Fm - Confining Layer	577-367	251	658	595	NA - Well Closed prior to 1997
PB-2	Glenns Ferry Fm - Confining Layer	407-420, 515-530	280	557	490	NA- Well Closed prior to 1997
PB-3	Glenns Ferry Fm - Confining Layer	340-350, 410-420, 520-530	263	860	410	NA - Well Closed June 2017
PB-4	Glenns Ferry Fm - Confining Layer	560 - 575, 605 - 620	422	640	565 - 630	NA- Well Closed September 2020
PB-5	Glenns Ferry Fm – unconfined	512.5 - 522.5	630	660	517	NA - Well Closed August 2021
PB-6	Glenns Ferry Fm – unconfined	487.5 - 497.5	620	700	490	NA - Well Closed August 2021
PB-7	Glenns Ferry Fm – unconfined	535 - 555	540	610	535	550.81
PB-8	Glenns Ferry Fm - Confining Layer	377 - 407	240	420	380	286.19
PB-9	Glenns Ferry Fm – unconfined	508 - 543	510**	544	Unknown	529.87
PB-10	Glenns Ferry Fm – unconfined	504 - 534	515**	560	Unknown	525.83

PB-11	Glenns Ferry Fm - Confining Layer	340 - 400	200	420	350 - 400	292.35
PB-12	Glenns Ferry Fm - Confining Layer	480 - 540	140	555	500 - 560	304.27
PB-13	Glenns Ferry Fm - Confining Layer	840 - 900	545	923	850 - 900	728.78
PB-14	Glenns Ferry Fm - Confining Layer	845 - 905	522	923	800 - 840	712.91
PB-15	Glenns Ferry Fm - Confining Layer	790 - 850	565	870	800 - 860	652.76
PB-16	Glenns Ferry Fm - Confining Layer	572-592	262	600	580 - 590	550.83

Measurements are in feet and referenced to ground surface except as noted

2.7.2 Upper Aquifer

The wells set in this zone encountered water between approximately 490 to 535 feet deep, or between elevations of about 2330 and 2400 feet AMSL. The saturated thickness of the Tuana Gravel at these locations is on the order of tens of feet, with groundwater present at depths ranging from about 500 to 550 feet deep. These depths have steadily increased over the duration of groundwater monitoring (groundwater elevations have decreased). The elevation at MW-7 was 2401.18 in September 1992; the elevation in September 2024 was 2388.02. This steady decrease of 0.4 foot per year has been echoed by the other four unconfined monitoring wells. This resulted in MW-5 and MW-6 becoming dry in 2003 and 2021 respectively. The wells were closed in August 2021. Groundwater in the unconfined aquifer flows to the northeast with a hydraulic gradient of approximately 0.05 to 0.06 feet per foot. As shown on **Cross Section A** in **Appendix D**, the confining layer on the eastern side of the landfill also has a downward slope toward to the east. DBS&A's analysis was that the slope of the upper surface of the groundwater in the unconfined aquifer is similar to the slope of the top of the confining layer (DBS&A 2014a).

2.7.3 Middle Confined Aquifer

The middle confined aquifer is located within the blue clay unit and appears to underlie the entire expansion area. Observations during the previous investigations indicated that water within the confining layer is present in deeper fractures within that unit. DBS&A's interpretation was that the material is harder and more brittle with depth and can support open fractures, while the shallower parts of it are more plastic and not able to support open fractures (DBS&A, 2014a).

The middle aquifer is currently characterized by current monitoring wells PB-8 and PB-11 through PB-16. The depth to the top of the piezometric surface ranges from less than 300 feet for wells installed in the lower parts of Wildhorse Canyon, to over 700 feet for wells on the Pickles Butte Ridge. Groundwater in the middle confined aquifer moves to the southwest with a gradient of approximately 0.03 to 0.04 feet per foot.

The depth to the water bearing zone in the middle confined aquifer wells ranges from over 300 feet to almost 900 feet BGS, which corresponds to elevations ranging from 2125 to 2340 feet AMSL. The potentiometric surface in these wells in March 2023 ranged from 2345 to 2423 feet AMSL, indicating the presence of a positive pressure head. This positive head is present at each of these wells, ranging from approximately 35 feet at PB-16 to approximately 225 feet at PB-12. This positive head exerts an upward pressure on the confining layer and would this inhibit the downward migration of fluids from above the confining layer and into the water bearing zone.

^{*}Referenced to top of casing, typically about 2 feet higher than ground surface

^{**}Based on interpretation from driller's log

Monitoring wells PB-4 and PB-8 were installed in 1992 and provide the longest duration of piezometric levels in the middle confined aquifer. The elevations of the piezometric surface over the duration of the monitoring program at these two locations have had different trends. The piezometric surface elevation at PB-4 decreased by 0.5 foot per year through April 2007. After that time, the level stabilized. PB-16, installed as a replacement of PB-4, has also shown stable levels since it was installed in 2020. Contrasting this is the piezometric surface at PB-8 which has shown a steady increase in elevation over time, with an average increase of 0.4 foot per year. PB-11, located approximately 1200 feet west of PB-8 and also on the north side of Wildhorse Canyon, has shown a similar increase. Monitoring wells PB-12 through PB-15 are middle confined aquifer wells located on the south side of Wildhorse Canyon. These have shown a greater increase in the elevation of the piezometric surface over time, averaging over 0.7 foot per year.

Canyon County Solid Waste (CCSW) has acquired two properties on the south side of Deer Flat Road that were formerly used as homesteads or residences. Each of these has a domestic well that provides information on the middle confined aquifer north of the existing monitoring well network. Property formerly owned by Don and Shelly Stuart includes a well that is approximately 1800 feet north of monitoring well PB-8. The driller's log indicates that the top of the piezometric surface was 330 feet BGS. This equates to a piezometric surface elevation of approximately 2419 feet AMSL. Property formerly owned by David Snell includes a well that is approximately 1400 feet north of monitoring well PB-11. The driller's log indicates that the top of the piezometric surface was 370 feet BGS. This equates to a piezometric surface elevation of approximately 2367 feet AMSL. Both of these values agree with the groundwater depth and migration direction of water in the middle confined aquifer. The driller's logs for each of the wells show hundreds of feet of unsaturated clay or sandstone above the middle confined aquifer, which is also in agreement with observations from the previous investigations at the Landfill.

2.7.4 Lower Confined Aquifer

Holladay defined the lower confined aquifer as the next water bearing zone beneath the blue clay. Their interpretation appears to have been mainly based on inspection of area domestic and irrigation well logs showing deeper water-producing zones of sand or rock beneath the material described as blue clay on the drillers' logs. Holladay's review of the logs for wells that penetrate the lower confined aquifer showed that there is usually clay units that do not produce water between the middle confined aquifer and the lower confined aquifer (Holladay, 1994).

2.7.5 Aquifer Recharge

Recharge to the upper aquifer is postulated to be from surface sources, including Lake Lowell, surface irrigation, and possibly irrigation canals. Precipitation is not likely a significant contribution to recharge because of the low annual precipitation for the area. The middle confined water bearing zone is believed to be recharged by underflow from geothermal water that lies beneath the blue clay. Anderson and Wood (1981) theorized that recharge to the thermal system may be taking place slowly over a long period of time with little present day recharge. A depletion of heavy isotopes in the geothermal waters may indicate that recharge to this aquifer occurred more than 10,000 years ago.

2.7.6 Groundwater Quality

Groundwater monitoring has been conducted using the monitoring wells installed at the site since April 1995. Through 2016, groundwater samples were collected using stainless steel bailers. Beginning in December 2017, groundwater samples have been collected using dedicated pneumatic submersible pumps under a site specific groundwater monitoring plan that was last updated in November 2023 (Tetra Tech). Groundwater monitoring was conducted on a quarterly basis with the submersible pumps through September 2019. Since that time, groundwater monitoring has been conducted semi-annually, with monitoring events typically occurring in March and late August/early September. A monitoring report has been prepared summarizing the results of each sampling event. These reports have been submitted to the DEQ and should be referenced for the sampling results and statistical analysis.

2.7.7 Groundwater Quantity

The yield from the groundwater monitoring wells at the site is low to very low. Regionally, the production from wells in the upper unconfined aquifer vary spatially. Observations made at site monitoring wells completed in this unit (PB-5, PB-6, PB-7, PB-9 and PB-10) indicates that recharge takes place in a matter of hours to days. This is contrasted with monitoring wells completed in the middle-confined unit, where the time to recharge after bailing or pumping in monitoring wells PB-1, PB-2, and PB-3 was noted to take months (Holladay, 1994). The middle-confined unit is the first water bearing zone underlying the expansion area.

2.8 VERTICAL DISTANCE – WASTE TO WATER

The geologic cross sections in **Appendix D** includes information on the bottom of waste, the hydraulic head in the water bearing unit (referred to as the potentiometric surface), and the top of the confined aquifer (water bearing zone). This provides a visual of the distance between the bottom of waste and water bearing zone for compliance with §39-7409 (c)(i), Idaho Code - Standards for Design that requires solid waste should not be deposited within fifty (50) feet of the seasonal high ground water elevation in the uppermost aquifer. For example, on **Sheet X-104**, monitoring well PB-8 will be within the excavation and will be abandoned as discussed in *Section 3.4*. Based on data from September 2024, which is representative of historical data at the site, the potentiometric surface is 251 feet below the bottom of the waste and the water bearing confined aquifer is 357 feet below the bottom of waste. Similarly, on **Sheet X-108** that is near boring B2021-7, data from September 2024, the potentiometric surface is estimated to be 270 feet below the bottom of the waste and the water bearing confined aquifer is estimated to be near 375 feet below the bottom of waste. This demonstrates that the proposed expansion exceeds the requirements in §39-7409 (c)(i), Idaho Code for the distance between waste and the upper most water bearing zone.

2.9 GEOTECHNICAL EVALUATION

Tetra Tech conducted a geotechnical study in 2021 and 2022 to support the lateral expansion of the landfill. The investigation evaluated the proposed permanent excavation slopes that are planned to be on the order of 3H:1V to 4H:1V, with maximum cut depths on the order of 150 to 165 feet. The full report is available in **Appendix F**.

Tetra Tech previously completed a slope stability evaluation that included static and seismic stability evaluations for Phases 2 through 4 of the Canyon County Landfill (October 7, 2015). Tetra Tech also reviewed the previous evaluations conducted by Holladay in 1998 and conducted a seismic survey in December 2021. The survey was designed to image and delineate a suspected fault in support of the proposed expansion program at the PBSL. The seismic survey is discussed in *Section 2.10* and the report is available in **Appendix G**.

For the stability evaluation, Tetra Tech incorporated the following information: 1) the soils strength data available from previous analyses, 2) materials strength properties assigned based on the laboratory testing of the geotechnical samples collected in 2021 and also correlated from the Standard Penetration Testing (SPT) N-value (blow count) data collected during the geotechnical drilling and previous well installation reports.

Based on findings from this and former site investigations, the subsurface conditions beneath the areas of proposed landfill expansion are assumed to generally consist of silty and clayey sand, clay, and gravel overlying the Glenns Ferry Formation (300 to 950 feet thick), which includes younger lacustrine and fluvial sediments. The surrounding local geology includes an igneous basalt group of the Hat Butte-McElroy Butte type¹ that was not encountered in area of the proposed expansion.

Slope stability and pseudo-static analyses were performed using the computer program Slide2 (2020), developed by Rocscience, Inc., to determine the factors of safety (FS) of critical slip surfaces using both circular (rotational) and block failure analyses and vertical slice limit equilibrium methods. Circular failures can be viewed as a soil 'slump' with a remnant head 'scarp' or drop in elevation where the slide started, and a resultant 'hump' or bulge at

the slide terminus. A block failure represents a large mass or 'chunk' of soil failing outwardly as a larger intact mass. Where the pseudo-static analysis indicated a factor of safety of equal to or less than 1.3 (industry standard for pseudo-static factor of safety for landfills), the internal slope of the landfill cell prior to waste emplacement was evaluated using the Newmark displacement analysis method to determine a range of potential seismic-induced deformations of the refuse mass.

Results of the slope stability evaluations indicate that the preliminary design for the expansion phases will meet the requirements of the Idaho Administrative Rules IDAPA 58.01.06 for the Idaho DEQ's administration of MSWLF. The analyses indicate static FS values on the order of 1.38 to 2.43, and 1.83 to 3.11 for circular and block failure respectively, while the pseudo-static FS values were on the order of 0.99 to 1.88, and 1.45 to 2.16 for circular and block failure, respectively. Subsequent seismic deformation analyses indicate maximum probable displacements on the order of 0.25 to 3.19 inches (0.5 to 8 cm) for the anticipated peak ground acceleration of 0.12g generated during the design seismic event at the project site. In general, the seismic displacement analyses indicate permanent seismic-induced displacements within the tolerances 6 to 12 inches (15 to 30 cm) that are typically considered acceptable for design of landfill systems with no liner.

Multiple slope angles were considered for Tetra Tech's slope analyses, ranging from 2.5:1 to 4:1 depending on the soil and bedrock types at each location. Based on Tetra Tech's analysis and the required FS's, the following two slope angles are recommended for the preliminary landfill site grading plans:

3H:1V: for the majority of the site slopes

4H:1V: where silt is encountered (Section F discussed below)

The 4:1 slope was analyzed and recommended for Section F because silt was interbedded between poorly-graded sand and fine sand and created a weakened soil profile. In areas where a high concentration of silt is predominant during construction, a slope of 4H:1V is recommended for cut areas. The soil profile within Section F was identified as having a high concentration of silt in the upper 135 feet of the proposed slope cut, thus decreasing the factor of safety. There are other areas where the silt was present; however, based on the analysis the proposed cut slope of 3H:1V was allowable for the silts as they were interbedded into stronger soil deposits. As the stratification is exposed during excavation of future cells, it is recommended that the soil conditions be reviewed to verify they match the design criteria.

The slope with compacted refuse were modeled to confirm the slope angles that were allowable during the backfilling process. Slopes of 3H:1V are recommended as a maximum angle for the backfill process. A steeper slope of 2.75H:1V was modeled as an iteration to confirm the recommendations, and in this situation the pseudo static conditions produced a factor of safety below 1.3 and is not recommended.

Portions of the soil profile were defined as claystone and have unconfined compression strengths higher than the site soils; however, the claystone had interbedded layers of softer soils, and for this reason Tetra tech has treated these areas as a soil rather than a rock and also recommends a slope cut of 3H:1V for the claystone zones.

2.10 SEISMIC STUDY

Tetra Tech conducted an active-source 3D seismic survey at the site in December 2021. The seismic survey was designed to image and delineate a suspected fault in support of the proposed landfill expansion. Seismic imaging over the suspected fault area was attained by using 3D seismic velocity tomography and reflection processing. The complete report is available in **Appendix G**.

The results from the 3D survey revise the location and structure of the USGS mapped NW-striking NE-dipping WSRP normal fault across the project site. The new 3D imaging of fault structure demonstrates that faulting along the USGS NW-striking NE-dipping WSRP normal fault is tapering to zero west of geotechnical boring B2021-5 and that residual fault deformation is distributed amongst a network of tip splay faults across the project site. Thus, primary normal fault slip is unlikely east of the west edges of the tip splay faults. Instead, any fault slip associated with earthquakes along the USGS mapped NW-striking NE-dipping WSRP normal fault will likely partition into attenuated fault slip among the splay faults within the project site. There may be additional limited extent (strike

lengths < 200 feet) fault splays and relay fault within or outside of the 3D seismic volume extent. Distributed small stepover and relay faults commonly occur between large fault stepovers.

Typically, in highly weathered rock or in poorly consolidated sediments, fault slip transitions to distributed deformation or bedding flexure prior to reaching the ground surface. Tip splay faulting may decrease with decreasing depth above the water table and transition to flexure or distributed deformation. This is the most likely scenario for the PBSL project site. The projected intersection of the SW-dipping tip splay fault at a depth of 81 feet in geotechnical boring B2021-5 near the base of a zone of distributed broken clay deformation, suggests the fault has produced distributed deformation in the 66-86-foot depth interval of borehole B5. Since the age of this depth interval in geotechnical boring B2021-5 is probably much greater than the ~100 ka overlying unfaulted geologic strata used by Personius (2003) to constrain the most recent age of active faulting along the WSRP normal faults, this possible fault deformation observed in borehole B5 in the 66-86-foot depth interval is likely older than 100 ka.

The USGS NW-striking NE-dipping WSRP normal fault that is mapped as extending into the project site from the northwest does not appear to displace ~100ka age sedimentary units (Personius, 2003). From a probabilistic perspective there seems to be little possibility of significant shallow (< 200 feet) faulting within the project site southeast of the west edges of the mapped tip splay faults (negligible nonzero fault slip for annual exceedance probabilities greater than 0.01%). To best characterize the potential movement and absolute location of faulting would require geologic mapping during excavation of a future landfill cell. The current expansion application does not include the area identified for additional investigation and would need to be considered if future lateral expansions of the landfill are considered in the area of interest. This could be done when the area is excavated as a borrow source for cover material. At that time, geologic mapping of the fault could be conducted, with particular attention to identifying narrow fault zones with evidence of recent activity and areas of potential distributed deformation. Careful sampling can yield materials suitable to date the most recent age of fault activity to determine if any detected fault activity is recent (unlikely) or > 100 ka in age (most likely).

3.0 LATERAL EXPANSION DESIGN

The requested expansion design expands the current footprint of the landfill from 116.7 acres to 200.5 acres, which covers an additional 83.8 acres. The design primarily expands the landfill to the west of the current footprint, and then covers Phase 3 and incorporates the majority of Phase 4.

The excavation and final surface design was based on existing conditions and limitations, which included:

- Maintain the Phase 5 expansion within the existing landfill gas (LFG) header pipeline to the maximum extent possible;
- Maintain the current location of the condensate tank;
- Utilize the borrow source excavation area that provides daily cover for Phase 3;
- Maintain a 2.5% minimum floor slope along the bottom of the waste;
- Adhere to the geotechnical design criteria of 4H:1V for the outside slopes;
- Incorporate as much of the existing approved Phase 4 design;
- Maintain the peak height of the landfill at or below the level of Phase 4 to minimize visibility;
- Maintain access along Perch Road, which extends from the scale house to the lower areas for waste placement during both the excavation and waste placement portions of Phase 5 for as long as possible;
- Allow for wider operating floors for waste placement to improve operational efficiency and allow separation
 of commercial haulers and the public;
- Incorporate a stormwater pond inside the LFG header to minimize run-off;
- Incorporate a new road along the northside of the expansion for access as the lower portion if filled with waste; and
- Relocate the storage of white goods, concrete, clean wood, and green waste from the landfill face to reduce maintenance of the intermediate cover.

These criteria were used to determine the depth of excavation to the south, west, and northwest and determine the potential air space available from the expansion. **Appendix H** contains the design drawings. The excavation plan

is shown on **Sheet C-101**, and the lowest elevation of waste is 2640 feet amsl. The excavation would include 1,806,895 cubic yards of soil. Although some of the soil would be utilized for daily the cover, the site is soil heavy and a significant portion of the soil would need to be relocated. The County owns the land south of Deer Flat Road and east of the portion of Perch Road that extends off Deer Flat Road. This area is a low spot and is currently used by OHV for recreation. The area was evaluated and has the capacity required for relocation of the clean soil.

Sheet C-102 (**Appendix H**) shows the Phase 5 top of waste plan with a maximum elevation of 3000 feet amsl. Intermediate and final cover would be placed on the surface shown. This results in an additional 24,360,554 cubic yards of air space. If approved, the landfill would modify operations to start filling Phase 5 on the western side of the landfill and build successive lifts going up to the east, which would delay the completion of Phase 3 and Phase 4. This would improve operational efficiency by allowing wider lifts, facilitate separation of commercial haulers and the public, and reduce modification to traffic flow. The northern and southern sections would be tied into the design based on elevation of the lifts. Based on past acceptance rate, if it is assumed that 370,000 tons of waste is accepted per year this will add approximately 36 years of operational life above the remaining capacity available in Phase 3 and Phase 4, assuming no growth. However, if it is assumed that the tonnage rate increases by 1% per year, Phase 5 would only provide approximately 29 additional years.

Sheets C-103 to **Sheet C-107** (**Appendix H**) shows various cross sections through the proposed expansion and differentiates between Phase 3 and Phase 4 that are already approved and Phase 5. **Sheet C-106** shows that with lateral expansion, the tie-in point for the top of the landfill would be further west then under the approved Phase 4 design and a small portion (114,264 cubic yards) of the Phase 4 design would not be utilized.

3.1 LANDFILL GAS SYSTEM

3.1.1 Regulatory Framework

State and Federal regulations require that landfill gas (LFG) generated by the facility be controlled to prevent migration beyond the property boundary, and to mitigate surface emissions beyond certain limits (500 parts per million by volume). PBSL operates under Air Quality Permit T1-2017.0049, dated March 1, 2018. PBSL is currently operating under a continuance of the permit. An application for renewal of the permit was submitted on August 30, 2022. A draft of the new permit (T1-2022.0038) was received from DEQ on September 24, 2024, and is currently being reviewed. The waste capacity of the PBSL is over 2.5 million megagrams (Mg), making it a major source of hazardous air pollutants (HAPS).

On June 21, 2021, the Federal Plan Requirements for Municipal Solid Waste Landfills that commenced construction on or before July 17, 2014, and have not been modified or reconstructed since July 17, 2014 (Federal Register, Volume 86, No. 97, page 27756, May 21, 2021) under authority of the Clean Air Act became effective. These rules reduced the allowable NMOC emissions rate for landfills before a landfill gas collection system must be installed from 50 Mg/year to 34 Mg/year.

In May 2019, the site specific NMOC concentration was 422 parts per million (ppm) based on the Tier 2 Testing for Non-Methane Organic Compounds (NMOC), which resulted in an annual NMOC emission rate of 37.3 Mg/year. Therefore, as a result of the change in regulations in 2021, PBSL was required to install a Gas Collection and Control System (GCCS).

3.1.2 Gas Collection and Control System

In response to the change in regulations, PBSL commissioned the design and installation of a GCCS that covers landfill operations through the completion of Phase 3. A permit to construct (PTC) was submitted to DEQ on December 23, 2022, for a candle stick flare associated with the GCCS design. The PTC for the GCCS system was approved on July 28, 2023. The GCCS consists of 14 vertical wells, 17 horizontal collectors (10 installed and 7 future), associated pipelines, control valves, and pneumatic condensate pumps that are tied in to a 10-inch header pipe that extends around the landfill perimeter. **Sheets C-101** and **C-102** (**Appendix H**) show the existing header pipe that is tied into a gas handling system consisting of 2 variable drive blowers, condensate knock-out vessel,

and control panel. The vacuum blowers draw the LFG from the collection points to the control system. All LFG extracted by the GCCS is combusted by a 1,360 standard cubic feet per minute (scfm) flare. The system became operational on March 19, 2024.

3.1.3 Expansion of the Landfill Gas System

One objective of the expansion design was to stay within the existing landfill gas header pipeline and still be able to tie-in future horizontal LFG collectors. This would also minimize modification to the location of currently in-place manifolds, sumps, or highpoint valves. This was possible for the majority of the expansion, except in the southern area where it was necessary to tie into the hillside to promote positive drainage, minimize stormwater run-on from the radio antenna area, and improve capture of run-off water. In addition, it also provided additional waste capacity.

Sheet C-108 (Appendix H) shows how the landfill gas header line will need to be extended as part of the expansion design. The drawing shows the location of existing blind flanges where the extension would tie into to the existing header line. Sheet C-108 also shows the location of an existing manifold for horizontal collectors from Phase 3 that will need to be relocated.

New vertical and horizontal collectors were not designed as part of the expansion design at this time. This is because the system just became operation in 2024, the current design extends through the life of Phase 3, and that the current flare only has an estimated lifespan of 10 years (Tetra Tech 2022). The current flare is capable of processing up to 1,360 scfm. In September 2024, the flare was operating at a flow rate of 950 scfm. The modeled peak flow rate of 1,148 scfm was calculated during the design phase and was estimated to occur in the year 2034 but is dependent on the tonnage and type of waste landfilled (i.e. organic versus C&D). As a result, as operational data is obtained, it will be necessary for the landfill to modify the Gas Collection and Control System (GCCS) system from a candlestick flare to a larger flare or develop a waste to energy program for the LFG (e.g. engines or liquified natural gas). Therefore, design of additional vertical and horizontal LFG collectors will be required as part of the system upgrade and will be designed based on operational data in the future. Any modifications to the GCCS system will be submitted to DEQ and any required air permits (e.g. Permit to Construct) will be submitted prior to any modifications to the existing system.

3.2 HYDROLOGIC ANALYSIS

PBSL reviews, and if required updates the stormwater plan approximately every five years based on the location of the active face and how well existing controls are working. The last update was completed on August 5, 2020, for Phase 3 (Tetra Tech 2020). The Phase 3 design was used as the starting point for the final Phase 5 design because the location of ponds and mechanism for drainage along bench roads are effective for the management of stormwater and minimizing erosion at the PBSL.

For the final Phase 5 design, Tetra Tech performed a detailed rainfall-run-off hydrologic analysis to estimate peak run-off rates and volumetric inflows for the 25-year, 24-hour design storm utilizing the National Resource Conservation Service (NRCS) Curve Number (CN) Method and the United States Army Corps of Engineers' (USACE) HEC-HMS software. The analysis presented in this section is the end point of the stormwater controls for Phase 5. Interim reviews and potential updates will be required between when the expansion design is approved, landfill operations are modified to more efficiently fill the landfill, and the design presented in this section is constructed. The parameters used for the hydrologic analysis and results used for the final hydraulic/stormwater management structures for the final Phase 5 design are provided in the following sections.

3.2.1 Rainfall Data

Site-specific rainfall data for the 25-year, 24-hour storm were obtained from the National Oceanic and Atmospheric Administration's (NOAA) Precipitation-Frequency Atlas. NOAA Atlas 14 Volume 12 Version 2 was released in September 2024 (https://hdsc.nws.noaa.gov/pfds/) and indicates that the precipitation at the landfill for the 24-hour, 25-year storm event would be between 1.47 to 1.83 inches with a 90% confidence value of 1.64 inches. Stormwater controls for the landfill since 2016, have been calculated based on the NOAA Precipitation-Frequency Atlas of the Western United States, Atlas 2, Volume V-Idaho which estimates the precipitation for the 25-year, 24-hour storm

event as 1.8 inches (NOAA, 1973). Since the historic precipitation value used at the landfill is conservative (i.e. assumes a higher precipitation rate) and within the estimated range of the NOAA Atlas 14 of 1.47 to 1.83 inches, a precipitation value of 1.8 inches for the 24-hour, 25-year storm event was used for the model.

3.2.2 Drainage Area Delineation

The drainage area for PBSL was delineated using client-provided survey data and aerial imagery from September 2023 and the final Phase 5 design utilizing AutoCAD Civil 3D software. The landfill conducts an aerial survey annually on September 30th of each year to reflect changes and modifications based on operations and to evaluate landfill performance. The entire drainage area reporting to existing or proposed stormwater structures encompasses approximately 247.9 acres. The drainage areas were delineated to account for the areas that report to the various existing or proposed stormwater management structures such as channels, culverts, and retention ponds.

Drainage area soils and land cover types were characterized by assigning Curve Numbers to each respective drainage area. Landfill cover material has been assigned a Curve Number of 70 and is assumed to be vegetated. The entrance to the landfill consists of paved/gravel roads, buildings, and other impermeable surfaces. As such, this area can be expected to have a higher run-off potential. For the site entrance area, a Curve Number of 85 has been assigned. Run-on areas upgradient of the landfill have been characterized as "Sagebrush with grass understory" and has been assigned a Curve Number of 51. A full list of assigned drainage areas, Curve Numbers, and landcover characteristics are provided in **Tables 1, 2, 3 and 4** of **Appendix I**. The drainage area delineations are shown on **Sheet C-109** and **C-110** (**Appendix H**).

3.2.3 Time of Concentration

The NRCS Watershed Lag Method was used to calculate concentration times for each individual subbasin. This method was developed for use in nonurban watersheds and accounts for a lag time for each subbasin that distributes the respective run-off hydrograph peaks as they occur naturally without reaching the design point simultaneously (NRCS 2010). The NRCS Watershed Lag Method calculates time of concentration using the following equation referenced from Part 630, Chapter 15, of the National Engineering Handbook (NRCS 2010):

$$T_c = \frac{L^{0.8} (S+1)^{0.7}}{1140Y^{0.5}}$$

 T_c = Time of Concentration, hr

L = Flow Length, ft

S = Maximum Potential Retention, in

Y = Average Watershed Land Slope, %

Referring to the NEH Part 630, the relation between lag and time of concentration can be expressed as L (lag time) = 0.6T_c, where the lag time is a factor of the time of concentration multiplied by 0.6. The lag time is defined as the delay between the time run-off begins until it reaches its peak.

3.2.4 Hydrologic Model (HEC-HMS)

Tetra Tech utilized the USACE's HEC-HMS software to simulate the 25-year, 24-hour storm event using the NRCS CN Method. The hydraulic evaluation of the proposed stormwater management structures used an estimated Soil Conservation Service (SCS) Type II rainfall distribution, peak run-off rates and inflow volumes for the study area. The following parameters and assumptions were used to quantify the estimated peak flows and inflow volumes:

- Precipitation: Based on the site's location, an SCS Type II Storm was selected as the synthetic rainfall distribution
- Run-off Volume: The SCS CN Method was used to model the estimated run-off

 Direct Run-off: The model used the SCS Unit Hydrograph transform method with a Standard (PRF 484) graph type

Results from the HEC-HMS hydrologic model is provided in **Appendix I**.

3.3 HYDRAULIC ANALYSIS

Based on the calculated peak flows and volumes that report to the proposed stormwater management structures, the capacities of each proposed structure were evaluated to confirm they can safely capture, convey, and store the estimated run-off from the 25-year, 24-hour design storm event.

3.3.1 Regulations

Stormwater discharges are regulated by the Environmental Protection Agency (EPA) under Code of Federal Regulations (CFR) Title 40 sections 122, 123, and 124 (National Pollutant Discharge Elimination System (NPDES) Permit Application Regulations for Storm Water Discharges). These rules have been in effect since December 17, 1990, and apply to landfills that are subject to regulation under subtitle D of Resource Conservation and Recovery Act (RCRA). The rules cover the discharge of stormwater that flows from a waste containing area of the facility to any offsite collection system. If the stormwater runoff from a waste containing areas is collected and treated on-site these regulations do not apply. The design collects stormwater runoff from the waste containing area of the Site and routes them to onsite retention basins through a series of benches, ditches, and culverts.

Per the e-CFR website, amended September 24, 2024, the following surface water requirements shall apply under Title 40, Chapter 1, Subchapter I, Part 258, Subpart C, §258.26:

Title 40: Protection of Environment

PART 258 - CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS

Subpart C - Operating Criteria

§258.26: Run-on/run-off control systems.

- (a) Owners or operators of all MSWLF units must design, construct, and maintain:
 - A run-on control system to prevent flow onto the active portion of the landfill during the peak discharge from a 25-year storm;
 - (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm.
- (b) Run-off from the active portion of the landfill unit must be handled in accordance with §258.27(a) of this part.

3.3.2 Stormwater Channels and Run-On Control

The lateral expansion of the PBSL will require additional stormwater controls to effectively manage stormwater runoff. Stormwater controls for the landfill expansion have been designed to capture most of the run-off except for a small area on the eastern slopes. Run-off from this eastern area will flow into the existing gravel pit that is within the controlled access for the site.

Four stormwater channels are proposed around the perimeter of the landfill expansion to capture and convey runoff. The location of the proposed channels are shown on **Sheet C-109** (**Appendix H**) and the channel dimensions are shown on **Sheet C-113** (**Appendix H**). The four channels are as follows:

• North Channel: Triangular shaped (V-ditch) stormwater channel that will capture stormwater run-off from the northern benches of the landfill and convey the captured run-off to the proposed Northwest Pond. This channel will parallel the outer edge of the existing landfill gas header road. A 1-ft tall earthen berm should be constructed along the outer edge of North Channel to prevent run-on from upgradient areas.

- East Channel: A trapezoidal shaped stormwater channel that captures stormwater from of portion of the landfill
 eastern slopes and conveys run-off to the proposed Eastern Pond. This channel will be constructed along the
 outside edge of the existing road.
- West Channel 1: A trapezoidal shaped stormwater that captures stormwater from the southern benches of the landfill in addition to some run-on from an upgradient area. This channel will convey captured run-off to an existing drainage west of the landfill within the controlled access area.
- West Channel 2: A triangular shaped (V-ditch) channel that runs parallel to the inside edge of the existing landfill
 gas header road. This conveyance channel with direct captured run-off from a small portion of the landfill
 southern benches and tie into a bench drainage channel network.

Additional internal stormwater channels that will be required include are shown on **Sheet C-109** (**Appendix H**) and include:

- Half Corrugated Metal Pipes (CMP): CMPs will be installed along the fill slopes of the landfill to drain water off the face of the landfill. The half CMPs should include a region at the bottom of each lift (i.e. distance between stormwater benches or approximately 40 ft) for transition to connect to the next adjoining earthen channels and/or half CMP down slope drainage channel. Energy dissipation devices (e.g. rock gabions or concrete splash walls) should be installed on the side opposite their respective adjoining earthen channels as required based on the length of the channel and if required to prevent erosion after a significant storm event. These features will serve to reduce channel velocity prior to their respective junctions.
- Bench Drainage Channel: Triangular shaped (V-ditch) conveyance channels along the benches of the landfill (Sheet C-113, Appendix H). These drainage channels convey captured run-off from the landfill slopes to the half-CMPs or the North and West Channels.

An existing series of culverts and drainage channels exist adjacent to the landfill entrance and scale house area. Run-off from the southeastern slopes of the landfill will be captured and conveyed via this existing stormwater conveyance system to the existing Southeast Pond that will be modified as part of the design. Except for West Channel 1, all stormwater is directed to on-site retention ponds.

Run-on to the landfill is expected to occur from an upgradient area west of the landfill and will be captured by West Channel 1 then diverted away from the landfill. Minor run-on along the northern perimeter of the landfill is expected. As such, a 1-ft tall run-on berm on the outside edge of the North Channel is proposed. Along the northwestern perimeter, downstream of West Channel 1, minor run-on may occur. A 1-ft tall run-on berm should be installed on the inside edge of the existing road, terminating at the proposed North Pond. Refer to **Sheet C-110** in **Appendix H** for the location of the run-on berms.

A hydraulic analysis using Bentley FlowMaster hydraulic calculator software and Manning's Equation for openchannel flow were used to determine minimum geometric and hydraulic properties for proposed channels. Hydraulic results for the channels are presented in **Table 9** below.

Table 9: Stormwater Channels Design Properties

Stormwater ID	Peak Discharge (cfs)	Length (ft)	Geometric Shape	Side Slopes (XH:1V)	Bottom Width (ft)	Minimum Design Depth (ft)
North Channel	0.2	3,125	Triangular	2	N/A	1
East Channel	1.2	680	Trapezoidal	2	1	1
West Channel 1	1.6	2,370	Trapezoidal	2	1	1
West Channel 2	0.2	710	Triangular	2	N/A	1
Bench Drainage Channel	0.8	Varies	Triangular	2	N/A	1

3.3.3 Stormwater Retention

Three retention ponds are proposed and designed to store captured runoff from the 25-year, 24-hour storm event. They are designated the Northwest Pond, East Pond, and Southeast Pond, and were designed to minimize discharge from the project site.

The Northwest Pond currently exists and was designed for the Revised Phase 3 design in 2020. The current pond will be expanded as Phase 3 is built and will be completed when the fill for Phase 3 starts to tie into the Phase 2 slopes. Stormwater is conveyed to the pond through a series of channels and CMPs. The northwest pond will be retained as part of the expansion design to collect runoff from a large portion of the north and northwest landfill slopes. Based on the final grading of the expansion design, less stormwater will be conveyed to the pond at the completion of the expansion than during the end of Phase3 construction. Rather than modify the pond, it will be oversized for the expansion design and will have more than ample capacity to store the estimated inflow volume.

The East Pond has been designed to store captured run-off from the eastern slopes of the landfill. Planned construction, existing roadways, and spatial constraints limit the East Channel from capturing all runoff from the eastern landfill slopes. Run-off from the eastern landfill slopes that would otherwise be directed to the East Pond will likely flow into the existing gravel pit.

The Southeast Pond is a modification of the existing pond near the site entrance. Specifically, the Southeast Pond will be deepened by excavating a foot from the existing pond bottom, the existing dam will require minor regrading and the addition of a foot of fill to raise the dam crest elevation. Although these modifications provide sufficient capacity for the 25-yr 24-hr storm event, an overflow pond was added downstream of the Southeast Pond to address concerns of neighboring landowners should the site experience sequential low-probably storms. The Southeast Pond and the overflow will be connected via a 3-ft wide x 2-ft deep trapezoidal overflow weir. Between the two ponds, there is more than ample capacity to store captured runoff from multiple 25-yr 24-hr storm events.

Stage-storage data for the four ponds are provided in **Tables 10, 11, 12** and **13** below. **Sheet C-111** and **Sheet-112** (**Appendix H**) show the pond cross sections.

Table 10: Northwest Pond Stage-Storage

Stage (ft)	Area (ac)	Incremental Volume (ac-ft)	Cumulative Volume (ac-ft)
2616	0.99	0.00	0.00
2617	1.05	1.02	1.02
2618	1.11	1.08	2.10
2619	1.17	1.14	3.24
2620	1.23	1.20	4.44
2621	1.29	1.26	5.70
2622	1.36	1.33	7.03
2623	1.43	1.39	8.42
2624	1.49	1.46	9.88
2625	1.56	1.53	11.41
2626	1.64	1.60	13.01

^{*}Required capacity = 1.1 ac-ft

Table 11: East Pond Stage-Storage

Stage (ft)	Area (ac)	Incremental Volume (ac-ft)	Cumulative Volume (ac-ft)
2909	0.00	0.00	0.00
2910	0.12	0.06	0.06
2911	0.14	0.13	0.19
2912	0.15	0.14	0.34
2913	0.17	0.16	0.49
2914	0.18	0.17	0.67

^{*}Required capacity = 0.3 ac-ft

Table 12: Southeast Pond Stage-Storage

Stage (ft)	Area (ac)	Incremental Volume (ac-ft)	Cumulative Volume (ac-ft)
2895	0.00	0.00	0.00
2896	0.01	0.00	0.00
2897	0.06	0.03	0.04
2898	0.09	0.07	0.11
2899	0.12	0.10	0.21
2900	0.14	0.13	0.34
2901	0.17	0.16	0.50
2902	0.20	0.18	0.68
2903¹	0.23	0.21	0.89
2904	0.26	0.25	1.14
2905	0.31	0.29	1.43

^{*}Required capacity = 1.1 ac-ft

Table 13: Southeast Overflow Pond Stage Storage

Stage (ft)	Area (ac)	Incremental Volume (ac-ft)	Cumulative Volume (ac-ft)
2892	0.00	0.00	0.00
2893	0.01	0.00	0.00
2894	0.02	0.01	0.02
2895	0.04	0.03	0.05
2896	0.06	0.05	0.10
2897	0.09	0.07	0.17
2898	0.11	0.10	0.27
2899	0.14	0.13	0.40

¹⁰verflow weir invert elevation

Stage (ft)	Area (ac)	Incremental Volume (ac-ft)	Cumulative Volume (ac-ft)
2900	0.17	0.15	0.55
2901	0.19	0.18	0.74
2902	0.22	0.21	0.94
2903	0.25	0.24	1.18
2904	0.28	0.27	1.45
2905	0.33	0.31	1.76

3.3.4 Stormwater Culverts

The proposed North and East Channel alignments include road crossings and as a result a culvert for each of the channels is required to convey flow through these roads.

A hydraulic analysis using the U.S. Federal Highway Administration's HY-8 Culvert Hydraulic Analysis Program was completed to adequately size culverts which are to be used to convey captured runoff under existing and proposed roads.

The proposed culverts were analyzed as corrugated metal pipes with projecting inlet and outlet configurations. Culvert properties are presented in **Table 14** below. HY-8 culvert analysis results are provided in **Appendix I**.

Table 14: Stormwater Culvert Properties

Culvert ID	 Material	Shape	Diameter (ft)	Length (ft)	Inlet Invert (ft)	Outlet Invert (ft)
North Culvert	Corrugated Metal Pipe	Circular	0.5	32	2,723.81	2,723.20
East Culvert	Corrugated Metal Pipe	Circular	1	22	2,926.82	2,926.38

^{*}Culvert inverts are approximate and should be field verified upon installation

3.4 GROUNDWATER MONITORING UPDATE

Monitoring well PB-8 is located within the footprint of the expansion area. This well will be properly abandoned before Phase 5 is excavated and filled in this area. Since this well in an upgradient background well, two new monitoring wells will be installed outside of the expansion area to provide groundwater quality data upgradient of the new cell. The proposed replacement wells are shown on **Sheet C-101** and **C-102** (**Appendix H**) and would be installed and monitored for 8 quarters before well PB-8 is abandoned. Existing monitoring wells PB-11 through PB-15 will provide downgradient coverage.

3.4.1 PB-8 Abandonment

PB-8 was installed in 1993 to a depth of 417 feet BGS using 4-inch diameter steel casing. It will be abandonment in accordance with IDWR regulations to prevent it from being a conduit of fluid or vapors to the subsurface. This well was installed with 8-inch diameter outer steel casing to a depth of 190 feet BGS. Outer casing was not placed between the 4-inch monitoring well casing and the walls of the boring below 190 feet where the consolidated formation allowed the boring to remain open. The annular space between the well casing and the walls of the boring was filled with bentonite chips. Over time, the bentonite can become desiccated enough to allow vapors to pass through it.

The submersible sampling pump, tubing, and cable will be removed from the well before the abandonment process. To help prevent the boring from being a conduit for vapors, the well casing will be perforated, and a pressure grouting technique will be used during the abandonment. The 4-inch diameter well casing will be perforated from 175 feet below ground surface to the bottom of the well (417 feet BGS). The perforations may be made with an air knife, mills knife or other appropriate method that creates an opening large enough to allow grout to be pushed into the space outside the well casing. At least four equally spaced perforations around the circumference of the casing spaced no greater than one foot apart vertically will be created to comply with IDWR rules.

The well will be pressure grouted with a cement/bentonite-based grout after the perforation is complete. A suitable packer or other seal will be placed near the surface to allow the grout to be injected into the casing under a minimum pressure of 20 psi at ground surface to force the grout out through the perforations into the filter pack, dried bentonite seal, or voids. The grout will be placed through a tremie pipe, from the bottom of the well up, for the full length of the well to approximately 6 feet below the future cut elevation. Additional neat cement grout will be added to match this elevation as needed following overnight settlement. The remainder of the well casing will be filled with hydrated bentonite chips and a temporary but secure cap will be placed on the well. Having bentonite chips instead of cement in the upper portion of the casing will allow CCSW personnel to periodically cut the top part of the casing as the excavation for Phase 5 progresses. Each time the casing is cut, water will be added as needed to maintain the hydration of the bentonite chips and the cap will be replaced.

After the final cut elevation is achieved in this area, an additional six feet of soil will be removed from around the well casing. The casing will be cut off at that level, and a steel cap will be welded on top of it as a permanent cap. The excavation around the casing will then be backfilled up to the bottom elevation of the Phase 5 cut so that the casing will be protected from damage.

3.4.2 New Upgradient Well Installation

The proposed locations of the two new upgradient monitoring wells are shown on **Sheets C-101** and **C-102** in **Appendix H**. These wells will be installed and monitored for at least 8 quarters prior to the abandonment of well PB-8. They will be incorporated into the sampling program upon completion, using the schedule described below. At least two sampling events will be conducted that includes PB-8 and the new wells prior to the abandonment of PB-8 to verify correlation of groundwater conditions.

One of the wells will be installed approximately 250 north-northwest of PB-8 and 1130 feet east of PB-11. The ground surface at this location is similar to that at PB-8 (approximately 2707 feet AMSL). The direction of groundwater flow at PB-8 is slightly south of west, so the piezometric surface at this location is also expected to be similar to that at PB-8. The piezometric surface elevation at PB-8 was 2426.37 feet AMSL when measured in early September 2024.

The second new monitoring well will be installed approximately 1000 feet east-northeast of PB-8 and 1000 feet west of former monitoring well PB-6. The first groundwater at this location should be beneath the confining layer, though it is possible that the unconfined conditions found at PB-6 extend this far to the west. At the location of PB-6, the current elevation of the unconfined groundwater is approximately 2370 feet AMSL, with groundwater moving to the east. The selected location is almost due north of former monitoring well PB-1, where the unconfined aquifer was not encountered. Groundwater at PB-1 was produced from sandy shale at an elevation beginning at approximately 2100 feet AMSL, beneath the confining layer. The piezometric surface after drilling was noted to be

approximately 250 feet higher, or approximately 2350 feet AMSL. Holladay (1994) noted that the true piezometric may have been much higher had the well been allowed to recover longer. Extrapolating the groundwater levels from the recent monitoring events, the level of unconfined groundwater (if present) at the proposed location may be near 2440 feet AMSL, while the piezometric surface of the confined layer is expected to be near 2460 feet AMSL. The well will be installed such that it is screened within the confined aquifer and that the seal above the top of the screen is sufficient to prevent mixing with the unconfined aquifer, if present. If the unconfined aquifer is encountered during well installation, it will be noted in the well log.

Each of the two new wells will be installed with rotary drilling techniques. 8 or 10-inch diameter steel casing will be installed in the unconsolidated materials in the upper portion of the borings to prevent the walls of the borings from collapsing. The actual depths of the bottom of the casing will be determined during drilling. This casing will be permanently sealed to the walls of the boring with cement grout so that a conduit for subsurface vapor is not present.

The monitoring wells will be set once the final depth of the boring is established; this depth will be determined based on field observations and measurements of groundwater egress into the boring. The wells will be constructed with 4-inch diameter steel casing. The casing sections will be threaded together to provide smooth internal walls. The bottom of the casing will include an end cap connected to a five-foot section of blank (non-screened) casing to provide a sump at the bottom of the wells. Wire-wrapped screening casing will be placed above the sump spanning the zone(s) of water production. Blank casing will be placed above the screened section; the blank casing will then extend approximately two feet above the ground surface.

Each of the wells will be developed by surging and pumping or bailing. Once the installation and development for both wells is complete, dedicated, pneumatically powered submersible pumps will be installed into them. The pumps will be the same model or current equivalent to the pumps that are in the other PBSL monitoring wells (QED Environmental ST100PM). The new wells will be sampled within one week after pump installation. The wells will then be sampled on a quarterly basis until 8 sampling events have been conducted. Four of these events will coincide with the semi-annual monitoring program (March and late August or early September). The other four events will be conducted in June and December. After the 8 quarterly sampling events have been conducted, the wells will be sampled semi-annually. The sampling will be conducted in accordance with the Sampling and Analysis Plan that is current at the time of the sampling. The most current Plan is dated December 1, 2023 (Tetra Tech, 2023).

4.0 SUPPLEMENTAL REPORTS

In addition to the Geotechnical Investigation and Seismic Survey reports included in **Appendices F** and **G**, several other reports prepared for PBSL between 1998 and 2016 contain information to support this expansion application. These are being submitted electronically with this application in a separate folder. The following is a list of the reports including the year published, title, author, and relevant information.

- 1994 Hydrogeologic Characterization, Ground Water Monitoring Plan, and Facility Design (Holladay). This
 report includes a description of the geologic and hydrogeologic conditions at the landfill, a summary of the
 installation and testing of monitoring wells PB-2 through PB-8, core sample collection and testing, HELP
 modeling to estimate travel times and support the non-lined arid design, cell design, surface water
 management, and cover design.
- 1998 1997 Landfill Status Report (Holladay). This report included a summary of the previous designs, an
 evaluation of project capacity, presented the groundwater monitoring plan, and discussed Title V
 compliance.
- 1998 Geotechnical Evaluation (Holladay). The results of a geotechnical investigation were presented in
 this report. Samples were collected from borings GT-1 and GT-5 that were analyzed for various physical
 properties. Core samples previously collected from the boring for monitoring well PB-2 were also tested.
 Analysis of loading was conducted, and the potential for liquefaction and settlement was addressed.
- 2014 Monitor Well Installation (DBSA). The installation of monitoring wells PB-11 through PB-15 is described in this report. The wells were completed between June and October 2011. The analysis of

32

- laboratory samples for soil and rock is not discussed in this report. The laboratory results for the initial groundwater sampling event from these wells (collected April 2012) is included as an appendix.
- 2014 Hydrogeologic Characterization Report, Volume 1 (DBSA). This report included the results of laboratory testing of core samples collected during the 2011 drilling program (Table 3 of the report). The results were used for infiltration modeling using Darcian flux calculations, the HYDRUS model, and the HELP model. The modeling results were summarized in Tables 5 through 10 and Table 14 of that report. The calculated travel times from the top of the confining layer to the groundwater beneath it ranged from 3,158 to over 52,000 years.
- 2014 Hydrogeologic Characterization Report, Volume 2 (DBSA). This second volume of the report
 contained the laboratory results of the core samples collected during the 2011 drilling program. These
 results support the modeling that is described in Volume 1.
- 2015 Landfill Status Report Update (Tetra Tech). The update of the PBSL status report included summaries of previous investigations, statistical analyses of the results of groundwater sampling, modeling for LFG emissions, a slope stability evaluation, stormwater controls, and cost estimates for closure and post-closure maintenance.
- 2016 Alternative Final Cover System Equivalency Demonstration (Tetra Tech). This document proposed
 a cover system consisting of mulch for erosion control over an infiltration control layer, which would in turn
 be placed over an intermediate cover layer. This was proposed as an alternative to the EPA Subtitle D
 prescriptive final cover system. The report included a description of the borrow source investigation,
 laboratory testing of soil samples, infiltration modeling, and a grading plan. The DEQ approved the
 alternative cover design in a letter dated December 9, 2016.
- 2023 Groundwater Sampling & Analysis Plan (Tetra Tech). This document outlines the procedures used to collect groundwater samples, the frequency, and the guality assurance requirements.

5.0 REFERENCES

40 CFR 258, 2024. https://www.ecfr.gov/current/title-40/chapter-l/subchapter-l/part-258/subpart-C/section-258.27#p-258.27(a), September 24, 2024.

Bentley Flow Master Hydraulic Modeling Software V81 (SELECT series 1) 2009, Bentley Systems Incorporated.

City of Nampa, 2024. Climate. https://www.cityofnampa.us/909/Climate accessed September 2024.

DBS&A (Daniel B. Stephens & Associates), 2010. Site Certification, Pickles Butte Sanitary Landfill. Report to Canyon County, June 17.

DBS&A. 2014a. Hydrogeologic Characterization Report, Pickles Butte Sanitary Landfill, Volumes 1 and 2. Report to Pickles Butte Sanitary Landfill, April 25.

DBS&A. 2014b. Monitor Well Installation, Pickles Butte Sanitary Landfill. Report to Pickles Butte Sanitary Landfill, April 25.

Digital Atlas of Idaho, 2023. Snake River Plan. Available on-line at https://digitalatlas.cose.isu.edu/geo/snkrvpln/snkrvpln.htm. Accessed December 2023.

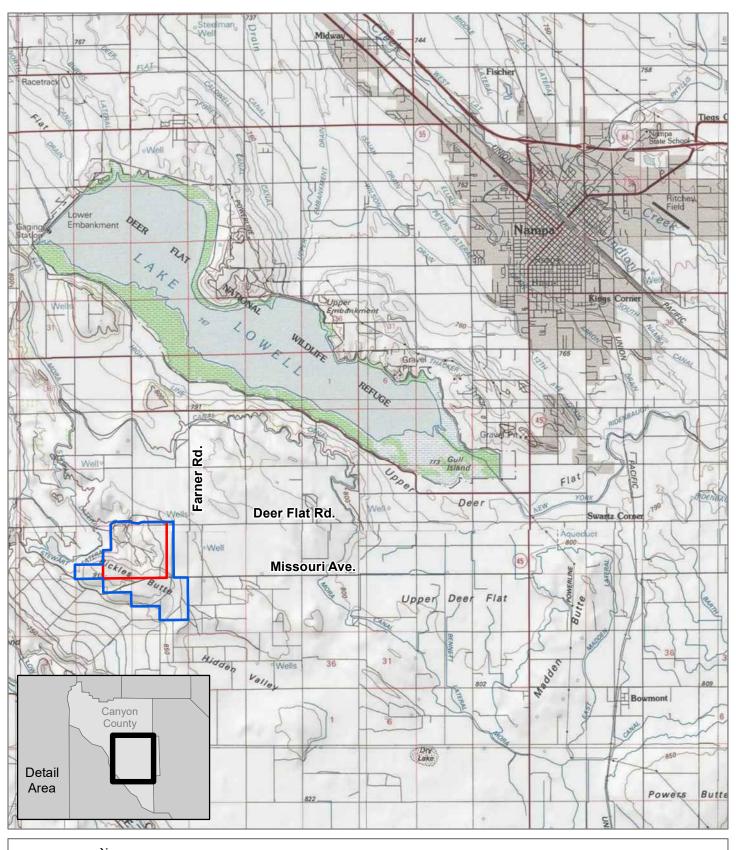
Holladay (Holladay Engineering Company), 1994. Hydrogeologic Characterization, Groundwater Monitoring Plan, & Facility Design, Pickles Butte Sanitary Landfill, Canyon County Idaho, July 1994.

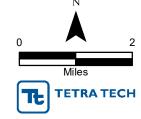
Holladay, 1998. Geotechnical Evaluation Pickles Butte Sanitary Landfill, Canyon County, Idaho. February 1998.

Hydrologic Modeling Software (HEC-HMS) 4.4 2020, US Army Corps of Engineers, Davis, CA.

Idaho Department of Water Resources (IDWR) 2024. Evapotranspiration and Consumptive Irrigation Water Requirements for Idaho, Nampa, Idaho https://et-idwr.idaho.gov/stninfo.py?station=2168 Accessed October 2024.

- Kimmel, P.G., 1982, Stratigraphy, age, and tectonic setting of the Miocene-Pliocene lacustrine sediments of the western Snake River Plain, Oregon and Idaho, in Bill Bonnichsen and R.M. Breckenridge, eds., Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26, p. 559-558.
- Mabey, D.R. 1982. Geophysics and Tectonics of the Snake River Plain, Idaho. Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26. Bill Bonnichsen and R.M. Breckenridge, editors. P. 139-153.
- Malde, H.E., 1959, Fault zone along northern boundary of western Snake River Plain, Idaho: Science, v. 130, p. 272.
- Malde, H.E., 1972. Stratigraphy of the Glenns Ferry Formation from Hammett to Hagerman, Idaho. United States Geological Survey Bulletin 1331-D.
- Malde, H.E., and H.A. Powers, 1962, Upper Cenozoic stratigraphy of western Snake River Plain, Idaho: Geological Society of America Bulletin 73, p. 1197-1220.
- Malde, H.E., and H.A. Powers, 1972, Geologic map of the Glenns Ferry-Hagerman area, west-central Snake River Plain, Idaho: U.S. Geological Survey Miscellaneous Investigations Map I-696, scale 1:48,000, 2 sheets.
- Maley, Terry, 1987. Exploring Idaho Geology, Mineral Land Publications, Boise, ID.
- Mayo, Alan L., Muller, Anthony B., and Mitchell, John C., 1984. Geochemical and Isotopic Investigations of Thermal Water Occurrences of the Boise Front area, Ada County, Idaho. In Idaho Department of Water Resources Bulleting No. 30, Geothermal Investigations In Idaho. December.
- National Oceanic and Atmospheric Administration (NOAA) Precipitation-Frequency Atlas of the United States Atlas 14 Volume 12 Version 2.0: Interior Northwest, Idaho, Montana, Wyoming 2024. US Department of Commerce. September.
- National Oceanic and Atmospheric Administration (NOAA) Precipitation-Frequency Atlas of the Western United States Atlas 2 Volume V Idaho 1973. US Department of Commerce.
- National Resources Conservation Service, United States Department of Agriculture (NRCS), 2010. National Engineering Handbook Part 630 Hydrology, Chapter 15, Time of Concentration. Washington D.C.
- National Resources Conservation Service, United States Department of Agriculture (NRCS), 2023. Web Soil Survey. Available at: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. Accessed December 2023.
- Personius, S.F., compiler, 2003, Fault number 635, Western Snake River Plain fault system, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed December 2023.
- Ruez, Dennis R., 2009. Framework for stratigraphic analysis of Pliocene fossiliferous deposits at Hagerman Fossil Beds National Monument, Idaho. Rocky Mountain Geology, v. 44, no. 1, p. 33–70, 10 figs., 2 appendices, May.
- Savage, Carl N., 1968. Lexicon of Idaho Geologic Names, Idaho Bureau of Mines and Geology Information Circular #20. December.
- Shervais, J.W., Gaurav Shroff, S.K. Vetter, Scott Matthews, B.B. Hanan, and J.J. McGee, 2002, Origin and evolution of the western Snake River Plain: Implications from stratigraphy, faulting, and the geochemistry of basalts near Mountain Home, Idaho, in Bill Bonnichsen, C.M. White, and Michael McCurry, eds., Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province: Idaho Geological Survey Bulletin 30, p. 343-361.
- Swirydczuk, K., Larson G.P., and Smith, G.R., 1982. Volcanic Ash Beds as Stratigraphic Markers in the Glenns Ferry and Chalk Hills Formations from Adrian, Oregon to Bruneau, Idaho. Cenozoic Geology of Idaho: Idaho Bureau of Mines and Geology Bulletin 26. Bill Bonnichsen and R.M. Breckenridge, editors. P. 543-558.

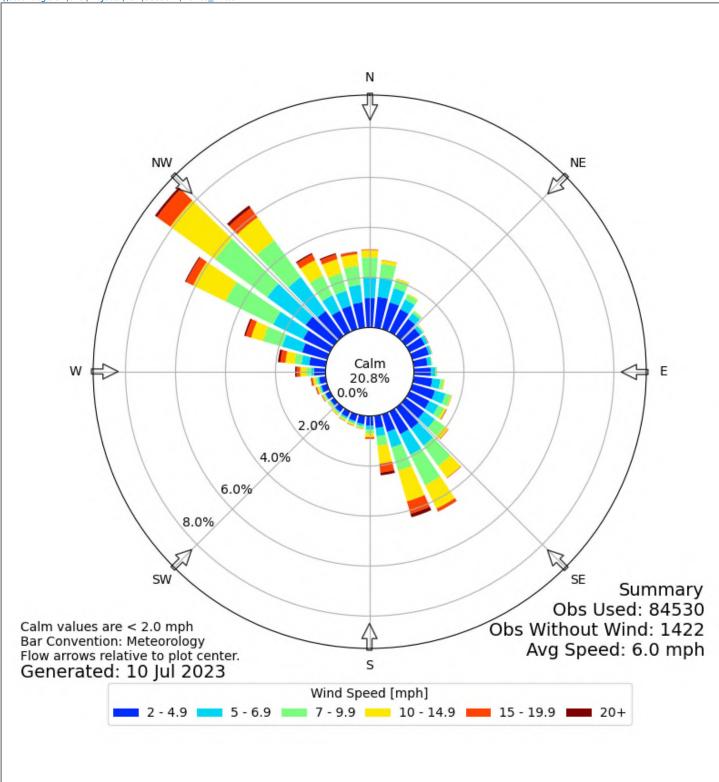

34

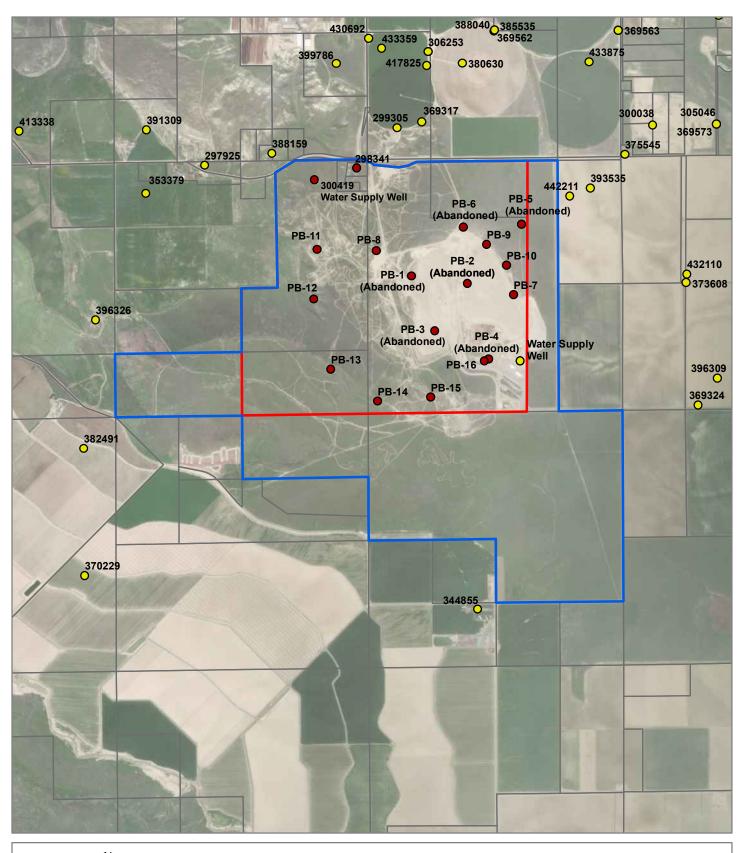

Tetra Tech 2023. Groundwater Sampling & Analysis Plan, Pickles Butte Sanitary Landfill, December 1, 2023.

- Tetra Tech, 2022. Pickles Butte Sanitary Landfill, Basis of Design Report, Nampa, Idaho. April 28, 2022.
- Tetra Tech, 2020. Pickles Butte Sanitary Landfill, Phase 3 Stormwater Controls, Nampa, Idaho. August 4, 2020.
- Tetra Tech, 2016. Alternative Final Cover System Equivalency Demonstration, Pickles Butte Sanitary Landfill. November 28, 2016.
- U.S. BLM, undated. Geology of Southwest Idaho. Informational pamphlet prepared for Hulls Gulch National Recreation Trail in Idaho.
- USGS, 1968. 7.5 Minute Series Topographic Map, Givens Hot Springs Quadrangle, Idaho Canyon County.
- USGS, 1968. 7.5 Minute Series Topographic Map, Lake Lowell Quadrangle, Idaho Canyon County.
- Wood, S.H., and J.E. Anderson, 1981, Chapter 2, Geology, in J.C. Mitchell, ed., Geothermal Investigations in Idaho, Part 11: Geological, Hydrological, Geochemical, and Geophysical Investigations of the Nampa-Caldwell and Adjacent Areas, Southwestern Idaho: Idaho Department of Water Resources, Water Information Bulletin 30, p. 9-31.
- Wood, Spencer H., 1994. Seismic Expression and Geological Significance of a Lacustrine Delta in Neogene Deposits of the Western Snake River Plain, Idaho. APG Bulletin, Volume 78, No. 1, P. 102-121. January.

35

APPENDIX A : FIGURES




Site Certification Boundary

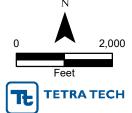

Canyon County Landfill Property

Figure 1 Overview Pickles Butte Sanitary Landfill Canyon County, ID

Site Certification BoundaryCanyon County Landfill Property

Parcel Adjacent Property

Groundwater Well

Onsite Groundwater Well

*Accessed IDWR well logs 10/22/2020.

Figure 3 Onsite and Adjacent Property **Groundwater Wells** Pickles Butte Sanitary Landfill Canyon County, ID

APPENDIX B: SITE CERTIFICATION

1445 North Orchard • Boise, Idaho 83706 • (208) 373-0550

C.L. "Butch" Otter, Governor Toni Hardesty, Director

August 2, 2010

The Honorable David J. Ferdinand Chair, Canyon County Commission 15500 Missouri Avenue Nampa, ID 83686

Re:

Pickles Butte Sanitary Landfill Lateral Expansion

Site Certification Application and Supplemental Information

Dear Chairman Ferdinand:

The Department of Environmental Quality (DEQ) has reviewed the above referenced Site Certification Application and Supplemental Information for the Pickles Butte Sanitary Landfill Lateral Expansion for conformance with the provisions of Chapter 74, Title 39, Idaho Code, "Idaho Solid Waste Facilities Act." DEQ based its decision upon this review and information obtained during a site visit to the proposed new lateral expansion to the municipal solid waste landfill (MSWLF) on June 17, 2010, and has concluded the following.

Site Certification Application

Idaho Code § 39-7408 set forth the procedure for each application to obtain site certification. The application for the site certification process must meet the location restrictions as specified in Idaho Code § 39-7407. Canyon County Solid Waste Department (applicant), seeking to expand the municipal solid waste landfill unit for Pickles Butte, submitted to DEQ the Site Certification Report – Proposed Pickles Butte MSWLF Lateral Expansion dated June 17, 2010. The information necessary to review compliance with the location restrictions was considered complete on July 23, 2010.

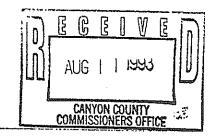
As required by Idaho Code § 39-7408, on June 17, 2010, the applicant published notice that the site certification application had been submitted and provided an opportunity for public comment. One comment letter was received by DEQ before the deadline of July 16, 2010. The applicant's consultant provided a response to the public comment.

Upon review of the site certification application, supporting documentation, DEQ site visit to the proposed new lateral expansion and comment received, DEQ has concluded that the Pickles Butte MSWLF lateral expansion application has demonstrated that the site complies with the location restrictions in Idaho Code § 39-7407. The application addressed each of the criteria set forth in Idaho Code § 39-7407, explaining the technical

and with the complete and a complete with

The Honorable David J. Ferdinand Chair, Canyon County Commission Page 3

c: Jack Biddle, Director, Canyon County Solid Waste Department
John Ayarbe, P.G, Daniel B. Stephens & Associates, Inc.
David Loper/ Brian Crawford, Southwest District Health Department
Pete Wagner, Regional Administrator, Boise Regional Office
Todd Crutcher, P.E., DEQ-Boise Regional Office
Susan Hamlin, AG
Dean Ehlert, DEQ-State Office
Source File #11.1 Pickles Butte MSWLF Lateral Expansion /Reading File


PUBLIC NOTICE OF RECEIPT OF SITE CERTIFICATION THE BOARD

PUBLIC NOTICE OF RECEIPT OF SITE CERTIFICATION The Board of Commissioners of Canyon County, Idaho, submitted an application for Site Certification to the Department of Environmental Quality for the Pickles Butte Sanitary Landfill, a municipal solid waste landfill facility, on June 17, 2010. Written public comments concerning the application were accepted until July 16, 2010. All submitted comments were reviewed and addressed by the County. On August 4, 2010, the County received notification, dated August 2, 2010, from the Idaho Department of Environmental Quality that the proposed Pickles Butte MSWLF Lateral Expansion was certified compliant with Idaho Code § 39-7407. The County hereby informs the public that certification of the proposed Pickles Butte Municipal Solid Waste Landfill Facility lateral expansion has been approved. Board of Canyon County Commissioners Canyon County Courthouse 1115 Albany Street Caldwell, ID 83605 CANYON COUNTY COMMISSIONERS Commissioner Steven J. Rule Commissioner Kathryn Alder ATTEST: WILLIAM H. HURST, CLERK Date: 8-12-10 Claudia Amaral, Deputy Clerk August 16, 2010 277370

Appeared in: Idaho Press Tribune on Monday, 08/16/2010

transactor myPublicNotices.com

1420 North Hilton, Boise, ID 83706-1260, (208) 334-0550

Cecil D. Andrus, Governor

Copy-freuer sandful

August 9, 1993

Commissioner George Vance Chairman of the Board Canyon County Commissioners 1115 Albany Caldwell, ID 83605

RE: Pickles Butte Municipal Solid Waste Landfill Site Certification

Dear Mr. Vance:

This purpose of this letter is to issue a site certification pursuant to Idaho Code § 39-7408 for the referenced municipal solid waste landfill unit. Upon review of the site certification application and supporting documentation, the <u>Pickles Butte Municipal Solid Waste Landfill</u> has demonstrated that the site complies with the locational restrictions in Idaho Code § 39-7407.

The Department of Health and Welfare, Division of Environmental Quality (DEQ) bases this certification on information submitted on June 28, 1993.

On July 1, 1993, the applicant published notice that the site certification application had been submitted and provided an opportunity for public comment. No comments were received by either DEQ or Canyon County.

In a letter dated July 26, 1993, DEQ requested additional information including a site visit request to support the site certification application. Holladay Engineers provided that information on July 30, 1993.

Idaho does not currently have approval from the U.S. Environmental Protection Agency (EPA) to operate a municipal solid waste program in lieu of the Federal Subtitle D requirements (40 CFR Parts 258). The authority for DEQ to certify compliance with locational restrictions is not in place until EPA approves the state program. In the interim, DEQ provides this approval recognizing that if state approval is not received, the applicant must comply with all the provisions for municipal solid waste landfills under the federal regulations. Should state approval occur, the documentation including the application, DEQ review, and site certification for the Pickles Butte Municipal Solid Waste Landfill will be in place and the site will remain certified provided conditions have remained the same and the facility does not violate any of the criteria set forth in Idaho Code § 39-7407.

Commissioner George Vance August 9, 1993 Page 2

The information necessary to review compliance with locational restrictions was considered complete on July 30, 1993. The Pickles Butte Municipal Solid Waste Landfill is hereby certified in compliance with section 39-7407, Idaho Code dated this 9th day of August, 1993.

We appreciate the Commissioner's commitment to this project and process, and look forward to the next phase of the project. As a reminder, Idaho Code § 39-7408(g) stipulates that:

"within ten (10) working days of receipt of certification ... the applicant shall publish notice in the newspaper... informing the public that certification of the site has been approved."

We encourage you to keep the public informed and meet this requirement.

Sincerely,

Larry L. Koenig

Regional Administrator

Southwest Idaho Regional Office

cc: Katie Sewell, DEQ - CO

Jack Gantz, DEQ - SWIRO

Mike Smith, DEQ - SWIRO

Southwest District Health Department

Holladay Engineering Company

1445 North Orchard Street, Boise, ID, 83706 (208) 373-0550

Brad Little, Governor Jess Byrne, Director

February 26, 2021

By email: lvanbeek@canyonco.org

The Honorable Leslie Van Beek Board of Canyon County Commissioners 15500 Missouri Avenue Nampa, Idaho 83686

Subject: Pickles Butte Sanitary Landfill Lateral Expansion

Site Certification Application Approval

Dear Commissioner Van Beek:

The Idaho Department of Environmental Quality (DEQ) has reviewed the Pickles Butte Sanitary Landfill Lateral Expansion Site Certification Application (DEQ document reference 2021BAB74) and subsequently submitted Supplemental Information (DEQ document reference 2021BAB85) for the Pickles Butte Sanitary Landfill Lateral Expansion for conformance with the provisions of Chapter 74, Title 39, Idaho, "Idaho Solid Waste Facilities Act." DEQ has concluded the following:

Site Certification Application

Idaho Code §39-7408 sets forth the procedure for each application to obtain site certification. The site certification application must meet the location restrictions as specified in Idaho Code §39-7407. Canyon County Solid Waste Department (applicant), seeking to expand the municipal solid waste landfill (MSWLF) unit for Pickles Butte, submitted to DEQ the site certification report, *Proposed Pickles Butte MSWLF Lateral Expansion*, dated November 19, 2020. Supplemental information necessary to review compliance with the location restrictions was received on February 16, 2021.

As required by Idaho Code §39-7408, on December 5, 2020, the applicant published notice that the site certification application had been submitted and provided an opportunity for public comment. No comments were received by DEQ.

Upon review of the above mentioned site certification application and supporting documentation, DEQ has concluded that the Pickles Butte Sanitary Landfill Lateral Expansion Site complies with the location restrictions in Idaho Code §39-7407. The application addressed each of the criteria set forth in Idaho Code §39-7407, explaining the technical findings regarding each criterion, and a qualified professional has certified compliance with the requisite criteria.

The proposed Pickles Butte MSWLF Lateral Expansion is hereby certified to be in compliance with Idaho Code §39-7407, Idaho Code dated this 26th day of February, 2021.

Commissioner Leslie Van Beek Board of Canyon County Commissioners February 26, 2021 Page 2

As a reminder, Idaho Code §39-7408(2)(g) requires that:

"within ten (10) working days of receipt of certification ... the applicant shall publish notice in the newspaper ... informing the public that certification of the site has been approved."

Please provide DEQ with a copy of the published notice for our records.

General Requirements

Before receipt of any waste in the lateral expansion area, Canyon County must demonstrate to DEQ the proposed lateral expansion facility will also be in compliance with the following requirements of the "Idaho Solid Waste Facilities Act":

§39-7409 STANDARDS FOR DESIGN

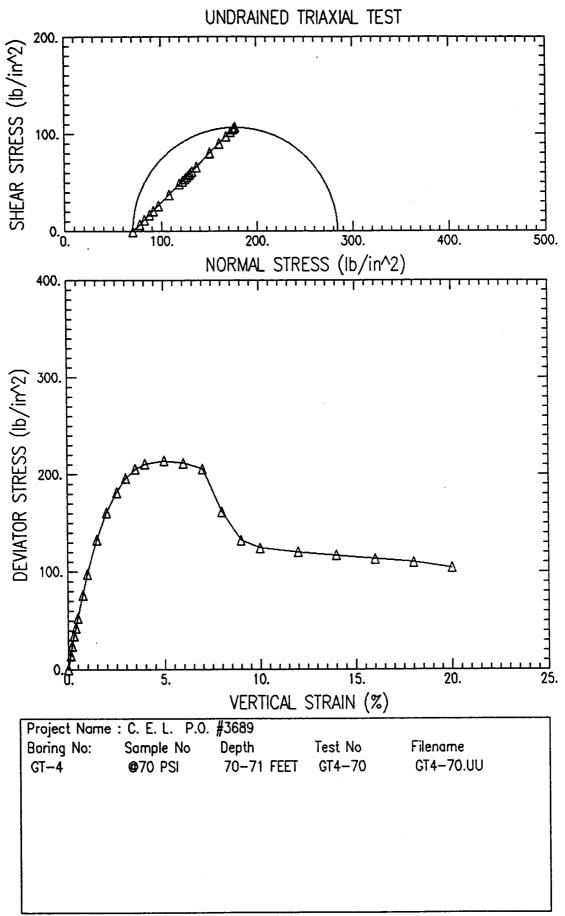
§39-7410 GROUND WATER MONITORING DESIGN

§39-7412 STANDARDS FOR OPERATION (Southwest District Health Department)

DEQ appreciates Canyon County's commitment to this project and process, and looks forward to working with Canyon County on the next phases of the project. Should you have any questions or require additional information, please do not hesitate to contact me at (208) 373-0184, or via e-mail at taylor.enos@deq.idaho.gov.

Sincerely,

Taylor Enos


Water Quality/Solid Waste Engineer

TE:tg 2021BAB102

c: Maureen McGraw, PE, Tetra Tech
David Loper, Canyon County Solid Waste Department
Bradford Goodsell, Canyon County Solid Waste Department
Daniel Pecunia, Canyon County Solid Waste Department
Mitch Kiester, Southwest District Health
Matthew Beeter, DEQ Solid Waste Manager
Valerie Greear, PE, DEQ Engineering Manager

APPENDIX C: SOILS DATA

Woodward-Clyde

Woodward-Clyde

Wed Mar 19 17:14:58 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA Boring No.: GT-4 Test No. : GT4-70 Test Date : 03/11/97 Depth : 70-71 FEET

Tested by : C. WASON Checked by : C. CAPPS

Sample No. : 270 PSI Sample Type : TUBE

Elevation: NA

Soil Description : LT. ORANGE BROWN FINE SA-SILT / SILTY FINE SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 70 PSI

Height: 3.583 (in) Area: 1.61 (in²) Volume: 5.75 (in³) Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb) Filter Correction : 0.00 (lb/in^2)
Membrane Correction : 0.00 (lb/in)

Piston Weight: 0.00 (gm) Area Correction: Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	'H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in^2)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	70.00	70.00
2)	0.004	0.11	1.61	0.00	22.98	22.98	14.28	84.28	84.28
3)	0.007	0.20	1.61	0.00	38.49	38.49	23.89	93.89	93.89
4)	0.011	0.31	1.61	0.00	56.30	56.30	34.88	104.88	104.88
5)	0.014	0.39	1.62	0.00	68.94	68.94	42.65	112.65	112.65
6)	0.018	0.50	1.62	0.00	86.18	86.18	53.21	123.21	123.21
7)	0.027	0.75	1.63	0.00	124.09	124.09	76.30	146.30	146.30
8)	0.036	1.00	1.63	0.00	159.71	159.71	97.78	167.78	167.78
9)	0.054	1.51	1.65	0.00	219.46	219.46	133.22	203.22	203.22
10)	0.072	2.01	1.66	0.00	267.72	267.72	161.12	231.12	231.12
11)	0.090	2.51	1.68	0.00	304.49	304.49	181.66	251.66	251.66
12)	0.107	2.99	1.69	0.00	331.49	331.49	196.13	266.13	266.13
13)	0.125	3.49	1.71	0.00	350.45	350.45	205.52	275.52	275.52
14)	0.143	3.99	1.72	0.00	362.51	362.51	210.71	280.71	280.71
15)	0.179	5.00	1.75	0.00	375.15	375.15	214.14	284.14	284.14
16)	0.215	6.00	1.78	0.00	378.02	378.02	211.84	281.84	281.84
17)	0.251	7.01	1.82	0.00	374.00	374.00	205.69	275.69	275.69
18)	0.287	8.01	1.85	0.00	299.89	299.89	161.80	231.80	231.80
19)	0.322	8.99	1.89	0.00	250.48	250.48	132.61	202.61	202.61
20)	0.358	9.99	1.93	0.00	239.57	239.57	124.33	194.33	194.33
21)	0.430	12.00	2.01	0.00	241.29	241.29	120.19	190.19	190.19
22)	0.502	14.01	2.10	0.00	244.74	244.74	116.80	186.80	186.80
23)		15.99	2.19	0.00	247.61	247.61	113.08	183.08	183.08
24)		18.00	2.29	0.00	251.63	251.63	109.67	179.67	179.67
25)		20.01	2.41	0.00	250.48	250.48	103.95	173.95	173.95
,									

Wed Mar 19 17:31:24 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT4-70

Boring No. : GT-4

Test Date : 03/11/97 Depth: 70-71 FEET

Tested by : C. WASON

Sample No. : 970 PSI

Checked by : C. CAPPS

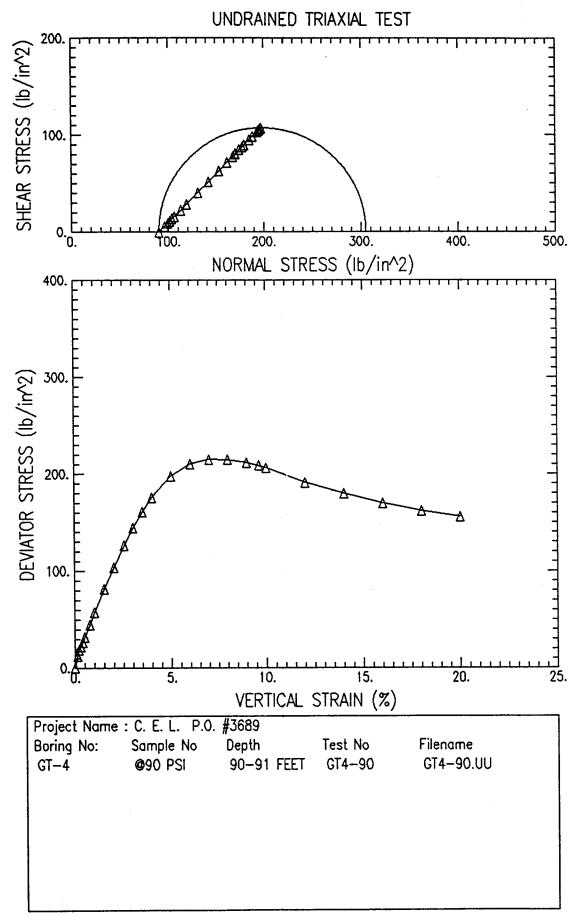
Sample Type : TUBE

Elevation: NA

Soil Description : LT. ORANGE BROWN FINE SA-SILT / SILTY FINE SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 70 PSI

Liquid Limit: 0


Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	135.70	135.70	0.00
WT CONTAINER + DRY SOIL (gm)	128.20	128.20	0.00
WT WATER (gm)	7.50	7.50	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	128.20	128.20	0.00
WATER CONTENT (%)	5.85	5.85	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	5.85	5.85
VOID RATIO	0.82	0.82
WET DENSITY (lb/ft-3)	98.78	98.78
DRY DENSITY (lb/ft*3)	93.32	93.32
DEGREE OF SATURATION (%)	19.43	19.43

Maximum Shear Stress = 107.07 (lb/in²) at a Vertical Strain of 5.00 %

Wed Mar 19 17:17:01 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Location : PICKLES BUTTE L/F- IDAHO Test No. : GT4-90

Boring No. : GT-4

Test Date : 03/12/97

Sample No.: a90 PSI

Depth: 90-91 FEET

Tested by : C. WASON Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description: LT. GRAYISH BROWN FINE SANDY SILTY CLAY Remarks: TXUU TEST WITH CONFINING PRESSURE OF 90 PSI

Height: 3.583 (in) Area: 1.61 (in²) Volume: 5.75 (in³) Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Filter Correction : 0.00 (lb/in^2)
Membrane Correction : 0.00 (lb/in)

Piston Weight: 0.00 (gm) Area Correction: Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	'Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	90.00	90.00
2)	0.004	0.11	1.61	0.00	19.64	19.64	12.20	102.20	102.20
3)	0.007	0.20	1.61	0.00	30.61	30.61	19.00	109.00	109.00
4)	0.011	0.31	1.61	0.00	36.38	36.38	22.54	112.54	112.54
5)	0.014	0.39	1.62	0.00	43.89	43.89	27.15	117.15	117.15
6)	0.018	0.50	1.62	0.00	51.98	51.98	32.09	122.09	122.09
7)	0.027	0.75	1.63	0.00	72.77	72.77	44.74	134.74	134.74
8)	0.036	1.00	1.63	0.00	93.56	93.56	57.28	147.28	147.28
9)	0.054	1.51	1.65	0.00	133.98	133.98	81.33	171.33	171.33
10)	0.072	2.01	1.66	0.00	172.10	172.10	103.57	193.57	193.57
11)	0.090	2.51	1.68	0.00	211.37	211.37	126.10	216.10	216.10
12)	0.107	2.99	1.69	0.00	243.71	243.71	144.19	234.19	234.19
13)	0.125	3.49	1.71	0.00	274.31	274.31	160.87	250.87	250.87
14)	0.143	3.99	1.72	0.00	302.61	302.61	175.89	265.89	265.89
15)	0.179	5.00	1.75	0.00	346.50	346.50	197.79	287.79	287.79
16)	0.215	6.00	1.78	0.00	375.38	375.38	210.36	300.36	300.36
17)	0.251	7.01	1.82	0.00	390.97	390.97	215.02	305.02	305.02
18)	0.287	8.01	1.85	0.00	398.48	398.48	214.99	304.99	304.99
19)	0.322	8.99	1.89	0.00	400.21	400.21	211.87	301.87	301.87
20)	0.345	9.63	1.91	0.00	399.63	399.63	208.90	298.90	298.90
21)	0.358	9.99	1.93	0.00	397.90	397.90	206.50	296.50	296.50
22)	0.430	12.00	2.01	0.00	383.46	383.46	191.01	281.01	281.01
23)	0.502	14.01	2.10	0.00	376.53	376.53	179.71	269.71	269.71
24)	0.573	15.99	2.19	0.00	371.91	371.91	169.85	259.85	259.85
25)	0.645	18.00	2.29	0.00	371.33	371.33	161.84	251.84	251.84
26)	0.717		2.41	0.00	375.38	375.38	155.78	245.78	245.78
20)	J., 1,	20.01	2.71	0.00	213.30	3.5.00			

Wed Mar 19 17:17:01 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT4-90

Boring No. : GT-4

Test Date : 03/12/97

Tested by : C. WASON

Sample No.: 290 PSI

Depth: 90-91 FEET

Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

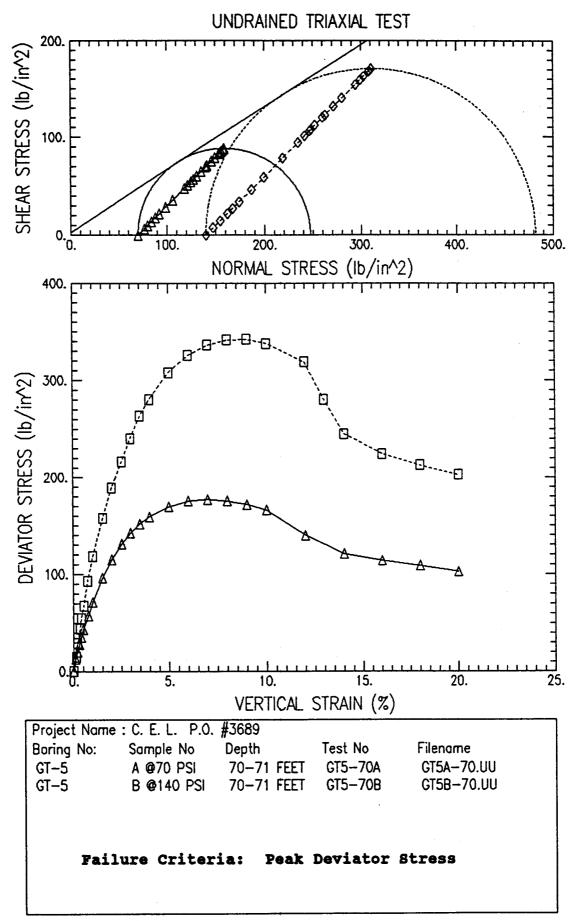
Soil Description : LT. GRAYISH BROWN FINE SANDY SILTY CLAY

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 90 PSI

Liquid Limit : 0


Plastic Limit : 0

Specific Gravity: 2.72


	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	166.00	166.00	0.00
WT CONTAINER + DRY SOIL (gm)	138.43	138.43	0.00
WT WATER (gm)	27.57	27.57	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	138.43	138.43	0.00
WATER CONTENT (%)	19.92	19.92	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	19.92	19.92
VOID RATIO	0.85	0.85
WET DENSITY (lb/ft-3)	109.90	109.90
DRY DENSITY (lb/ft-3)	91,.65	91.65
DEGREE OF SATURATION (%)	63.58	63.58

Maximum Shear Stress = 107.51 (lb/in^2) at a Vertical Strain of 7.01 %

Woodward-Clyde

Wed Mar 19 17:23:07 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No. : 941138NA

Test No. : GT5-70A

Boring No. : GT-5 Sample No. : A 270 PSI Test Date: 03/12/97 Tested by: C. WASON
Depth: 70-71 FEET Checked by: C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description : BROWN SILTY SAND WITH CLAYSTONE & SANDSTONE FRAGS

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 70 PSI

Height: 3.740 (in)
Area: 1.61 (in²)

Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in²)
Membrane Correction: 0.00 (lb/in)

Volume: 6.01 (in'3) Piston Weight: 0.00 (gm)

Area Correction : None

	,	VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	70.00	70.00
2)	0.004	0.11	1.61	0.00	20.79	20.79	12.95	82.95	82.95
3)	0.007	0.19	1.61	0.00	32.34	32.34	20.14	90.14	90.14
4)	0.011	0.29	1.61	0.00	45.05	45.05	28.05	98.05	98.05
5)	0.015	0.40	1.61	0.00	57 .7 5	57.75	35.96	105.96	105.96
6)	0.019	0.51	1.61	0.00	70.46	70.46	43.87	113.87	113.87
7)	0.028	0.75	1.61	0.00	93.56	93.56	58.25	128.25	128.25
8)	0.037	0.99	1.61	0.00	116.66	116.66	72.64	142.64	142.64
9)	0.056	1.50	1.61	0.00	158.24	158.24	98.53	168.53	168.53
10)	0.075	2.01	1.61	0.00	190.58	190.58	118.66	188.66	188.66
11)	0.094	2.51	1.61	0.00	219.45	219.45	136.64	206.64	206.64
12)	0.112	2.99	1.61	0.00	240.24	240.24	149.59	219.59	219.59
13)	0.131	3.50	1.61	0.00	258.72	258.72	161.10	231.10	231.10
14)	0.150	4.01	1.61	0.00	273.74	273.74	170.45	240.45	240.45
15)	0.187	5.00	1.61	0.00	296.84	296.84	184.83	254.83	254.83
16)	0.224	5.99	1.61	0.00	313.01	313.01	194.90	264.90	264.90
17)	0.262	7.01	1.61	0.00	322.25	322.25	200.65	270.65	270.65
18)	0.299	7.99	1.61	0.00	325.13	325.13	202.45	272.45	272.45
19)	0.337	9.01	1.61	0.00	324.56	324.56	202.09	272.09	272.09
20)	0.374	10.00	1.61	0.00	320.51	320.51	199.57	269.57	269.57
21)	0.449	12.01	1.61	0.00	280.67	280.67	174.76	244.76	244.76
22)	0.524	14.01	1.61	0.00	252.95	252.95	157.50	227.50	227.50
23)	0.598	15.99	1.61	0.00	249.48	249.48	155.34	225.34	225.34
24)	0.673	17.99	1.61	0.00	249.48	249.48	155.34	225.34	225.34
25)	0.748	20.00	1.61	0.00	247.17	247.17	153.90	223.90	223.90

Wed Mar 19 17:24:24 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT5-70A

Boring No. : GT-5

Test Date : 03/12/97 Depth : 70-71 FEET Tested by : C. WASON Checked by : C. CAPPS

Sample No. : A a70 PSI Sample Type : TUBE

Elevation: NA

Soil Description : BROWN SILTY SAND WITH CLAYSTONE & SANDSTONE FRAGS

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 70 PSI

Liquid Limit: 0

Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	160.50	159.40	0.00
WT CONTAINER + DRY SOIL (gm)	153.05	152.00	0.00
WT WATER (gm)	7.45	7.40	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	153.05	152.00	0.00
WATER CONTENT (%)	4.87	4.87	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	4.87	4.87
VOID RATIO	0,75	0.75
WET DENSITY (lb/ft^3)	101.80	101.80
DRY DENSITY (lb/ft'3)	97.07	97.07
DEGREE OF SATURATION (%)	17.69	17.69

Maximum Shear Stress = 101.22 (lb/in^2) at a Vertical Strain of 7.99 %

Wed Mar 19 16:30:16 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Project No.: 941138NA Boring No. : GT-5

Sample No. : B a140 PSI

Sample Type : TUBE

Soil Description : BROWN SILTY SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 140 PSI

Height: 3.505 (in) Area : 1.61 (in²)

Volume : 5.63 (in³)

Location : PICKLES BUTTE L/F- IDAHO

Test No. : GT5-708 Test Date : 03/12/97 Depth: 70-71 FEET Elevation: NA

Tested by : C. WASON Checked by : C. CAPPS

Filter Correction : 0.00 (lb/in²) Piston Diameter: 0.000 (in) Membrane Correction: 0.00 (lb/in) Piston Friction: 0.00 (lb)

Area Correction : Parabolic Piston Weight: 0.00 (gm)

	,	VERTICAL						TOTAL	EFFECTIVE
1	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
T i	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	140.00	140.00
2)	0.004	0.11	1.61	0.00	24.26	24.26	15.07	155.07	155.07
3)	0.007	0.20	1.61	0.00	47.36	47.36	29.39	169.39	169.39
4)	0.007	0.20	1.61	0.00	71.61	71.61	44.36	184.36	184.36
5)	0.014	0.40	1.62	0.00	88.94	88.94	55.01	195.01	195.01
6)	0.018	0.51	1.62	0.00	109.73	109.73	67.74	207.74	207.74
7)	0.026	0.74	1.63	0.00	151.31	151.31	93.05	233.05	233.05
8)	0.035	1.00	1.63	0.00	192.89	192.89	118.10	258.10	258.10
9)	0.053	1.51	1.65	0.00	259.88	259.88	157.74	297.74	297.74
10)	0.070	2.00	1.66	0.00	314.16	314.16	189.11	329.11	329.11
11)	0.088	2.51	1.68	0.00	362.67	362.67	216.37	356.37	356.37
12)	0.105	3.00	1.69	0.00	406.56	406.56	240.51	380.51	380.51
13)	0.123	3.51	1.71	0.00	449.30	449.30	263.40	403.40	403.40
14)	0.140	3.99	1.72	0.00	482.79	482.79	280.60	420.60	420.60
15)	0.175	4.99	1.75	0.00	539.39	539.39	307.91	447.91	447.91
16)	0.210	5.99	1.78	0.00	580.97	580.97	325.62	465.62	465.62
17)	0.245	6.99	1.82	0.00	611.00	611.00	336.12	476.12	476.12
18)	0.280	7.99	1.85	0.00	632.94	632.94	341.64	481.64	481.64
19)	0.315	8.99	1.89	0.00	646.22	646.22	342.11	482.11	482.11
20)	0.350	9.99	1.93	0.00	650.84	650.84	337.81	477.81	477.81
21)	0.420	11.98	2.01	0.00	639.87	639.87	318.85	458.85	458.85
22)	0.455	12.98	2.05	0.00	575.19	575.19	280.66	420.66	420.66
23)	0.491	14.01	2.10	0.00	513.98	513.98	245.31	385.31	385.31
24)	0.561	16.01	2.19	0.00	492.03	492.03	224.64	364.64	364.64
25)	0.631	18.00	2.29	0.00	488.57		212.93	352.93	352.93
26)	0.701	20.00	2.41	0.00	488.57	488.57	202.81	342.81	342.81

Wed Mar 19 16:30:16 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT5-70B

Boring No. : GT-5

Test Date : 03/12/97

Tested by : C. WASON

Sample No. : B a140 PSI

Depth: 70-71 FEET

Checked by : C. CAPPS

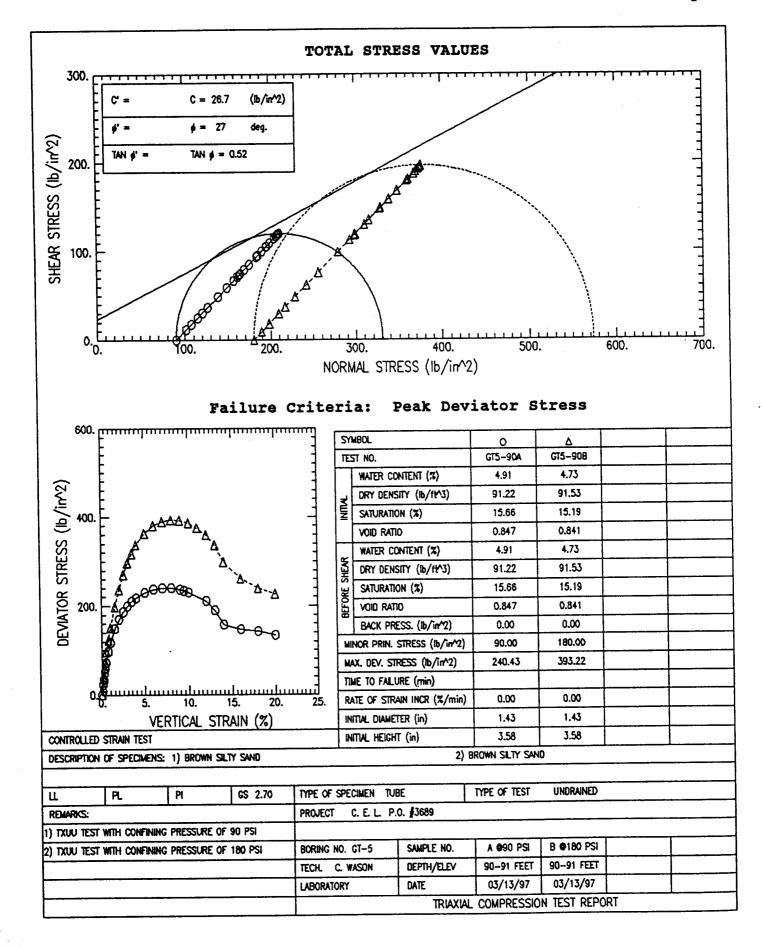
Elevation: NA

Sample Type : TUBE

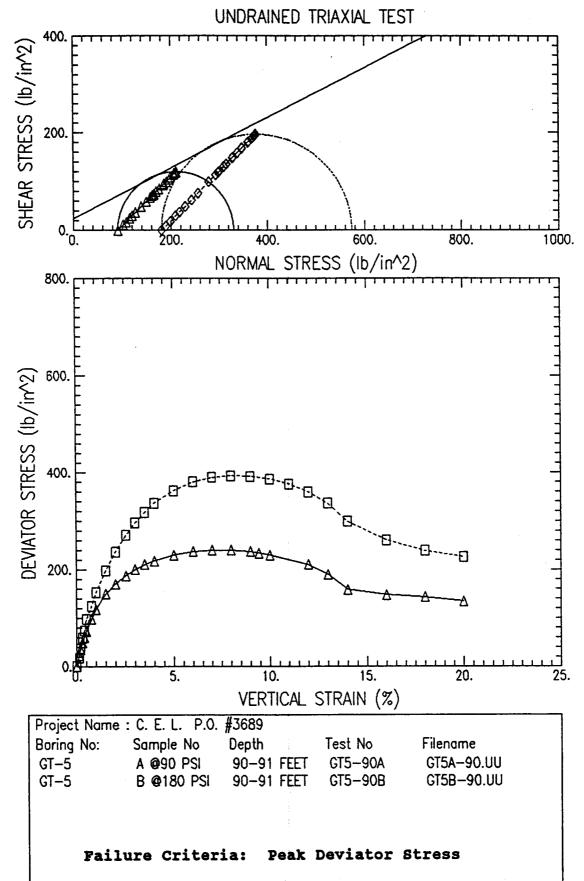
Soil Description : BROWN SILTY SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 140 PSI

Liquid Limit: 0


Plastic Limit : 0

Specific Gravity: 2.72


	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.	:		
WT CONTAINER + WET SOIL (gm)	151.60	151.10	0.00
WT CONTAINER + DRY SOIL (gm)	143.72	143.25	0.00
WT WATER (gm)	7.88	7.85	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	143.72	143.25	0.00
WATER CONTENT (%)	5.48	5.48	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	5.48	5.48
VOID RATIO	0.74	0.74
WET DENSITY (lb/ft-3)	102.63	102.63
DRY DENSITY (lb/ft-3)	97.29	97.29
DEGREE OF SATURATION (%)	20.03	20.03

Maximum Shear Stress = 171.05 (lb/in^2) at a Vertical Strain of 8.99 %

Woodward-Clyde

Wed Mar 19 16:31:04 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Boring No. : GT-5

Sample No. : A 290 PSI

Sample Type : TUBE

Location : PICKLES BUTTE L/F- IDAHO Test No. : GT5-90A

Test Date : 03/13/97

Depth: 90-91 FEET

Elevation: NA

Soil Description : BROWN SILTY SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 90 PSI

Height: 3.583 (in) Area : 1.61 (in²)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction : 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Volume: 5.75 (in'3)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

		VERTICAL						TOTAL	EFFECTIVE
1	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
IN LENGTH		AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS	
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ⁻ 2)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	90.00	90.00
2)	0.004	0.11	1.61	0.00	36.96	36.96	22.97	112.97	112.97
3)	0.007	0.20	1.61	0.00	56.60	56.60	35.12	125.12	125.12
4)	0.011	0.31	1.61	0.00	80.85	80.85	50.08	140.08	140.08
5)	0.014	0.39	1.62	0.00	98.18	98.18	60.73	150.73	150.73
6)	0.018	0.50	1.62	0.00	117.81	117.81	72.74	162.74	162.74
7)	0.027	0.75	1.63	0.00	158.24	158.24	97.29	187.29	187.29
8)	0.036	1.00	1.63	0.00	192.89	192.89	118.09	208.09	208.09
9)	0.054	1.51	1.65	0.00	246.02	246.02	149.34	239.34	239.34
10)	0.072	2.01	1.66	0.00	282.98	282.98	170.30	260.30	260.30
11)	0.090	2.51	1.68	0.00	314.16	314.16	187.43	277.43	277.43
12)	0.107	2.99	1.69	0.00	338.42	338.42	200.23	290.23	290.23
13)	0.125	3.49	1.71	0.00	359.21	359.21	210.66	300.66	300.66
14)	0.143	3.99	1.72	0.00	375.38	375.38	218.19	308.19	308.19
15)	0.179	5.00	1.75	0.00	403.10	403.10	230.09	320.09	320.09
16)	0.215	6.00	1.78	0.00	423.89	423.89	237.54	327.54	327.54
17)	0.251	7.01	1.82	0.00	437.17	437.17	240.43	330.43	330.43
18)	0.287	8.01	1.85	0.00	445.25	445.25	240.23	330.23	330.23
19)	0.322	8.99	1.89	0.00	448.14	448.14	237.25	327.25	327.25
20)	0.338	9.43	1.91	0.00	446.41	446.41	234.26	324.26	324.26
21)	0.358	9.99	1.93	0.00	443.52	443.52	230.18	320.18	320.18
22)	0.430	12.00	2.01	0.00	423.89	423.89	211.15	301.15	301.15
23)	0.466	13.01	2.05	0.00	390.39	390.39	190.39	280.39	280.39
24)	0.502	14.01	2.10	0.00	331.49	331.49	158.21	248.21	248.21
25)	0.573	15.99	2.19	0.00	322.25	322.25	147.17	237.17	237.17
26)	0.645	18.00	2.29	0.00	328.02	328.02	142.97	232.97	232.97
26) 27)	0.717		2.29	0.00	323.40	323.40	134.21	224.21	224.21
21)	0.717	20.01	2.41	0.00	JEJ.40	JEJ.40	194161		

Wed Mar 19 16:31:04 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT5-90A

Boring No. : GT-5

Test Date : 03/13/97

Tested by : C. WASON

Sample No. : A a90 PSI

Depth: 90-91 FEET

Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description : BROWN SILTY SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 90 PSI

Liquid Limit: 0

Plastic Limit: 0

Specific Gravity: 2.7

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	144.55	144.10	0.00
WT CONTAINER + DRY SOIL (gm)	137.78	137.35	0.00
WT WATER (gm)	6.77	6.75	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	137.78	137.35	0.00
WATER CONTENT (%)	4.91	4.91	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	4.91	4.91
VOID RATIO	0.85	0.85
WET DENSITY (lb/ft*3)	95.70	95.70
DRY DENSITY (lb/ft ⁻ 3)	91.22	91.22
DEGREE OF SATURATION (%)	15.66	15.66

Maximum Shear Stress = 120.21 (lb/in^2) at a Vertical Strain of 7.01 %

Wed Mar 19 16:31:29 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Boring No. : GT-5 Sample No. : B 2180 PSI

Sample Type : TUBE

Soil Description : BROWN SILTY SAND Remarks : TXUU TEST WITH CONFINING PRESSURE OF 180 PSI

Height: 3.583 (in)

Area : 1.61 (in²) Volume: 5.75 (in³) Location : PICKLES BUTTE L/F- IDAHO

Test No. : GT5-908 Test Date : 03/13/97 Depth: 90-91 FEET

Elevation: NA

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Piston Weight : 0.00 (gm)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Area Correction : Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
IN LENGTH		AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS	
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
• •	0 000	0.00	4 /4	0.00	0.00	0.00	0.00	180.00	180.00
1)	0.000	0.00	1.61	0.00	28.88	28.88	17.95	197.95	197.95
2)	0.004	0.11	1.61	0.00				216.56	216.56
3)	0.007	0.20	1.61	0.00	58.91	58.91	36.56		
4)	0.011	0.31	1.61	0.00	95.87	95.87	59.39	239.39	239.39
5)	0.014	0.39	1.62	0.00	120.12	120.12	74.31	254.31	254.31
6)	0.018	0.50	1.62	0.00	158.24	158.24	97.70	277.70	277.70
7)	0.027	0.75	1.63	0.00	202.13	202.13	124.28	304.28	304.28
8)	0.036	1.00	1.63	0.00	248.33	248.33	152.03	332.03	332.03
9)	0.054	1.51	1.65	0.00	326.87	326.87	198.42	378.42	378.42
10)	0.072	2.01	1.66	0.00	393.86	393.86	237.03	417.03	417.03
11)	0.090	2.51	1.68	0.00	453.92	453.92	270.80	450.80	450.80
12)	0.107	2.99	1.69	0.00	501.27	501.27	296.59	476.59	476.59
13)	0.125	3.49	1.71	0.00	541.70	541.70	317.68	497.68	497.68
14)	0.143	3.99	1.72	0.00	579.81	579.81	337.01	517.01	517.01
15)	0.179	5.00	1.75	0.00	635.25	635.25	362.61	542.61	542.61
16)	0.215	6.00	1.78	0.00	679.14	679.14	380.59	560.59	560.59
17)	0.251	7.01	1.82	0.00	708.59	708.59	389.70	569.70	569.70
18)	0.287	8.01	1.85	0.00	728.81	728.81	393.22	573.22	573.22
19)	0.322	8.99	1.89	0.00	740.36	740.36	391.94	571.94	571.94
20)	0.358	9.99	1.93	0.00	743.82	743.82	386.02	566.02	566.02
21)	0.394	11.00	1.97	0.00	738.05	738.05	375.33	555.33	555.33
22)	0.430	12.00	2.01	0.00	721.88	721.88	359.58	539.58	539.58
	0.466	13.01	2.05	0.00	689.54	689.54	336.28	516.28	516.28
23)							298.77	478.77	478.77
24)	0.502	14.01	2.10	0.00	626.01	626.01		441.11	441.11
25)	0.573	15.99	2.19	0.00	571.73	571.73	261.11		
26)	0.645	18.00	2.29	0.00	548.63	548.63	239.12	419.12	419.12
27)	0.717	20.01	2.41	0.00	545.16	545.16	226.24	406.24	406.24

Woodward-Clyde

Wed Mar 19 16:31:29 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT5-90B

Boring No. : GT-5 Sample No. : B 2180 PSI Test Date : 03/13/97 Depth : 90-91 FEET Tested by : C. WASON Checked by : C. CAPPS

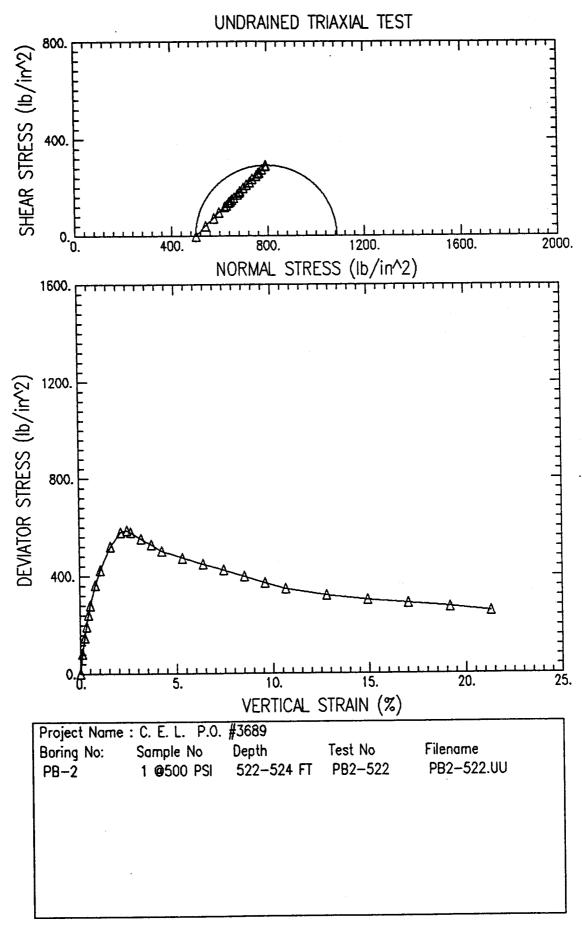
Sample Type: TUBE Elevation: NA

Soil Description : BROWN SILTY SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 180 PSI

Liquid Limit: 0

Plastic Limit: 0


Specific Gravity: 2.7

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	144.80	144.32	0.00
WT CONTAINER + DRY SOIL (gm)	138.26	137.80	0.00
WT WATER (gm)	6.54	6.52	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	138.26	137.80	0.00
WATER CONTENT (%)	4.73	4.73	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	4.73	4.73
VOID RATIO	0.84	0.84
WET DENSITY (lb/ft-3)	95.86	95.86
DRY DENSITY (lb/ft-3)	91.53	91.53
DEGREE OF SATURATION (%)	15,19	15.19

Maximum Shear Stress = 196.61 (lb/in^2) at a Vertical Strain of 8.01 %

Woodward-Clyde

Wed Mar 19 16:32:14 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA Boring No. : PB-2

Test No. : PB2-522 Test Date : 03/17/97

Tested by : C. WASON

Sample No. : 1 a500 PSI

Depth : 522-524 FT

Checked by : C. CAPPS

Sample Type : PLASTIC TUBE Elevation: NA

Soil Description : LT. BROWN SILTY CLAYSTONE -CH-

Remarks: TXUU TEST WITH CONFINING PRESSURE OF 500 PSI

Height: 5.079 (in) Area: 3.89 (in²) Volume: 19.75 (in³) Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in²) Membrane Correction: 0.00 (lb/in)

Piston Weight : 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
4.		0.00	7 00	0.00	0.00	0.00	0.00	500.00	500.00
1)	0.000	0.00	3.89	0.00	0.00	0.00	0.00		
2)	0.005	0.10	3.89	0.00	328.02	328.02	84.23	584.23	584.23
3)	0.011	0.22	3.90	0.00	581.49	581.49	149.02	649.02	649.02
4)	0.016	0.32	3.91	0.00	767.87	767.87	196.46	696.46	696.46
5)	0.022	0.43	3.92	0.00	954.24	954.24	243.66	743.66	743.66
6)	0.027	0.53	3.92	0.00	1103.34	1103.34	281.27	781.27	781.27
7)	0.040	0.79	3.94	0.00	1431.36	1431.36	363.32	863.32	863.32
8)	0.054	1.06	3.96	0.00	1684.83	1684.83	425.66	925.66	925.66
9)	0.081	1.59	3.99	0.00	2079.95	2079.95	520.75	1020.75	1020.75
10)	0.108	2.13	4.03	0.00	2340.87	2340.87	580.74	1080.74	1080.74
11)	0.125	2.46	4.05	0.00	2378.15	2378.15	586.57	1086.57	1086.57
12)	0.135	2.66	4.07	0.00	2355.78	2355.78	579.07	1079.07	1079.07
13)	0.162	3.19	4.11	0.00	2266.32	2266.32	551.91	1051.91	1051.91
14)	0.189	3.72	4.15	0.00	2191.77	2191.77	528.76	1028.76	1028.76
15)	0.217	4.27	4.19	0.00	2102.31	2102.31	502.21	1002.21	1002.21
16)	0.271	5.34	4.27	0.00	2020.31	2020.31	473.42	973.42	973.42
17)	0.325	6.40	4.35	0.00	1953.21	1953.21	448.79	948.79	948.79
18)	0.379	7.46	4.44	0.00	1886.12	1886.12	424.78	924.78	924.78
19)	0.433	8.53	4.53	0.00	1804.11	1804.11	398.09	898.09	898.09
20)	0.487	9.59	4.63	0.00	1714.65	1714.65	370.53	870:53	870.53
21)	0.541	10.65	4.73	0.00	1640.10	1640.10	346.95	846.95	846.95
22)	0.650	12.80	4.94	0.00	1580.46	1580.46	319.79	819.79	819.79
23)	0.758	14.92	5.18	0.00	1558.10	1558.10	301.06	801.06	801.06
24)	0.866	17.05	5.43	0.00	1565.55	1565.55	288.23	788.23	788.23
25)	0.974	19.18	5.71	0.00	1565.55	1565.55	273.96	773.96	773.96
-				0.00	1543.19	1543.19	255.85	755.85	755.85
26)	1.083	21.32	6.03	0.00	1343.19	1343.17	ده. درء	,,,,,,	133.03

Wed Mar 19 16:32:14 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Boring No. : PB-2

Test No. : PB2-522 Test Date : 03/17/97

Tested by : C. WASON

Sample No. : 1 2500 PSI

Depth : 522-524 FT

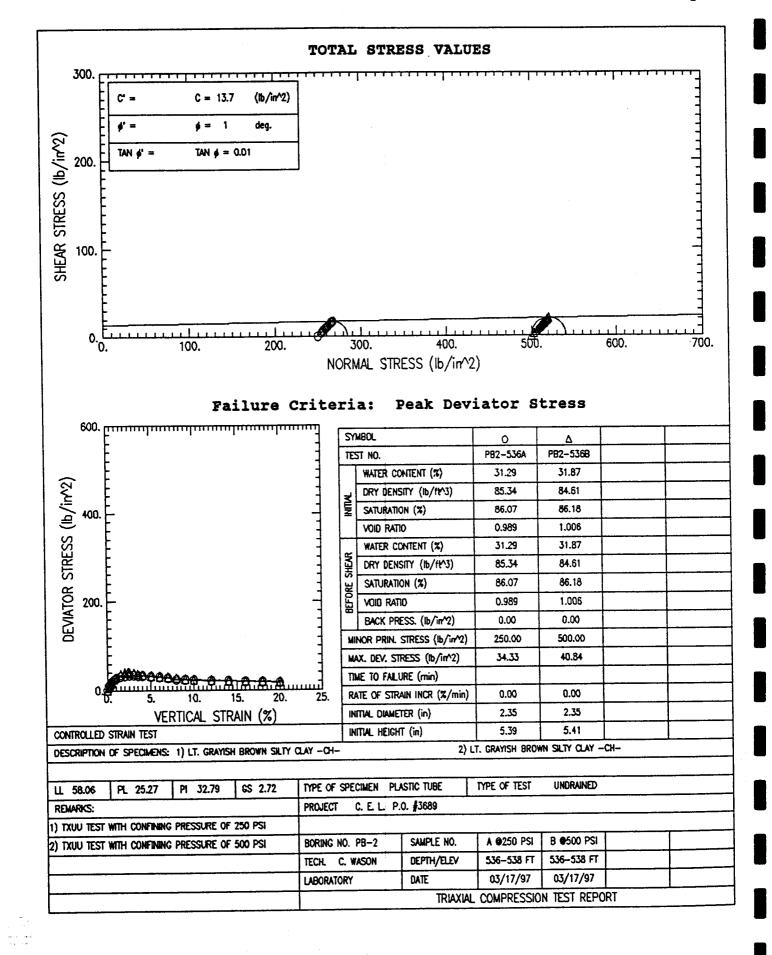
Checked by : C. CAPPS

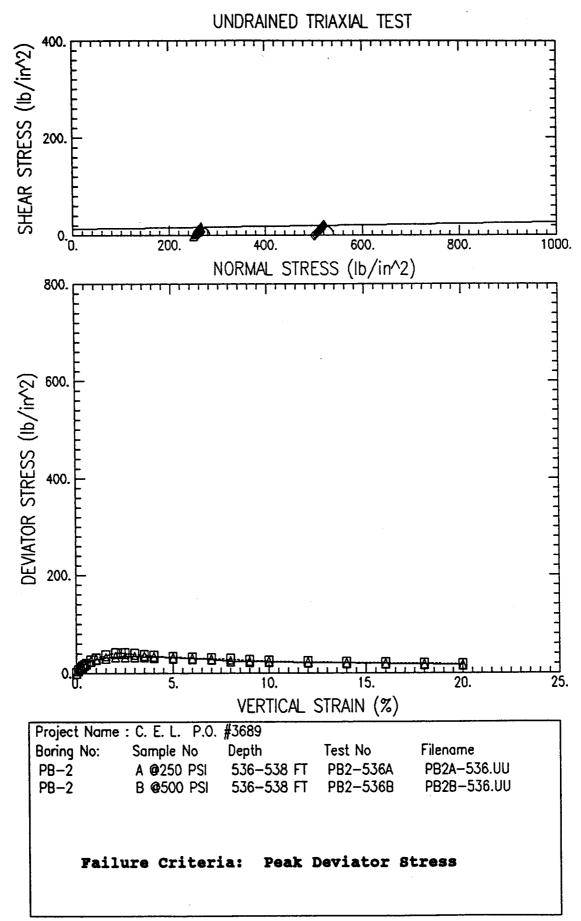
Sample Type : PLASTIC TUBE

Elevation: NA

Soil Description : LT. BROWN SILTY CLAYSTONE -CH-Remarks : TXUU TEST WITH CONFINING PRESSURE OF 500 PSI

Liquid Limit: 58.63


Plastic Limit: 23.68


Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	544.40	544.40	0.00	
WT CONTAINER + DRY SOIL (gm)	508.52	508.52	0.00	
WT WATER (gm)	35.88	35.88	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	508.52	508.52	0.00	
WATER CONTENT (%)	7.06	7.06	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	7.06	7.06
VOID RATIO	0.73	0.73
WET DENSITY (lb/ft-3)	105.03	105.03
DRY DENSITY (lb/ft-3)	98.10	98.10
DEGREE OF SATURATION (%)	26.29	26.29

Maximum Shear Stress = 293.29 (lb/in^2) at a Vertical Strain of 2.46 %

Wed Mar 19 16:34:02 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : PB2-536A

Boring No. : PB-2

Test Date : 03/17/97 Depth : 536-538 FT Tested by : C. WASON Checked by : C. CAPPS

Sample No. : A @250 PSI Sample Type : PLASTIC TUBE

Elevation: NA

Soil Description : LT. GRAYISH BROWN SILTY CLAY -CH-Remarks : TXUU TEST WITH CONFINING PRESSURE OF 250 PSI

Height: 5.394 (in) Area: 4.33 (in²) Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2)
Membrane Correction: 0.00 (lb/in)

Volume : 23.36 (in 3)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	'H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	4.33	0.00	0.00	0.00	0.00	250.00	250.00
2)	0.005	0.09	4.34	0.00	33.50	33.50	7.72	257.72	257.72
3)	0.011	0.20	4.34	0.00	50.82	50.82	11.70	261.70	261.70
4)	0.016	0.30	4.35	0.00	62.37	62.37	14.33	264.33	264.33
5)	0.022	0.41	4.36	0.00	76.23	76.23	17.49	267.49	267.49
6)	0.027	0.50	4.37	0.00	85.47	85.47	19.57	269.57	269.57
7)	0.040	0.74	4.38	0.00	106.26	106.26	24.24	274.24	274.24
8)	0.054	1.00	4.40	0.00	123.01	123.01	27.93	277.93	277.93
9)	0.081	1.50	4.44	0.00	138.60	138.60	31.21	281.21	281.21
10)	0.108	2.00	4.48	0.00	148.42	148.42	33.13	283.13	283.13
11)	0.135	2.50	4.52	0.00	154.19	154.19	34.12	284.12	284.12
12)	0.162	3.00	4.56	0.00	156.50	156.50	34.33	284.33	284.33
13)	0.189	3.50	4.60	0.00	153.62	153.62	33.41	283.41	283.41
14)	0.216	4.00	4.64	0.00	153.04	153.04	32.98	282.98	282.98
15)	0.270	5.01	4.72	0.00	149.57	149.57	31.66	281.66	281.66
16)	0.324	6.01	4.81	0.00	144.95	144.95	30.12	280.12	280.12
17)	0.378	7.01	4.90	0.00	136.87	136.87	27.92	277.92	277.92
18)	0.431	7.99	5.00	0.00	121.85	121.85	24.39	274.39	274.39
19)	0.485	8.99	5.09	0.00	120.70	120.70	23.70	273.70	273.70
20)	0.539	9.99	5.20	0.00	118.39	118.39	22.79	272.79	272.79
21)	0.647		5.41	0.00	115.50	115.50	21.34	271.34	271.34
22)	0.755	14.00	5.65	0.00	116.66	116.66	20.66	270.66	270.66
23)	0.863	16.00	5.90	0.00	113.77	113.77	19.27	269.27	269.27
24)	0.971	18.00	6.19	0.00	111.46	111.46	18.02	268.02	268.02
25)	1.079	20.00	6.50	0.00	109.73	109.73	16.89	266.89	266.89
(1.077	20.00	0.50	7.00					

Wed Mar 19 16:34:02 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : P82-536A

Boring No. : PB-2

Test Date : 03/17/97 Depth : 536-538 FT

Tested by : C. WASON

Sample No. : A @250 PSI

Elevation: NA

Checked by : C. CAPPS

Sample Type : PLASTIC TUBE Soil Description: LT. GRAYISH BROWN SILTY CLAY -CH-Remarks : TXUU TEST WITH CONFINING PRESSURE OF 250 PSI

Liquid Limit: 58.06

Plastic Limit: 25.27

Specific Gravity: 2.72

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.	,		
WT CONTAINER + WET SOIL (gm)	686.90	524.96	0.00
WT CONTAINER + DRY SOIL (gm)	523.19	399.86	0.00
WT WATER (gm)	163.71	125.10	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	523.19	399.86	0.00
WATER CONTENT (%)	31.29	31.29	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	31.29	31.29
VOID RATIO	0.99	0.99
WET DENSITY (lb/ft-3)	112.04	112.04
DRY DENSITY (lb/ft ³)	85.34	85.34
DEGREE OF SATURATION (%)	86.07	86.07

Maximum Shear Stress = 17.17 (lb/in⁻2) at a Vertical Strain of 3.00 %

Wed Mar 19 16:34:33 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : PB2-536B

Boring No. : PB-2

Test Date : 03/17/97

Tested by : C. WASON Checked by : C. CAPPS

Sample No. : B a500 PSI

Depth : 536-538 FT

Sample Type : PLASTIC TUBE

Elevation: NA

Soil Description : LT. GRAYISH BROWN SILTY CLAY -CH-Remarks : TXUU TEST WITH CONFINING PRESSURE OF 500 PSI

Height: 5.413 (in) Area: 4.34 (in²)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction : 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Volume: 23.48 (in³)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
1	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ⁻ 2)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
4.	0 000	0.00	, 7,	0.00	0.00	0.00	0.00	500.00	500.00
1)	0.000	0.00	4.34	0.00	25.41	25.41	5.85	505.85	505.85
2)	0.005	0.09	4.34			45.05	10.35	510.35	510.35
3)	0.011	0.20	4.35	0.00	45.05			513.65	513.65
4)	0.016	0.30	4.36	0.00	59.48	59.48	13.65		
5)	0.022	0.41	4.37	0.00	73.92	73.92	16.93	516.93	516.93
6)	0.027	0.50	4.37	0.00	85.47	85.47	19.54	519.54	519.54
7)	0.040	0.74	4.39	0.00	110.88	110.88	25.25	525.25	525.25
8)	0.054	1.00	4.41	0.00	130.52	130.52	29.59	529.59	529.59
9)	0.081	1.50	4.45	0.00	161.12	161.12	36.22	536.22	536.22
10)	0.108	2.00	4.49	0.00	181.34	181.34	40.42	540.42	540.42
11)	0.125	2.31	4.51	0.00	184.22	184.22	40.84	540.84	540.84
12)	0.135	2.49	4.53	0.00	182.49	182.49	40.33	540.33	540.33
13)	0.162	2.99	4.56	0.00	175.56	175.56	38.46	538.46	538.46
14)	0.189	3.49	4.60	0.00	169.79	169.79	36.87	536.87	536.87
15)	0.217	4.01	4.65	0.00	162.86	162.86	35.04	535.04	535.04
16)	0.271	5.01	4.73	0.00	156.50	156.50	33.07	533.07	533.07
17)	0.325	6.00	4.82	0.00	151.31	151.31	31.40	531.40	531.40
18)	0.379	7.00	4.91	0.00	146.11	146.11	29.76	529.76	529.76
19)	0.433	8.00	5.00	0.00	139.76	139.76	27.93	527.93	527.93
20)	0.487	9.00	5.10	0.00	132.83	132.83	26.03	526.03	526.03
21)	0.541	9,99	5.20	0.00	127.05	127.05	24.41	524.41	524.41
22)	0.650	12.01	5.42	0.00	122.43	122.43	22.58	522.58	522.58
-				0.00	120.70	120.70	21.33	521.33	521.33
23)	0.758	14.00	5.66			120.70	20.51	520.51	520.51
24)	0.866	16.00	5.91	0.00	121.28				519.58
25)	0.974	17.99	6.19	0.00	121.28	121.28	19.58		
26)	1.083	20.01	6.51	0.00	119.54	119.54	18.37	518.37	518.37

Wed Mar 19 16:34:33 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : PB2-536B

Boring No. : PB-2

Test Date : 03/17/97

Tested by : C. WASON

Sample No. : B a500 PSI

Depth : 536-538 FT

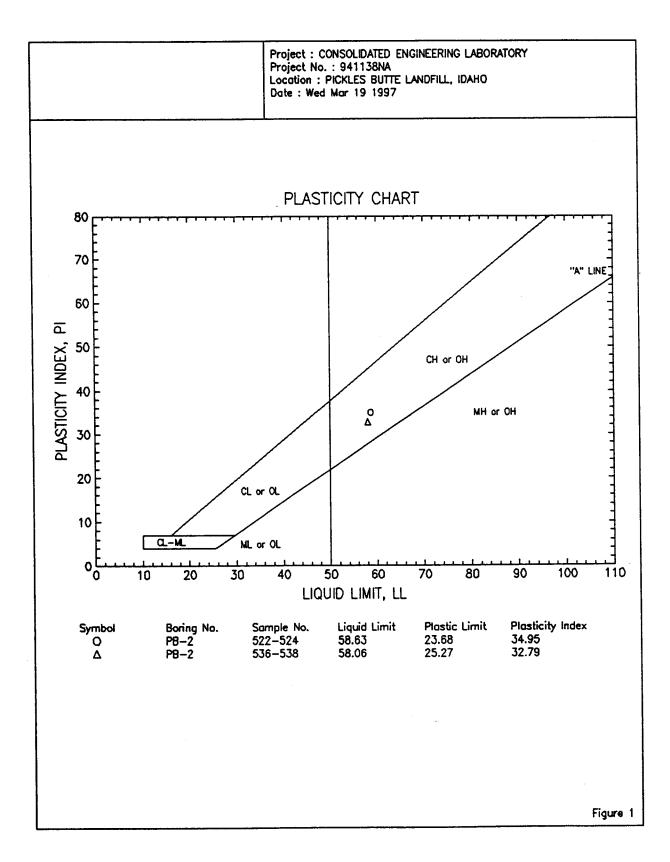
Checked by : C. CAPPS

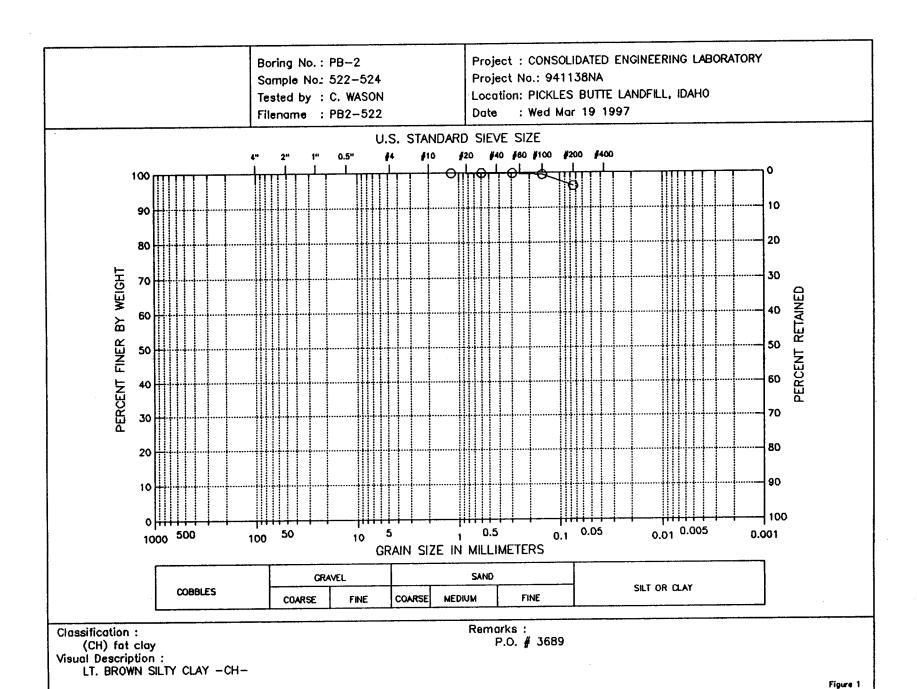
Sample Type : PLASTIC TUBE

Elevation: NA

Soil Description: LT. GRAYISH BROWN SILTY CLAY -CH-Remarks: TXUU TEST WITH CONFINING PRESSURE OF 500 PSI

Liquid Limit: 58.06


Plastic Limit: 25.27


Specific Gravity: 2.72

		WATER CONTENT	
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	687.60	510.80	0.00
WT CONTAINER + DRY SOIL (gm)	521.42	387.34	0.00
WT WATER (gm)	166.18	123.46	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	521.42	387.34	0.00
WATER CONTENT (%)	31.87	31.87	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	31.87	31.87
VOID RATIO	1.01	1.01
WET DENSITY (lb/ft-3)	111.58	111.58
DRY DENSITY (lb/ft'3)	84.61	84.61
DEGREE OF SATURATION (%)	86.18	86.18

Maximum Shear Stress = 20.42 (lb/in²) at a Vertical Strain of 2.31 %

Wed Mar 19 14:47:45 1997

Page: 1

GEOTECHNICAL LABORATORY TEST DATA

Project : CONSOLIDATED ENGINEERING LABORATORY

Project No.: 941138NA

Depth : 522-524 FEET

Boring No. : PB-2 Sample No. : 522-524

Test Date : 03/18/97

Test Method : ASTM D422/4318

Elevation: NA Tested by : C. WASON

Filename: P82-522

Checked by : C. CAPPS

Location : PICKLES BUTTE LANDFILL, IDAHO Soil Description : LT. BROWN SILTY CLAY -CH-

Remarks : P.O. # 3689

COARSE SIEVE SET

Sieve	Sieve O	penings	Weight	Cumulative	Percent Finer (%)	
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)		

#16	0.047	1.19	0.00	0.00	100	
#30	0.023	0.60	0.11	0.11	100	
#50	0.012	0.30	0.35	0.46	100	
#100	0.006	0.15	1.82	2.28	100	
#200	0.003	0.07	16.51	18.79	96	

Total Dry Weight of Sample = 508.52

D85 : N/A

D60 : N/A

D50 : N/A

D30 : N/A

D15 : N/A

D10 : N/A

Soil Classification

ASTM Group Symbol : CH

ASTM Group Name : fat clay AASHTO Group Symbol : A-7-6(42) AASHTO Group Name : Clayey Soils

ATTERBERG LIMITS

Project Consolidated Engineering Laboratory	PROJECT NUI 941138NA	MBER	TESTED BY C. WASON	BORING NU PB-2	BORING NUMBER PB-2	
LOCATION PICKLES BUTTE LANDFILL, IDAHO		,	CHECKED BY C. CAPPS	SAMPLE NUMBER 522-524		
SAMPLE DESCRIPTION LT. BROWN SLTY CLAY -CH-			DATE Wed Mar 19 1997	FLENAME P82-522	1	
	LIQUID LIMIT	DETERMINATION	NS .			
CONTAINER NUMBER	44	88	91			
WT. WET SOIL + TARE	26.73	27.73	27.09			
WT. DRY SOIL + TARE	21	21.53	21			
WT. WATER	5.73	6.1	6.09			
TARE WT.	10.82	11,17	11,1			
WT. DRY SOIL	10.18	10.46	9.9			
WATER CONTENT, W _N (%)	56.29	58.32	61.52			
NUMBER OF BLOWS, N	35	27	16			
ONE-POINT LIQUID LIMIT, LL	58.63	58.86	58.28			
	PLASTIC LIMIT	DETERMINATIO	INS			
CONTAINER NUMBER	26					
WT. WET SOIL + TARE	26.69					
WT. DRY SOIL + TARE	24.53					
WT. WATER	2.16					
TARE WT.	15.41					
WT. DRY SOIL	9.12					
WATER CONTENT (%)	23.68					
				<u> </u>		
FLOW CURVE			SUNIW	ARY OF RESULTS		
64.0 FLOW CORVE	 	- NATU	RAL WATER CONTEN	T, W (%)	7.1	
-		- LIQUI	D LIMIT, LL		58.6	
63.0 —		PLAS	TIC LIMIT, PL		23.7	
		PLAS	TICITY INDEX, PI		35.0	
62.0		LIQUI	IDITY INDEX, LI*		-0.48	
		•11 =	(W - PL)/PI		1	
51.0 - \	1	- " -	Y" - PL//FI PL/	STICITY CHART		
	•	→ * ° [7 1 1 1 1 1			
S 60.0 - \		70			/ ₩ug	
WATER CONTER						
S9.0		- X 50			/ 1	
 ≥ \		NDEX.		0140	•/	
58.0		_ € **		/ 。 /	m+m -	
		PLASTICITY SK				
		≝ 20 [-	/222	\mathcal{X}	4	
57.0] 10	/ " "		1	
Ι Ι Ι Δ		7 +	u-a		4	
i real		ᇻᇬ	10 20 30 40	50 60 70	80 90 100 1	
56.0 25		100		IQUID LIMIT, LL	Fig. 1.0	

Wed Mar 19 14:47:45 1997

Page: 2

GEOTECHNICAL LABORATORY TEST DATA

Project : CONSOLIDATED ENGINEERING LABORATORY

Project No.: 941138NA

Depth : 522-524 FEET

Filename: PB2-522 Elevation: NA

Boring No. : P8-2

Test Date : 03/18/97

Tested by : C. WASON

Sample No.: 522-524

Test Method : ASTM D422/4318

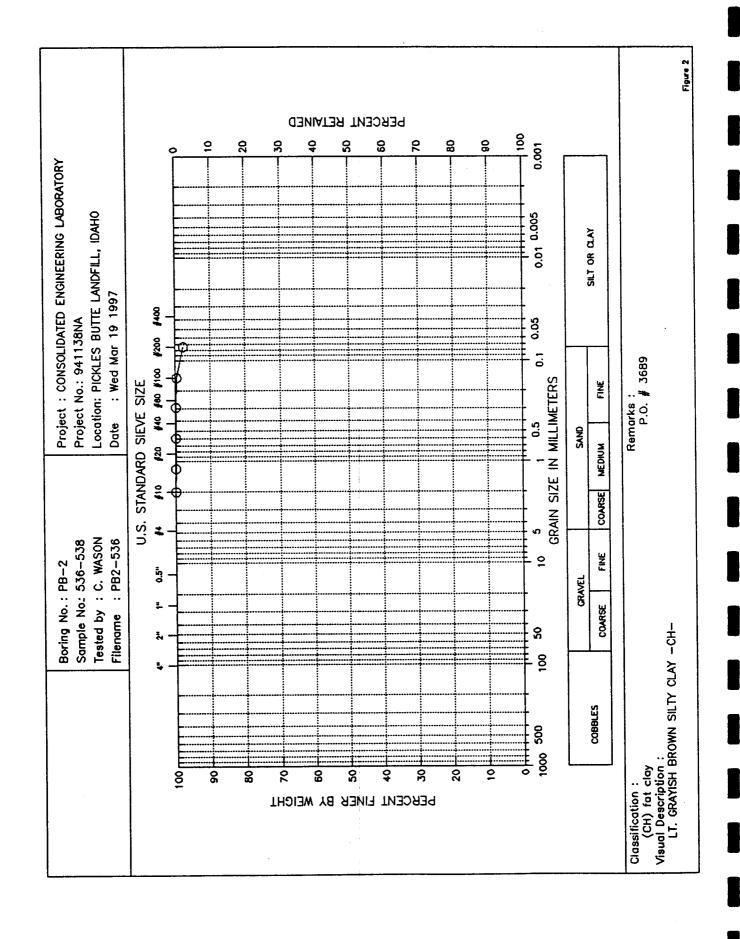
Checked by : C. CAPPS

Location : PICKLES BUTTE LANDFILL, IDAHO Soil Description : LT. BROWN SILTY CLAY -CH-

Remarks : P.O. # 3689

Natural Moisture Content

Moisture Content ID	Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content	
	(gm)	(gm)	(gm)	(%)	
1) PB2-522	218.68	763.08	727.20	7.06	


Average Moisture Content = 7.06

Moisture Content	Mass of Container	Plastic Limit Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content	
	(gm)	(gm)	(gm)	(%)	
1) 26	15.41	26.69	24.53	23.68	

Plastic Limit = 23.68

Moisture Content ID		Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Number of Drops	Moisture Content	
		(gm)	(gm)	(gm)		(%)	
1)	44	10.82	26.73	21.00	35	56.29	
-	88	11.17	27.73	21.63	27	58.32	
3)	91	11.10	27.09	21.00	16	61.52	

Liquid Limit = 58.63 Plastic Index = 34.95

Wed Mar 19 14:47:51 1997

Page: 1

Filename: PB2-536 Elevation: NA

Tested by : C. WASON

Checked by : C. CAPPS

GEOTECHNICAL LABORATORY TEST DATA

Project : CONSOLIDATED ENGINEERING LABORATORY

Project No.: 941138NA Boring No. : PB-2

Depth : 536-538 FEET

Test Date : 03/18/97

Test Method : ASTM D422/4318 Sample No. : 536-538

Location : PICKLES BUTTE LANDFILL, IDAHO

Soil Description : LT. GRAYISH BROWN SILTY CLAY -CH-

Remarks : P.O. # 3689

COARSE SIEVE SET

••••••								
Sieve	Sieve O	penings	Weight	Cumulative	Percent			
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)			
#10	0.079	2.00	0.00	0.00	100			
#16	0.047	1.19	0.09	0.09	100			
#30	0.023	0.60	0.07	0.16	100			
#50	0.012	0.30	0.20	0.36	100			
#100	0.006	0.15	1.03	1.39	100			
#200	0.003	0.07	7.44	8.83	98			

Total Dry Weight of Sample = 399.86

D85 : N/A D60 : N/A D50 : N/A

D30 : N/A D15 : N/A D10 : N/A

Soil Classification

ASTM Group Symbol : CH

ASTM Group Name : fat clay AASHTO Group Symbol : A-7-6(41) AASHTO Group Name : Clayey Soils Wed Mar 19 14:47:51 1997

Page: 2

GEOTECHNICAL LABORATORY TEST DATA

Project : CONSOLIDATED ENGINEERING LABORATORY

Project No.: 941138NA

Depth : 536-538 FEET

Filename: PB2-536 Elevation: NA

Test Date : 03/18/97

Tested by : C. WASON

Boring No. : PB-2

Test Method : ASTM D422/4318

Sample No. : 536-538

Checked by : C. CAPPS

Location : PICKLES BUTTE LANDFILL, IDAHO

Soil Description : LT. GRAYISH BROWN SILTY CLAY -CH-

Remarks : P.O. # 3689

Natural Moisture Content

Martin to the second to the se							
Moisture Content ID	Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content			
	(gm)	(gm)	(gm)	(%)			

1) PB2-536	225.24	750.20	625.10	31.29			

Average Moisture Content = 31.29

Moisture Content ID	Mass of Container	Plastic Limit Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content	
	(gm)	(gm)	(gm)	(%)	
	••••				
1) 48	16.01	27.46	25.15	25.27	

Plastic Limit = 25.27

Liquid Limit

Moisture Content ID		Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Number of Drops	Moisture Content	
		(gm)	(gm)	(gm)		(%)	
1)	18	10.70	26.54	20.80	31	56.83	
2)	14	10.83	25.96	20.41	25	57.93	
3)		11.12	26.94	21.00	18	60.12	

Liquid Limit = 58.06 Plastic Index = 32.79

ATTERBERG LIMITS

PROJECT CONSOLIDATED ENGINEERING LABORATORY	TESTED BY C. WASON				
LOCATION PICKLES BUTTE LANDFILL, IDAHO		CHECKED BY C. CAPPS	SAMPLE NU 536-538	MEER	
SAMPLE DESCRIPTION LT. GRAYISH BROWN SILTY CLAY -CH-		and the latest terminal termin	DATE Wed Mar 19 1997	FLENAME PB2-536	
	LIQUID LIMIT	DETERMINATIO	NS		
CONTAINER NUMBER	18	14	8		
WT. WET SOIL + TARE	25.54	25.96	26.94		
WT. DRY SOIL + TARE	20.8	20.41	21		
WT. WATER	5.74	5.55	5.94		
TARE WT.	10.7	10.83	11.12		
WT. DRY SOIL	10.1	9.58	9.88		
WATER CONTENT, W _N (%)	56.83	57.93	60.12		
NUMBER OF BLOWS, N	31	25	18		·
ONE-POINT LIQUID LIMIT, LL	58.33	57.93	57.78		
	PLASTIC LIMIT	DETERMINATI	ONS		
CONTAINER NUMBER	48				
WT. WET SOIL + TARE	27.46				
WT. DRY SOIL + TARE	25.15				
WT. WATER	2.31	<u> </u>			
TARE WT.	16.01				
WT. DRY SOIL	9.14				
WATER CONTENT (%)	25.27	ļ			
		<u> </u>	CUMAR	Y OF RESULTS	
FLOW CURVE	•	ALATI II	RAL WATER CONTENT,		31.3
64.0	 	<u> </u>	D LIMIT, LL	** (/•)	58.1
			TIC LIMIT, PL		25.3
63.0		·	TICITY INDEX, PI		32.8
		7	DITY INDEX, LI		0.18
62.0		-	DIT INDEX, CI		0.10
№ <u>=</u> 61.0		*u=	(W - PL)/PI PLAS	TICITY CHART	
		_ ao	,,,,,,,,	 	التبكيب
WATER CONTEN		70		i	/
8		- 60		/	
59.0 - X		- X			/ -
\ \ \ \		NOEX C		CH 47 CH	/ 1
\		J⋛ * 0⊦			
58.0		PLASTICITY 8 8 8		9	
	•	7 \$ 20			1
57.0		7 }	/ 2 - 2/		£
		1 "	a-a a	1	
56.0		ساره ولس	10 20 30 40		0 90 100 110
NUMBER OF BLO	WS, N		LIQ	UID LIMIT, LL	Fig. 2.0

ASTM D2937 WATER CONTENT(%), WET AND DRY UNIT WEIGHT(PCF)

Project	Name _	C.E.L	P.O. 368	39 Pr	oject Number <u>941</u>	138NA	Date03	/06/97	
Tested E	Ву <u>С.</u>	WASON	Red	luced By _	C. WASON Ch	necked By _	S. CAPPS		
Location	Location PICKLES BUTTE LANDFILL Page 1 of 1								
Specimen Number	Diam. Inch	Height CM.	Wet Wt. Grams	Dry Wt. Grams	Visual Description	Water Content	Wet Unit Weight	Dry Unit Weight	
GT-4 15-17 mid	2.86	15.2	927.7	877.2	lt. brown clayey fine sandy silt/ clayey silty sand	5.76	91.9	86.9	
GT-4 15-17 bottom	2.86	15.2	845.9	783.7	lt. brown clayey fine sandy silt/ clayey silty sand	7.94	83.8	77.6	
GT-4 70-71 B	1.43	9.0	140.7	133.81	<pre>lt. orange brown fine sandy silt/ silty sand</pre>	5.15	94.1	89.5	
GT-4 90-91 B	1.43	9.0	168.7	145.81	lt. grayish brown clayey silty sand to sandy silt	15.70	112.9	97.6	
GT-5 65-67	1.43	14.45	222.92	212.0	lt. grayish brown silty sand	5.15	92.9	88.4	
GT-5 80-81	1.43	13.0	204.32	191.52	grayish brown silty sand	6.68	94.7	88.7	
GT-5 100-101	1.43	13.55	190.32	172.79	lt. grayish brown silty sand	10.15	84.6	76.8	

Project: Pickles Butte Landfill Slope Stability Study
Owner: Canyon County
Project #: 030496
RE: Soils Lab test data summary

Boring #:	Depth	* · · c	ф	Water	Content	Dry Unit	Weight	Wet Unit	Weight	Avg Wet Unit Weight	Visual Description
		3.37	:X	Тор	Bottom	Тор	Bottom	Тор	Bottom	Calculated	
GT-1	10-12 ft	706	20	11.7	9.95	100.69	103.33	112.47	113.61	113.04	Brown silty sand to sandy silt with traces of clay & mica
	100-101 ft	9936	2	25.81	27.16	98.51	92.98	123.94	118.23	121.08	Lt. brown silty clay to clayey silt
	140-141 ft	6566	3	27.96	26.96	94.66	95.91	121.13	121.77	121.45	Grayish brown clayey silt to silty clay
	160-161 ft	3370	8	27.22	26.58	96.39	96.51	122.63	122.16	122.39	Grayish brown clayey silt to silty clay
	180-181 ft	7114	10	26.5	24.43	90.24	88.17	114.15	109.71	111.93	Lt. yellowish brown silty clay to clayey silt
	200-201 ft	7762	1	27.12	27.09	95.73	94.66	121.69	120.30	121.00	Lt. brown clayey silty to silty clay
GT-4	15-17 ft	One test		5.76	7.94	86.9	77.6	91.91	83.76	87.83	Lt. brown clayey fine sandy silt/clayey silty sand
1	30-31 ft	1339	37	6.23	5.85	82.52	84.57	87.66	89.52	88.59	Lt. orange brown fine sandy silt/silty fine sand
	40-41 ft	One test									
	70-71 ft	One test	:	5.15		89.5		94.11		94.11	Lt. orange brown fine sandy silt/silty sand
1	90-91 ft	One test		15.7		97.6		112.92		112.92	Lt. grayish brown clayey silty sand to sandy silt
GT-5	65-67 ft			5.15		88.4		92.95		92.95	Lt. grayish brown silty sand
1	70-71 ft	490	33	4.87	5.48	97.07	97.29	101.80	102.62	102.21	Brown silty sand
	80-81 ft			6.68		88.7		94.63		94.63	Grayish brown silty sand
	90-91 ft	3845	27	4.91	4.73	91.22	91.53	95.70	95.86	95.78	Brown silty sand
İ	100-101 ft	No test		10.15		76.8		84.60		84.60	Lt. grayish brown silty sand
PB-2	429-430 ft	17928	9	22.98	23.31	93.27	93.1	114.70	114.80	114.75	Grayish brown silty clay/clayey silt
	456-457 ft	29765	2	21.88	22.92	93.08	92.53	113.45	113.74	113.59	Lt. grayish brown silty clay/clayey silt
	458-460 ft	29491	1	22.5	22.66	93.27	89.19	114.26	109.40	111.83	Lt. grayish brown silty clay/clayey silt
	474-475 ft	16128	7	24.79	25.22	91.46	90.11	114.13	112.84	113.48	Grayish brown sitly clay/clayey silt
	522-524 ft	One test		1							
1	530-531 ft	24336	4	21.24	20.21	93.63	95.26	113.52	114.51	114.01	Brown silty clay/clayey silt
	536-538 ft	1973	1	31.29	31.87	85.34	84.61	112.04	111.58	111.81	Lt. grayish brown silty clay

June 30, 1997

Holladay Engineering Co. P.O. Box 235 Payette, ID 83661 Bill Stroud

RE: Pickles Butte Landfill

15500 Missouri Caldwell, ID CEL #11364 LAB #27735

SOIL ANALYSIS REPORT

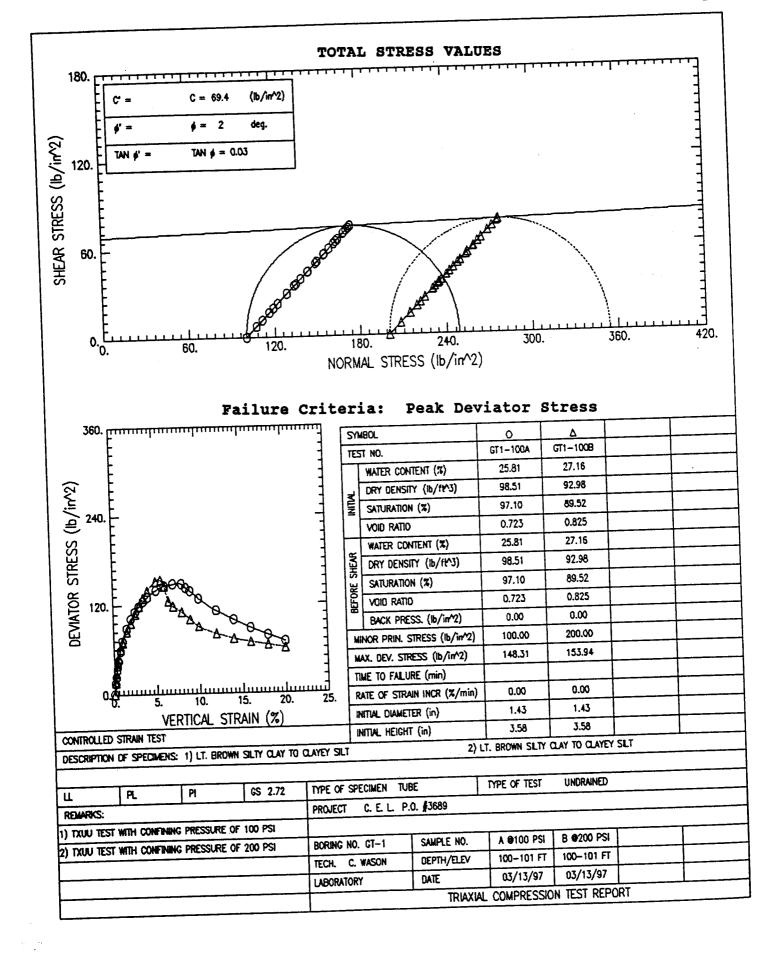
On 01/24/97, a Holladay Engineering representative in Payette, ID prepared various soil samples for analysis from the above project.

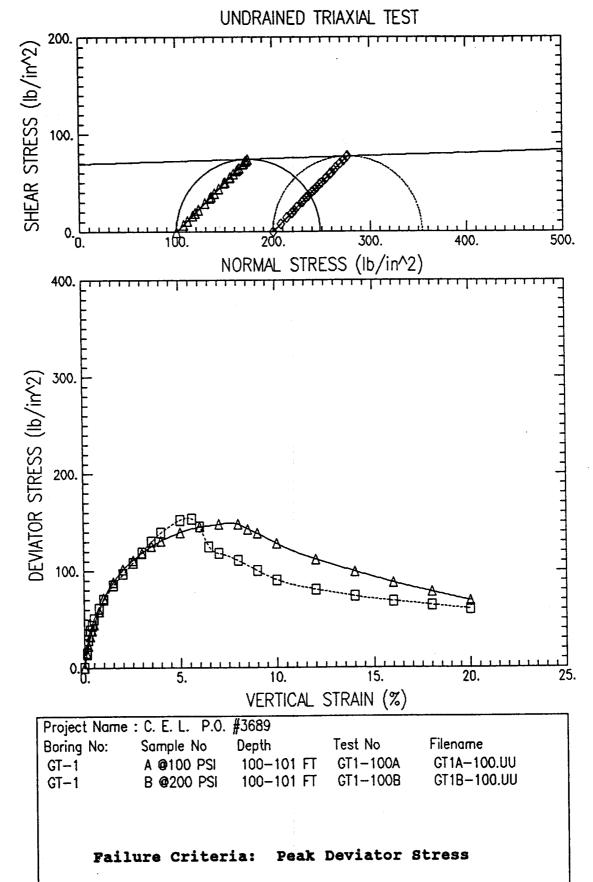
The samples were transported to consolidated Engineering Laboratories in Pleasanton for testing as requested. Please refer to the attached data sheets for results.

REVIEWED BY: EURENZUM

LOKENZOK. LAWSON, LABORATORY MANAGER

REVIEWING ENGINEER: JAMES M. POWERS, R.C.E.


cc: Holladay Engineering Co.


Enclosures

All reports are submitted as the confidential property of clients. Publication of statements, conclusions of extracts is very pending our written approval.

No. C41046

Exp. 5-31-99

Wed Mar 19 15:58:56 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA Boring No. : GT-1

Test No. : GT1-100A Tested by : C. WASON Test Date : 03/13/97 Checked by : C. CAPPS Depth : 100-101 FT

Sample No. : A @100 PSI Elevation: NA Sample Type : TUBE Soil Description : LT. BROWN SILTY CLAY TO CLAYEY SILT Remarks : TXUU TEST WITH CONFINING PRESSURE OF 100 PSI

Height: 3.583 (in) Area: 1.61 (in²) Volume : 5.75 (in³)

Filter Correction : 0.00 (lb/in^2) Piston Diameter: 0.000 (in) Membrane Correction: 0.00 (lb/in) Piston Friction: 0.00 (lb) Area Correction : Parabolic

Piston Weight: 0.00 (gm)

		VERTICAL						TOTAL	EFFECTIVE
(CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in ⁻ 2)	(lb/in ²)
									400.00
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	100.00	100.00
2)	0.004	0.11	1.61	0.00	23.10	23.10	14.36	114.36	114.36
3)	0.007	0.20	1.61	0.00	36.96	36.96	22.94	122.94	122.94
4)	0.011	0.31	1.61	0.00	53.13	53.13	32.91	132.91	132.91
5)	0.014	0.39	1.62	0.00	62.37	62.37	38.58	138.58	138.58
6)	0.018	0.50	1.62	0.00	72.77	72.77	44.93	144.93	144.93
7)	0.027	0.75	1.63	0.00	94.71	94.71	58.23	158.23	158.23
8)	0.036	1.00	1.63	0.00	116.66	116.66	71.42	171.42	171.42
9)	0.054	1.51	1.65	0.00	145.53	145.53	88.34	188.34	188.34
10)	0.072	2.01	1.66	0.00	168.63	168.63	101.48	201.48	201.48
11)	0.090	2.51	1.68	0.00	185.96	185.96	110.94	210.94	210.94
12)	0.107	2.99	1.69	0.00	200.39	200.39	118.57	218.57	218.57
13)	0.125	3.49	1.71	0.00	213.68	213.68	125.31	225.31	225.31
14)	0.143	3.99	1.72	0.00	225.23	225.23	130.91	230.91	230.91
15)	0.179	5.00	1.75	0.00	244.86	244.86	139.77	239.77	239.77
16)	0.215	6.00	1.78	0.00	259.88	259.88	145.63	245.63	245.63
17)	0.251	7.01	1.82	0.00	269.12	269.12	148.00	248.00	248.00
18)	0.287	8.01	1.85	0.00	274.89	274.89	148.31	248.31	248.31
19)	0.305	8.51	1.87	0.00	267.96	267.96	143.18	243.18	243.18
20)	0.322	8.99	1.89	0.00	262.19	262.19	138.80	238.80	238.80
21)	0.358		1.93	0.00	247.17	247.17	128.27	228.27	228.27
22)	0.430	12.00	2.01	0.00	224.07	224.07	111.61	211.61	211.61
23)	0.502	14.01	2.10	0.00	207.90	207.90	99.22	199.22	199.22
24)	0.573	15.99	2.19	0.00	192.31	192.31	87.83	187.83	187.83
		18.00	2.19	0.00	179.03	179.03	78.03	178.03	178.03
25)	0.645				166.32		69.02	169.02	169.02
26)	0.717	20.01	2.41	0.00	100.32	100.32	69.02	107.02	137.02

Wed Mar 19 15:58:56 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-100A

Boring No. : GT-1

Test Date : 03/13/97

Tested by : C. WASON

Sample No. : A @100 PSI

Depth : 100-101 FT

Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description : LT. BROWN SILTY CLAY TO CLAYEY SILT

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 100 PSI

Liquid Limit: 0

Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	187.20	186.47	0.00	
WT CONTAINER + DRY SOIL (gm)	148.80	148.21	0.00	
WT WATER (gm)	38.40	38.26	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	148.80	148.21	0.00	
WATER CONTENT (%)	25.81	25.81	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	25.81	25.81
VOID RATIO	0.72	0.72
WET DENSITY (lb/ft-3)	123.93	123.93
DRY DENSITY (lb/ft-3)	98.51	98.51
DEGREE OF SATURATION (%)	97.10	97.10

Maximum Shear Stress = 74.16 (lb/in⁻²) at a Vertical Strain of 8.01 %

Wed Mar 19 16:00:58 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Location : PICKLES BUTTE L/F- IDAHO

Project : C. E. L. P.O. #3689

Project No. : 941138NA

Boring No. : GT-1

Sample No. : B a200 PSI

Sample Type : TUBE

Soil Description : LT. BROWN SILTY CLAY TO CLAYEY SILT Remarks : TXUU TEST WITH CONFINING PRESSURE OF 200 PS1

Height: 3.583 (in) Area: 1.61 (in²) Volume: 5.75 (in³) Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Piston Weight: 0.00 (gm)

Test No. : GT1-100B

Depth : 100-101 FT

Elevation: NA

Test Date : 03/13/97

Tested by : C. WASON

Checked by : C. CAPPS

Filter Correction: 0.00 (lb/in^2)
Membrane Correction: 0.00 (lb/in)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in ²)
									200 00
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	200.00	200.00
2)	0.004	0.11	1.61	0.00	25.41	25.41	15.79	215.79	215.79
3)	0.007	0.20	1.61	0.00	46.20	46.20	28.67	228.67	228.67
4)	0.011	0.31	1.61	0.00	62.37	62.37	38.64	238.64	238.64
5)	0.014	0.39	1.62	0.00	70.46	70.46	43.58	243.58	243.58
6)	0.018	0.50	1.62	0.00	80.85	80.85	49.92	249.92	249.92
7)	0.027	0.75	1.63	0.00	99.33	99.33	61.07	261.07	261.07
8)	0.036	1.00	1.63	0.00	114.35	114.35	70.01	270.01	270.01
9)	0.054	1.51	1.65	0.00	140.33	140.33	85.19	285.19	285.19
10)	0.072	2.01	1.66	0.00	160.55	160.55	96.62	296.62	296.62
11)	0.090	2.51	1.68	0.00	181.34	181.34	108.18	308.18	308.18
12)	0.107	2.99	1.69	0.00	201.55	201.55	119.25	319.25	319.25
13)	0.125	3.49	1.71	0.00	221.76	221.76	130.05	330.05	330.05
14)	0.143	3.99	1.72	0.00	239.66	239.66	139.30	339.30	339.30
15)	0.179	5.00	1.75	0.00	266.81	266.81	152.30	352.30	352.30
16)	0.200	5.58	1.77	0.00	272.58	272.58	153.94	353.94	353.94
17)	0.215	6.00	1.78	0.00	259.88	259.88	145.63	345.63	345.63
18)	0.232	6.48	1.80	0.00	225.23	225.23	125.11	325.11	325.11
19)	0.251	7.01	1.82	0.00	214.83	214.83	118.15	318.15	318.15
20)	0.287	8.01	1.85	0.00	205.01	205.01	110.61	310.61	310.61
21)	0.322	8.99	1.89	0.00	189.42	189.42	100.28	300.28	300.28
22)	0.358	9.99	1.93	0.00	174.41	174.41	90.51	290.51	290.51
23)	0.430		2.01	0.00	161.70	161.70	80.55	280.55	280.55
	0.502		2.10	0.00	153.62	153.62	73.32	273.32	273.32
24)	0.502		2.10	0.00	150.15	150.15	68.57	268.57	268.57
25)			2.19	0.00	147.84	147.84	64.44	264.44	264.44
26)	0.645	18.00	_		145.53	147.53	60.39	260.39	260.39
27)	0.717	20.01	2.41	0.00	143.33	147.73	· · · · · · · · · · · · · · · · · · ·	200.37	200.37

Wed Mar 19 16:00:58 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-100B

Boring No. : GT-1

Test Date : 03/13/97

Tested by : C. WASON

Sample No. : B a200 PSI

Depth : 100-101 FT

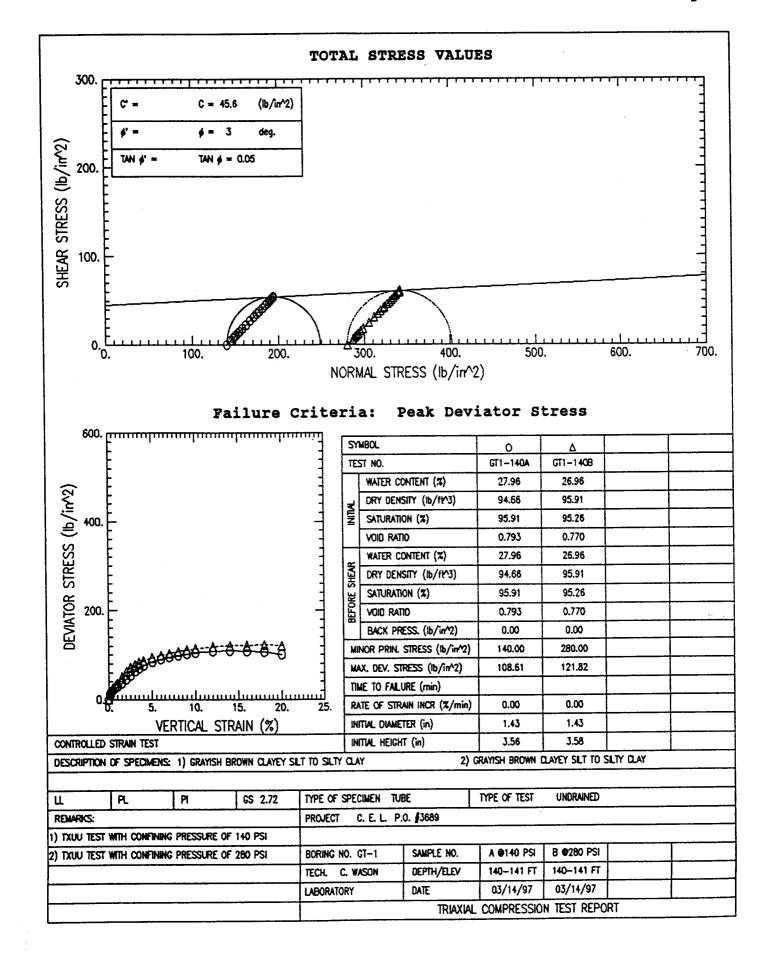
Checked by : C. CAPPS

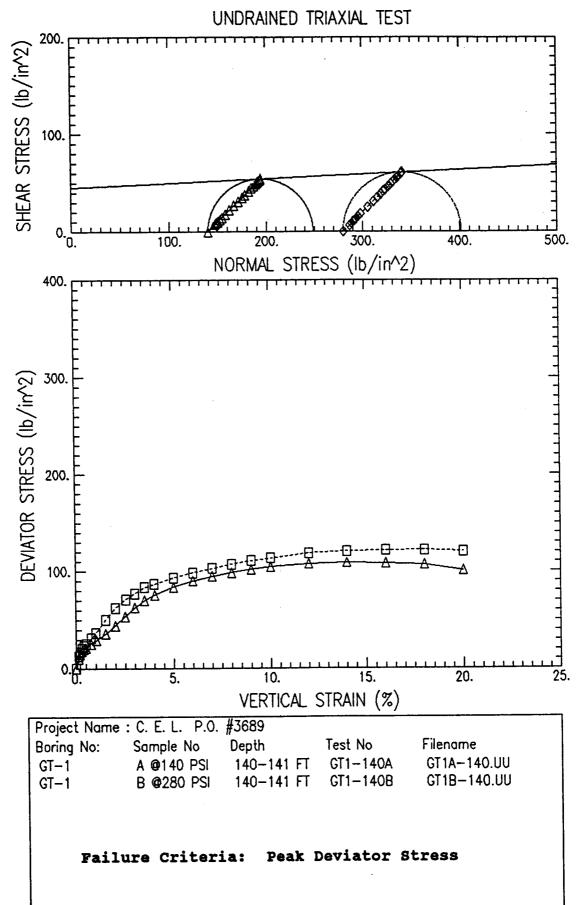
Sample Type : TUBE

Elevation: NA

Soil Description: LT. BROWN SILTY CLAY TO CLAYEY SILT Remarks: TXUU TEST WITH CONFINING PRESSURE OF 200 PSI

Liquid Limit: 0


Plastic Limit : 0


Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	178.60	178.32	0.00	
WT CONTAINER + DRY SOIL (gm)	140.45	140.23	0.00	
WT WATER (gm)	38.15	38.09	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	140.45	140.23	0.00	
WATER CONTENT (%)	27.16	27.16	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	27.16	27.16
VOID RATIO	0.83	0.83
WET DENSITY (lb/ft-3)	118.24	118.24
DRY DENSITY (lb/ft-3)	92.98	92.98
DEGREE OF SATURATION (%)	89.52	89.52

Maximum Shear Stress = 76.97 (lb/in²) at a Vertical Strain of 5.58 %

Wed Mar 19 16:01:30 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PIKCLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-140A

Boring No.: GT-1 Sample No.: A @140 PSI Test Date : 03/14/97 Depth : 140-141 FT Tested by : C. WASON Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description : GRAYISH BROWN CLAYEY SILT TO SILTY CLAY Remarks : TXUU TEST WITH CONFINING PRESSURE OF 140 PSI

Height: 3.563 (in) Area: 1.61 (in²) Volume: 5.72 (in³) Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2)
Membrane Correction: 0.00 (lb/in)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	Ή	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ⁻ 2)	(lb/in ²)	(lb/in ²)
									440.00
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	140.00	140.00
2)	0.004	0.11	1.61	0.00	16.17	16.17	10.05	150.05	150.05
3)	0.007	0.20	1.61	0.00	24.26	24.26	15.05	155.05	155.05
4)	0.011	0.31	1.61	0.00	28.88	28.88	17.89	157.89	157.89
5)	0.014	0.39	1.62	0.00	32.34	32.34	20.01	160.01	160.01
6)	0.018	0.51	1.62	0.00	34.65	34.65	21.39	161.39	161.39
7)	0.027	0.76	1.63	0.00	41.58	41.58	25.56	165.56	165.56
8)	0.036	1.01	1.63	0.00	47.93	47.93	29.34	169.34	169.34
9)	0.053	1.49	1.65	0.00	59.48	59.48	36.12	176.12	176.12
10)	0.071	1.99	1.66	0.00	73.92	73.92	44.50	184.50	184.50
11)	0.089	2.50	1.68	0.00	90.09	90.09	53.76	193.76	193.76
12)	0.107	3.00	1.69	0.00	106.26	106.26	62.85	202.85	202.85
13)	0.125	3.51	1.71	0.00	119.54	119.54	70.08	210.08	210.08
14)	0.143	4.01	1.72	0.00	130.52	130.52	75.83	215.83	215.83
15)	0.178	5.00	1.75	0.00	146.69	146.69	83.73	223. <i>7</i> 3	223.73
16)	0.214	6.01	1.78	0.00	160.55	160.55	89.96	229.96	229.96
17)	0.249	6.99	1.82	0.00	172,10	172.10	94.68	234.68	234.68
18)	0.285	8.00	1.85	0.00	182.49	182.49	98.48	238.48	238.48
19)	0.321	9.01	1.89	0.00	192.31	192.31	101.76	241.76	241.76
20)	0.356		1.93	0.00	200.97	200.97	104.30	244.30	244.30
21)	0.428		2.01	0.00	215.99	215.99	107.56	247.56	247.56
22)	0.499	_	2.10	0.00	227.54	227.54	108.61	248.61	248.61
23)	0.570		2.19	0.00	236.78		108.12	248.12	248.12
24)	0.641	17.99	2.29	0.00	244.86		106.75	246.75	
24 <i>)</i> 25)	0.713		2.41	0.00	243.13		100.90	240.90	
25)	0.713	20.01	2.41	0.00	243.13	243.13			_,,,,,,

Wed Mar 19 16:01:30 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PIKCLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-140A

Boring No. : GT-1

Test Date : 03/14/97

Tested by : C. WASON

Sample No. : A @140 PSI

Depth : 140-141 FT

Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description: GRAYISH BROWN CLAYEY SILT TO SILTY CLAY Remarks: TXUU TEST WITH CONFINING PRESSURE OF 140 PSI

Liquid Limit: 0

Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	181.94	181.94	0.00	
WT CONTAINER + DRY SOIL (gm)	142.18	142.18	0.00	
WT WATER (gm)	39.76	39.76	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	142.18	142.18	0.00	
WATER CONTENT (%)	27.96	27.96	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	27.96	27.96
VOID RATIO	0.79	0.79
WET DENSITY (lb/ft-3)	121.13	121.13
DRY DENSITY (lb/ft-3)	94.66	94.66
DEGREE OF SATURATION (%)	9591	95.91

Maximum Shear Stress = 54.30 (lb/in^2) at a Vertical Strain of 14.01 %

Wed Mar 19 16:03:51 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Project No. : 941138NA

Boring No. : GT-1 Sample No. : B a280 PSI

Sample Type : TUBE

Height: 3.583 (in)

Area: 1.61 (in⁻2)

Volume: 5.75 (in³)

Location : PICKLES BUTTE L/F- IDAHO Test No. : GT1-140B

Test Date : 03/14/97 Depth : 140-141 FT Elevation: NA

Soil Description : GRAYISH BROWN CLAYEY SILT TO SILTY CLAY Remarks : TXUU TEST WITH CONFINING PRESSURE OF 280 PSI

Piston Diameter: 0.000 (in)

Piston Friction: 0.00 (lb) Piston Weight: 0.00 (gm)

Filter Correction : 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Area Correction : Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

		VERTICAL						TOTAL	EFFECTIVE
(CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ⁻ 2)	(lb/in ²)	(lb)	(lb)	(lb/in ⁻ 2)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	280.00	280.00
2)	0.004	0.11	1.61	0.00	20.79	20.79	12.92	292.92	292.92
3)	0.007	0.20	1.61	0.00	27.72	27.72	17.20	297. 20	297.20
4)	0.011	0.31	1.61	0.00	33.50	33.50	20.75	300.75	300.75
5)	0.014	0.39	1.62	0.00	38.12	38.12	23.58	303.58	303.58
6)	0.018	0.50	1.62	0.00	41.58	41.58	25.67	305.67	305.67
7)	0.027	0.75	1.63	0.00	50.82	50.82	31.25	311.25	311.25
8)	0.036	1.00	1.63	0.00	60.06	60.06	36.77	316.77	316.77
9)	0.054	1.51	1.65	0.00	83.16	83.16	50.48	330.48	330.48
10)	0.072	2.01	1.66	0.00	103.95	103.95	62.56	342.56	342.56
11)	0.090	2.51	1.68	0.00	118.97	118.97	70.97	350.97	350.97
12)	0.107	2.99	1.69	0.00	130.52	130.52	77.22	357.22	357.22
13)	0.125	3.49	1.71	0.00	142.07	142.07	83.32	363.32	363.32
14)	0.143	3.99	1.72	0.00	149.00	149.00	86.60	366.60	366.60
15)	0.179	5.00	1.75	0.00	162.86	162.86	92.96	372.96	372.96
16)	0.215	6.00	1.78	0.00	175.56	175.56	98.38	378.38	378.38
17)	0.251	7.01	1.82	0.00	187.11	187.11	102.90	382.90	382.90
18)	0.287	8.01	1.85	0.00	198.66	198.66	107.18	387.18	387.18
19)	0.322	8.99	1.89	0.00	209.06	209.06	110.67	390.67	390.67
20)	0.358	9.99	1.93	0.00	218.30	218.30	113.29	393.29	393.29
21)	0.430	12.00	2.01	0.00	237.93	237.93	118.52	398.52	398.52
22)	0.502	14.01	2.10	0.00	252.37	252.37	120.45	400.45	400.45
23)	0.573	15.99	2.19	0.00	265.65	265.65	121.32	401.32	401.32
24)	0.645	18.00	2.29	0.00	279.51	279.51	121.82	401.82	401.82
25)	0.717	20.01	2.41	0.00	289.91	289.91	120.31	400.31	400.31

Wed Mar 19 16:03:51 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-140B

Boring No. : GT-1

Test Date : 03/14/97 Depth : 140-141 FT Tested by : C. WASON

Sample No. : B a280 PSI Sample Type : TUBE

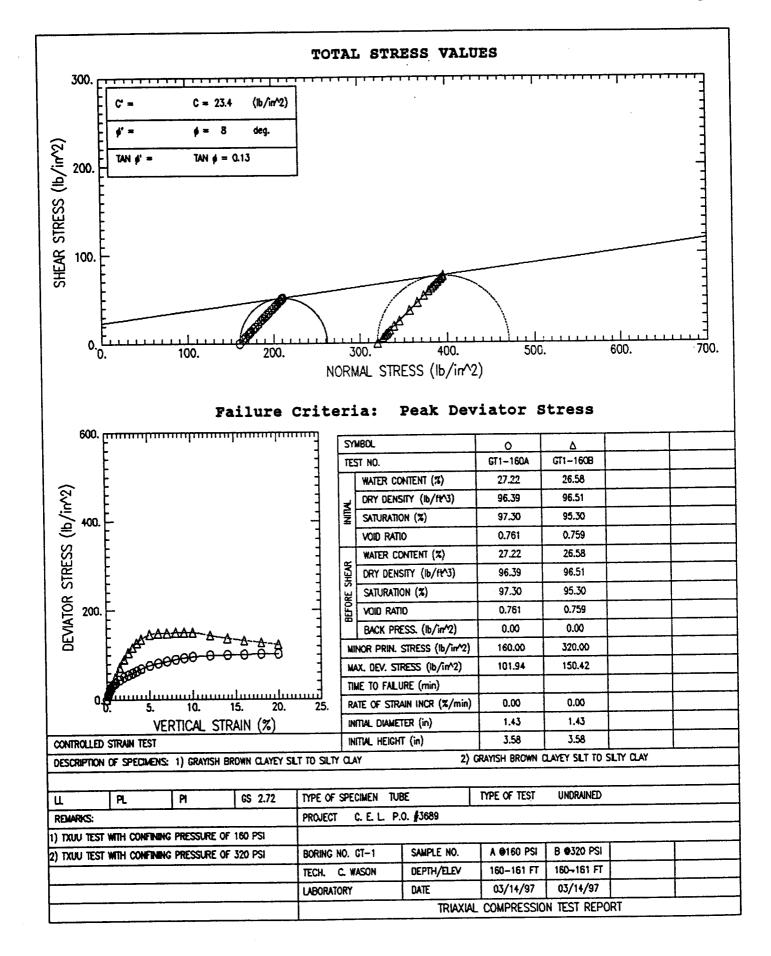
Elevation : NA

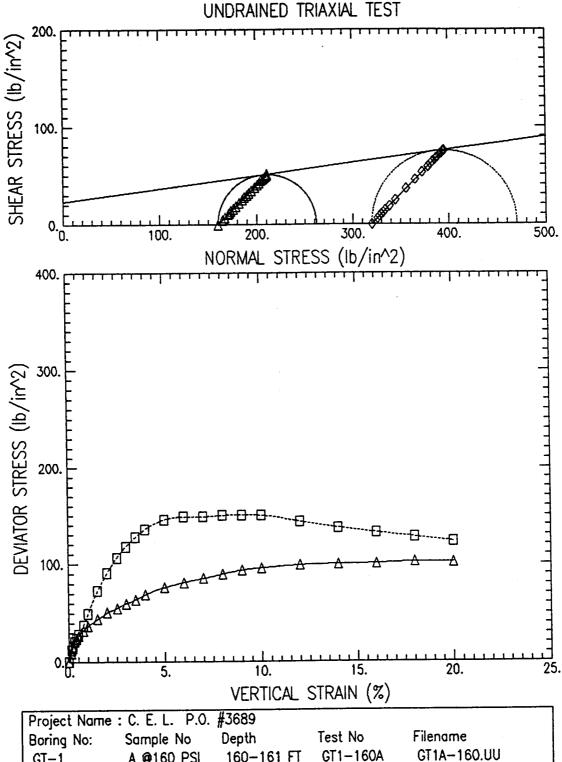
Checked by : C. CAPPS

Soil Description : GRAYISH BROWN CLAYEY SILT TO SILTY CLAY

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 280 PSI

Liquid Limit: 0


Plastic Limit : 0


Specific Gravity: 2.72

WATER CONTENT		
BEFORE TEST	AFTER TEST	TRIMMINGS
183.92	183.92	0.00
144.87	144.87	0.00
39.05	39.05	0.00
0.00	0.00	0.00
144.87	144.87	0.00
26.96	26.96	0.00
	183.92 144.87 39.05 0.00 144.87	BEFORE TEST AFTER TEST 183.92 183.92 144.87 144.87 39.05 39.05 0.00 0.00 144.87 144.87

	******	AT CONCOL IDATION
	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	26.96	26.96
VOID RATIO	0.77	0.77
WET DENSITY (lb/ft-3)	121.76	121.76
DRY DENSITY (lb/ft-3)	95.91	95.91
DEGREE OF SATURATION (%)	95.26	95.26

Maximum Shear Stress = 60.91 (lb/in²) at a Vertical Strain of 18.00 %

Boring No: Sample No Depth Test No Filename
GT-1 A @160 PSI 160-161 FT GT1-160A GT1A-160.UU
GT-1 B @320 PSI 160-161 FT GT1-160B GT1B-160.UU

. Failure Criteria: Peak Deviator Stress

and the second

Wed Mar 19 16:05:04 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-160A

Boring No. : GT-1

Test Date : 03/14/97 Depth: 160-161 FT

Tested by : C. WASON Checked by : C. CAPPS

Sample No. : A @160 PSI Sample Type : TUBE

Elevation: NA

Soil Description : GRAYISH BROWN CLAYEY SILT TO SILTY CLAY Remarks : TXUU TEST WITH CONFINING PRESSURE OF 160 PSI

Height: 3.583 (in) Area : 1.61 (in²) Volume : 5.75 (in³) Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction : 0.00 (lb/in²) Membrane Correction: 0.00 (lb/in)

Area Correction : Parabolic Piston Weight: 0.00 (gm)

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
									440.00
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	160.00	160.00
2)	0.004	0.11	1.61	0.00	13.86	13.86	8.61	168.61	168.61
3)	0.007	0.20	1.61	0.00	23.10	23.10	14.34	174.34	174.34
4)	0.011	0.31	1.61	0.00	33.50	33.50	20.75	180.75	180.75
5)	0.014	0.39	1.62	0.00	38.12	38.12	23.58	183.58	183.58
6)	0.018	0.50	1.62	0.00	43.89	43.89	27.10	187.10	187.10
7)	0.027	0.75	1.63	0.00	52.55	52.55	32.31	192.31	192.31
8)	0.036	1.00	1.63	0.00	60.06	60.06	36.77	196.77	196.77
9)	0.054	1.51	1.65	0.00	72.77	72.77	44.17	204.17	204.17
10)	0.072	2.01	1.66	0.00	84.32	84.32	50.74	210.74	210.74
11)	0.090	2.51	1.68	0.00	92.40	92.40	55.13	215.13	215.13
12)	0.107	2.99	1.69	0.00	101.06	101.06	59.80	219.80	219.80
13)	0.125	3.49	1.71	0.00	108.57	108.57	63.67	223.67	223.67
14)	0.143	3.99	1.72	0.00	118.39	118.39	68.81	228.81	228.81
15)	0.179	5.00	1.75	0.00	133.40	133.40	76.15	236.15	236.15
16)	0.215	6.00	1.78	0.00	144.95	144.95	81.23	241.23	241.23
17)	0.251	7.01	1.82	0.00	155.35	155.35	85.44	245.44	245.44
18)	0.287	8.01	1.85	0.00	166.32	166.32	89.74	249.74	249.74
19)	0.322	8.99	1.89	0.00	176.72	176.72	93.55	253.55	253.55
20)	0.358		1.93	0.00	184.22	184.22	95.61	255.61	255.61
21)	0.430	12.00	2.01	0.00	198.08	198.08	98.67	258.67	258.67
22)	0.502	14.01	2.10	0.00	209.06	209.06	99.77	259.77	259.77
23)	0.573		2.19	0.00	220.03	220.03	100.49	260.49	260.49
-		18.00	2.19	0.00	233.89	233.89	101.94	261.94	261.94
24)	0.645		-		233.89	244.86	101.62	261.62	261.62
25)	0.717	20.01	2.41	0.00	244.00	244.00	101.02	201.02	201.02

Wed Mar 19 16:05:04 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-160A

Boring No. : GT-1

Test Date : 03/14/97

Tested by : C. WASON

Sample No. : A @160 PSI

Depth : 160-161 FT

Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description : GRAYISH BROWN CLAYEY SILT TO SILTY CLAY

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 160 PSI

Liquid Limit: 0

Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	185.22	185.22	0.00	
WT CONTAINER + DRY SOIL (gm)	145.59	145.59	0.00	
WT WATER (gm)	39.63	39.63	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	145.59	145.59	0.00	
WATER CONTENT (%)	27.22	27.22	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	27.22	27.22
VOID RATIO	0.76	0.76
WET DENSITY (lb/ft-3)	122.62	122.62
DRY DENSITY (lb/ft^3)	96.39	96.39
DEGREE OF SATURATION (%)	97.30	97.30

Maximum Shear Stress = 50.97 (lb/in²) at a Vertical Strain of 18.00 %

Wed Mar 19 16:07:39 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Location : PICKLES BUTTE L/F- IDAHO

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Boring No. : GT-1

Sample No. : B @320 PSI

Sample Type: TUBE

Depth: 160-161 FT

Elevation: NA Soil Description : GRAYISH BROWN CLAYEY SILT TO SILTY CLAY

Test No. : GT1-160B

Test Date : 03/14/97

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 320 PSI

Height: 3.583 (in) Area: 1.61 (in²)

Volume: 5.75 (in-3)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Piston Weight: 0.00 (gm)

Filter Correction: 0.00 (lb/in²) Membrane Correction: 0.00 (lb/in)

Area Correction : Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

TOTAL **EFFECTIVE VERTICAL** DEV. CORR. DEV. DEV. VERTICAL VERTICAL CHANGE STRAIN CORR. PORE STRESS STRESS IN LENGTH LOAD LOAD STRESS **AREA PRESSURE** (lb/in²) (lb/in^2) (lb/in^2) (lb) (lb) (in²) (lb/in²) (in) (%) 0.00 320.00 320.00 1) 0.000 0.00 1.61 0.00 0.00 0.00 12.20 332.20 332.20 2) 0.004 0.11 1.61 0.00 19.64 19.64 0.00 26.57 26.57 16.49 336.49 336.49 3) 0.007 0.20 1.61 4) 0.011 0.00 33.50 33.50 20.75 340.75 340.75 0.31 1.61 344.29 344.29 0.00 39.27 39.27 24.29 5) 0.014 0.39 1.62 348.53 46.20 28.53 348.53 0.018 0.50 0.00 46.20 6) 1.62 37.64 357.64 357.64 61.22 61.22 7) 0.027 0.75 1.63 0.00 369.50 49.50 369.50 80.85 8) 0.036 1.00 1.63 0.00 80.85 392.92 72.92 392.92 0.054 1.65 0.00 120.12 120.12 9) 1.51 151.31 91.06 411.06 411.06 10) 0.072 0.00 151.31 2.01 1.66 0.00 177.87 177.87 106.12 426.12 426.12 11) 0.090 1.68 2.51 0.00 198.66 198.66 117.54 437.54 437.54 12) 0.107 2.99 1.69 447.34 447.34 127.34 13) 0.125 3.49 1.71 0.00 217.14 217.14 455.61 455.61 135.61 14) 0.143 3.99 1.72 0.00 233.31 233.31 465.70 465.70 0.00 255.26 255.26 145.70 15) 0.179 5.00 1.75 16) 0.215 265.65 148.87 468.87 468.87 6.00 1.78 0.00 265.65 468.64 468.64 17) 0.251 0.00 270.27 270.27 148.64 7.01 1.82 278.36 150.18 470.18 470.18 0.00 278.36 0.287 18) 8.01 1.85 284.13 150.42 470.42 470.42 0.322 8.99 1.89 0.00 284.13 19) 470.15 470.15 289.33 150.15 0.358 9.99 1.93 0.00 289.33 20) 463.54 463.54 21) 0.430 12.00 2.01 0.00 288.17 288.17 143.54 457.26 457.26 22) 0.502 14.01 2.10 0.00 287.60 287.60 137.26 452.14 23) 0.573 15.99 2.19 0.00 289.33 289.33 132.14 452.14 292.79 127.61 447.61 447.61 24) 0.645 18.00 2.29 0.00 292.79 442.95 442.95 0.00 296.26 122.95 25) 0.717 20.01 2.41 296.26

Wed Mar 19 16:07:39 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-1608

Boring No. : GT-1

Test Date : 03/14/97

Tested by : C. WASON

Sample No. : B a320 PSI

Depth : 160-161 FT

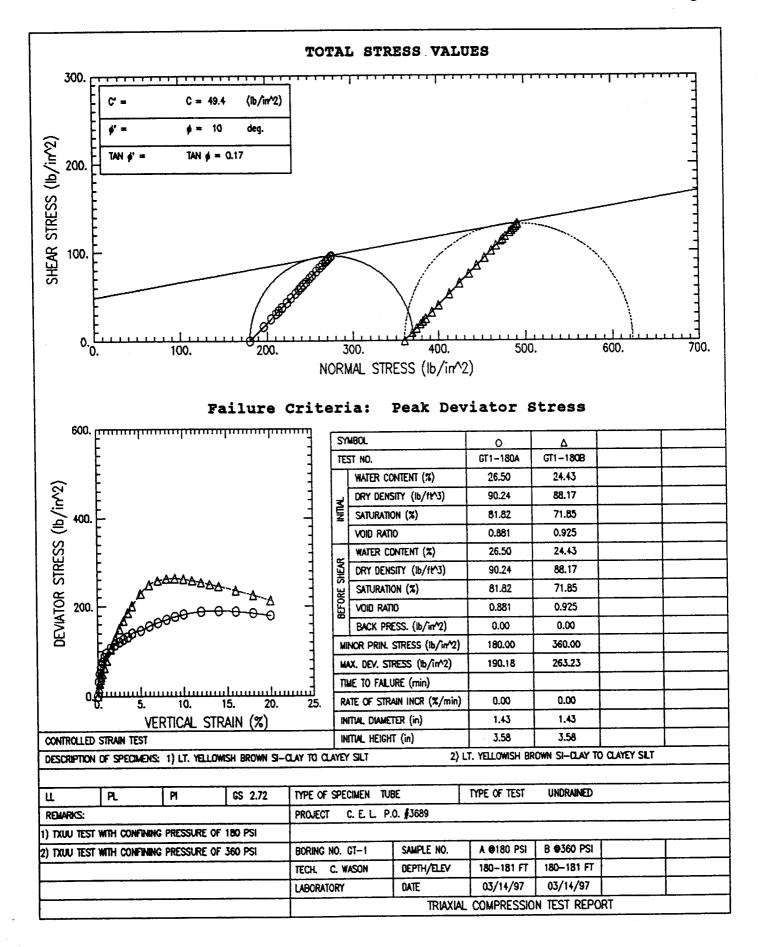
Checked by : C. CAPPS

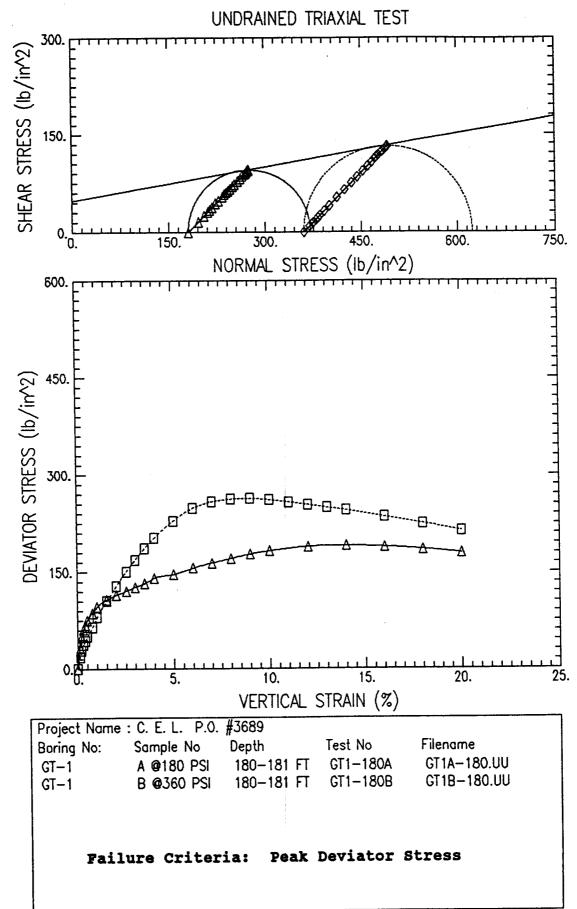
Sample Type : TUBE

Elevation: NA

Soil Description : GRAYISH BROWN CLAYEY SILT TO SILTY CLAY Remarks : TXUU TEST WITH CONFINING PRESSURE OF 320 PSI

Liquid Limit : 0


Plastic Limit: 0


Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	184.52	184.52	0.00	
WT CONTAINER + DRY SOIL (gm)	145.77	145.77	0.00	
WT WATER (gm)	38.75	38. <i>7</i> 5	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	145.77	145.77	0.00	
WATER CONTENT (%)	26.58	26.58	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	26.58	26.58
VOID RATIO	0.76	0.76
WET DENSITY (lb/ft-3)	122.16	122.16
DRY DENSITY (lb/ft-3)	96.51	96.51
DEGREE OF SATURATION (%)	95.30	95.30

Maximum Shear Stress = 75.21 (lb/in²) at a Vertical Strain of 8.99 %

Wed Mar 19 16:08:26 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Location : PICKLES BUTTE L/F- IDAHO

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Boring No. : GT-1 Sample No. : A @180 PSI

Sample Type : TUBE

Soil Description : LT. YELLOWISH BROWN SI-CLAY TO CLAYEY SILT Remarks : TXUU TEST WITH CONFINING PRESSURE OF 180 PSI

Height: 3.583 (in) Area : 1.61 (in'2) Volume: 5.75 (in 3)

Piston Diameter : 0.000 (in) Piston Friction: 0.00 (lb) Piston Weight: 0.00 (gm)

Test No. : GT1-180A

Test Date : 03/14/97

Depth: 180-181 FT

Elevation: NA

Filter Correction : 0.00 (lb/in²) Membrane Correction: 0.00 (lb/in) Area Correction : Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	180.00	180.00
2)	0.004	0.11	1.61	0.00	51.98	51.98	32.30	212.30	212.30
3)	0.007	0.20	1.61	0.00	79.70	79. 70	49.46	229.46	229.46
4)	0.011	0.31	1.61	0.00	99.33	99.33	61.53	241.53	241.53
5)	0.014	0.39	1.62	0.00	109.73	109.73	67.88	247.88	247.88
6)	0.018	0.50	1.62	0.00	122.43	122.43	75.59	255.59	255.59
7)	0.027	0.75	1.63	0.00	140.91	140.91	86.64	266.64	266.64
8)	0.036	1.00	1.63	0.00	157.08	157.08	96.17	276.17	276.17
9)	0.054	1.51	1.65	0.00	176.72	176.72	107.27	287.27	287.27
10)	0.072	2.01	1.66	0.00	190.58	190.58	114.69	294.69	294.69
11)	0.090	2.51	1.68	0.00	202.13	202.13	120.59	300.59	300.59
12)	0.107	2.99	1.69	0.00	213.68	213.68	126.43	306.43	306.43
13)	0.125	3.49	1.71	0.00	225.23	225.23	132.09	312.09	312.09
14)	0.143	3.99	1.72	0.00	241.40	241.40	140.31	320.31	320.31
15)	0.179	5.00	1.75	0.00	256.41	256.41	146.36	326.36	326.36
16)	0.215	6.00	1.78	0.00	278.36	278.36	155.99	335.99	335.99
17)	0.251	7.01	1.82	0.00	297.99	297.99	163.88	343.88	343.88
18)	0.287	8.01	1.85	0.00	316.47	316.47	170.75	350.75	350.75
19)	0.322	8.99	1.89	0.00	334.95	334.95	177.32	357.32	357.32
20)	0.358	9.99	1.93	0.00	351.12	351.12	182.22	362.22	362.22
21)	0.430	12.00	2.01	0.00	378.84	378.84	188.71	368.71	368,71
-			2.10	0.00	398.48	398.48	190.18	370.18	370.18
22)	0.502	14.01					188.31	368.31	368.31
23)	0.573	15.99	2.19	0.00	412.34	412.34		364.75	364.75
24)	0.645	18.00	2.29	0.00	423.89	423.89	184.75		
25)	0.717	20.01	2.41	0.00	431.97	431.97	179.27	359.27	359.27

Wed Mar 19 16:08:26 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No. : 941138NA

Test No. : GT1-180A

Boring No. : GT-1

Test Date : 03/14/97 Depth : 180-181 FT

Tested by : C. WASON

Sample No. : A @180 PSI

Checked by : C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description: LT. YELLOWISH BROWN SI-CLAY TO CLAYEY SILT

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 180 PSI

Liquid Limit: 0

Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	172.42	172.42	0.00	
WT CONTAINER + DRY SOIL (gm)	136.30	136.30	0.00	
WT WATER (gm)	36.12	36.12	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	136.30	136.30	0.00	
WATER CONTENT (%)	26.50	26.50	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	26,50	26.50
VOID RATIO	0.88	0.88
WET DENSITY (lb/ft-3)	114.15	114.15
DRY DENSITY (lb/ft-3)	90.24	90.24
DEGREE OF SATURATION (%)	81.82	81.82

Maximum Shear Stress = 95.09 (lb/in^2) at a Vertical Strain of 14.01 %

Wed Mar 19 16:09:01 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-180B

Boring No. : GT-1

Test Date : 03/14/97 Depth : 180-181 FT Tested by : C. WASON Checked by : C. CAPPS

Sample No. : 8 a360 PSI Sample Type : TUBE

Elevation: NA

Soil Description : LT. YELLOWISH BROWN SI-CLAY TO CLAYEY SILT

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 360 PSI

Height: 3.583 (in) Area: 1.61 (in²) Piston Diameter : 0.000 (in) Piston Friction : 0.00 (lb) Filter Correction : 0.00 (lb/in²) Membrane Correction : 0.00 (lb/in)

Volume : 5.75 (in⁻³) Piston Weight : 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
	IN LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ⁻ 2)	(lb/in ⁻ 2)	(lb)	(lb)	(lb/in ²)	(lb/in^2)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	360.00	360.00
2)	0.004	0.11	1.61	0.00	28.88	28.88	17.95	377.95	377.95
3)	0.007	0.20	1.61	0.00	45.05	45.05	27.96	387.96	387.96
4)	0.011	0.31	1.61	0.00	60.06	60.06	37.21	397.21	397.21
5)	0.014	0.39	1.62	0.00	70.46	70.46	43.58	403.58	403.58
6)	0.018	0.50	1.62	0.00	80.85	80.85	49.92	409.92	409.92
7)	0.027	0.75	1.63	0.00	103.95	103.95	63.91	423.91	423.91
8)	0.036	1.00	1.63	0.00	130.52	130.52	79.91	439.91	439.91
9)	0.054	1.51	1.65	0.00	173.25	173.25	105.17	465.17	465.17
10)	0.072	2.01	1.66	0.00	213.68	213.68	128.59	488.59	488.59
11)	0.090	2.51	1.68	0.00	251.79	251.79	150.22	510.22	510.22
12)	0.107	2.99	1.69	0.00	284.71	284.71	168.45	528.45	528.45
13)	0.125	3.49	1.71	0.00	317.63	317.63	186.27	546.27	546.27
14)	0.143	3.99	1.72	0.00	347.66	347.66	202.07	562.07	562.07
15)	0.179	5.00	1.75	0.00	400.79	400.79	228.78	588.78	588.78
16)	0.215	6.00	1.78	0.00	443.52	443.52	248.55	608.55	608.55
17)	0.251	7.01	1.82	0.00	469.51	469.51	258.21	618.21	618.21
18)	0.287	8.01	1.85	0.00	486.26	486.26	262.35	622.35	622.35
19)	0.322	8.99	1.89	0.00	497.23	497.23	263.23	623.23	623.23
20)	0.358	9.99	1.93	0.00	503.58	503.58	261.35	621.35	621.35
21)	0.394	11.00	1.97	0.00	507.05	507.05	257.86	617.86	617.86
22)	0.430	12.00	2.01	0.00	509.36	509.36	253.72	613.72	613.72
23)	0.466	13.01	2.05	0.00	511.09	511.09	249.25	609.25	609.25
24)	0.502	14.01	2.10	0.00	513.40	513.40	245.03	605.03	605.03
25)	0.573	15.99	2.19	0.00	515.13	515.13	235.26	595.26	595.26
26)	0.645	18.00	2.29	0.00	515.71	515.71	224.77	584.77	584.77
27)	0.717	20.01	2.41	0.00	514.55	514.55	213.54	573.54	573.54

Wed Mar 19 16:09:01 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-1808

Boring No. : GT-1

Test Date : 03/14/97

Tested by : C. WASON

Sample No. : B a360 PSI

Depth: 180-181 FT

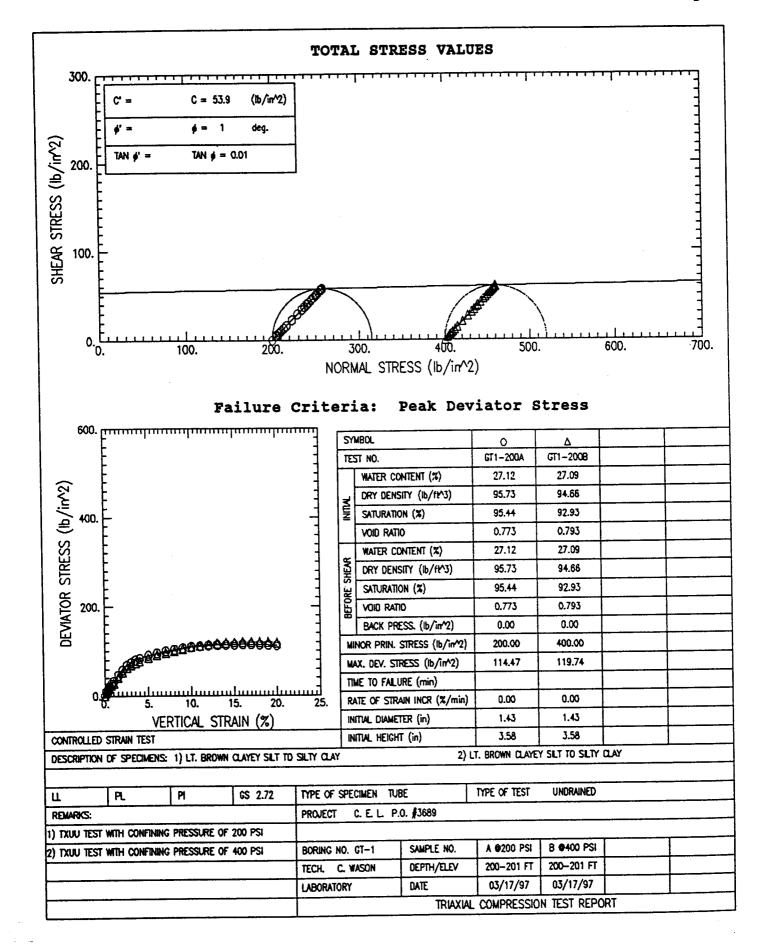
Checked by : C. CAPPS

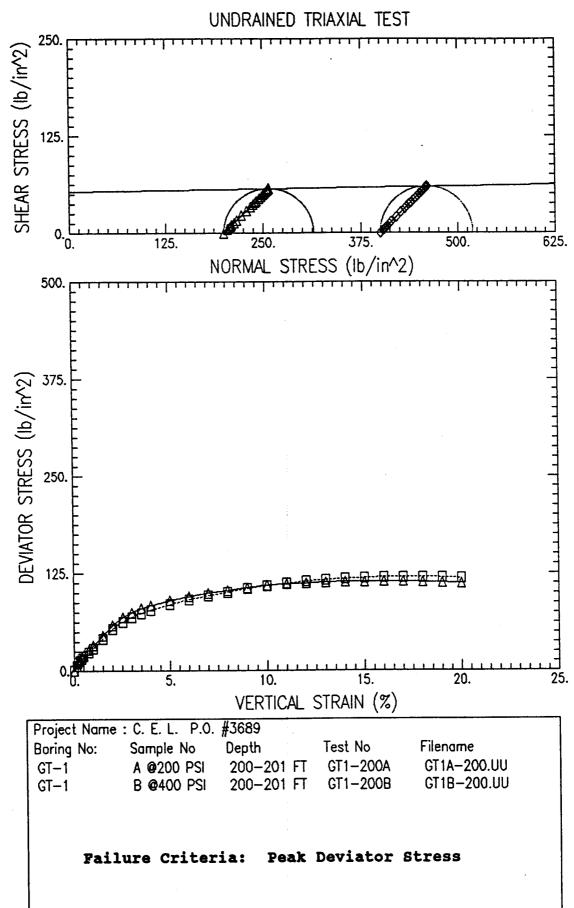
Elevation: NA

Sample Type : TUBE

Soil Description : LT. YELLOWISH BROWN SI-CLAY TO CLAYEY SILT Remarks : TXUU TEST WITH CONFINING PRESSURE OF 360 PSI

Liquid Limit: 0


Plastic Limit: 0


Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	165.72	164.68	0.00	
WT CONTAINER + DRY SOIL (gm)	133.18	132.35	0.00	
WT WATER (gm)	32.54	32.33	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	133.18	132.35	0.00	
WATER CONTENT (%)	24.43	24.43	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	24.43	24.43
VOID RATIO	0.92	0.92
WET DENSITY (lb/ft-3)	109.71	109.71
DRY DENSITY (lb/ft-3)	88.17	88.17
DEGREE OF SATURATION (%)	71.85	71.85

Maximum Shear Stress = 131.62 (lb/in^2) at a Vertical Strain of 8.99 %

Wed Mar 19 16:09:30 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Boring No. : GT-1

Sample No. : A @200 PSI Sample Type : TUBE

Soil Description : LT. BROWN CLAYEY SILT TO SILTY CLAY

Height: 3.583 (in) Area: 1.61 (in²) Volume : 5.75 (in³) Location : PICKLES BUTTE L/F- IDAHO

Test No. : GT1-200A Test Date : 03/17/97 Depth : 200-201 FT

Elevation: NA Remarks : TXUU TEST WITH CONFINING PRESSURE OF 200 PSI

> Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb) Piston Weight: 0.00 (gm)

Filter Correction : 0.00 (lb/in²) Membrane Correction : 0.00 (lb/in) Area Correction : Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

	,	VERTICAL					•	TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
11	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	200.00	200.00
2)	0.004	0.11	1.61	0.00	15.02	15.02	9.33	209.33	209.33
3)	0.007	0.20	1.61	0.00	17.33	17.33	10.75	210.75	210.75
4)	0.011	0.31	1.61	0.00	23.10	23.10	14.31	214.31	214.31
5)	0.014	0.39	1.62	0.00	28.30	28.30	17.51	217.51	217.51
6)	0.018	0.50	1.62	0.00	33.50	33.50	20.68	220.68	220.68
7)	0.027	0.75	1.63	0.00	43.31	43.31	26.63	226.63	226.63
8)	0.036	1.00	1.63	0.00	53.13	53.13	32.53	232.53	232.53
9)	0.054	1.51	1.65	0.00	75.08	75.08	45.57	245.57	245.57
10)	0.072	2.01	1.66	0.00	97.02	97.02	58.39	258.39	258.39
11)	0.090	2.51	1.68	0.00	114.35	114.35	68.22	268.22	268.22
12)	0.107	2.99	1.69	0.00	125.90	125.90	74.49	274.49	274.49
13)	0.125	3.49	1.71	0.00	136.29	136.29	79.93	279.93	279.93
14)	0.143	3.99	1.72	0.00	143.80	143.80	83.58	283.58	283.58
15)	0.179	5.00	1.75	0.00	157.66	157.66	89.99	289.99	289.99
16)	0.215	6.00	1.78	0.00	169.79	169.79	95.15	295.15	295.15
17)	0.251	7.01	1.82	0.00	181.34	181.34	99.73	299.73	299.73
18)	0.287	8.01	1.85	0.00	190.58	190.58	102.82	302.82	302.82
19)	0.322	8.99	1.89	0.00	200.97	200.97	106.39	306.39	306.39
20)	0.358	9.99	1.93	0.00	210.79	210.79	109.39	309.39	309.39
21)	0.394	11.00	1.97	0.00	218.30	218.30	111.01	311.01	311.01
22)	0.430	12.00	2.01	0.00	224.65	224.65	111.90	311.90	311.90
23)	0.466	13.01	2.05	0.00	232.16	232.16	113.22	313.22	313.22
24)	0.502	14.01	2.10	0.00	238.51	238.51	113.83	313.83	313.83
25)	0.538	15.02	2.14	0.00	244.28	244.28	114.04	314.04	314.04
26)	0.573	15.99	2.19	0.00	250.64	250.64	114.47	314.47	314.47
27)	0.609	17.00	2.24	0.00	255.83	255.83	114.17	314.17	314.17
28)	0.645	18.00	2.29	0.00	261.03	261.03	113.77	313.77	313.77
29)	0.681	19.01	2.35	0.00	265.65	265.65	113.01	313.01	313.01
30)	0.717	20.01	2.41	0.00	270.27	270.27	112.16	312.16	312.16

Wed Mar 19 16:09:30 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-200A

Boring No. : GT-1

Test Date : 03/17/97

Tested by : C. WASON

Sample No. : A @200 PSI

Depth : 200-201 FT

Checked by : C. CAPPS

Sample Type : TUBE

Elevation : NA

Soil Description : LT. BROWN CLAYEY SILT TO SILTY CLAY

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 200 PSI

Liquid Limit: 0

Plastic Limit : 0

Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	183.82	183.82	0.00	
WT CONTAINER + DRY SOIL (gm)	144.60	144.60	0.00	
WT WATER (gm)	39.22	39.22	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	144.60	144.60	0.00	
WATER CONTENT (%)	27.12	27.12	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	27.12	27.12
VOID RATIO	0.77	0.77
WET DENSITY (lb/ft-3)	121.70	121.70
DRY DENSITY (lb/ft-3)	95.73	95 .7 3
DEGREE OF SATURATION (%)	95.44	95.44

Maximum Shear Stress = 57.23 (lb/in^2) at a Vertical Strain of 15.99 %

Wed Mar 19 16:10:09 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-200B

Boring No. : GT-1 Sample No. : B 2400 PSI Test Date: 03/17/97 Tested by: C. WASON
Depth: 200-201 FT Checked by: C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description: LT. BROWN CLAYEY SILT TO SILTY CLAY Remarks: TXUU TEST WITH CONFINING PRESSURE OF 400 PSI

Height: 3.583 (in)
Area: 1.61 (in²)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb) Filter Correction: 0.00 (lb/in^2)
Membrane Correction: 0.00 (lb/in)

Volume: 5.75 (in⁻³) Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
	IN LENGT	Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ⁻ 2)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	400.00	400.00
2)	0.004	0.11	1.61	0.00	10.40	10.40	6.46	406.46	406.46
3)		0.20	1.61	0.00	16.17	16.17	10.04	410.04	410.04
4)		0.31	1.61	0.00	20.79	20.79	12.88	412.88	412.88
5)	0.014	0.39	1.62	0.00	24.83	24.83	15.36	415.36	415.36
6)	0.018	0.50	1.62	0.00	29.45	29.45	18.19	418.19	418.19
7	0.027	0.75	1.63	0.00	38.12	38.12	23.43	423.43	423.43
8	0.036	1.00	1.63	0.00	47.36	47.36	28.99	428.99	428.99
9:	0.054	1.51	1.65	0.00	68.15	68.15	41.37	441.37	441.37
10	0.072	2.01	1.66	0.00	89.51	89.51	53.87	453.87	453.87
11	0.090	2.51	1.68	0.00	105.68	105.68	63.05	463.05	463.05
12	0.107	2.99	1.69	0.00	116.66	116.66	69.02	469.02	469.02
13	0.125	3.49	1.71	0.00	125.90	125.90	73.83	473.83	473.83
14	0.143	3.99	1.72	0.00	133.98	133.98	77.88	477.88	477.88
15		5.00	1.75	0.00	149.00	149.00	85.05	485.05	485.05
16		6.00	1.78	0.00	162.86	162.86	91.26	491.26	491.26
17		7.01	1.82	0.00	174.98	174.98	96.23	496.23	496.23
18	0.287	8.01	1.85	0.00	186.53	186.53	100.64	500.64	500.64
19	0.322	8.99	1.89	0.00	198.66	198.66	105.17	505.17	505.17
20		9.99	1.93	0.00	209.63	209.63	108.79	508.79	508.79
21	0.394	11.00	1.97	0.00	219.45	219.45	111.60	511.60	511.60
22	0.430	12.00	2.01	0.00	229.85	229.85	114.49	514.49	514.49
23		13.01	2.05	0.00	238.51	238.51	116.32	516.32	516.32
24		14.01	2.10	0.00	246.59	246.59	117.69	517.69	517.69
25	0.538	15.02	2.14	0.00	254.10	254.10	118.62	518.62	518.62
26	0.573	15.99	2.19	0.00	262.19	262.19	119.74	519.74	519.74
27	-	17.00	2.24	0.00	267.96	267.96	119.58	519.58	519.58
28		18.00	2.29	0.00	274.31	274.31	119.56	519.56	519.56
29		19.01	2.35	0.00	280.67	280.67	119.40	519.40	519.40
30		20.01	2.41	0.00	285.29	285.29	118.39	518.39	518.39

Wed Mar 19 16:10:09 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-2008

Boring No. : GT-1

Test Date : 03/17/97

Tested by : C. WASON

Sample No. : B 2400 PSI

Depth : 200-201 FT

Checked by : C. CAPPS

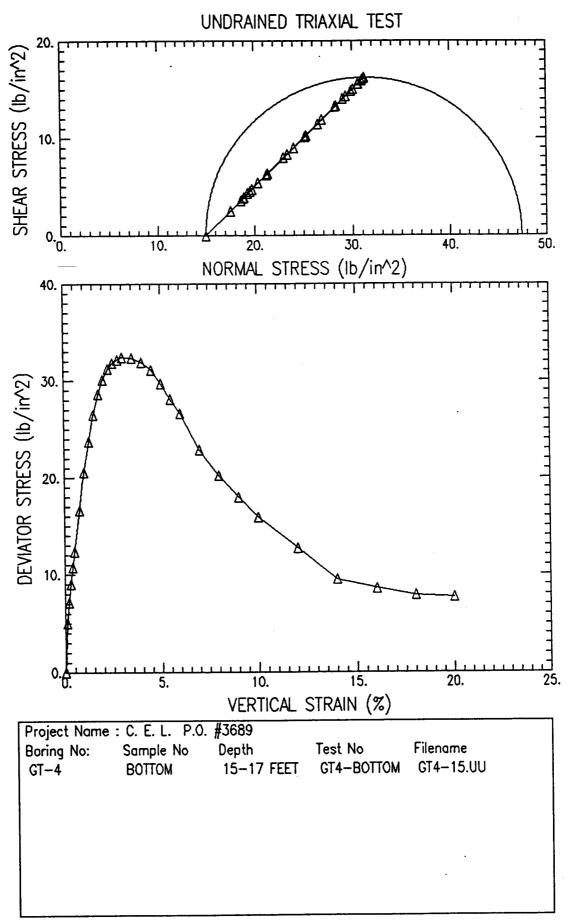
Sample Type : TUBE

Elevation: NA

Soil Description : LT. BROWN CLAYEY SILT TO SILTY CLAY

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 400 PSI

Liquid Limit: 0


Plastic Limit : 0

Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	181.72	181.72	0.00	
WT CONTAINER + DRY SOIL (gm)	142.98	142.98	0.00	
WT WATER (gm)	38.74	38.74	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	142.98	142.98	0.00	
WATER CONTENT (%)	27.09	27.09	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	27.09	27.09
VOID RATIO	0.79	0.79
WET DENSITY (lb/ft-3)	120.31	120.31
DRY DENSITY (lb/ft-3)	94,66	94.66
DEGREE OF SATURATION (%)	92.93	92.93

Maximum Shear Stress = 59.87 (lb/in'2) at a Vertical Strain of 15.99 %

Wed Mar 19 16:54:36 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT4-BOTTOM

Boring No. : GT-4 Sample No. : BOTTOM Test Date: 03/06/97 Tested by: C. WASON
Depth: 15-17 FEET Checked by: C. CAPPS

Sample Type : SHELBY

Elevation: NA

Soil Description : LT. BRN CLAYEY FINE SA-SILT / CLAYEY SI-FINE SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 15 PSI

Height: 5.984 (in) Area: 6.42 (in²) Volume: 38.44 (in³) Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in²)
Membrane Correction: 0.00 (lb/in)

Piston Weight: 0.00 (gm) Area Correction: None

	,	VERTICAL						TOTAL	EFFECTIVE
1	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	6.42	0.00	0.00	0.00	0.00	15.00	15.00
2)	0.006	0.10	6.42	0.00	32.17	32.17	5.01	20.01	20.01
3)	0.012	0.20	6.42	0.00	45.96	45.96	7.15	22.15	22.15
4)	0.018	0.30	6.42	0.00	58.02	58.02	9.03	24.03	24.03
5)	0.024	0.40	6.42	0.00	68.94	68.94	10.73	25 <i>.7</i> 3	25.73
6)	0.030	0.50	6.42	0.00	79.28	79.28	12.34	27.34	27.34
7)	0.045	0.75	6.42	0.00	106.86	106.86	16.63	31.63	31.63
8)	0.060	1.00	6.42	0.00	132.14	132.14	20.57	35.57	35.57
9)	0.075	1.25	6.42	0.00	152.82	152.82	23.79	38.79	38.79
10)	0.090	1.50	6.42	0.00	170.05	170.05	26.47	41.47	41.47
11)	0.105	1.75	6.42	0.00	183.84	183.84	28.62	43.62	43.62
12)	0.120	2.01	6.42	0.00	193.61	193.61	30.14	45.14	45.14
13)	0.135	2.26	6.42	0.00	200.50	200.50	31.21	46.21	46.21
14)	0.150	2.51	6.42	0.00	204.52	204.52	31.84	46.84	46.84
15)	0.165	2.76	6.42	0.00	206.82	206.82	32.19	47.19	47.19
16)	0.180	3.01	6.42	0.00	208.54	208.54	32.46	47.46	47.46
17)	0.209	3.49	6.42	0.00	207.97	207.97	32.37	47.37	47.37
18)	0.239	3.99	6.42	0.00	205.10	205.10	31.93	46.93	46.93
19)	0.269	4.50	6.42	0.00	199.93	199.93	31.12	46.12	46.12
20)	0.299	5.00	6.42	0.00	190.73	190.73	29.69	44.69	44.69
21)	0.329	5.50	6.42	0.00	180.39	180.39	28.08	43.08	43.08
22)	0.359	6.00	6.42	0.00	171.20	171.20	26.65	41.65	41.65
23)	0.419	7.00	6.42	0.00	147.07	147.07	22.89	37.89	37.89
24)	0.479	8.00	6.42	0.00	129.84	129.84	20.21	35.21	35.21
25)	0.539	9.01	6.42	0.00	115.47	115.47	17.98	32.98	32.98
26)	0.598	9.99	6.42	0.00	102.26	102.26	15.92	30.92	30.92
27)	0.718	12.00	6.42	0.00	81.58	81.58	12.70	27.70	27.70
28)	0.838	14.00	6.42	0.00	60.90	60.90	9.48	24.48	24.48
29)	0.957	15.99	6.42	0.00	55.15	55.15	8.59	23.59	23.59
30)	1.077	18.00	6.42	0.00	50.56	50.56	7.87	22.87	22.87
31)	1.197	20.00	6.42	0.00	49.41	49.41	7.69	22.69	22.69
,	· - ·								

Wed Mar 19 17:35:05 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No. : 941138NA

Test No. : GT4-BOTTOM

Boring No. : GT-4 Sample No. : BOTTOM Test Date : 03/06/97 Depth : 15-17 FEET

Tested by : C. WASON Checked by : C. CAPPS

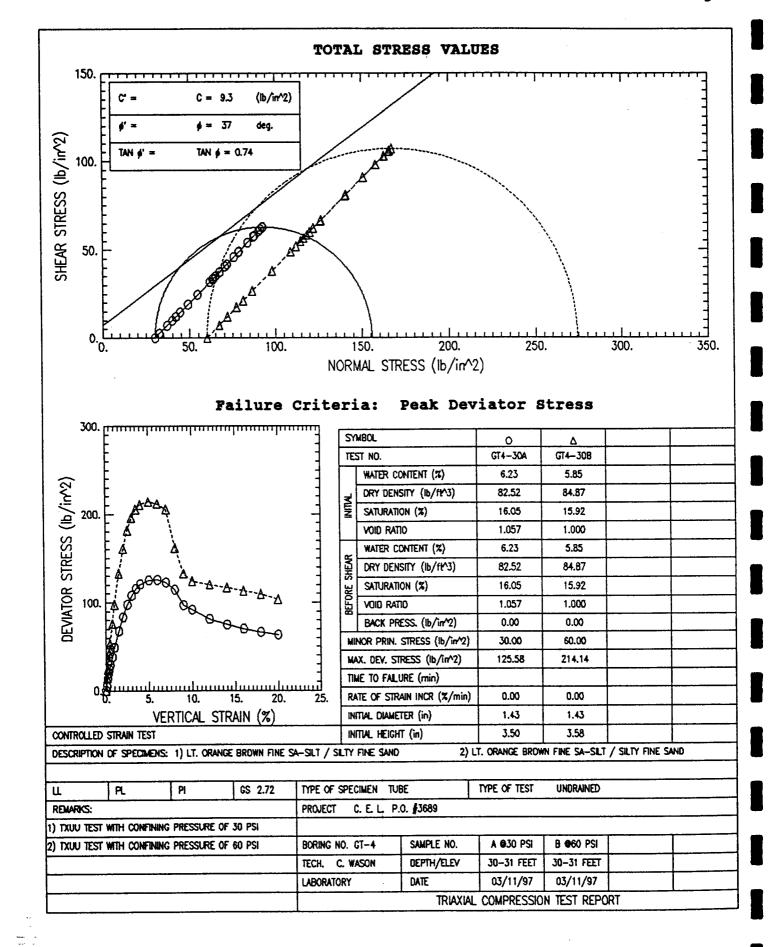
Sample Type : SHELBY

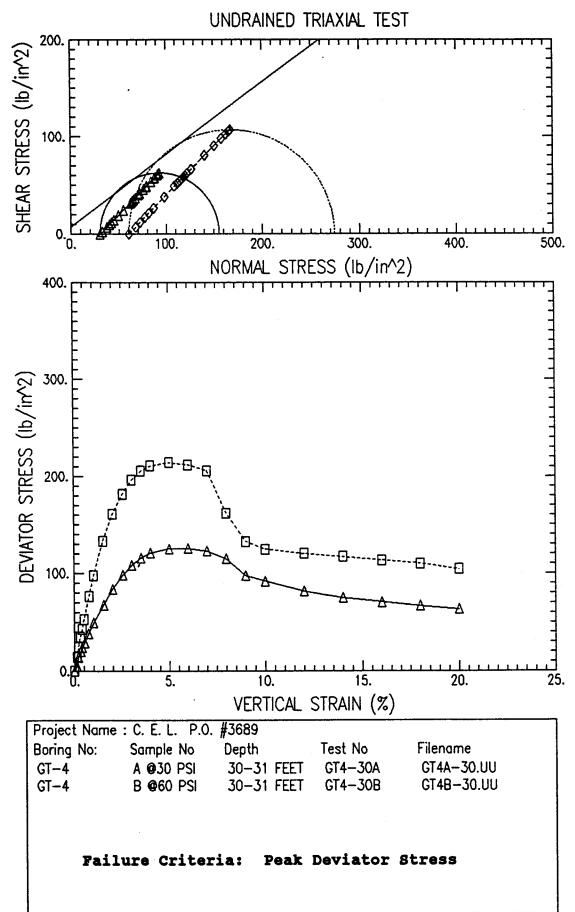
Elevation: NA

Soil Description : LT. BRN CLAYEY FINE SA-SILT / CLAYEY SI-FINE SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 15 PSI

Liquid Limit: 0


Plastic Limit: 0


Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	1005.60	1005.40	0.00	
WT CONTAINER + DRY SOIL (gm)	951.30	951.10	0.00	
WT WATER (gm)	54.30	54.30	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	951.30	951.10	0.00	
WATER CONTENT (%)	5.71	5.71	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	5.71	5.71
VOID RATIO	0.80	0.80
WET DENSITY (lb/ft^3)	99.66	99.66
DRY DENSITY (lb/ft ⁻³)	94.28	94.28
DEGREE OF SATURATION (%)	19.40	19.40

Maximum Shear Stress = 16.23 (lb/in^2) at a Vertical Strain of 3.01 %

Wed Mar 19 16:13:31 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT4-30A

Boring No. : GT-4 Sample No. : A @30 PSI Test Date: 03/11/97 Tested by: C. WASON
Depth: 30-31 FEET Checked by: C. CAPPS

Sample Type : TUBE

Elevation: NA

Soil Description : LT. ORANGE BROWN FINE SA-SILT / SILTY FINE SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 30 PSI

Height: 3.504 (in) Area: 1.61 (in²) Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in²)
Membrane Correction: 0.00 (lb/in)

Volume : 5.63 (in 3)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRES\$	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	30.00	30.00
2)	0.004	0.11	1.61	0.00	8.04	8.04	5.00	35.00	35.00
3)	0.007	0.20	1.61	0.00	22.41	22.41	13.90	43.90	43.90
4)	0.011	0.31	1.61	0.00	32.17	32.17	19.93	49.93	49.93
5)	0.014	0.40	1.62	0.00	39.07	39.07	24.16	54.16	54.16
6)	0.018	0.51	1.62	0.00	47.11	47.11	29.08	59.08	59.08
7)	0.026	0.74	1.63	0.00	62.05	62.05	38.16	68.16	68.16
8)	0.035	1.00	1.63	0.00	80.43	80.43	49.25	79.25	79.25
9)	0.053	1.51	1.65	0.00	111.45	111.45	67.65	97.65	97.65
10)	0.070	2.00	1.66	0.00	139.03	139.03	83.69	113.69	113.69
11)	0.088	2.51	1.68	0.00	164.31	164.31	98.03	128.03	128.03
12)	0.105	3.00	1.69	0.00	182.69	182.69	108.07	138.07	138.07
13)	0.123	3.51	1.71	0.00	197.63	197.63	115.86	145.86	145.86
14)	0.140	4.00	1.72	0.00	207.97	207.97	120.87	150.87	150.87
15)	0.175	4.99	1.75	0.00	219.46	219.46	125.27	155.27	155.27
16)	0.210	5.99	1.78	0.00	224.06	224.06	125.58	155.58	155.58
17)	0.245	6.99	1.82	0.00	223.48	223.48	122.94	152.94	152.94
18)	0.280	7.99	1.85	0.00	212.57	212.57	114.73	144.73	144.73
19)	0.315	8.99	1.89	0.00	183.84	183.84	97.32	127.32	127.32
20)	0.350	9.99	1.93	0.00	176.95	176.95	91.84	121.84	121.84
21)	0.420	11.99	2.01	0.00	163.16	163.16	81.30	111.30	111.30
22)	0.491	14.01	2.10	0.00	156.84	156.84	74.85	104.85	104.85
23)	0.561	16.01	2.19	0.00	153.97	153.97	70.29	100.29	100.29
24)	0.631	18.01	2.29	0.00	152.82	152.82	66.59	96.59	96.59
25)	0.701	20.01	2.41	0.00	152.82	152.82	63.43	93.43	93.43
23)	0.701	20.01	£.+!	0.00	1,54.06	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,	

Wed Mar 19 16:13:31 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT4-30A

Boring No. : GT-4

Test Date : 03/11/97 Depth: 30-31 FEET

Tested by : C. WASON Checked by : C. CAPPS

Sample No. : A 230 PSI Sample Type : TUBE

Elevation: NA

Soil Description : LT. ORANGE BROWN FINE SA-SILT / SILTY FINE SAND Remarks : TXUU TEST WITH CONFINING PRESSURE OF 30 PSI

Liquid Limit: 0

Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	129.50	129.50	0.00
WT CONTAINER + DRY SOIL (gm)	121.90	121.90	0.00
WT WATER (gm)	7.60	7.60	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	121.90	121.90	0.00
WATER CONTENT (%)	6.23	6.23	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	6.23	6.23
VOID RATIO	1.06	1.06
WET DENSITY (lb/ft-3)	87.67	87.67
DRY DENSITY (lb/ft-3)	82.52	82.52
DEGREE OF SATURATION (%)	16.05	16.05

Maximum Shear Stress = 62.79 (lb/in⁻²) at a Vertical Strain of 5.99 %

Wed Mar 19 16:15:25 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA Boring No.: GT-4 Test No.: GT4-30B Test Date: 03/11/97 Depth: 30-31 FEET

Tested by : C. WASON Checked by : C. CAPPS

Sample No. : 8 a60 PSI Sample Type : TUBE

Elevation: NA

Soil Description: LT. ORANGE BROWN FINE SA-SILT / SILTY FINE SAND

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 60 PSI

Height: 3.583 (in) Area: 1.61 (in²) Piston Diameter: 0.000 (in)
Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in²)
Membrane Correction: 0.00 (lb/in)

Volume: 5.75 (in⁻³) Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ⁻ 2)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	1.61	0.00	0.00	0.00	0.00	60.00	60.00
2)	0.004	0.11	1.61	0.00	22.98	22.98	14.28	74.28	74.28
3)	0.007	0.20	1.61	0.00	38.49	38.49	23.89	83.89	83.89
4)	0.011	0.31	1.61	0.00	56.30	56.30	34.88	94.88	94.88
5)	0.014	0.39	1.62	0.00	68.94	68.94	42.65	102.65	102.65
6)	0.018	0.50	1.62	0.00	86.18	86.18	53.21	113.21	113.21
7)	0.027	0.75	1.63	0.00	124.09	124.09	76.30	136.30	136.30
8)	0.036	1.00	1.63	0.00	159.71	159.71	97.78	157.78	157.78
9)	0.054	1.51	1.65	0.00	219.46	219.46	133.22	193.22	193.22
10)	0.072	2.01	1.66	0.00	267.72	267.72	161.12	221.12	221.12
11)	0.090	2.51	1.68	0.00	304.49	304.49	181.66	241.66	241.66
12)	0.107	2.99	1.69	0.00	331.49	331.49	196.13	256.13	256.13
13)	0.125	3.49	1.71	0.00	350.45	350.45	205.52	265.52	265.52
14)	0.143	3.99	1.72	0.00	362.51	362.51	210.71	270.71	270.71
15)	0.179	5.00	1.75	0.00	375.15	375.15	214.14	274.14	274.14
16)	0.215	6.00	1.78	0.00	378.02	378.02	211.84	271.84	271.84
17)	0.251	7.01	1.82	0.00	374.00	374.00	205.69	265.69	265.69
18)	0.287	8.01	1.85	0.00	299.89	299.89	161.80	221.80	221.80
19)	0.322	8.99	1.89	0.00	250.48	250.48	132.61	192.61	192.61
20)	0.358	9.99	1.93	0.00	239.57	239.57	124.33	184.33	184.33
21)	0.430	12.00	2.01	0.00	241.29	241.29	120.19	180.19	180.19
22)	0.502	14.01	2.10	0.00	244.74	244.74	116.80	176.80	176.80
23)	0.573	15.99	2.19	0.00	247.61	247.61	113.08	173.08	173.08
24)	0.645	18.00	2.29	0.00	251.63	251.63	109.67	169.67	169.67
25)	0.717	20.01	2.41	0.00	250.48	250.48	103.95	163.95	163.95

Wed Mar 19 16:15:25 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT4-30B

Boring No. : GT-4

Test Date : 03/11/97 Depth : 30-31 FEET Tested by : C. WASON Checked by : C. CAPPS

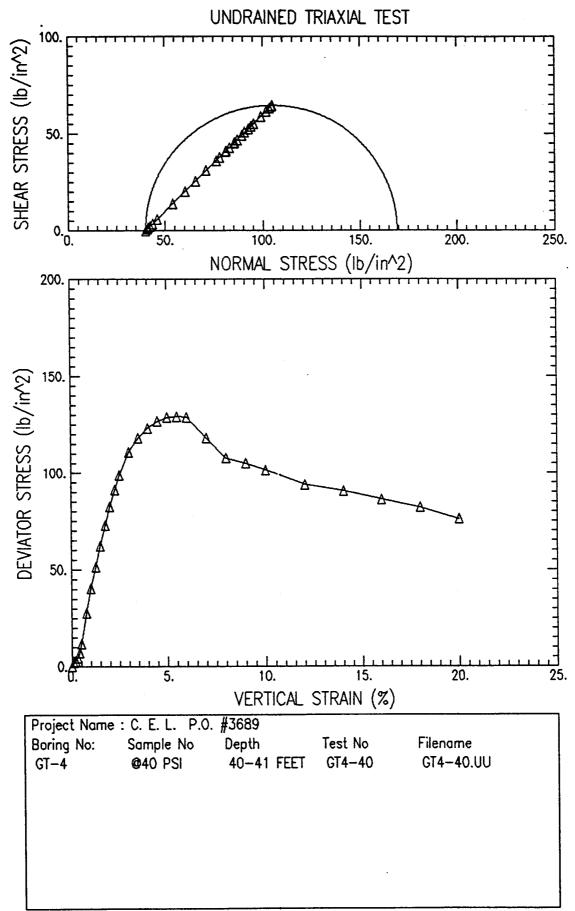
Sample No. : B a60 PSI Sample Type : TUBE

Elevation: NA

Elevation : NA

Soil Description : LT. ORANGE BROWN FINE SA-SILT / SILTY FINE SAND Remarks : TXUU TEST WITH CONFINING PRESSURE OF 60 PSI

Liquid Limit : 0


Plastic Limit: 0

Specific Gravity: 2.72

	WATER CONTENT			
	BEFORE TEST	AFTER TEST	TRIMMINGS	
CONTAINER NO.				
WT CONTAINER + WET SOIL (gm)	135.70	135.70	0.00	
WT CONTAINER + DRY SOIL (gm)	128.20	128.20	0.00	
WT WATER (gm)	7.50	7.50	0.00	
WT CONTAINER (gm)	0.00	0.00	0.00	
WT DRY SOIL (gm)	128.20	128.20	0.00	
WATER CONTENT (%)	5.85	5.85	0.00	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	5.85	5.85
VOID RATIO	1.00	1.00
WET DENSITY (lb/ft-3)	89.84	89.84
DRY DENSITY (lb/ft-3)	84.87	84.87
DEGREE OF SATURATION (%)	15.92	15.92

Maximum Shear Stress = 107.07 (lb/in^2) at a Vertical Strain of 5.00 %

Wed Mar 19 17:12:53 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Location : PICKLES BUTTE L/F- IDAHO

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Boring No. : GT-4 Sample No.: 240 PSI

Sample Type : SHELBY

Elevation: NA

Test No. : GT4-40

Test Date : 03/06/97

Depth: 40-41 FEET

Soil Description: BROWN SA-SILT / SI-SAND W/ IRON OXIDE STAIN & CLAY

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 40 PSI

Height: 5.984 (in) Area : 6.42 (in²) Volume : 38.44 (in³) Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in²) Membrane Correction: 0.00 (lb/in)

Tested by : C. WASON Checked by : C. CAPPS

Area Correction : None Piston Weight: 0.00 (gm)

		VERTICAL						TOTAL	EFFECTIVE
(CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	6.42	0.00	0.00	0.00	0.00	40.00	40.00
2)	0.006	0.10	6.42	0.00	12.64	12.64	1.97	41.97	41.97
3)	0.012	0.20	6.42	0.00	18.38	18.38	2.86	42.86	42.86
4)	0.018	0.30	6.42	0.00	29.30	29.30	4.56	44.56	44.56
5)	0.024	0.40	6.42	0.00	44.81	44.81	6.98	46.98	46.98
6)	0.030	0.50	6.42	0.00	75.83	75.83	11.80	51.80	51.80
7)	0.045	0.75	6.42	0.00	179.24	179.24	27.90	67.90	67.90
8)	0.060	1.00	6.42	0.00	260.82	260.82	40.60	80.60	80.60
9)	0.075	1.25	6.42	0.00	330.91	330.91	51.51	91.51	91.51
10)	0.090	1.50	6.42	0.00	399.85	399.85	62.24	102.24	102.24
11)	0.105	1.75	6.42	0.00	467.64	467.64	72.80	112.80	112.80
12)	0.120	2.01	6.42	0.00	530.84	530.84	82.63	122.63	122.63
13)	0.135	2.26	6.42	0.00	584.84	584.84	91.04	131.04	131.04
14)	0.150	2.51	6.42	0.00	634.25	634.25	98.73	138.73	138.73
15)	0.180	3.01	6.42	0.00	712.38	712.38	110.89	150.89	150.89
16)	0.209	3.49	6.42	0.00	758.34	758.34	118.05	158.05	158.05
17)	0.239	3.99	6.42	0.00	791.66	791.66	123.23	163.23	163.23
18)	0.269	4.50	6.42	0.00	814.07	814.07	126.72	166.72	166.72
19)	0.299	5.00	6.42	0.00	826.71	826.71	128.69	168.69	168.69
20)	0.329	5.50	6.42	0.00	830.73	830.73	129.32	169.32	169.32
21)	0.359	6.00	6.42	0.00	827.85	827.85	128.87	168.87	168.87
22)	0.419	7.00	6.42	0.00	758.34	758.34	118.05	158.05	158.05
23)	0.479	8.00	6.42	0.00	692.27	692.27	107.76	147.76	147.76
24)	0.538	8.99	6.42	0.00	675.04	675.04	105.08	145.08	145.08
25)	0.598	9.99	6.42	0.00	652.63	652.63	101.59	141.59	141.59
26)	0.718	12.00	6.42	0.00	603.23	603.23	93.90	133.90	133.90
27)	0.838	14.00	6.42	0.00	581.97	581.97	90.59	130.59	130.59
28)	0.957	15.99	6.42	0.00	553.82	553.82	86.21	126.21	126.21
29)	1.077	18.00	6.42	0.00	527.39	527.39	82.10	122.10	122.10
30)	1.197		6.42	0.00	488.33	488.33	76.02	116.02	116.02

Wed Mar 19 17:32:53 1997

Page : 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT4-40

Boring No. : GT-4

Test Date : 03/06/97

Tested by : C. WASON

Sample No. : 240 PSI

Depth: 40-41 FEET

Checked by : C. CAPPS

Sample Type : SHELBY

Elevation: NA

Soil Description : BROWN SA-SILT / SI-SAND W/ IRON OXIDE STAIN & CLAY

lecked by . C. CAPPS

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 40 PSI

Liquid Limit : 0

Plastic Limit : 0

Specific Gravity: 2.72

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	906.90	904.40	0.00
WT CONTAINER + DRY SOIL (gm)	851.50	849.20	0.00
WT WATER (gm)	55.40	55.20	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	851.50	849.20	0.00
WATER CONTENT (%)	6.51	6.50	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	6.51	6.51
VOID RATIO	1.01	1.01
WET DENSITY (lb/ft^3)	89.88	89.88
DRY DENSITY (lb/ft-3)	84.39	84.39
DEGREE OF SATURATION (%)	17.50	17.50

Maximum Shear Stress = 64.66 (lb/in²) at a Vertical Strain of 5.50 %

24.51

Thu Jul 03 14:15:56 1997

Page: 2

GEOTECHNICAL LABORATORY TEST DATA

Project: HOLLADAY ENGINEERING CO. 030496

Filename: PB2-430

Project No.: 971144NA

Depth : 429-430 FEET Test Date : 07/02/97 Elevation: NA Tested by : C. WASON

24.95

Boring No.: PB-2 Sample No.: 429-430 FT

1) 10

Test Method : ASTM D4318/422

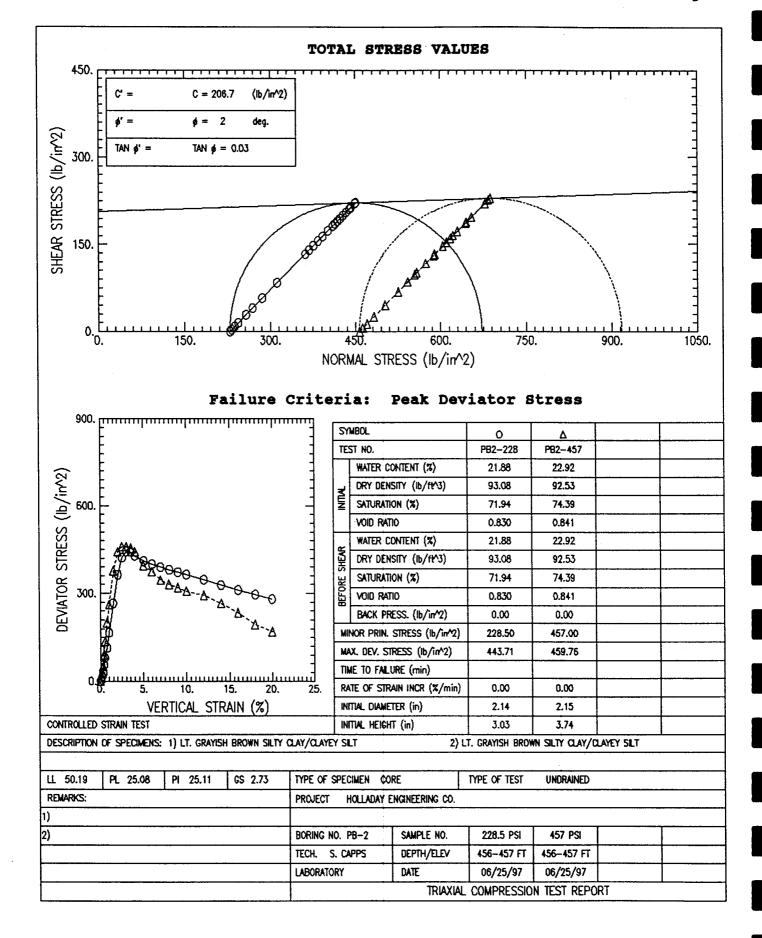
Location : PICKLES BUTTE LANDFILL

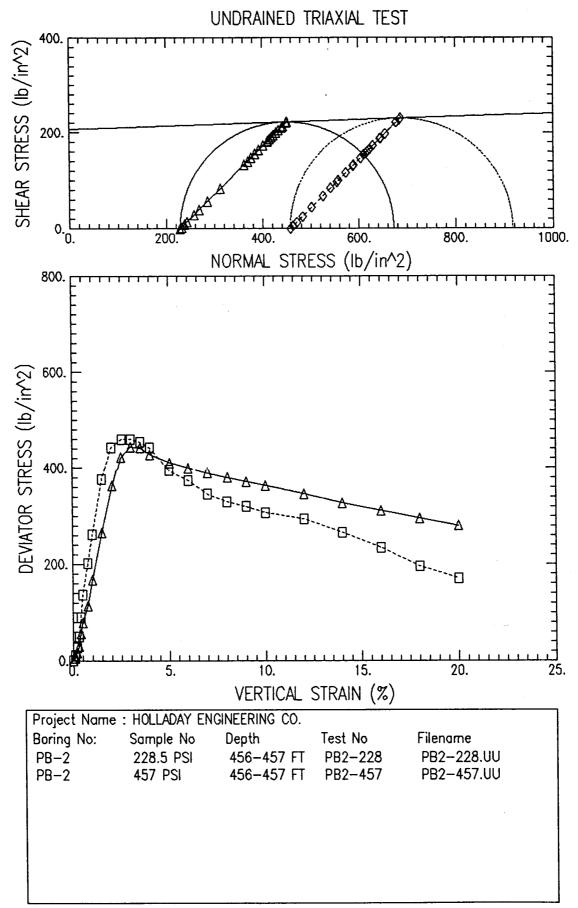
Checked by : S. CAPPS

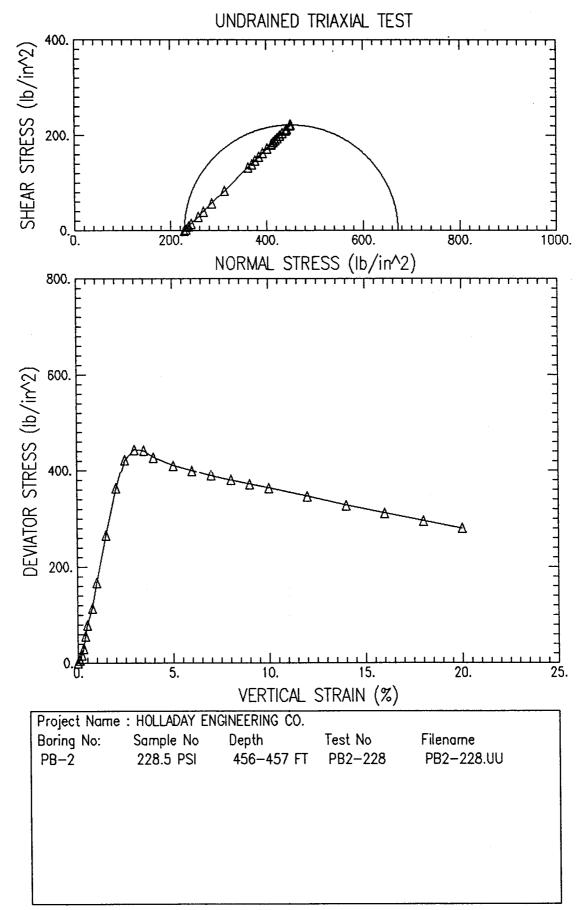
Soil Description : GRAYISH BROWN SILTY CLAY

Remarks: 429-430 FEET

16.22


Moisture Content ID	Mass of Container	Plastic Limit Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content
	(gm)	(gm)	(gm)	(%)


Plastic Limit = 24.51


Liquid Limit						
	Moisture Content ID	Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Number of Drops	Moisture Content
		(gm)	(gm)	(gm)		(%)
1)	8	11.11	27.18	22.01	30	47.43
2)	F	10.81	28.50	22.69	24	48.91
3)	90	11.13	28.49	22.64	17	50.83

27.09

Liquid Limit = 48.57 Plastic Index = 24.06

Fri Jun 27 07:41:02 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-228 Boring No. : PB-2

Test Date : 06/25/97 Depth : 456-457 FT

Tested by : S. CAPPS Checked by : C. WASON

Sample No.: 228.5 PSI Sample Type : CORE

Elevation: Soil Description : LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Remarks:

Liquid Limit : 0

Plastic Limit: 0

Specific Gravity: 2.73

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	324.30	324.30	0.00
WT CONTAINER + DRY SOIL (gm)	266.09	266.09	0.00
WT WATER (gm)	58.21	58.21	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	266.09	266.09	0.00
WATER CONTENT (%)	21.88	21.88	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	21.88	21.88
VOID RATIO	0.83	0.83
WET DENSITY (lb/ft ³)	113.44	113.44
DRY DENSITY (lb/ft-3)	93.08	93.08
DEGREE OF SATURATION (%)	71.94	71.94

Maximum Shear Stress = 221.85 (lb/in^2) at a Vertical Strain of 3.00 %

Fri Jun 27 07:41:02 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-228 Test Date : 06/25/97

Boring No. : PB-2 Sample No.: 228.5 PSI

Depth: 456-457 FT

Tested by : S. CAPPS Checked by : C. WASON

Sample Type : CORE

Elevation:

Soil Description: LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Remarks:

Height: 3.031 (in) Area: 3.59 (in²)

24) 0.546

25) 0.606

18.01

19.99

5.13

5.39

0.00

0.00

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Volume: 10.89 (in³)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		• · · · · -	•						
	,	VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
	IN LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in ²)
1)	0.000	0.00	3.59	0.00	0.00	0.00	0.00	228.50	228.50
2)	0.003	0.10	3.60	0.00	20.79	20.79	5.78	234.28	234.28
3)	0.006	0.20	3.60	0.00	61.22	61.22	16.98	245.48	245.48
4)	0.009	0.30	3.61	0.00	105.11	105.11	29.11	257.61	257.61
5)	0.012	0.40	3.62	0.00	205.59	205.59	56.84	285.34	285.34
6)	0.015	0.49	3.62	0.00	288.75	288. <i>7</i> 5	79.70	308.20	308.20
7)	0.023	0.76	3.64	0.00	415.80	415.80	114.26	342.76	342.76
8)	0.030	0.99	3.65	0.00	609.84	609.84	166.93	395.43	395.43
9)	0.045	1.48	3.68	0.00	981.75	981.75	266.48	494.98	494.98
10)	0.061	2.01	3.72	0.00	1350.20	1350.20	363.18	591.68	591.68
11)	0.076	2.51	3.75	0.00	1582.35	1582.35	421.99	650.49	650.49
12)	0.091	3.00	3.78	0.00	1678.22	1678.22	443.71	672.21	672.21
13)	0.106	3.50	3.82	0.00	1686.30	1686.30	441.97	670.47	670.47
14)	0.121	3.99	3.85	0.00	1645.88	1645.88	427.60	656.10	656.10
15)	0.152	5.01	3.92	0.00	1610.07	1610.07	410.66	639.16	639.16
16)	0.182	6.00	3.99	0.00	1595.06	1595.06	399.51	628.01	628.01
17)	0.212	6.99	4.07	0.00	1583.51	1583.51	389.34	617.84	617.84
18)	0.243	8.02	4.15	0.00	1576.58	1576.58	380.16	608.66	608.66
19)	0.273	9.01	4.23	0.00	1571.96	1571.96	371.83	600.33	600.33
20)	0.303	10.00	4.31	0.00	1568.49	1568.49	363.81	592.31	592.31
21)	0.364	12.01	4.49	0.00	1556.94	1556.94	346.59	575.09	575.09
22)	0.424	13.99	4.69	0.00	1536.15	1536.15	327.86	556 .3 6	556.36
23)	0.485	16.00	4.90	0.00	1525.76	1525.76	311.40	539.90	539.90

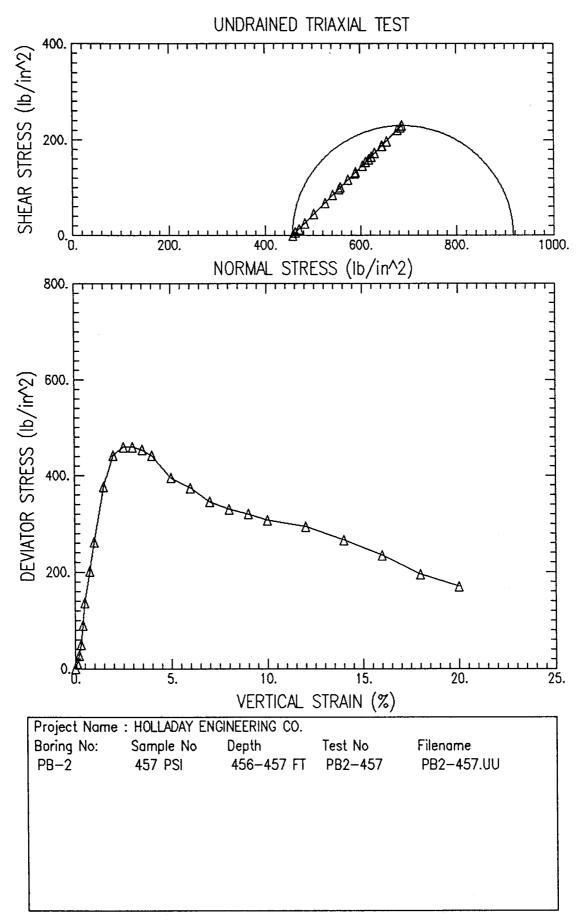
1516.52

1510.74

1516.52

1510.74

295.35


280.36

523.85

508.86

523.85

508.86

Fri Jun 27 07:42:26 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project No.: 971144NA

Boring No. : PB-2 Sample No. : 457 PSI Sample Type : CORE

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Test No. : PB2-457 Test Date : 06/25/97 Depth : 456-457 FT

Elevation:

Tested by : S. CAPPS Checked by : C. WASON

Soil Description: LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Remarks :

Height: 3.740 (in) Area: 3.65 (in²) Volume: 13.64 (in³)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Membrane Correction: 0.00 (lb/in)

Filter Correction: 0.00 (lb/in^2)

Piston Weight: 0.00 (gm) Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	Н	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in^2)	(lb/in^2)	(lb/in^2)
1)	0.000	0.00	3.65	0.00	0.00	0.00	0.00	457.00	457.00
2)	0.004	0.11	3.65	0.00	42.74	42.74	11.70	468.70	468.70
3)	0.007	0.19	3.66	0.00	98.18	98.18	26.84	483.84	483.84
4)	0.011	0.29	3.66	0.00	184.80	184.80	50.42	507.42	507.42
5)	0.015	0.40	3.67	0.00	330.33	330.33	89.97	546.97	546.97
6)	0.019	0.51	3.68	0.00	502.43	502.43	136.60	593.60	593.60
7)	0.028	0.75	3.69	0.00	744.98	744.98	201.72	658.72	658.72
8)	0.037	0.99	3.71	0.00	970.20	970.20	261.64	718.64	718.64
9)	0.056	1.50	3.74	0.00	1409.10	1409.10	376.73	833.73	833.73
10)	0.075	2.01	3.77	0.00	1668.98	1668.98	442.33	899.33	899.33
11)	0.094	2.51	3.81	0.00	1749.83	1749.83	459.70	916.70	916.70
12)	0.112	2.99	3.84	0.00	1764.84	1764.84	459.76	916.76	916.76
13)	0.131	3.50	3.87	0.00	1757.91	1757.91	453.88	910.88	910.88
14)	0.150	4.01	3.91	0.00	1726.73	1726.73	441.82	898.82	898.82
15)	0.187	5.00	3.98	0.00	1570.80	1570.80	394.82	851.82	851.82
16)	0.224	5.99	4.05	0.00	1516.52	1516.52	374.32	831.32	831.32
17)	0.262	7.01	4.13	0.00	1426.43	1426.43	345.46	802.46	802.46
18)	0.299	7.99	4.21	0.00	1390.62	1390.62	330.50	787.50	787.50
19)	0.337	9.01	4.29	0.00	1374.45	1374.45	320.27	777.27	777.27
20)	0.374	10.00	4.38	0.00	1346.73	1346.73	307.73	764.73	764.73
21)	0.449	12.01	4.56	0.00	1340.96	1340.96	294.12	751.12	751.12
22)	0.524	14.01	4.76	0.00	1265.88	1265.88	266.05	723.05	723.05
23)	0.598	15.99	4.97	0.00	1163.09	1163.09	233.93	690.93	690.93
24)	0.673	17.99	5.21	0.00	1017.56	1017.56	195.33	652.33	652.33
25)	0.748	20.00	5.47	0.00	929.78	929.78	169.96	626.96	626.96

Fri Jun 27 07:42:26 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-457

Boring No. : PB-2

Test Date : 06/25/97

Sample No. : 457 PSI

Depth : 456-457 FT

Tested by : S. CAPPS Checked by : C. WASON

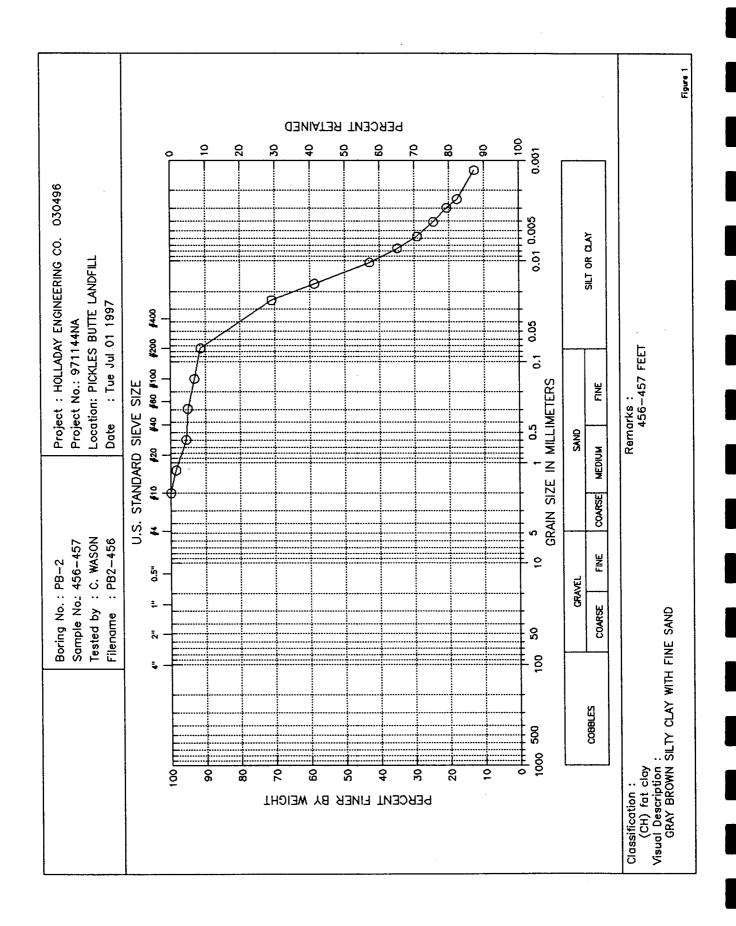
Sample Type : CORE

Elevation:

Soil Description : LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Remarks:

Liquid Limit: 0


Plastic Limit: 0

Specific Gravity: 2.73

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	407.22	407.22	0.00
WT CONTAINER + DRY SOIL (gm)	331.30	331.30	0.00
WT WATER (gm)	75.92	75.92	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	331.30	331.30	0.00
WATER CONTENT (%)	22.92	22.92	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	22.92	22.92
VOID RATIO	0.84	0.84
WET DENSITY (lb/ft ³)	113.74	113.74
DRY DENSITY (lb/ft ³)	92.53	92.53
DEGREE OF SATURATION (%)	74.39	74.39

Maximum Shear Stress = 229.88 (lb/in^2) at a Vertical Strain of 2.99 %

Tue Jul 01 12:59:04 1997

Page: 1

GEOTECHNICAL LABORATORY TEST DATA

Project: HOLLADAY ENGINEERING CO. 030496

Filename: PB2-456 Elevation: NA

Project No.: 971144NA Boring No. : PB-2

Depth: 456-457 FEET Test Date: 06/30/97

Tested by : C. WASON

Sample No.: 456-457

Test Method: ASTM D4318/422

Checked by : S. CAPPS

Location : PICKLES BUTTE LANDFILL

Soil Description : GRAY BROWN SILTY CLAY WITH FINE SAND

Remarks: 456-457 FEET

HYDROMETER

Hydrometer ID: 1734

Weight of air-dried soil = 70 gm

Specific Gravity = 2.73

Hydroscopic Moisture Content :

Weight of Wet Soil = 70 gm Weight of Dry Soil = 66.37 gm Moisture Content = 0.0546934

Elapsed Time (min)	Reading	Temperature (deg. C)	Corrected Reading	Particle Size (mm)	Percent Finer (%)	Adjusted Particle Size
	• • • • • • • • • • • • • • • • • • • •					
2.00	56.00	22.40	47.80	0.024	71	0.024
5.00	47.80	22.40	39.60	0.017	59	0.017
16.00	37.20	22.20	28.91	0.010	43	0.010
33.00	32.00	21.80	23.53	0.008	35	0.008
60.00	28.20	21.70	19.68	0.006	29	0.006
122.00	24.80	22.10	16.47	0.004	24	0.004
240.00	22.20	22.20	13.91	0.003	21	0.003
360.00	20.00	22.60	11.90	0.002	18	0.002
1440.00	17.00	21.90	8.57	0.001	13	0.001

			FINE SIEVE SET		
Sieve	Sieve O	penings	Weight	Cumulative	Percent
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)
#10	0.079	2.00	0.00	0.00	100
#16	0.047	1.19	0.98	0.98	99
#30	0.023	0.60	1.91	2.89	96
#50	0.012	0.30	0.32	3.21	95
#100	0.006	0.15	1.31	4.52	93
#200	0.003	0.07	1.14	5.66	91
Pan			60.71	66.37	0

Total Wet Weight of Sample = 66.37 Total Dry Weight of Sample = 66.37 Moisture Content = 0.0546934

D85 : 0.0522 mm D60 : 0.0175 mm D50 : 0.0129 mm D30 : 0.0060 mm D15 : 0.0017 mm D10 : 0.0009 mm

Soil Classification

ASTM Group Symbol : CH ASTM Group Name : fat clay AASHTO Group Symbol : A-7-6(28) AASHTO Group Name : Clayey Soils

ATTERBERG LIMITS

PROJECT HOLLADAY ENGINEERING CO. 030498	PROJECT NU 971144NA	MBER	TESTED BY C. WASON	BORING NU PB-2	BORING NUMBER PB-2	
Location Pickles Butte Landfill		CHECKED BY S. CAPPS	SAMPLE NI 456-457	SAMPLE NUMBER 456-457		
Sample description Gray Brown Silty Clay with fine Sand	•		DATE Tue Jul 01 1997	FILENAME PB2-456		
	LIQUID LIMIT	DETERMINATION	VS .			
CONTAINER NUMBER	0	17	55			
WT. WET SOIL + TARE	27.25	28.3	26.88			
WT. DRY SOIL + TARE	21.89	22.44	21.44			
WT. WATER	5.36	5.86	5.44			
TARE WT.	10.93	10.79	11.12			
WT. DRY SOIL	10.96	11.65	10.32			
WATER CONTENT, W _N (%)	48.91	50.30	52.71			
NUMBER OF BLOWS, N	30	25	17			
ONE-POINT LIQUID LIMIT, LL	50.00	50.30	50.31			
· · · · · · · · · · · · · · · · · · ·		DETERMINATIO	DNS			
CONTAINER NUMBER	6					
WT. WET SOIL + TARE	26.9				·	
WT. DRY SOIL + TARE	24.67					
WT. WATER	2.23					
TARE WT.	15.78					
WT. DRY SOIL	8.89					
WATER CONTENT (%)	25.08					
	l	1				
FLOW CURVE		A14711		OF RESULTS		
56.0	1 1 1		RAL WATER CONTENT, V	V (%)		
f\		ı 	D LIMIT, LL		50.2 25.1	
55.0			TIC LIMIT, PL		25.1	
<u> </u>		· · · · · · · · · · · · · · · · · · ·	TICITY INDEX, PI		23.1	
54.0 -			DITY INDEX, LI*			
8º 53.0		-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\ \-\	(W PL)/PI PLASTI	CITY CHART		
S 53.0			, , , , , , , , , , , , , , , , , , , 		11211	
		70			/	
21.0 - S2.0 - S2		7 ~F			/ # LI	
5		7 ≥ ∞				
51.0		절 50-		CH 0F 0H	/ ·	
50.0		PLASTICITY INDEX			#H or OH	
49.0		28 28 -	2 4 2		- -	
\		10	<u>a-u</u> ua		- - -	
48.0 Logical L	/C N	100	10 20 30 40 5 LIQUI	O SO 70 8 D LIMIT, LL	90 100 Fig. 1.	

Tue Jul 01 12:59:04 1997

Page: 2

GEOTECHNICAL LABORATORY TEST DATA

Project: HOLLADAY ENGINEERING CO. 030496 Project No.: 971144NA

Boring No. : PB-2

Sample No. : 456-457

Location : PICKLES BUTTE LANDFILL

Test Date: 06/30/97

Depth : 456-457 FEET

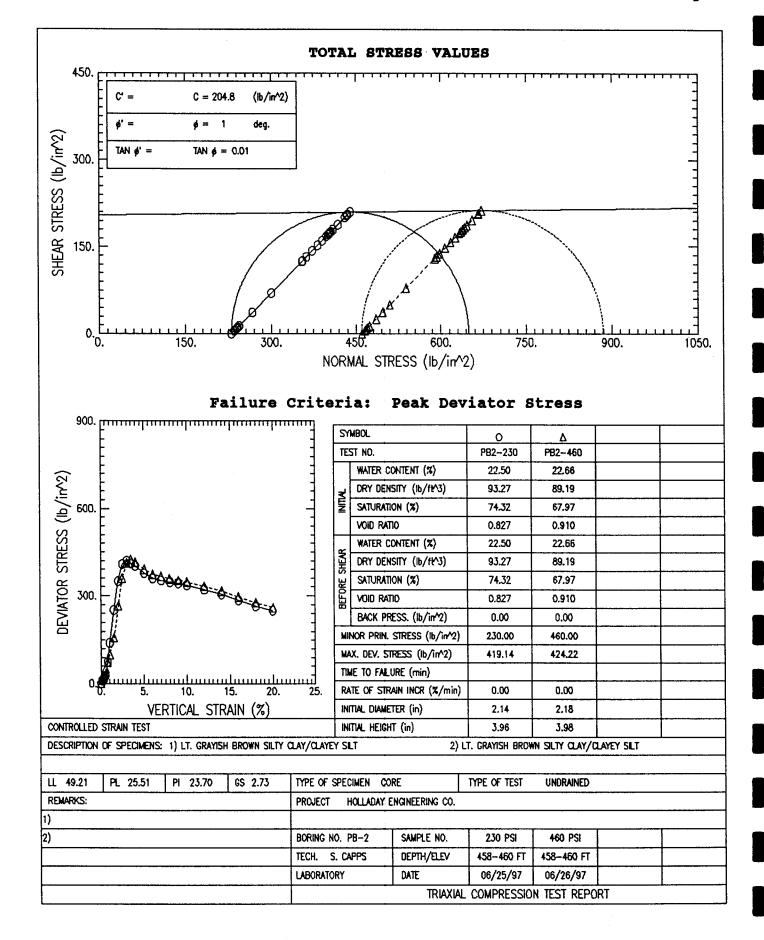
Test Method : ASTM D4318/422

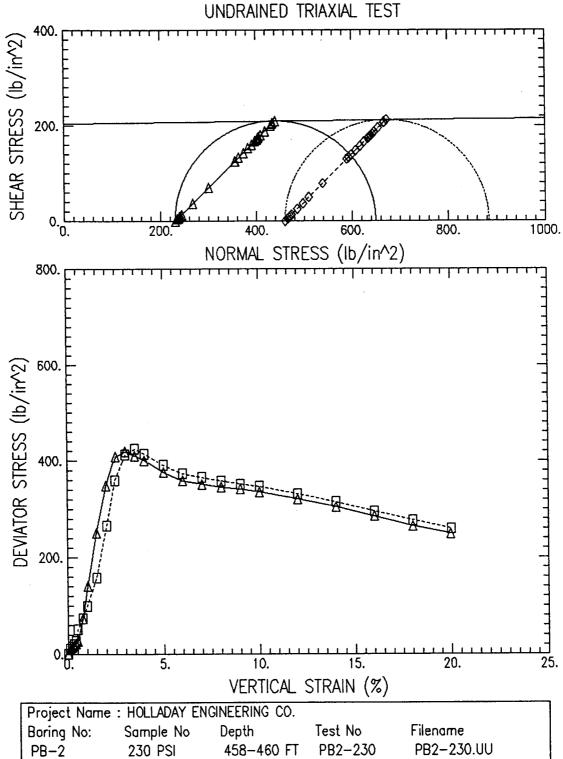
Filename: PB2-456

Elevation : NA Tested by : C. WASON Checked by : S. CAPPS

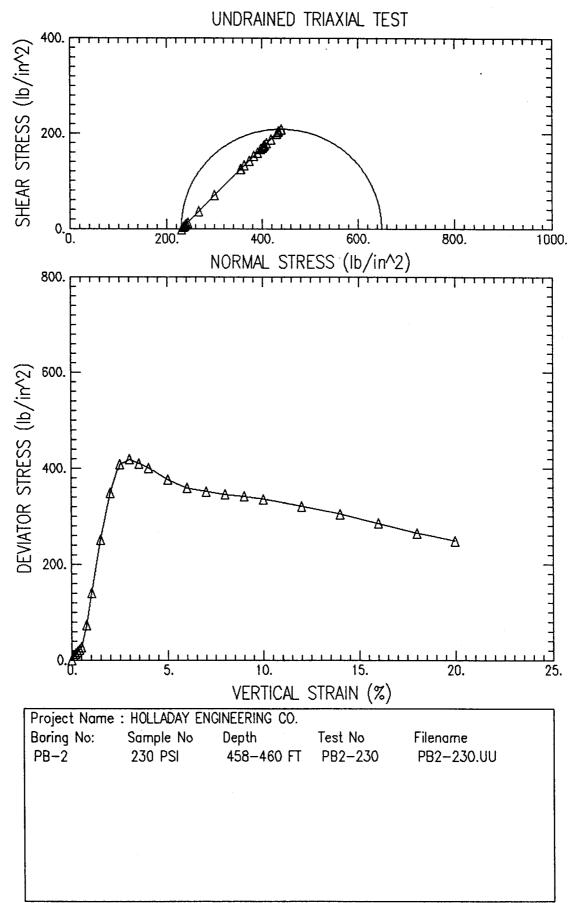
Soil Description : GRAY BROWN SILTY CLAY WITH FINE SAND Remarks : 456-457 FEET

Moisture Content Mass of Container (gm) 15.78 1) 6


Plastic Limit Mass of Container Mass of Container Moisture Content and Dried Soil and Moist Soil (gm) (gm) 26.90 24.67


(gm) (%) 25.08

Plastic Limit = 25.08


Liquid Limit Mass of Container Mass of Container Muss of Container Number Moisture Content Moisture Content and Moist Soil and Dried Soil of Drops ID (gm) (gm) 21.89 22.44 1) 0 10.93 . 27.25 30 48.91 25 50.30 2) 17 28.30 10.79 17 3) 55 11.12 26.88 21.44 52.71

Liquid Limit = 50.19 Plastic Index = 25.11

. HOLLADAI LII	GINEERING CO.			- 1
Sample No	Depth	Test No	Filename	
230 PSI	458-460 FT	PB2-230	PB2-230.UU	
460 PSI	458-460 FT	PB2-460	PB2-460.UU	
			•	
				ļ
	Sample No 230 PSI	Sample No Depth 230 PSI 458-460 FT	Sample No Depth Test No 230 PSI 458-460 FT PB2-230	Sample No Depth Test No Filename 230 PSI 458-460 FT PB2-230 PB2-230.UU

Fri Jun 27 07:43:17 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project No.: 971144NA

Boring No. : PB-2

Sample No. : 230 PSI Sample Type : CORE

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Test No. : PB2-230 Test Date : 06/25/97 Depth : 458-460 FT

Elevation:

Soil Description : LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Tested by : S. CAPPS Checked by : C. WASON

Remarks :

Height: 3.957 (in) Area: 3.59 (in²)

Volume: 14.19 (in³)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Piston Weight: 0.00 (gm)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in^2)
1)	0.000	0.00	3.59	0.00	0.00	0.00	0.00	230.00	230.00
2)	0.004	0.10	3.59	0.00	33.50	33.50	9.32	239.32	239.32
3)	0.008	0.20	3.60	0.00	48.51	48.51	13.48	243.48	243.48
4)	0.012	0.30	3.60	0.00	65.84	65.84	18.27	248.27	248.27
5)	0.016	0.40	3.61	0.00	76.23	76.23	21.11	251.11	251.11
6)	0.020	0.51	3.62	0.00	97.02	97.02	26.83	256.83	256.83
7)	0.030	0.76	3.63	0.00	265.65	265.65	73.14	303.14	303.14
8)	0.040	1.01	3.65	0.00	512.82	512.82	140.60	370.60	370.60
9)	0.059	1.49	3.68	0.00	924.00	924.00	251.27	481.27	481.27
10)	0.079	2.00	3.71	0.00	1293.60	1293.60	348.73	578.73	578.73
11)	0.099	2.50	3.74	0.00	1526.91	1526.91	408.04	638.04	638.04
12)	0.119	3.01	3.78	0.00	1582.35	1582.35	419.14	649.14	649.14
13)	0.138	3.49	3.81	0.00	1562.72	1562.72	410.45	640.45	640.45
14)	0.158	3.99	3.84	0.00	1539.62	1539.62	400.77	630.77	630.77
15)	0.198	5.00	3.91	0.00	1472.63	1472.63	376.41	606.41	606.41
16)	0.237	5.99	3.98	0.00	1429.89	1429.89	358.94	588.94	588.94
17)	0.277	7.00	4.06	0.00	1428.74	1428.74	351.94	581.94	581.94
18)	0.317	8.01	4.14	0.00	1431.05	1431.05	345.78	575.78	575.78
19)	0.356	9.00	4.22	0.00	1440.29	1440.29	341.42	571.42	571.42
20)	0.396	10.01	4.30	0.00	1444.91	1444.91	335.72	565.72	565.72
21)	0.475	12.00	4.48	0.00	1437.98	1437.98	320.77	550.77	550.77
22)	0.554	14.00	4.68	0.00	1426.43	1426.43	304.96	534.96	534.96
23)	0.633	16.00	4.89	0.00	1395.24	1395.24	285.34	515.34	515.34
24)	0.712	17.99	5.12	0.00	1357.13	1357.13	264.96	494.96	494.96
25)	0.791	19.99	5.38	0.00	1339.80	1339.80	249.14	479.14	479.14

Fri Jun 27 07:43:17 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-230

Boring No. : PB-2

Test Date : 06/25/97

Tested by : S. CAPPS

Sample No.: 230 PSI

Depth : 458-460 FT

Checked by : C. WASON

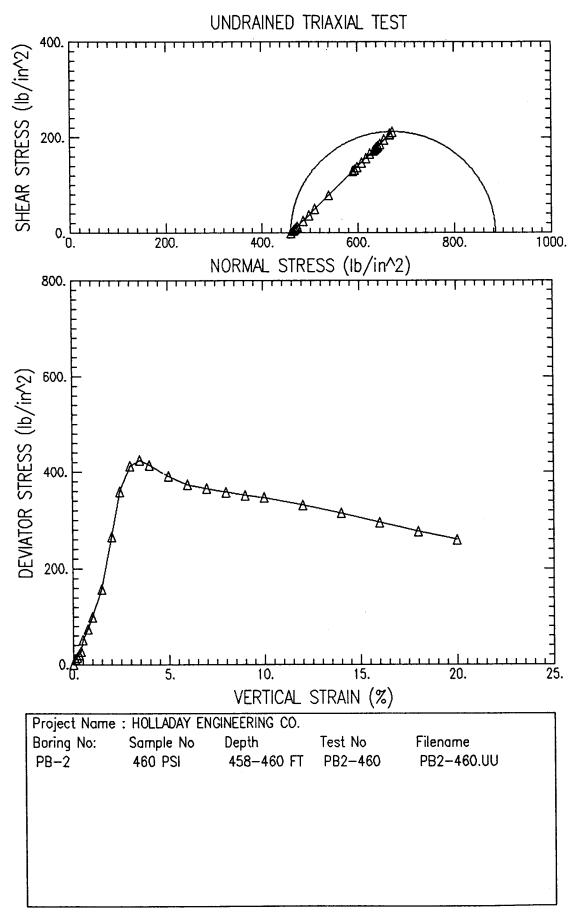
Sample Type : CORE

Elevation:

Soil Description : LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Remarks :

Liquid Limit: 0


Plastic Limit: 0

Specific Gravity: 2.73

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	425.20	425.20	0.00
WT CONTAINER + DRY SOIL (gm)	347.10	347.10	0.00
WT WATER (gm)	78.10	78.10	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	347.10	347.10	0.00
WATER CONTENT (%)	22.50	22.50	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	22.50	22.50
VOID RATIO	0.83	0.83
WET DENSITY (lb/ft^3)	114.25	114.25
DRY DENSITY (lb/ft ³)	93.27	93.27
DEGREE OF SATURATION (%)	74.32	74.32

Maximum Shear Stress = 209.57 (lb/in^2) at a Vertical Strain of 3.01 %

Fri Jun 27 07:48:05 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Location: PICKLES BUTTE LANDFIL Test No.: PB2-460

Project No.: 971144NA Boring No.: PB-2

Test Date: 06/26/97

Sample No. : 460 PSI

Depth : 458-460 FT

Tested by : S. CAPPS Checked by : C. WASON

Sample Type : CORE

: CORE Elevation :

Soil Description: LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Remarks:

Height: 3.976 (in)
Area: 3.75 (in²)
Volume: 14.89 (in³)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb) Filter Correction: 0.00 (lb/in^2)
Membrane Correction: 0.00 (lb/in)

Piston Weight: 0.00 (gm)

00 (gm) Area Correction : Parabolic

VERTICAL TOTAL EFFECTIVE CHANGE STRAIN CORR. PORE DEV. CORR. DEV. DEV. **VERTICAL** VERTICAL IN LENGTH **AREA PRESSURE** LOAD LOAD **STRESS** STRESS STRESS (in) (%) (in²) (lb/in²) (lb) (lb) (lb/in^2) (lb/in²) (lb/in^2) 1) 0.000 0.00 0.00 0.00 3.75 0.00 0.00 460.00 460.00 2) 0.004 0.10 3.75 0.00 41.58 41.58 11.08 471.08 471.08 3) 0.008 58.91 0.20 3.76 0.00 58.91 15.67 475.67 475.67 4) 0.012 0.00 480.86 0.30 78.54 78.54 20.86 480.86 3.76 5) 0.016 0.40 0.00 100.49 100.49 26.64 486.64 486.64 3.77 0.020 0.00 190.58 50.45 510.45 6) 0.50 3.78 190.58 510.45 7) 0.030 0.75 3.79 0.00 280.67 280.67 73.98 533.98 533.98 8) 0.040 99.44 0.00 378.84 378.84 559.44 559.44 1.01 3.81 9) 0.060 0.00 607.53 607.53 158.10 1.51 3.84 618.10 618.10 10) 0.080 1032.57 2.01 3.88 0.00 1032.57 266.40 726.40 726.40 11) 0.098 2.46 3.91 0.00 1404.48 1404.48 359.53 819.53 819.53 12) 0.119 2.99 3.94 0.00 1626.24 1626.24 412.47 872.47 872.47 13) 0.139 3.98 0.00 1687.46 1687.46 424.22 884.22 884.22 3.50 14) 0.159 4.00 4.01 0.00 1663.20 1663.20 414.40 874.40 874.40 15) 0.199 5.01 4.09 0.00 1597.37 1597.37 390.85 850.85 850.85 16) 0.239 6.01 4.16 0.00 1554.63 1554.63 373.43 833.43 833.43 6.99 365.56 17) 0.278 0.00 1550,01 1550.01 825.56 825.56 4.24 358.09 18) 0.318 8.00 4.32 0.00 1547.70 1547.70 818.09 818.09 1551.17 351.95 19) 0.358 9.00 4.41 0.00 1551.17 811.95 811.95 20) 0.398 10.01 4.50 0.00 1560.41 1560.41 347.06 807.06 807.06 21) 0.477 12.00 4.68 0.00 1553.48 1553.48 331.78 791.78 791.78 22) 0.557 14.01 4.89 0.00 1540.77 1540.77 315.28 775.28 775.28 0.00 1509.59 1509.59 295.55 755.55 755.55 23) 0.636 16.00 5.11 24) 0.716 18.01 5.35 0.00 1481.87 1481.87 276.86 736.86 736.86 19.99 0.00 1459.92 1459.92 259.85 719.85 25) 0.795 5.62 719.85

Fri Jun 27 07:48:05 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-460 Test Date : 06/26/97

Tested by : S. CAPPS

Boring No. : PB-2 Sample No.: 460 PSI

Depth : 458-460 FT

Checked by : C. WASON

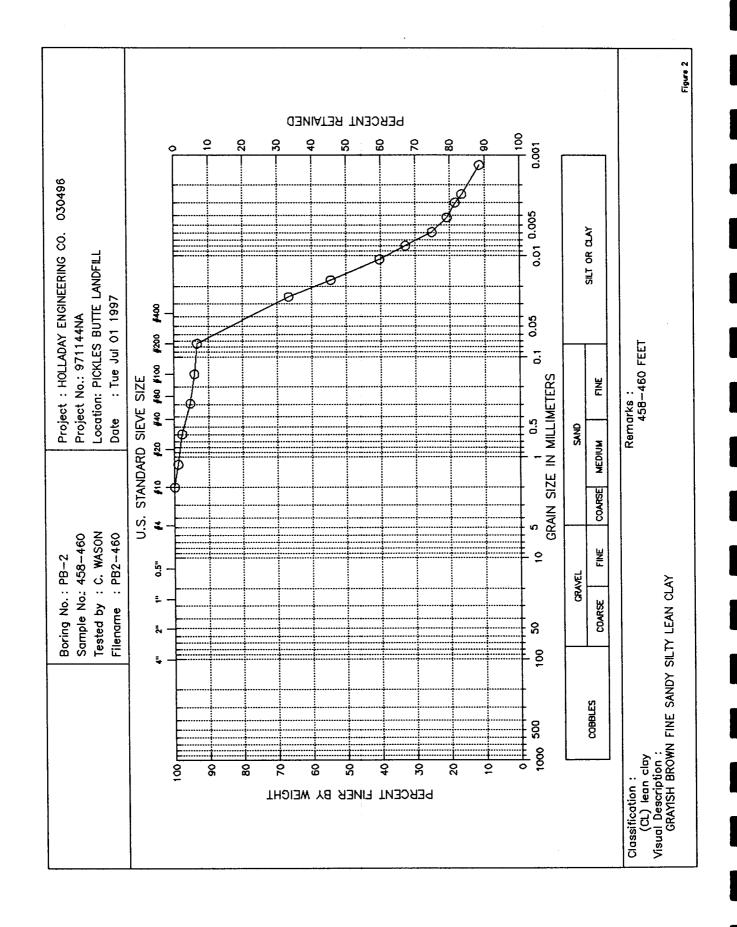
Sample Type : CORE

Elevation:

Soil Description : LT. GRAYISH BROWN SILTY CLAY/CLAYEY SILT

Remarks:

Liquid Limit : 0


Plastic Limit: 0

Specific Gravity: 2.73

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	427.70	427.70	0.00
WT CONTAINER + DRY SOIL (gm)	348.70	348.70	0.00
WT WATER (gm)	79.00	79.00	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	348.70	348.70	0.00
WATER CONTENT (%)	22.66	22.66	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	22.66	22.66
VOID RATIO	0.91	0.91
WET DENSITY (lb/ft ² 3)	109.40	109.40
DRY DENSITY (lb/ft ³)	89.19	89.19
DEGREE OF SATURATION (%)	67.97	67.97

Maximum Shear Stress = 212.11 (lb/in^2) at a Vertical Strain of 3.50 %

Tue Jul 01 12:59:29 1997

Page: 1

GEOTECHNICAL LABORATORY TEST DATA

Project : HOLLADAY ENGINEERING CO. 030496

Filename: PB2-460

Project No.: 971144NA Boring No. : PB-2

Depth: 458-460 FEET Test Date : 06/30/97 Elevation: NA Tested by : C. WASON

Sample No.: 458-460

Test Method: ASTM D4318/422

Checked by : S. CAPPS

Location : PICKLES BUTTE LANDFILL

Soil Description : GRAYISH BROWN FINE SANDY SILTY LEAN CLAY

Remarks: 458-460 FEET

HYDROMETER

Hydrometer ID: 1734

Weight of air-dried soil = 70 gm

Specific Gravity = 2.73

Hydroscopic Moisture Content : Weight of Wet Soil = 70 gm Weight of Dry Soil = 64.7 gm

Moisture Content = 0.0819165

Elapsed Time (min)	Reading	Temperature (deg. C)	Corrected Reading	Particle Size (mm)	Percent Finer (%)	Adjusted Particle Size
2.00	E2 00	22.70	43.80	0.026	.67	0.026
2.00 5.00	52.00 44.00	22.40 22.40	45.80 35.80	0.028	54	0.017
15.00	34.80	22.20	26.51	0.011	40	0.011
30.00	30.00	22.00	21.62	0.008	33	0.008
60.00	25.00	21.80	16.53	0.006	25	0.006
120.00	22.00	22.10	13.67	0.004	21	0.004
240.00	20.40	22.20	12.11	0.003	18	0.003
360.00	19.00	22.60	10.90	0.002	17	0.002
1440.00	16.00	21.80	7.53	0.001	11	0.001

Sieve	Sieve Openings		FINE SIEVE SET Weight	Cumulative	Percent
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)
#10	0.079	2.00	0.00	0.00	100
#16	0.047	1.19	0.66	0.66	99
#30	0.023	0.60	0.77	1.43	98
#50	0.012	0.30	1.55	2.98	95
#100	0.006	0.15	0.77	3.75	94
#200	0.003	0.07	0.52	4.27	93
Pan	0.000	0.00	60.43	64.70	0

Total Wet Weight of Sample = 64.7Total Dry Weight of Sample = 64.7
Moisture Content = 0.08 = 0.0819165

D85 : 0.0530 mm D60 : 0.0208 mm D50 : 0.0150 mm D30 : 0.0071 mm D15 : 0.0020 mm D10 : 0.0011 mm

Soil Classification

ASTM Group Symbol : CL ASTM Group Name : lean clay AASHTO Group Symbol : A-7-6(27) AASHTO Group Name : Clayey Soils

ATTERBERG LIMITS

PROJECT HOLLADAY ENGINEERING CO. 030496	PROJECT NU 971144NA	MBER	TESTED BY C. WASON		BORING NUMBER PB-2	
Location : Pickles Butte Landfill		CHECKED BY S. CAPPS		SAMPLE NUMBER 458-460		
SAMPLE DESCRIPTION GRAYISH BROWN FINE SANDY SILTY LEAN CLAY	-		DATE Tue Jul 01 1997		FILENAME PB2-460	
	LIQUID LIMIT	DETERMINATIO	NS		l-m-1-m-2	
CONTAINER NUMBER	11	12	45			
WT. WET SOIL + TARE	27.25	27.63	27.93			
WT. DRY SOIL + TARE	21.91	22.1	22.07			
WT. WATER	5.34	5.53	5.86			
TARE WT.	10.73	10.95	10.64			
WT. DRY SOIL	11.18	11.15	11.43			
WATER CONTENT, W _N (%)	47.76	49.60	51.27			
NUMBER OF BLOWS, N	32	23	18			
ONE-POINT LIQUID LIMIT, LL	49.21	49.10	49.27			
	PLASTIC LIMIT	DETERMINATION	NS			
CONTAINER NUMBER	47					
WT. WET SOIL + TARE	27.35					
WT. DRY SOIL + TARE	24.97			<u> </u>		
WT. WATER	2.38			ļ		
TARE WT.	15.64					
WT. DRY SOIL	9.33					
WATER CONTENT (%)	25.51					
				<u></u>		
FLOW CURVE			····		RESULTS	····
55.0	1 1 1 1		AL WATER CONTENT	, W (%)		
l R		· · · · · · · · · · · · · · · · · · ·	LIMIT, LL			49.2
54.0		 	C LIMIT, PL			25.5
		<u> </u>	ICITY INDEX, PI			23.7
53.0 —		LIQUID	ity index, li*			
8° − 1 52.0 −		*LI = (W - PL)/PI PLAS	TICITY	CHART	····
52.0 - ENT						
ENO 51.0 -		70	 	' '		
		7				₩ LIFE
× ¥AIER		_ €0 -				/ -
₹ 50.0 \		그			CH or DH	/ -
l \		≧ 40 - ≻ 40 -				
49.0		그들 36	/	1.		torOH -
		13 F		d		-
48.0		- 1 ²⁰ ↑	2.44			-
		10	Q-14 0			
47.0		100	10 20 30 40	50 64	70 80	90 100 11
10 25 NUMBER OF BLOW	VC N	100		UID LIMI		Fig. 2.0
NOMBER OF BLOI	10, IN					

Tue Jul 01 12:59:29 1997

Page: 2

GEOTECHNICAL LABORATORY TEST DATA

Project : HOLLADAY ENGINEERING CO. 030496 Project No.: 971144NA

Boring No. : PB-2

Sample No.: 458-460

1) 47

Location : PICKLES BUTTE LANDFILL

Soil Description: GRAYISH BROWN FINE SANDY SILTY LEAN CLAY Remarks: 458-460 FEET

(gm)

15.64

Test Method : ASTM D4318/422

Depth : 458-460 FEET

Test Date : 06/30/97

Plastic Limit and Moist Soil (gm)

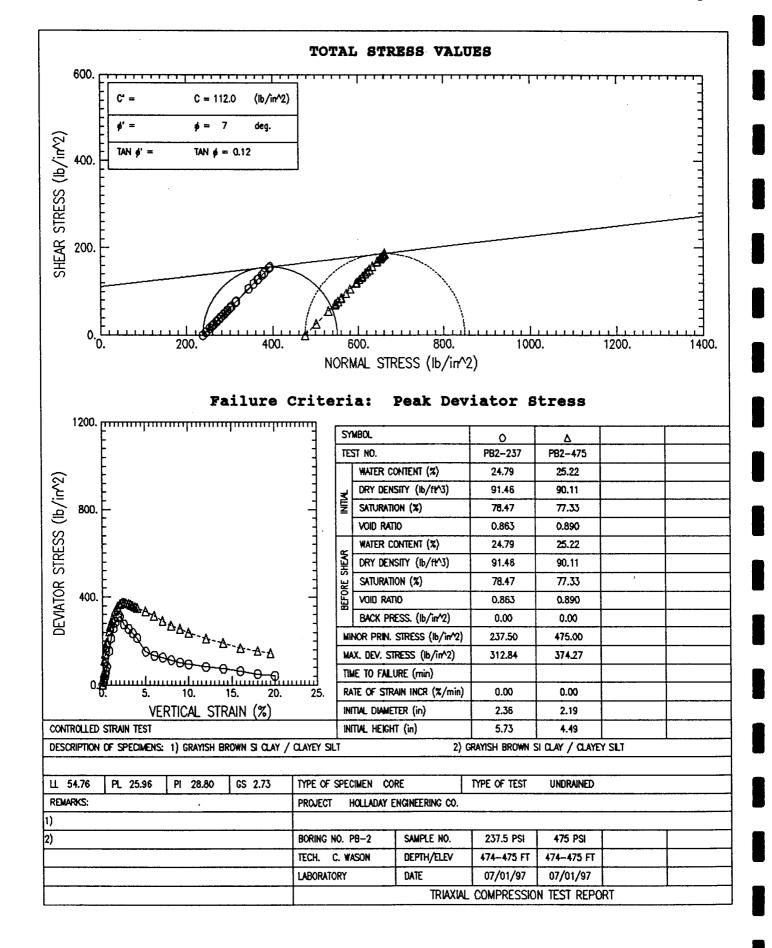
27.35 24.97

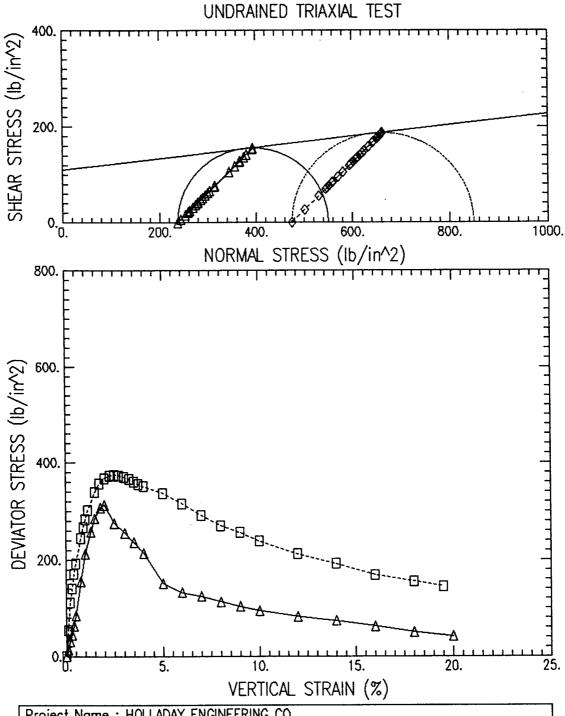
Moisture Content Mass of Container Mass of Container Moisture Content and Dried Soil

(gm)

Filename: PB2-460

Tested by : C. WASON Checked by : S. CAPPS


Elevation: NA


25.51

Plastic Limit = 25.51

Liquid Limit Mass of Container Mass of Container Number Moisture Content Moisture Content and Moist Soil and Dried Soil of Drops ID (gm) (gm) (gm) 47.76 27.25 21.91 32 1) 11 10.73 2) 12 3) 45 22.10 23 49.60 10.95 27.63 27.93 22.07 18 51.27 10.64

Liquid Limit = 49.21 Plastic Index = 23.70

Project Name: HOLLADAY ENGINEERING CO. Filename Boring No: Sample No Depth Test No PB2-237 PB2-237.UU PB-2 237.5 PSI 474-475 FT 474-475 FT PB2-475 PB2-475.UU PB-2 475 PSI Failure Criteria: Peak Deviator Stress

Thu Jul 03 15:45:46 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project No.: 971144NA

Boring No. : PB-2

Sample No. : 237.5 PSI Sample Type : CORE

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Test No. : PB2-237 Test Date : 07/01/97 Depth : 474-475 FT

Elevation:

Soil Description : GRAYISH BROWN SI CLAY / CLAYEY SILT

Remarks:

Height: 5.728 (in) Area: 4.38 (in²) Volume : 25.10 (in³) Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Piston Weight: 0.00 (gm)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Area Correction : Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

		VERTICAL						TOTAL	EFFECTIVE .
1	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in^2)	(lb/in^2)	(lb/in ⁻ 2)
1)	0.000	0.00	4.38	0.00	0.00	0.00	0.00	237,50	237.50
2)	0.006	0.10	4.39	0.00	57.75	57.75	13.16	250.66	250.66
3)	0.011	0.19	4.40	0.00	138.60	138.60	31.53	269.03	269.03
4)	0.017	0.30	4.40	0.00	196.35	196.35	44.59	282.09	282.09
5)	0.023	0.40	4.41	0.00	277.20	277.20	62.84	300.34	300.34
6)	0.029	0.51	4.42	0.00	371.91	371.91	84.16	321.66	321.66
7)	0.043	0.75	4.44	0.00	686.07	686.07	154.61	392.11	392.11
8)	0.057	1.00	4.46	0.00	947.10	947.10	212.55	450.05	450.05
9)	0.074	1.29	4.48	0.00	1157.31	1157.31	258.42	495.92	495.92
10)	0.086	1.50	4.49	0.00	1282.05	1282.05	285.25	522.75	522.75
11)	0.103	1.80	4.52	0.00	1390.62	1390.62	307.84	545.34	545.34
12)	0.115	2.01	4.53	0.00	1418.34	1418.34	312.84	550.34	550.34
13)	0.143	2.50	4.57	0.00	1258.95	1258.95	275.35	512.85	512.85
14)	0.173	3.02	4.61	0.00	1178.10	1178.10	255.32	492.82	492.82
15)	0.200	3.49	4.65	0.00	1099.56	1099.56	236.32	473.82	473.82
16)	0.229	4.00	4.69	0.00	1004.85	1004.85	214.03	451.53	451.53
17)	0.286	4.99	4.78	0.00	723.03	723.03	151.27	388.77	388.77
18)	0.344	6.01	4.87	0.00	644.49	644.49	132.36	369 .8 6	369.86
19)	0.401	7.00	4.96	0.00	616.77	616.77	124.33	361.83	361.83
20)	0.458	8.00	5.06	0.00	571. <i>7</i> 3	571.73	113.08	350.58	350.58
21)	0.516	9.01	5.16	0.00	528.99	528.99	102.59	340.09	340.09
22)	0.573	10.00	5.26	0.00	496.65	496.65	94.44	331.94	331.94
23)	0.687	11.99	5.48	0.00	450.45	450.45	82.25	319.75	319.75
24)	0.802	14.00	5.72	0.00	421.58	421.58	73.76	311.26	311.26
25)	0.916	15.99	5.97	0.00	371.91	371.91	62.25	299.75	299.75
26)	1.031	18.00	6.26	0.00	311.85	311.85	49.82	287.32	287.32
27)	1.146	20.01	6.57	0.00	271.43	271.43	41.29	278. 7 9	278.79

Thu Jul 03 15:45:46 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-237

Boring No. : PB-2

Test Date : 07/01/97

Tested by : C. WASON

Sample No.: 237.5 PSI

Depth : 474-475 FT

Checked by : C. CAPPS

Sample Type : CORE

Elevation:

Soil Description : GRAYISH BROWN SI CLAY / CLAYEY SILT

Remarks:

Specific Gravity: 2.73

Liquid Limit: 54.76

Plastic Limit: 25.96

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	752.00	752.00	0.00
WT CONTAINER + DRY SOIL (gm)	602.60	602.60	0.00
WT WATER (gm)	149.40	149.40	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	602.60	602.60	0.00
WATER CONTENT (%)	24.79	24.79	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	24.79	24.79
VOID RATIO	0.86	0.86
WET DENSITY (lb/ft~3)	114.14	114.14
DRY DENSITY (lb/ft~3)	91.46	91.46
DEGREE OF SATURATION (%)	78.47	78.47

Maximum Shear Stress = 156.42 (lb/in^2) at a Vertical Strain of 2.01 %

Thu Jul 03 14:45:31 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA Boring No. : PB-2 Sample No. : 475 PSI

Test No. : PB2-475 Test Date : 07/01/97 Depth : 474-475 FT

Tested by : C. WASON Checked by : C. CAPPS

Sample Type : CORE

Elevation:

Soil Description : GRAYISH BROWN SI CLAY / CLAYEY SILT

Remarks :

Height: 4.488 (in)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Area: 3.77 (in²) Volume: 16.91 (in 3)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

	,	/ERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGTI	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in^2)
1)	0.000	0.00	3.77	0.00	0.00	0.00	0.00	475.00	475.00
2)	0.004	0.09	3.77	0.00	200.97	200.97	53.26	528.26	528.26
3)	0.009	0.20	3.78	0.00	418.11	418.11	110.59	585.59	585.59
4)	0.013	0.29	3.79	0.00	531.30	531.30	140.32	615.32	615.32
5)	0.018	0.40	3.79	0.00	647.96	647.96	170.81	645.81	645.81
6)	0.022	0.49	3.80	0.00	729.96	729.96	192.14	667.14	667.14
7)	0.034	0.76	3.82	0.00	930.93	930.93	243.94	718.94	718.94
8)	0.040	0.89	3.82	0.00	1022.18	1022.18	267.25	742.25	742.25
9)	0.045	1.00	3.83	0.00	1085.70	1085.70	283.32	758.32	758.32
10)	0.051	1.14	3.84	0.00	1158.47	1158.47	301.63	776.63	776.63
11)	0.067	1.49	3.86	0.00	1310.93	1310.93	339.25	814.25	814.25
12)	0.078	1.74	3.88	0.00	1382.54	1382.54	356.29	831.29	831.29
13)	0.090	2.01	3.90	0.00	1432.20	1432.20	367.39	842.39	842.39
14)	0.101	2.25	3.91	0.00	1461.08	1461.08	373.21	848.21	848.21
15)	0.112	2.50	3.93	0.00	1471.47	1471.47	374.27	849.27	849.27
16)	0.123	2.74	3.95	0.00	1472.63	1472.63	372.97	847.97	847.97
17)	0.135	3.01	3.97	0.00	1468.01	1468.01	370.07	845.07	845.07
18)	0.146	3.25	3.98	0.00	1457.61	1457.61	365.87	840.87	840.87
19)	0.157	3.50	4.00	0.00	1443.75	1443.75	360.82	835.82	835.82
20)	0.168	3.74	4.02	0.00	1426.43	1426.43	354.94	829.94	829.94
21)	0.180	4.01	4.04	0.00	1416.03	1416.03	350.68	825.68	825.68
22)	0.224	4.99	4.11	0.00	1383.69	1383.69	336.67	811.67	811.67
23)	0.269	5.99	4.19	0.00	1322.48	1322.48	315.91	790.91	790.91
24)	0.314	7.00	4.27	0.00	1245.09	1245.09	291.91	766.91	766.91
25)	0.359	8.00	4.35	0.00	1175.79	1175.79	270.44	745.44	745.44
26)	0.404	9.00	4.43	0.00	1136.52	1136.52	256.37	731.37	731.37
27)	0.449	10.00	4.52	0.00	1079.93	1079.93	238.82	713.82	713.82
28)	0.539	12.01	4.71	0.00	1000.23	1000.23	212.32	687 .3 2	687.32
29)	0.628	13.99	4.91	0.00	944.79	944.79	192.26	667.26	667.26
30)	0.718	16.00	5.14	0.00	867.41	867.41	168.82	643.82	643.82
31)	0.808	18.00	5.38	0.00	836.22	836.22	155.34	630.34	630.34
32)	0.875	19.50	5.58	0.00	809.66	809.66	145.05	620.05	620.05

Thu Jul 03 14:45:31 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Boring No. : PB-2

Sample No. : 475 PSI Sample Type : CORE

Liquid Limit: 54.76

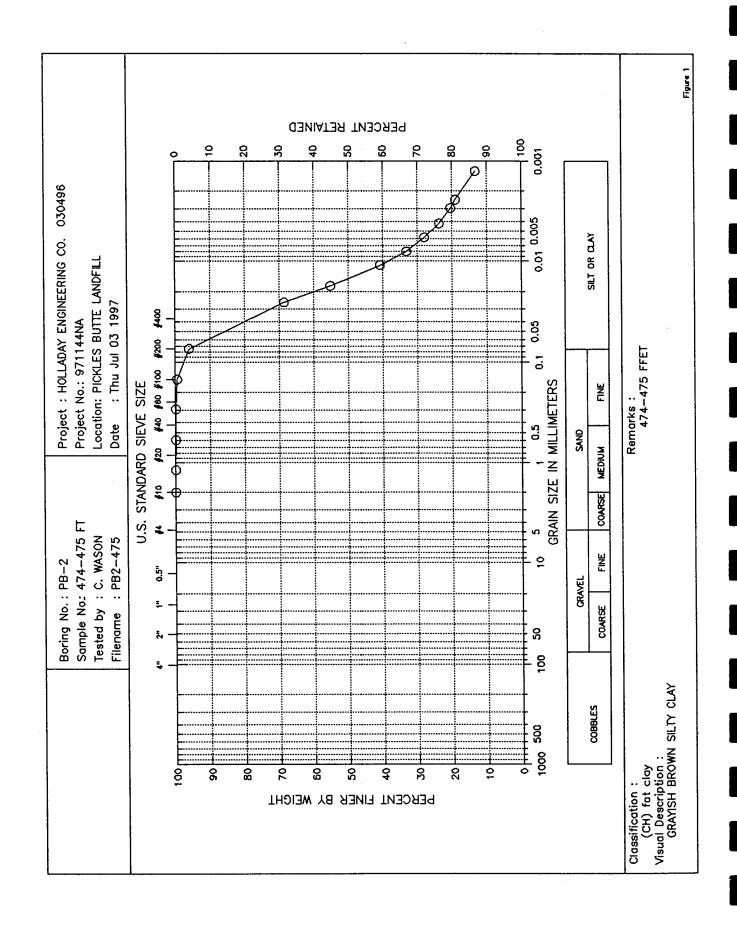
Test No. : PB2-475

Test Date : 07/01/97 Depth : 474-475 FT

Tested by : C. WASON Checked by : C. CAPPS

Elevation: Soil Description : GRAYISH BROWN SI CLAY / CLAYEY SILT

Remarks :


Plastic Limit: 25.96

Specific Gravity: 2.73

		WATER CONTENT	
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	500.90	500.90	0.00
WT CONTAINER + DRY SOIL (gm)	400.00	400.00	0.00
WT WATER (gm)	100.90	100.90	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	400.00	400.00	0.00
WATER CONTENT (%)	25.22	25.22	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	25.22	25.22
VOID RATIO	0.89	0.89
WET DENSITY (lb/ft ² 3)	112.84	112.84
DRY DENSITY (lb/ft-3)	90.11	90.11
DEGREE OF SATURATION (%)	77.33	77.33

Maximum Shear Stress = 187.14 (lb/in^2) at a Vertical Strain of 2.50 %

Thu Jul 03 14:29:09 1997

Page: 1

GEOTECHNICAL LABORATORY TEST DATA

Test Method : ASTM D4318/422

Project: HOLLADAY ENGINEERING CO. 030496 Project No.: 971144NA

Boring No. : PB-2

Sample No.: 474-475 FT

Location : PICKLES BUTTE LANDFILL

Soil Description : GRAYISH BROWN SILTY CLAY

Remarks: 474-475 FFET

Filename: PB2-475 Elevation: NA

Tested by : C. WASON Checked by : S. CAPPS

HYDROMETER

Depth : 474-475 FEET

Test Date : 07/02/97

Hydrometer ID: 1734

Weight of air-dried soil = 70 gm Specific Gravity

Hydroscopic Moisture Content : Weight of Wet Soil = 70 gm Weight of Dry Soil = 62.09 gm Moisture Content = 0.127396

Elapsed Time (min)	Reading	Temperature (deg. C)	Corrected Reading	Particle Size (mm)	Percent Finer (%)	Adjusted Particle Size
2.00	51.50	22.40	43.30	0.026	69	0.026
5.00	43.00	22.40	34.80	0.018	55	0.018
15.00	34.00	22.30	25.76	0.011	41	0.011
30.00	29.20	22.20	20.91	0.008	33	0.008
60.00	26.00	22.10	17.67	0.006	28	0.006
120.00	23.30	22.00	14.92	0.004	24	0.004
244.00	21.00	22.50	12.85	0.003	20	0.003
360.00	20.00	22.80	11.99	0.002	19	0.002
1440.00	16.80	21.90	8.37	0.001	13	0.001

			FINE SIEVE SET			
Sieve	Sieve O	penings	Weight	Cumulative	Percent	
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)	
#10	0.079	2.00	0.00	0.00	100	
#16	0.047	1.19	0.00	0.00	100	
#30	0.023	0.60	0.03	0.03	100	
#50	0.012	0.30	0.03	0.06	100	
#100	0.006	0.15	0.23	0.29	100	
#200	0.003	0.07	2.14	2.43	96	
Pan			59.66	62.09	0	

Total Wet Weight of Sample = 70 Total Dry Weight of Sample = 62.09 = 0.127396 Moisture Content

D85 : 0.0482 mm D60 : 0.0202 mm D50 : 0.0148 mm D30 : 0.0066 mm D15 : 0.0015 mm D10 : 0.0009 mm

Soil Classification

ASTM Group Symbol : CH ASTM Group Name : fat clay

AASHTO Group Symbol : A-7-6(35) AASHTO Group Name : Clayey Soils

ATTERBERG LIMITS

PROJECT HOLLADAY ENGINEERING CO. 030498	PROJECT NI 971144NA	JMBER	TESTED BY C. WASON	BORING NU PB-2	MBER	
LOCATION PICKLES BUTTE LANDFILL	<u> </u>		CHECKED BY S. CAPPS	SAMPLE NU 474-475 F		
SAMPLE DESCRIPTION CRAYISH BROWN SILTY CLAY			DATE Thu Jul 03 1997	FILENAME PB2-475	l I	
	LIQUID LIMIT	DETERMINATION	S	!		
CONTAINER NUMBER	13	14	18			
WT. WET SOIL + TARE	27.48	27.62	27.51			
WT. DRY SOIL + TARE	21.78	21.66	21.4			
WT. WATER	5.7	5.96	6.11			
TARE WT.	11.04	10.82	10.71			
WT. DRY SOIL	10.74	10.84	10.69			
WATER CONTENT, W _N (%)	53.07	54.98	57.16			
NUMBER OF BLOWS, N	33	24	17			
ONE-POINT LIQUID LIMIT, LL	54.89	54.71	54.55			
	PLASTIC LIMIT	DETERMINATION	NS			
CONTAINER NUMBER	2					
WT. WET SOIL + TARE	27.29					
WT. DRY SOIL + TARE	24.93	<u> </u>				
WT. WATER	2.36			. ,		
TARE WT.	15.84					
WT. DRY SOIL	9.09					
WATER CONTENT (%)	25.96					
	·	<u> </u>				
FLOW CURVE		<u> </u>	***************************************	OF RESULTS	 	
60.0		; <u>}</u>	AL WATER CONTENT, W	(%)		
		1)	LIMIT, LL		54.8	
59.0 — \		ı —	IC LIMIT, PL		26.0	
			ICITY INDEX, PI		28.8	
58.0		LIQUID	ITY INDEX, LI*			
16 220		*LI = (W - PL)/PI	ITY CHART		
57.0		7				
1 <u> </u>		1 1	 		'/''\	
중 ^{56.0} -		70		/	/ *•••	
MAIER CON 55.0 —		 = ∞⊢			/-	
\				CH or DH	/ 1	
54.0		PLASTICITY INDEX,	}	/ /	H or OH	
\				9/	4	
53.0		- 70	2 4 2		4	
52.0		10 10	QFE_ ML or QL	60 70 80	90 100 110	
10 25 NUMBER OF BLOW	S, N	100 6		LIMIT, LL	Fig. 1.0	

Thu Jul 03 14:29:09 1997

Page: 2

GEOTECHNICAL LABORATORY TEST DATA

Project: HOLLADAY ENGINEERING CO. 030496

Project No.: 971144NA

Filename: PB2-475

Depth : 474-475 FEET

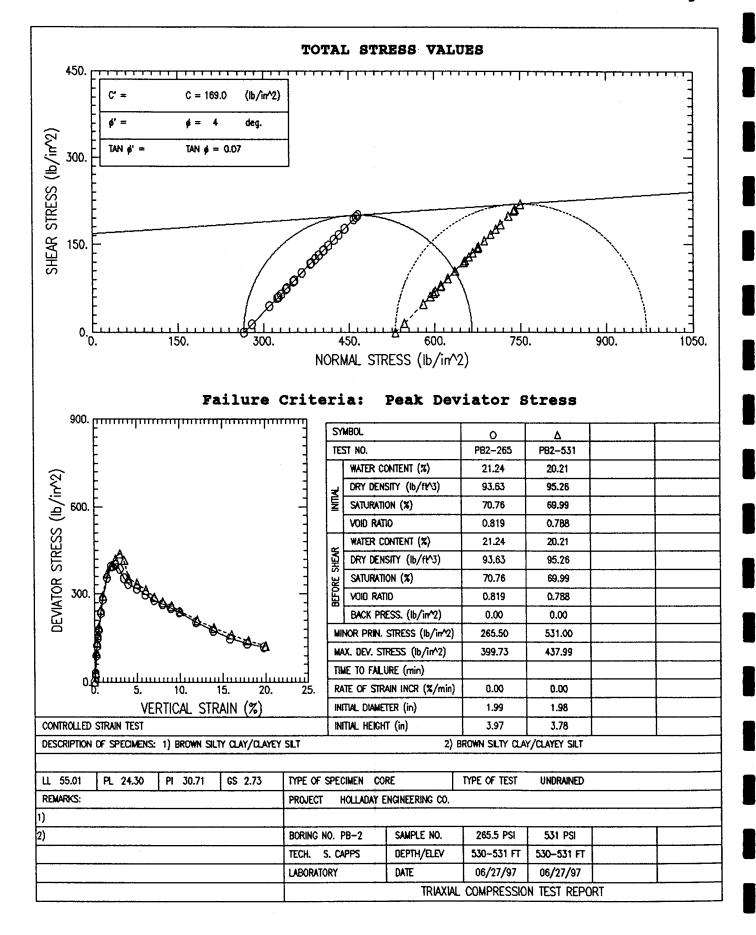
Elevation: NA

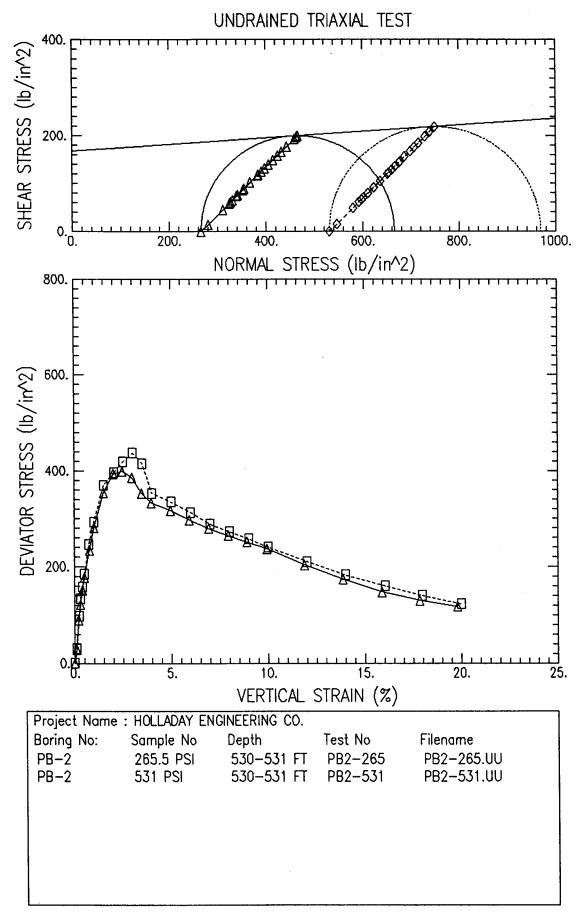
Test Date : 07/02/97 Test Method : ASTM D4318/422

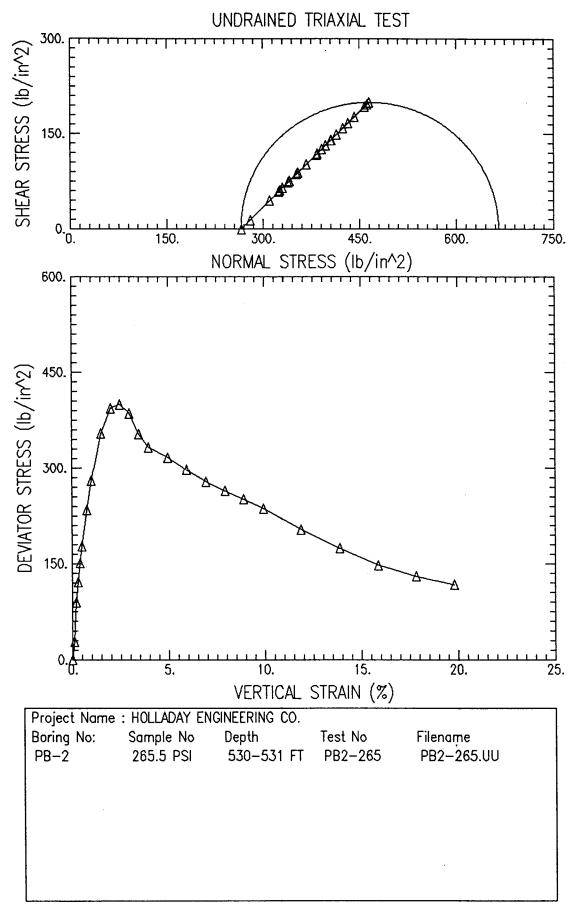
Tested by : C. WASON Checked by : S. CAPPS

Sample No.: 474-475 FT Location: PICKLES BUTTE LANDFILL

Soil Description : GRAYISH BROWN SILTY CLAY


Remarks: 474-475 FFET


Moisture Content ID	Mass of Container	Plastic Limit Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content
	(gm)	(gm)	(gm)	(%)
1) 2	15.84	27.29	24.93	25.96


Plastic Limit = 25.96

	Liquid Limit									
	Moisture Content ID	Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Number of Drops	Moisture Content				
		(gm)	(gm)	(gm)	•••••	(%)				
1)	13	11.04	27.48	21.78	33	53.07				
2)	14	10.82	27.62	21.66	24	54.98				
3)	18	10.71	27.51	21.40	17	57.16				

Liquid Limit = 54.76 Plastic Index = 28.80

Mon Jun 30 08:12:41 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-265

Boring No. : PB-2 Sample No.: 265.5 PSI

Test Date : 06/27/97 Tested by : S. CAPPS Depth : 530-531 FT

Sample Type : CORE

Checked by : C. WASON

Elevation: Soil Description : BROWN SILTY CLAY/CLAYEY SILT

Remarks :

Height: 3.973 (in) Area: 3.12 (in²)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Volume: 12.38 (in^3)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

	,	VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in ²)	(lb)	(lb)	(lb/in ²)	(lb/in^2)	(lb/in ²)
1)	0.000	0.00	3.12	0.00	0.00	0.00	0.00	265.50	265.50
2)	0.004	0.10	3.12	0.00	88.94	88.94	28.48	293.98	293.98
3)	0.008	0.20	3.13	0.00	279.51	279.51	89.37	354.87	354.87
4)	0.012	0.30	3.13	0.00	381.15	381.15	121.67	387.17	387.17
5)	0.016	0.40	3.14	0.00	473.55	473.55	150.91	416.41	416.41
6)	0.020	0.50	3.14	0.00	557.87	557.87	177.47	442.97	442.97
7)	0.030	0.76	3.16	0.00	739.20	739.20	234.17	499.67	499.67
8)	0.039	0.98	3.17	0.00	889.35	889.35	280.65	546.15	546.15
9)	0.059	1.49	3.20	0.00	1131.90	1131.90	354.15	619.65	619.65
10)	0.079	1.99	3.22	0.00	1269.35	1269.35	393.74	659.24	659.24
11)	0.098	2.47	3.25	0.00	1299.38	1299.38	399.73	665.23	665.23
12)	0.118	2.97	3.28	0.00	1264.73	1264.73	385.67	651.17	651.17
13)	0.138	3.47	3.31	0.00	1168.86	1168.86	353.29	618.79	618.79
14)	0.157	3.95	3.34	0.00	1111.11	1111.11	332.99	598.49	598.49
15)	0.197	4.96	3.40	0.00	1076.46	1076.46	316.81	582.31	582.31
16)	0.236	5.94	3.46	0.00	1027.95	1027.95	297.14	562.64	562.64
17)	0.276	6.95	3.53	0.00	982.91	982.91	278.83	544.33	544.33
18)	0.315	7.93	3.59	0.00	948.26	948.26	264.02	529.52	529.52
19)	0.354	8.91	3.66	0.00	919.38	919.38	251.15	516.65	516.65
20)	0.394	9.92	3.73	0.00	884.73	884.73	236.93	502.43	502.43
21)	0.472	11.88	3.89	0.00	791.18	791.18	203.57	469.07	469.07
22)	0.551	13.87	4.05	0.00	705.71	705.71	174.07	439.57	439.57
23)	0.630	15.86	4.24	0.00	624.86	624.86	147.49	412.99	412.99
24)	0.709	17.85	4.44	0.00	576.35	576.35	129.91	395.41	395.41
25)	0.787	19.81	4.65	0.00	545.16	545.16	117.16	382.66	382.66

Mon Jun 30 08:12:41 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-265

Boring No. : PB-2

Test Date : 06/27/97

Tested by : S. CAPPS

Sample No. : 265.5 PSI

Depth : 530-531 FT

Checked by : C. WASON

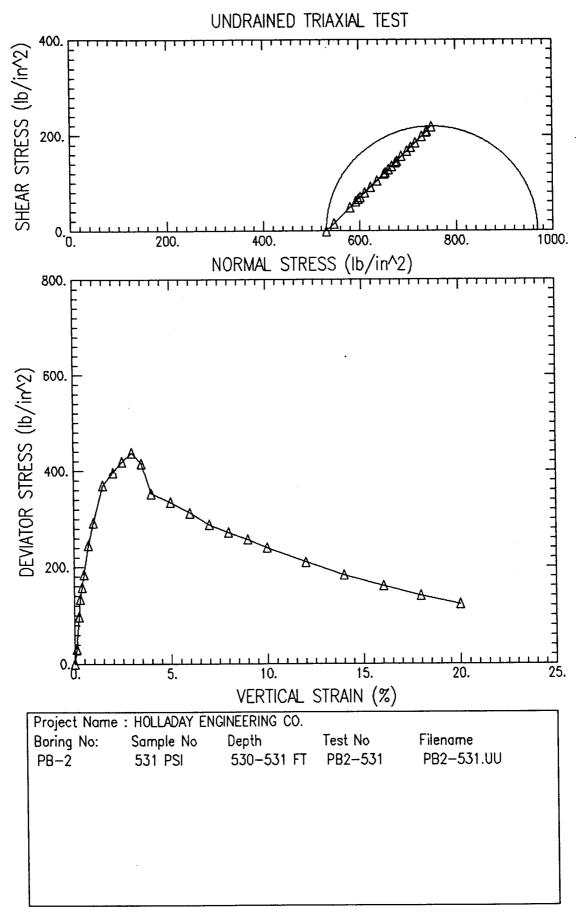
Sample Type : CORE

Elevation:

Soil Description : BROWN SILTY CLAY/CLAYEY SILT

Remarks:

Specific Gravity: 2.73


Liquid Limit: 0

Plastic Limit: 0

WATER CONTENT			
BEFORE TEST	AFTER TEST	TRIMMINGS	
369.00	369.00	0.00	
304.36	304.36	0.00	
64.64	64.64	0.00	
0.00	0.00	0.00	
304.36	304.36	0.00	
21.24	21.24	0.00	
	369.00 304.36 64.64 0.00 304.36	BEFORE TEST AFTER TEST 369.00 369.00 304.36 304.36 64.64 64.64 0.00 0.00 304.36 304.36	

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	21.24	21.24
VOID RATIO	0.82	0.82
WET DENSITY (lb/ft^3)	113.51	113.51
DRY DENSITY (lb/ft^3)	93.63	93.63
DEGREE OF SATURATION (%)	70.76	70.76

Maximum Shear Stress = 199.86 (lb/in^2) at a Vertical Strain of 2.47 %

Mon Jun 30 08:13:41 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA Boring No. : PB-2

Test No. : PB2-531 Test Date : 06/27/97

Sample No. : 531 PSI

Depth : 530-531 FT

Tested by : S. CAPPS Checked by : C. WASON

Sample Type : CORE

Elevation:

Soil Description : BROWN SILTY CLAY/CLAYEY SILT

Remarks :

Height: 3.780 (in) Area: 3.09 (in^2)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Volume: 11.69 (in³)

Piston Weight: 0.00 (gm)

Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
I	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in^2)
1)	0.000	0.00	3.09	0.00	0.00	0.00	0.00	531.00	531.00
2)	0.004	0.11	3.10	0.00	97.02	97.02	31.32	562.32	562.32
3)	0.008	0.21	3.10	0.00	301.46	301.46	97.15	628.15	628.15
4)	0.011	0.29	3.11	0.00	414.65	414.65	133.45	664.45	664.45
5)	0.015	0.40	3.11	0.00	493.19	493.19	158.45	689.45	689.45
6)	0.019	0.50	3.12	0.00	575.19	575.19	184.47	715.47	715.47
7)	0.028	0.74	3.13	0.00	768.08	768.08	245.34	776.34	776.34
8)	0.038	1.01	3.14	0.00	920.54	920.54	292.73	823.73	823.73
9)	0.057	1.51	3.17	0.00	1172.33	1172.33	369.62	900.62	900.62
10)	0.076	2.01	3.20	0.00	1269.35	1269.35	396.77	927.77	927.77
11)	0.094	2.49	3.23	0.00	1352.51	1352.51	419.29	950.29	950.29
12)	0.113	2.99	3.25	0.00	1425.27	1425.27	437.99	968.99	968.99
13)	0.132	3.49	3.28	0.00	1364.06	1364.06	415.48	946.48	946.48
14)	0.151	3.99	3.31	0.00	1168.86	1168.86	352.86	883.86	883.86
15)	0.189	5.00	3.37	0.00	1129.59	1129.59	334.88	865.88	865.88
16)	0.227	6.01	3.44	0.00	1075.31	1075.31	312.96	843.96	843.96
17)	0.265	7.01	3.50	0.00	1009.47	1009.47	288.33	819.33	819.33
18)	0.302	7.99	3.57	0.00	971.36	971.36	272.32	803.32	803.32
19)	0.340	8.99	3.64	0.00	937.86	937.86	257.85	788.85	788.85
20)	0.378	10.00	3.71	0.00	890.51	890.51	240.00	771.00	771.00
21)	0.454	12.01	3.87	0.00	811.97	811.97	210.04	741.04	741.04
22)	0.529	13.99	4.03	0.00	738.05	738.05	183.02	714.02	714.02
23)	0.606	16.03	4.22	0.00	676.83	676.83	160.41	691.41	691.41
24)	0.680	17.99	4.42	0.00	620.24	620.24	140.45	671.45	671.45
25)	0.756	20.00	4.64	0.00	568.26	568.26	122.52	653.52	653.52

Mon Jun 30 08:13:41 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No. : 971144NA Test No. : PB2-531

Tested by : S. CAPPS

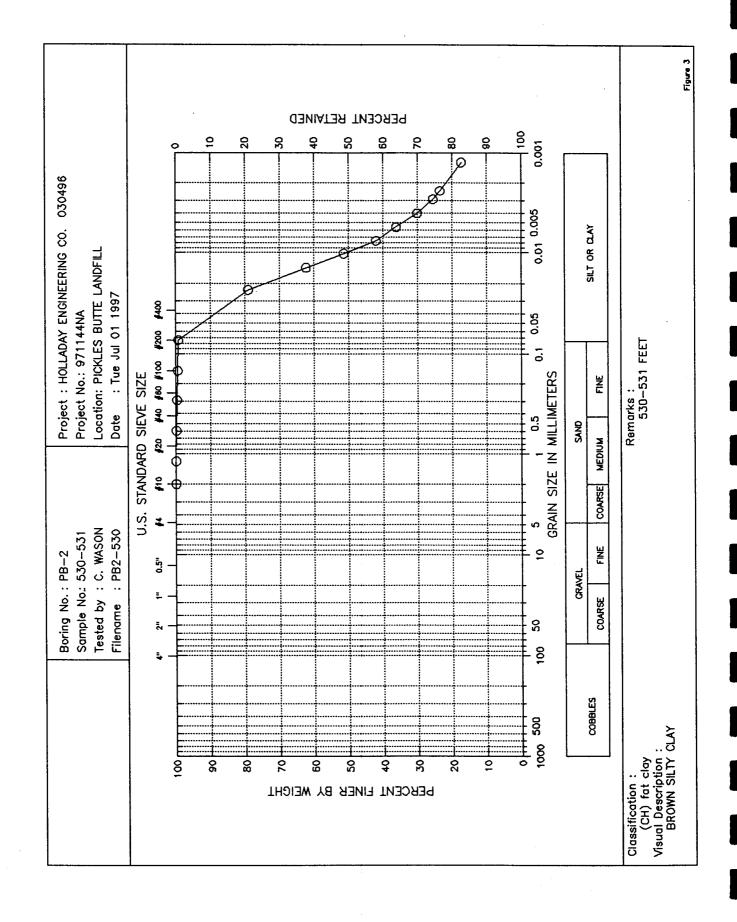
Depth: 530-531 FT Sample Type: CORE

Checked by : C. WASON

Soil Description : BROWN SILTY CLAY/CLAYEY SILT

Remarks :

Liquid Limit: 0


Plastic Limit : 0

Specific Gravity: 2.73

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	351.32	351.32	0.00
WT CONTAINER + DRY SOIL (gm)	292.26	292.26	0.00
WT WATER (gm)	59.06	59.06	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	292.26	292.26	0.00
WATER CONTENT (%)	20.21	20.21	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	20.21	20.21
VOID RATIO	0.79	0.79
WET DENSITY (lb/ft ⁻ 3)	114.51	114.51
DRY DENSITY (lb/ft ⁻ 3)	95.26	95.26
DEGREE OF SATURATION (%)	69.99	69.99

Maximum Shear Stress = 218.99 (lb/in^2) at a Vertical Strain of 2.99 %

Tue Jul 01 12:59:38 1997

Page: 1

GEOTECHNICAL LABORATORY TEST DATA

Project: HOLLADAY ENGINEERING CO. 030496 Project No.: 971144NA Boring No.: PB-2

Sample No.: 530-531

Location : PICKLES BUTTE LANDFILL Soil Description : BROWN SILTY CLAY

Remarks: 530-531 FEET

Depth : 530-531 FEET Test Date : 06/30/97

Test Method : ASTM D4318/422

Filename: PB2-530 Elevation : NA Tested by : C. WASON Checked by : S. CAPPS

HYDROMETER

Hydrometer ID : 1734

Weight of air-dried soil = 70 gm Specific Gravity = 2.73

Hydroscopic Moisture Content : Weight of Wet Soil = 70 gm Weight of Dry Soil = 64.46 gm Moisture Content = 0.0859448

Elapsed Time (min)	Reading	Temperature (deg. C)	Corrected Reading	Particle Size (mm)	Percent Finer (%)	Adjusted Particle Size
2.00	60.00	22.40	51.80	0.023	79	0.023
7.00	49.00	22.40	40.80	0.014	62	0.014
15.00	42.00	22.10	33.67	0.010	51	0.010
30.00	36.00	21.80	27.53	0.008	42	0.008
60.00	32.20	21.80	23.73	0.006	36	0.006
120.00	28.00	22.20	19.71	0.004	30	0.004
240.00	25.00	22.20	16.71	0.003	26	0.003
360.00	23.50	22.60	15.40	0.002	24	0.002
1440.00	20.00	21.40	11.34	0.001	17	0.001

	FINE SIEVE SET				
Sieve	Sieve Openings		Weight	Cumulative	Percent
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)
#10	0.079	2.00	0.00	0.00	100
#16	0.047	1.19	0.00	0.00	100
#30	0.023	0.60	0.05	0.05	100
# 50	0.012	0.30	0.14	0.19	100
#100	0.006	0.15	0.13	0.32	100
#200	0.003	0.07	0.12	0.44	99
Pan			64.02	64.46	0

Total Wet Weight of Sample = 64.46 Total Dry Weight of Sample = 64.46 Moisture Content = 0.0859448

D85 : 0.0326 mm D60 : 0.0132 mm D50 : 0.0099 mm D30 : 0.0040 mm D15 : N/A D10 : N/A

Soil Classification

ASTM Group Symbol : CH ASTM Group Name : fat clay AASHTO Group Symbol: A-7-6(38) AASHTO Group Name : Clayey Soils

ATTERBERG LIMITS

971144NA		C. WASON	P8-2		
<u> </u>		CHECKED BY S. CAPPS	SAMPLE NU 530-531	SAMPLE NUMBER 530-531	
•		DATE Tue Jul 01 1997	FILENAME PB2-530		
LIQUID LIMIT	DETERMINATIO	NS	-		
J	14	33			
28.24	27.4	27.99			
22.17	21.54	21.72			
6.07	5.86	6.27			
10.88	10.86	10.75			
11.29	10.68	10.97			
53.76	54.87	57.16			
32	25	17			
55.39	54.87	54.55			
PLASTIC LIMIT	DETERMINATION	ONS			
98					
26.22					
24.15					
2.07					
15.63					
8.52					
24.30					
		SUMMARY	DF RESULTS		
·	NATUF	RAL WATER CONTENT, W	(%)		
	LIQUI) LIMIT, LL		55.0	
	PLAST	TIC LIMIT, PL		24.3	
•	PLAST	TICITY INDEX, PI		30.7	
	7	<u> </u>			
	*LI =	(W - PL)/PI PLASTIC	CITY CHART	, * ',,,,	
	- % [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , 		
	70			'A' LINE	
	60			/-	
				/ :	
]		CH or OH	/ .	
	→ } *	<i>\</i>	/ / .	⊷ HorOH -	
] 30 -		0/	-	
] 🔁 🚁			-	
	7 .L	2 4 4		-	
	.1 "F	1 m or 0.			
	100			90 100 1	
WS, N		LIQUII	D LIMIT, LL	Fig. 3.0	
	J 28.24 22.17 6.07 10.88 11.29 53.76 32 55.39 PLASTIC LIMIT 98 26.22 24.15 2.07 15.63 8.52	J 14 28.24 27.4 22.17 21.54 6.07 5.86 10.88 10.86 11.29 10.68 53.76 54.87 32 25 55.39 54.87 PLASTIC LIMIT DETERMINATION STUDY STATE STA	S. CAPPS DATE Tue Jul 01 1997 LIQUID LIMIT DETERMINATIONS J 14 33 28.24 27.4 27.99 22.17 21.54 21.72 6.07 5.86 6.27 10.88 10.86 10.75 11.29 10.58 10.97 53.76 54.87 57.16 32 25 17 55.39 54.87 54.55 PLASTIC LIMIT DETERMINATIONS 98 26.22 24.15 2.07 15.63 8.52 24.30 SUMMARY NATURAL WATER CONTENT, W. LIQUID LIMIT, LL PLASTIC LIMIT, PL PL	S. CAPPS DATE Tue Jul 01 1997 FILENAME P82-530 LIQUID LIMIT DETERMINATIONS J 14 33 28.24 27.4 27.99 22.17 21.54 21.72 6.07 5.86 6.27 10.88 10.86 10.75 11.29 10.68 10.97 53.76 54.87 57.16 32 25 17 S5.39 54.87 54.55 PLASTIC LIMIT DETERMINATIONS 98 9 26.22 24.15 2.07 15.63 8.52 24.30 SUMMARY DF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL PLASTICTY INDEX, PI LIQUIDITY INDEX, Lf *LI = (W - PL)/PI PLASTICTY CHART 80 70 71 *LI = (W - PL)/PI PLASTICTY CHART 80 70 10 10 10 10 10 10 10 10 1	

Tue Jul 01 12:59:38 1997

Page: 2

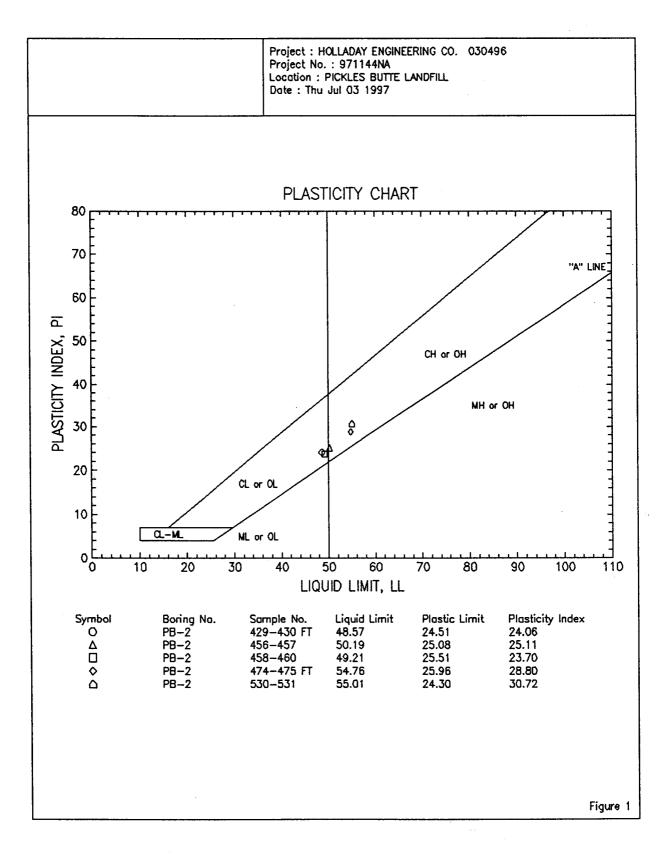
GEOTECHNICAL LABORATORY TEST DATA

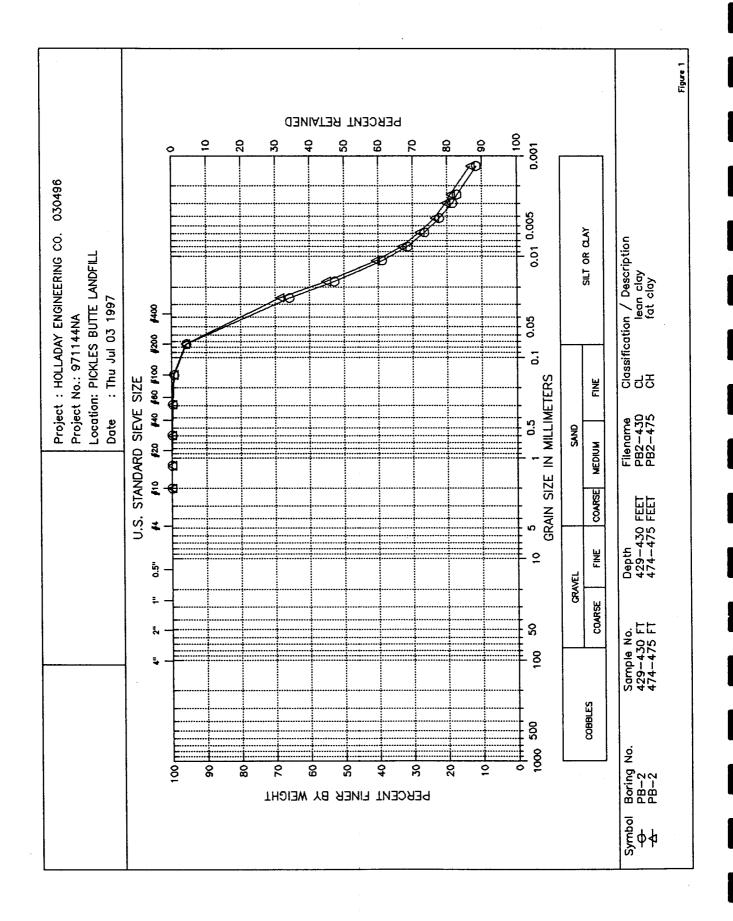
Project: HOLLADAY ENGINEERING CO. 030496
Project No.: 971144NA Depth:
Boring No.: PB-2 Test Da
Sample No.: 530-531 Test Me
Location: PICKLES BUTTE LANDFILL
Soil Description: BROWN SILTY CLAY
Percentage 1 530-531 EEET Remarks: 530-531 FEET

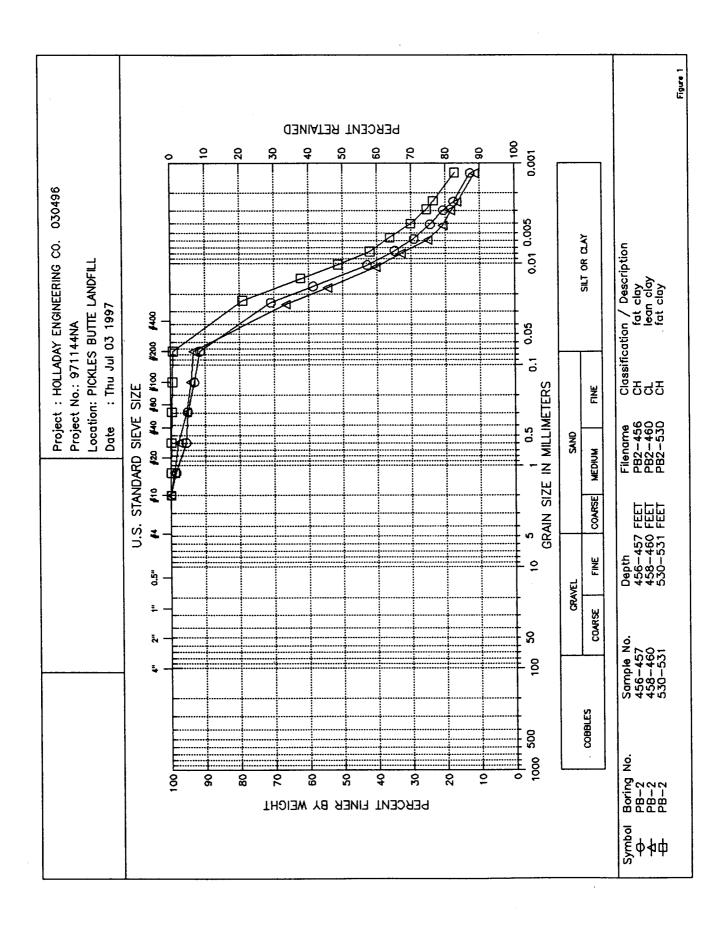
Depth : 530-531 FEET Test Date : 06/30/97

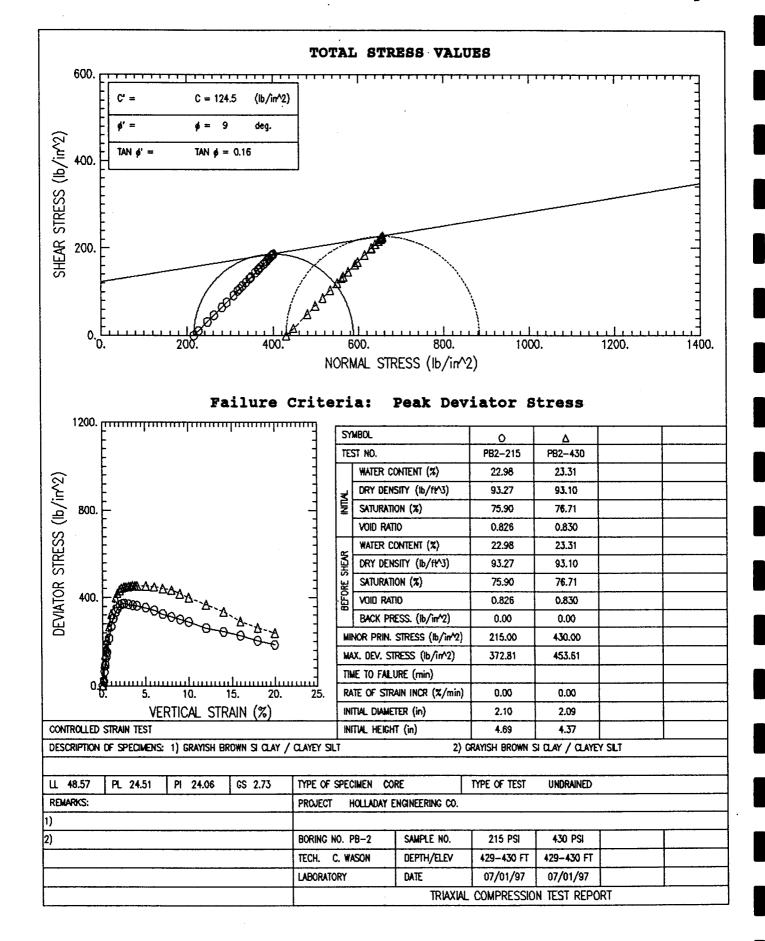
Test Method : ASTM D4318/422

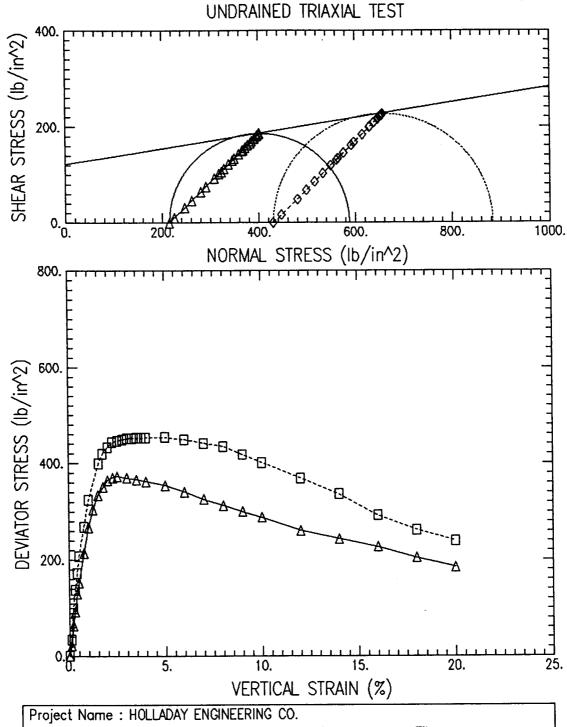
Filename: PB2-530


Elevation : NA Tested by : C. WASON Checked by : S. CAPPS


Moisture Content ID	Mass of Container	Plastic Limit Mass of Container and Moist Soil	Mass of Container and Dried Soil	Moisture Content
	(gm)	(gm)	(gm)	(%)
1) 98	15.63	26.22	24.15	24.30


Plastic Limit = 24.30


	L	iquid Limit			
Moisture Content ID	Mass of Container	Mass of Container and Moist Soil	Mass of Container and Dried Soil	Number of Drops	Moisture Content
	(gm)	(gm)	(gm)		(%)
1) J	10.88	28.24	22.17	32	53.76
2) 14	10.86	27.40	21.54	25	54.87
3) 33	10.75	27.99	21.72	17	57.16


Liquid Limit = 55.01 Plastic Index = 30.72

Project Nam	e : HOLLADAY EN	IGINEERING CO.						
Boring No:	Sample No	Depth	Test No	Filename				
PB-2	215 PSI	429-430 FT	PB2-215	PB2-215.UU				
PB-2	430 PSI	429-430 FT	PB2-430	PB2-430.UU				
Fai	Failure Criteria: Peak Deviator Stress							

Thu Jul 03 14:40:36 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Boring No. : PB-2

Sample No.: 215 PSI

Test No.: PB2-215

Test Date : 07/01/97 Depth: 429-430 FT

Elevation:

Sample Type : CORE Soil Description: GRAYISH BROWN SI CLAY / CLAYEY SILT

Height: 4.685 (in) Area: 3.47 (in²) Volume: 16.25 (in'3) Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Piston Weight: 0.00 (gm)

Area Correction: Parabolic

Tested by : C. WASON

Checked by : C. CAPPS

VERTICAL TOTAL **EFFECTIVE** CHANGE STRAIN CORR. PORE DEV. CORR. DEV. DEV. VERTICAL **VERTICAL** IN LENGTH **AREA PRESSURE** LOAD LOAD **STRESS STRESS** STRESS (in) (%) (in²) (lb/in²) (lb) (lb) (lb/in^2) (lb/in^2) (lb/in^2) 1) 0,000 0.00 3.47 0.00 0.00 0.00 0.00 215.00 215.00 2) 0.005 75.08 75.08 0.11 3.47 0.00 21.61 236.61 236.61 3) 0.009 0.19 3.48 0.00 219.45 219.45 63.08 278.08 278.08 4) 0.014 308.12 0.30 3.49 0.00 324.56 324.56 93.12 308.12 5) 0.019 0.41 0.00 129.67 344.67 3.49 452.76 452.76 344.67 6) 0.023 0.49 3.50 0.00 532.46 532.46 152.28 367.28 367.28 7) 0.035 0.75 3.51 0.00 751.91 751.91 214.11 429.11 429.11 0.047 944.79 944.79 267.88 8) 1.00 3.53 0.00 482.88 482.88 519.65 91 0.058 1.24 3.54 0.00 1078.77 1078.77 304.65 519.65 0.070 10) 1.49 3.56 0.00 1188.50 1188.50 334.17 549.17 549.17 0.082 3.57 0.00 1254.33 1254.33 351.14 566.14 566.14 11) 1.75 0.094 12) 2.01 3.59 0.00 1308.62 1308.62 364.72 579.72 579.72 1334.03 0.106 370.16 13) 0.00 1334.03 585.16 585.16 2.26 3.60 14) 0.117 2.50 3.62 0.00 1349.04 1349.04 372.81 587.81 587.81 15) 0.141 3.01 3.65 0.00 1349.04 1349.04 369.48 584.48 584.48 16) 0.164 3.50 3.68 0.00 1347.89 1347.89 365.99 580.99 580.99 17) 0.187 3.99 3.72 0.00 1346.73 1346.73 362.50 577.50 577.50 0.234 4.99 0.00 1340.96 1340.96 354.48 569.48 569.48 18) 3.78 19) 0.281 6.00 3.85 0.00 1313.24 1313.24 340.82 555.82 555.82 20) 0.328 7.00 3.93 0.00 1277.43 1277.43 325.37 540.37 540.37 21) 0.375 8.00 4.00 0.00 1253.18 1253.18 313.15 528.15 528.15 22) 0.422 9.01 4.08 0.00 300.60 515.60 1226.61 1226.61 515.60 23) 0.469 10.01 4.16 0.00 1200.05 1200.05 288.30 503.30 503.30 260.86 24) 0.562 12.00 4.33 0.00 1130.75 1130.75 475.86 475.86 25) 0.656 14.00 4.52 0.00 1103.03 1103.03 243.83 458.83 458.83 226.85 441.85 0.750 16.01 0.00 1073.00 1073.00 441.85 26) 4.73 27) 0.843 17,99 4.95 0.00 1011.78 1011.78 204.25 419.25 419.25 28) 0.937 20,00 0.00 963.27 963.27 185.17 400.17 400.17 5.20

Thu Jul 03 14:40:36 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-215

Boring No. : PB-2

Test Date : 07/01/97

Sample No. : 215 PSI

Depth: 429-430 FT

Tested by : C. WASON Checked by : C. CAPPS

Sample Type : CORE

Elevation:

Soil Description : GRAYISH BROWN SI CLAY / CLAYEY SILT

Remarks :

Liquid Limit: 48.57

Plastic Limit: 24.51

Specific Gravity: 2.73

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	489.20	489.20	0.00
WT CONTAINER + DRY SOIL (gm)	397.80	397.80	0.00
WT WATER (gm)	91.40	91.40	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	397.80	397.80	0.00
WATER CONTENT (%)	22.98	22.98	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	22.98	22.98
VOID RATIO	0.83	0.83
WET DENSITY (lb/ft^3)	114.70	114.70
DRY DENSITY (lb/ft'3)	93.27	93.27
DEGREE OF SATURATION (%)	75.90	75.9 0

Maximum Shear Stress = 186.40 (lb/in^2) at a Vertical Strain of 2.50 %

Thu Jul 03 14:38:41 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Project No.: 971144NA

Test No. : PB2-430 Test Date : 07/01/97

Boring No. : PB-2 Sample No.: 430 PSI

Tested by : C. WASON Depth: 429-430 FT Checked by : C. CAPPS

Sample Type : CORE Elevation: Soil Description : GRAYISH BROWN SI CLAY / CLAYEY SILT

Remarks :

Height: 4.370 (in) Area : 3.44 (in²)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Volume : 15.04 (in³)

Piston Weight: 0.00 (gm) Area Correction : Parabolic

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in^2)	(lb/in ²)	(lb)	(lb)	(lb/in^2)	(lb/in^2)	(lb/in^2)
1)	0.000	0.00	3.44	0.00	0.00	0.00	0.00	430.00	430.00
2)	0.004	0.09	3.45	0.00	114.35	114.35	33.17	463.17	463.17
3)	0.009	0.21	3.45	0.00	343.04	343.04	99.32	529.32	529.32
4)	0.013	0.30	3.46	0.00	475.86	475.86	137.57	567.57	567.57
5)	0.017	0.39	3.46	0.00	597.14	597.14	172.36	602.36	602.36
6)	0.022	0.50	3.47	0.00	718.41	718.41	206.97	636.97	636.97
7)	0.033	0.76	3.49	0.00	937.86	937.86	269.05	699.05	699.05
8)	0.044	1.01	3.50	0.00	1135.37	1135.37	324.32	754.32	754.32
9)	0.066	1.51	3.53	0.00	1410.26	1410.26	399.41	829.41	829.41
10)	0.076	1.74	3.54	0.00	1485.33	1485.33	419.02	849.02	849.02
11)	0.087	1.99	3.56	0.00	1540.77	1540.77	432.79	862.79	862.79
12)	0.097	2.22	3.57	0.00	1582.35	1582.35	442.71	872.71	872.71
13)	0.109	2.49	3.59	0.00	1603.14	1603.14	446.40	876.40	876.40
14)	0.120	2.75	3.61	0.00	1620.47	1620.47	449.25	879.25	879.25
15)	0.131	3.00	3.62	0.00	1633.17	1633.17	450.78	880.78	880.78
16)	0.142	3.25	3.64	0.00	1644.72	1644.72	451.96	881.96	881.96
17)	0.153	3.50	3.66	0.00	1653.96	1653.96	452.48	882.48	882.48
18)	0.164	3.75	3.67	0.00	1662.05	1662.05	452.67	882.67	882.67
19)	0.175	4.00	3.69	0.00	1670.13	1670.13	452.84	882.84	882.84
20)	0.219	5.01	3.76	0.00	1703.63	1703.63	453.61	883.61	883.61
21)	0.262	6.00	3.82	0.00	1716.33	1716.33	448.82	878.82	878.82
22)	0.306	7.00	3.90	0.00	1719.80	1719.80	441.34	871.34	871.34
23)	0.350	8.01	3.97	0.00	1725.57	1725.57	434.41	864.41	864.41
24)	0.393	8.99	4.05	0.00	1689.77	1689.77	417.34	847.34	847.34
25)	0.437	10.00	4.13	0.00	1657.43	1657.43	401.27	831.27	831.27
26)	0.524	11.99	4.30	0.00	1585.82	1585.82	368.65	798.65	798.65
27)	0.612	14.00	4.49	0.00	1509.59	1509.59	336.21	766.21	766.21
28)	0.699	16.00	4.69	0.00	1372.14	1372.14	292.37	722.37	722.37
29)	0.787	18.01	4.92	0.00	1291.29	1291.29	262.55	692.55	692.55
30)	0.874	20.00	5.16	0.00	1238.16	1238.16	239.81	669.81	669.81

Thu Jul 03 14:38:41 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : HOLLADAY ENGINEERING CO. Location : PICKLES BUTTE LANDFILL

Test No. : PB2-430

Project No.: 971144NA

Boring No. : PB-2

Test Date : 07/01/97 Depth: 429-430 FT

Tested by : C. WASON

Sample No. : 430 PSI Sample Type : CORE

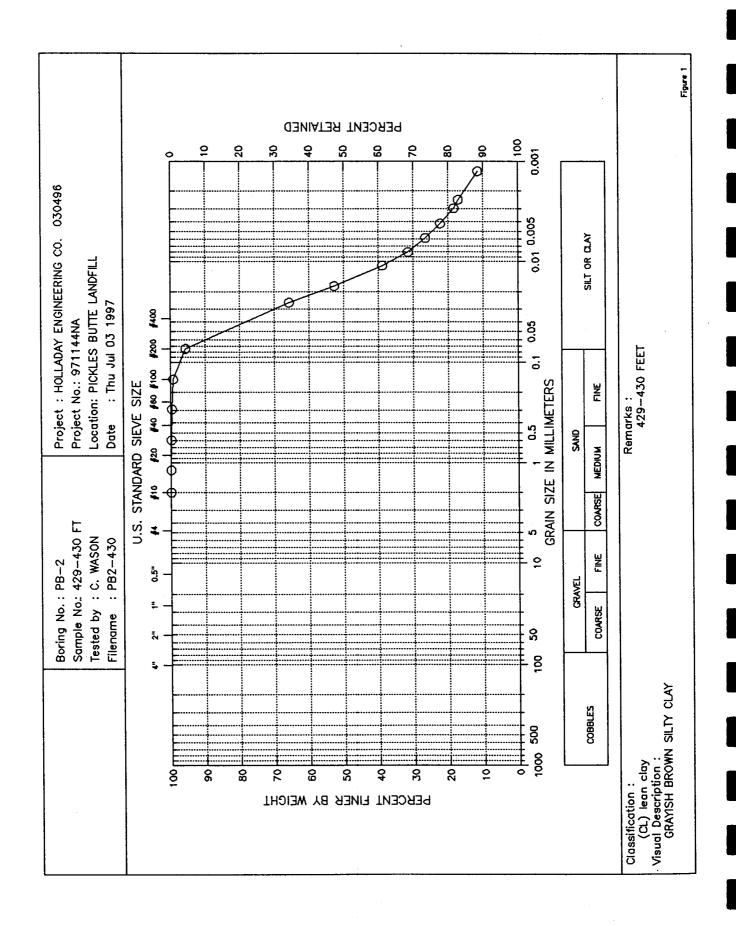
Elevation:

Checked by : C. CAPPS

Soil Description : GRAYISH BROWN SI CLAY / CLAYEY SILT

Remarks :

Liquid Limit: 48.57


Plastic Limit: 24.51

Specific Gravity: 2.73

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	453.30	453.30	0.00
WT CONTAINER + DRY SOIL (gm)	367.60	367.60	0.00
WT WATER (gm)	85.70	85.70	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	367.60	367.60	0.00
WATER CONTENT (%)	23.31	23.31	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	23.31	23.31
VOID RATIO	0.83	0.83
WET DENSITY (lb/ft ² 3)	114.81	114.81
DRY DENSITY (lb/ft-3)	93.10	93.10
DEGREE OF SATURATION (%)	76.71	76.71

Maximum Shear Stress = 226.81 (lb/in²) at a Vertical Strain of 5.01 %

Thu Jul 03 14:15:56 1997

Page: 1

GEOTECHNICAL LABORATORY TEST DATA

Project: HOLLADAY ENGINEERING CO. 030496

Project No.: 971144NA

Depth : 429-430 FEET Boring No. : PB-2 Test Date : 07/02/97

Sample No.: 429-430 FT

Test Method : ASTM D4318/422

Tested by : C. WASON Checked by : S. CAPPS

Filename: PB2-430

Elevation: NA

Location : PICKLES BUTTE LANDFILL

Soil Description : GRAYISH BROWN SILTY CLAY

Remarks: 429-430 FEET

HYDROMETER

Hydrometer ID: 1734

Weight of air-dried soil = 70 gm Specific Gravity = 2.73

Hydroscopic Moisture Content:

Weight of Wet Soil = 70 gm Weight of Dry Soil = 64.59 gm

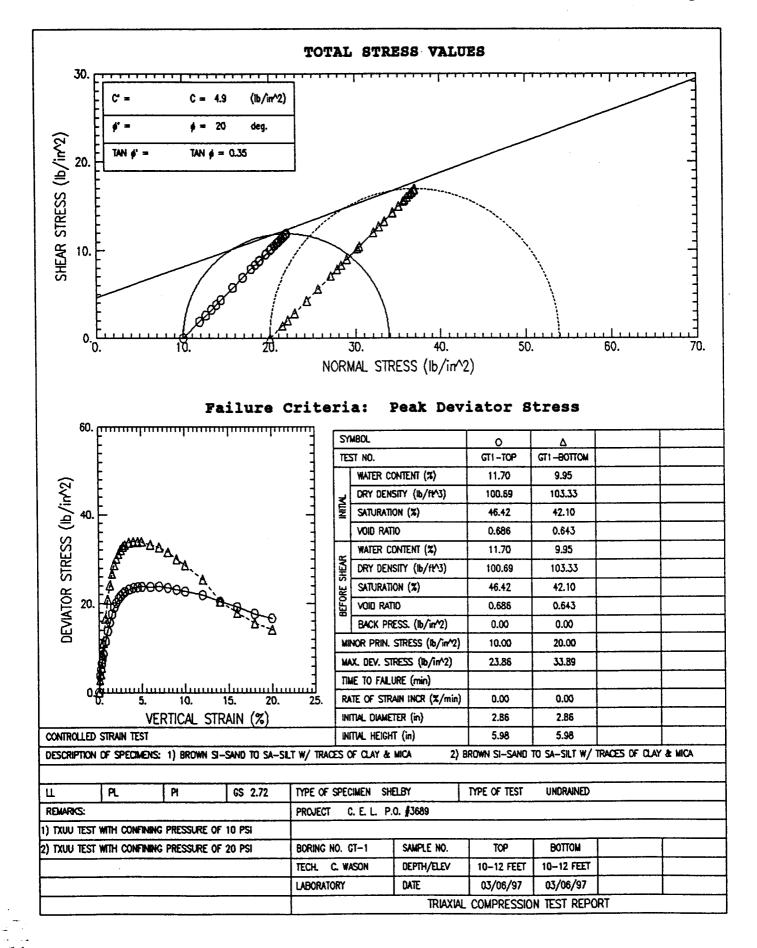
Moisture Content = 0.0837591

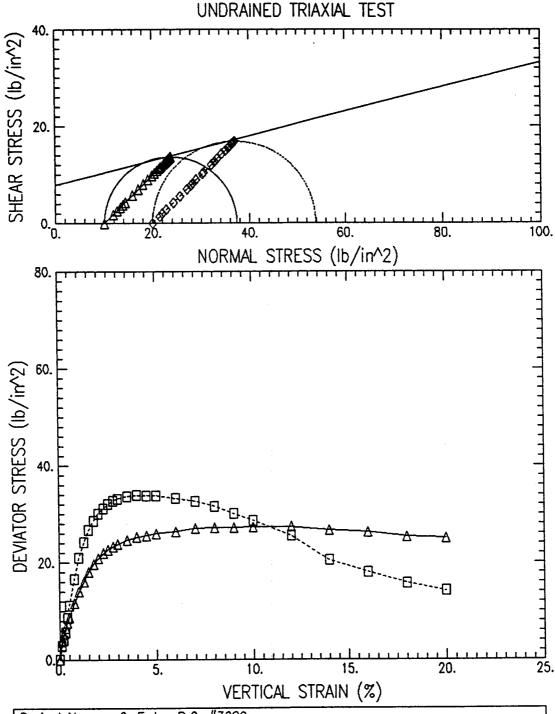
Elapsed Time (min)	Reading	Temperature (deg. C)	Corrected Reading	Particle Size (mm)	Percent Finer (%)	Adjusted Particle Size
2.00	51.30	22.50	43.15	0.026	66	0.026
5.00	42.80	22.40	34.60	0.018	53	0.018
15.00	33.80	22.30	25.56	0.011	39	0.011
30.00	29.00	22.10	20.67	0.008	32	0.008
60.00	25.80	22.00	17.42	0.006	27	0.006
120.00	23.00	22.00	14.62	0.004	22	0.004
245.00	20.20	22.50	12.05	0.003	18	0.003
362.00	19.20	22.90	11.23	0.002	17	0.002
1440.00	16.00	21.90	7.57	0.001	12	0.001

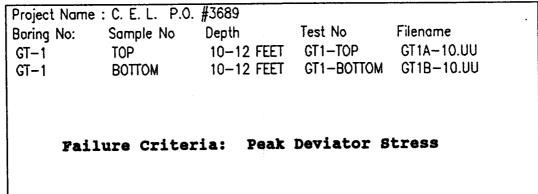
			FINE SIEVE SET		
Sieve	Sieve O	penings	Weight	Cumulative	Percent
Mesh	Inches	Millimeters	Retained (gm)	Weight Retained (gm)	Finer (%)
#10	0.079	2.00	0.00	0.00	100
#16	0.047	1.19	0.00	0.00	100
#30	0.023	0.60	0.08	0.08	100
# 50	0.012	0.30	0.09	0.17	100
#100	0.006	0.15	0.24	0.41	99
#200	0.003	0.07	2.33	2.74	96
Pan			61.85	64.59	0

Total Wet Weight of Sample = 70 Total Dry Weight of Sample = 64.59 Moisture Content = 0.0837591

D85 : 0.0506 mm D60 : 0.0218 mm D50 : 0.0161 mm D30 : 0.0073 mm D15 : 0.0019 mm D10 : 0.0011 mm


Soil Classification


ASTM Group Symbol : CL


: lean clay ASTM Group Name AASHTO Group Symbol : A-7-6(28) AASHTO Group Name : Clayey Soils

ATTERBERG LIMITS

CHECKED BY SAMPLE NUMBER PICKED BY SAMPLE NUMBER A29-430 FLEMME PROBLEM	PROJECT HOLLADAY ENGINEERING CO. 030496	PROJECT NU 971144NA	MBER	Tested by C. Wason	BORING NU PB-2	IMBER	
CRAYSH BROWN SILY CLAY						1	
CONTAINER NUMBER 8							
WT. WET SOIL + TARE 27.18 28.5 28.49 WT. DRY SOIL + TARE 22.01 22.69 22.64 WT. WATER 5.17 5.81 5.85 TARE WT. 11.11 10.81 11.13 WT. DRY SOIL 10.9 11.88 11.51 WATER CONTENT, W _N (%) 47.43 48.91 50.83 NUMBER OF BLOWS, N 30 24 17 ONE-POINT LIQUID LIMIT, LL 48.49 48.66 48.51 PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 24.14 TARE WT. 18.22 WT. WT. WATER 18.22 SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LUQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTIC LIMIT, PL 24.5		LIQUID LIMIT	DETERMINATION	is .			
WT. DRY SOIL + TARE 22.01 22.69 22.64 WT. WATER 5.17 5.81 5.85 TARE WT. 11.11 10.81 11.13 WT. DRY SOIL 10.9 11.88 11.51 WATER CONTENT, W _N (%) 47.43 48.91 50.83 NUMBER OF BLOWS, N 30 24 17 ONE-POINT LIQUID LIMIT, LL 48.49 48.66 48.51 PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WT. SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. DRY SOIL + TARE 24.95 WT. WATER 21.4 TARE WT. 16.22 SUMMARY OF RESULTS NATURAL WATER CONTENT (%) 24.51 SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) UQUID LINIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTIC LIMIT DETERMINATIONS	CONTAINER NUMBER	8	F	90			
## WATER 5.17 5.81 5.85 TARE WT. 11.11 10.81 11.13 WT. DRY SOIL 10.9 11.88 11.51 WATER CONTENT, W _N (%) 47.43 48.91 50.83 NUMBER OF BLOWS, N 30 24 17 ONE—POINT LIQUID LIMIT, LL 48.49 48.66 48.51 PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 2.14 TARE WT. 16.22 WT. DRY SOIL 48.49 48.60 WATER CONTENT (%) 24.51 FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI 24.1 LIQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI 24.1 LIQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI 24.1 LIQUID LIMIT, LL 48.6 PLASTICITY CHART 80 **LI = (W - PL)/PI PLASTICITY CHART **LI = (W - PL)/PI PLASTICITY CHART **LI = (W		27.18	28.5	28.49			
TARE WT. WT. DRY SOIL WATER CONTENT, W _N (%) WATER CONTENT, W _N (%) NUMBER OF BLOWS, N 30 24 17 ONE—POINT LIQUID LIMIT, LL PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 21.14 TARE WT. 16.22 WT. DRY SOIL WATER CONTENT (%) WATER CONTENT (%) FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL 48.5 PLASTICITY INDEX, PI LIQUIDITY CHART 80 *LI = (W - PL)/PI PLASTICITY CHART 80	WT. DRY SOIL + TARE	22.01	22.69	22.64			
WT. DRY SOIL 10.9 11.88 11.51 WATER CONTENT, W _N (%) 47.43 48.91 50.83 NUMBER OF BLOWS, N 30 24 17 ONE-POINT LIQUID LIMIT, LL 48.49 48.56 48.51 PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE WT. DRY SOIL + TARE 24.95 WT. WATER TARE WT. 16.22 SUMMARY OF RESULTS WATER CONTENT (%) 24.51 UQUID LIMIT, LL 48.6 PLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) UQUID LIMIT, LL 48.6 PLASTICITY INDEX, PI 24.5 PLASTICITY INDEX, PI 24.1 LIQUID LIMIT, LL 48.6 PLASTICITY CHART *U IQUID LIMIT, LL 48.6	WT. WATER	5.17	5.81	5.85			
WATER CONTENT, W _N (%) NUMBER OF BLOWS, N 30 24 17 ONE-POINT LIQUID LIMIT, LL 48.49 48.66 48.51 PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 16.22 WT. DRY SOIL TARE WT. WATER CONTENT (%) FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI LIQUIDITY INDEX, LIT PLASTICITY CHART PLASTICITY CHART PLASTICITY CHART PLASTICITY CHART	TARE WT.	11.11	10.81	11.13			
NUMBER OF BLOWS, N ONE—POINT LIQUID LIMIT, LL 48.49 48.66 48.51 PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER TARE WT. 16.22 WT. DRY SOIL 8.73 WATER CONTENT (%) FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI LIQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART **LI = (W - PL)/PI PLASTICITY CHART	WT. DRY SOIL	10.9	11.88	11.51			
ONE-POINT LIQUID LIMIT, LL 48.49 48.66 48.51 PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 16.22 WT. DRY SOIL WATER CONTENT (%) FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL PLASTIC LIMIT, PL PLASTIC LIMIT, PL PLASTIC LIMIT, PL PLASTICITY INDEX, PI LIQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART **LI = (W - PL)/PI PLASTICITY CHART **U = (W - PL)/PI PLASTICITY CHART	WATER CONTENT, W _N (%)	47.43	48.91	50.83			
PLASTIC LIMIT DETERMINATIONS CONTAINER NUMBER 10 WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 2.14 TARE WT. 16.22 WT. DRY SOIL 8.73 WATER CONTENT (%) FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) 10 10 WT. DRY SOIL SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) 10 10 11 12 14 15 15 16 17 18 18 18 18 18 19 18 18 18 19 18 18	NUMBER OF BLOWS, N	30	24	17			
CONTAINER NUMBER WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 2.14 TARE WT. 16.22 WT. DRY SOIL WATER CONTENT (%) FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) UQUID LIMIT, LL PLASTICITY INDEX, PI UQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART *CI = (W - PL)/PI PLASTICITY CHART *CI = (W - PL)/PI PLASTICITY CHART *CI = (W - PL)/PI PLASTICITY CHART	ONE-POINT LIQUID LIMIT, LL	48.49	48.66	48.51			
WT. WET SOIL + TARE 27.09 WT. DRY SOIL + TARE 24.95 WT. WATER 2.14 TARE WT. 16.22 WT. DRY SOIL 8.73 WATER CONTENT (%) 24.51 FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) UQUID LIMIT, LL 48.6 PLASTICITY INDEX, PI 24.1 UQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART **U = (W - PL)/PI PLASTICITY CHART **U = (W - PL)/PI PLASTICITY CHART		PLASTIC LIMIT	DETERMINATIO	NS	•		
WT. DRY SOIL + TARE 24.95 WT. WATER 2.14 TARE WT. 16.22 WT. DRY SOIL 8.73 WATER CONTENT (%) 24.51 SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI 24.1 LIQUIDITY INDEX, LI* *LI = (W − PL)/PI PLASTICITY CHART *0	CONTAINER NUMBER	10					
## WT. WATER TARE WT. 16.22 WT. DRY SOIL 8.73 WATER CONTENT (%) FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL PLASTICITY INDEX, PI LIQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART **U = (W - PL)/PI PLASTICITY CHART **O **U = (W - PL)/PI PLASTICITY CHART **O **U = (W - PL)/PI PLASTICITY CHART **O **U = (W - PL)/PI PLASTICITY CHART	WT. WET SOIL + TARE	27.09					
TARE WT. WT. DRY SOIL WATER CONTENT (%) 55.0 FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) LIQUID LIMIT, LL PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI LIQUIDITY INDEX, LI* PLASTICITY CHART PLASTICITY CHART PLASTICITY CHART	WT. DRY SOIL + TARE	24.95				•	
### SOIL 8.73	WT. WATER	2.14					
SUMMARY OF RESULTS PLOW CURVE St.0 FLOW CURVE SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) UQUID LIMIT, LL 48.6 PLASTICITY INDEX, PI UQUIDITY INDEX, LI* PLASTICITY CHART PLASTICITY CHART PLASTICITY CHART	TARE WT.	16.22					
SUMMARY OF RESULTS NATURAL WATER CONTENT, W (%) Liquid Limit, LL PLASTICITY INDEX, PI Liquidity Index, Lif *LI = (W - PL)/PI PLASTICITY CHART 80 PLASTICITY CHART	WT. DRY SOIL	8.73					
NATURAL WATER CONTENT, W (%) UQUID LIMIT, LL 48.6 PLASTICITY INDEX, PI UQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART **CI = (W - PL)/PI PLASTICITY CHART **CI = (W - PL)/PI PLASTICITY CHART	WATER CONTENT (%)	24.51			•		
NATURAL WATER CONTENT, W (%) UQUID LIMIT, LL 48.6 PLASTICITY INDEX, PI UQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART **CI = (W - PL)/PI PLASTICITY CHART **CI = (W - PL)/PI PLASTICITY CHART							
SS.0 SAIDRAL WATER CONTENT, W (%) UQUID LIMIT, LL 48.6 PLASTIC LIMIT, PL 24.5 PLASTICITY INDEX, PI UQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART 80 PLASTICITY CHART	E OW CUDIE			SUMMARY	OF RESULTS		
PLASTIC LIMIT, PL PLASTICITY INDEX, PI 24.5 PLASTICITY INDEX, PI 24.1 LIQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART 80	55.0 FLUW CURVE	 	- NATUF	RAL WATER CONTENT,	W (%)		
PLASTICITY INDEX, PI 24.1 LIQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART 80			LIQUIC	LIMIT, LL		48.6	
53.0 PLASTICITY INDEX, PI 24.1 LIQUIDITY INDEX, LI* *LI = (W - PL)/PI PLASTICITY CHART 80 PLASTICITY CHART	54.0		PLAST	IC LIMIT, PL		24.5	
SS.0 *LI = (W - PL)/PI PLASTICITY CHART 80 THE PLASTICITY CHART			PLAST	ICITY INDEX, PI		24.1	
	53.0		LIQUIC	OTY INDEX, LI*			
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			•11 =	/w _ DI) /DI			
No No No No No No No No			- 1 80 F	, , , , , , , , , , , , , , , , , , , 			
	₹ 51.0 		- 70 -		1	uni	
			_ 60		/		
≦ 50.0 F	H 50.0 - \					/ :	
	🕏		₩		CR & OH		
49.0 49.0 bit or oh	49.0		_ ≥ **		<i>Y</i> /	H sr OH -	
49.0 - CH OF OH	""		ୢୗଞ୍ଜୁ xo⊦			4	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Z 20		1	1	
48.0	148.0		J .,Ł	2 4 0			
10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			1 }	a-Tura			
47.0 10 25 100 0 10 20 30 40 50 50 70 80 90 100	47.0 25					0 90 100 110	
NUMBER OF BLOWS, N LIQUID LIMIT, LL Fig.	NUMBER OF BLOV	WS, N		LIQU	JID LIMIT, LL	Fig. 1.0	

Wed Mar 19 16:49:15 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Location : PICKLES BUTTE L/F, IDAHO

Project : C. E. L. P.O. #3689

Project No.: 941138NA

Boring No. : GT-1

Sample Type : SHELBY

Sample No. : TOP

Soil Description : BROWN SI-SAND TO SA-SILT W/ TRACES OF CLAY & MICA

Elevation: NA

Test No. : GT1-TOP Test Date : 03/06/97

Depth: 10-12 FEET

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 10 PSI

Height: 5.984 (in) Area : 6.42 (in⁻2) Volume: 38.44 (in 3)

Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb) Piston Weight: 0.00 (gm)

Filter Correction: 0.00 (lb/in^2) Membrane Correction: 0.00 (lb/in)

Tested by : C. WASON

Checked by : C. CAPPS

Area Correction : None

		VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
ı	N LENGT	Ή	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in ²)	(lb/in ²)	(lb/in^2)
1)	0.000	0.00	6.42	0.00	0.00	0.00	0.00	10.00	10.00
2)	0.006	0.10	6.42	0.00	24.13	24.13	3.76	13.76	13.76
3)	0.012	0.20	6.42	0.00	33.32	33.32	5.19	15,19	15.19
4)	0.018	0.30	6.42	0.00	41.94	41.94	6.53	16.53	16.53
5)	0.024	0.40	6.42	0.00	49.41	49.41	7.69	17.69	17.69
6)	0.030	0.50	6.42	0.00	56.30	56.30	8.76	18.76	18.76
7)	0.045	0.75	6.42	0.00	74.69	74.69	11.63	21.63	21.63
8)	0.060	1.00	6.42	0.00	90.20	90.20	14.04	24.04	24.04
9)	0.075	1.25	6.42	0.00	103.41	103.41	16.10	26.10	26.10
10)	0.090	1.50	6.42	0.00	116.05	116.05	18.06	28.06	28.06
11)	0.105	1.75	6.42	0.00	126.39	126.39	19.67	29.67	29.67
12)	0.120	2.01	6.42	0.00	133.86	133.86	20.84	30.84	30.84
13)	0.135	2.26	6.42	0.00	140.75	140.75	21.91	31.91	31.91
14)	0.150	2.51	6.42	0.00	145.35	145.35	22.63	32.63	32.63
15)	0.165	2.76	6.42	0.00	149.37	149.37	23.25	33.25	33.25
16)	0.180	3.01	6.42	0.00	152.82	152.82	23.79	33.79	33.79
17)	0.209	3.49	6.42	0.00	157.99	157.99	24.59	34.59	34.59
18)	0.239	3.99	6.42	0.00	162.01	162.01	25.22	35.22	35.22
19)	0.269	4.50	6.42	0.00	164.31	164.31	25.58	35.58	35.58
20)	0.299	5.00	6.42	0.00	166.61	166.61	25.93	35.93	35.93
21)	0.359	6.00	6.42	0.00	169.48	169.48	26.38	36.38	36.38
22)	0.419	7.00	6.42	0.00	173.50	173.50	27.01	37.01	37.01
23)	0.479	8.00	6.42	0.00	174.65	174.65	27.19	37.19	37.19
24)	0.539	9.01	6.42	0.00	174.65	174.65	27.19	37.19	37.19
25)	0.598	9.99	6.42	0.00	175.22	175.22	27.28	37.28	37.28
26)	0.718	12.00	6.42	0.00	175.80	175.80	27.37	37.37	37.37
27)	0.838	14.00	6.42	0.00	171.20	171.20	26.65	36.65	36.65
28)	0.957	15.99	6.42	0.00	168.33	168.33	26.20	36.20	36.20
29)	1.077	18.00	6.42	0.00	162.58	162.58	25.31	35.31	35.31
30)	1.197	20.00	6.42	0.00	160.86	160.86	25.04	35.04	35.04

Wed Mar 19 17:38:48 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F, IDAHO

Project No.: 941138NA

Test No. : GT1-TOP

Boring No. : GT-1

Test Date : 03/06/97

Tested by : C. WASON

Sample No. : TOP

Depth: 10-12 FEET

Checked by : C. CAPPS

Sample Type : SHELBY

Elevation: NA

Soil Description : BROWN SI-SAND TO SA-SILT W/ TRACES OF CLAY & MICA

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 10 PSI

Liquid Limit : 0

Plastic Limit : 0

Specific Gravity: 2.72

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	1134.90	1134.90	0.00
WT CONTAINER + DRY SOIL (gm)	1016.00	1016.00	0.00
WT WATER (gm)	118.90	118.90	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	1016.00	1016.00	0.00
WATER CONTENT (%)	11.70	11.70	0.00

	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	11.70	11.70
VOID RATIO	0.69	0.69
WET DENSITY (lb/ft-3)	112.47	112.47
DRY DENSITY (lb/ft-3)	100.69	100.69
DEGREE OF SATURATION (%)	46.42	46.42

Maximum Shear Stress = 13.68 (lb/in^2) at a Vertical Strain of 12.00 %

Wed Mar 19 16:48:23 1997

Page: 1

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No.: 941138NA

Test No. : GT1-BOTTOM

Boring No. : GT-1 Sample No. : BOTTOM Test Date : 03/06/97 Depth : 10-12 FEET

Tested by : C. WASON Checked by : C. CAPPS

Sample Type : SHELBY

Elevation: NA

Soil Description : BROWN SI-SAND TO SA-SILT W/ TRACES OF CLAY & MICA

Remarks : TXUU TEST WITH CONFINING PRESSURE OF 20 PSI

Height: 5.984 (in) Area: 6.42 (in²) Piston Diameter: 0.000 (in) Piston Friction: 0.00 (lb) Filter Correction: 0.00 (lb/in^2)
Membrane Correction: 0.00 (lb/in)

Volume: 38.44 (in 3) Piston Weight: 0.00 (gm)

Area Correction : Parabolic

	,	VERTICAL						TOTAL	EFFECTIVE
	CHANGE	STRAIN	CORR.	PORE	DEV.	CORR. DEV.	DEV.	VERTICAL	VERTICAL
1	N LENGT	H	AREA	PRESSURE	LOAD	LOAD	STRESS	STRESS	STRESS
	(in)	(%)	(in ²)	(lb/in^2)	(lb)	(lb)	(lb/in^2)	(lb/in ²)	(lb/in ²)
				0.00	0.00	0.00	0.00	20.00	20.00
	0.000	0.00	6.42	0.00	0.00		2.86	22.86	22.86
2)	0.006	0.10	6.43	0.00	18.38	18.38		24.10	24.10
3)	0.012	0.20	6.45	0.00	26.43	26.43	4.10		25.69
4)	0.018	0.30	6.46	0.00	36.77	36.77	5.69	25.69	
5)	0.024	0.40	6.47	0.00	55.15	55.15	8.53	28.53	28.53
6)	0.030	0.50	6.48	0.00	72.39	72.39	11.17	31.17	31.17
7)	0.045	0.75	6.51	0.00	108.01	108.01	16.60	36.60	36.60
8)	0.060	1.00	6.53	0.00	136.73	136.73	20.93	40.93	40.93
9)	0.075	1.25	6.56	0.00	158.56	158.56	24.17	44.17	44.17
10)	0.090	1.50	6.59	0.00	175.80	175.80	26.68	46.68	46.68
11)	0.105	1.75	6.62	0.00	189.59	189.59	28.65	48.65	48.65
12)	0.120	2.01	6.65	0.00	199.93	199.93	30.08	50.08	50.08
13)	0.135	2.26	6.67	0.00	207.97	207.97	31.16	51.16	51.16
14)	0.150	2.51	6.70	0.00	214.86	214.86	32.05	52.05	52.05
15)	0.165	2.76	6.73	0.00	220.61	220.61	32.76	52.76	52.76
16)	0.180	3.01	6.76	0.00	224.06	224.06	33.13	53.13	53.13
17)	0.209	3.49	6.82	0.00	229.80	229.80	33.69	53.69	53.69
18)	0.239	3.99	6.88	0.00	233.25	233.25	33.89	53.89	53.89
19)	0.269	4.50	6.94	0.00	234.97	234.97	33.84	53.84	53.84
20)	0.299	5.00	7.01	0.00	237.27	237.27	33.86	53.86	53.86
21)	0.359	6.00	7.14	0.00	237.27	237.27	33.24	53.24	53.24
22)	0.419	7.00	7.27	0.00	237.27	237.27	32.62	52.62	52.62
23)	0.479	8.00	7.41	0.00	233.82	233.82	31.54	51.54	51.54
24)	0.539	9.01	7.56	0.00	226.93	226.93	30.02	50.02	50.02
25)	0.598	9.99		0.00	220.61	220.61	28.62	48.62	48.62
26)	0.718	12.00		0.00	204.52	204.52	25.47	45.47	45.47
27)	0.838	14.00		0.00	171.20	171.20	20.43	40.43	40.43
28)		15.99		0.00	157.41	157.41	17.97		
29)	1.077	18.00		0.00	143.63		15.65		
30)	1.197	20.00		0.00	136.16		14.13		
JU)	1.17/	20.00	7.04	0.00	150.10	150.10	17.13	9-71 I U	

Wed Mar 19 17:39:34 1997

Page: 2

UNDRAINED TRIAXIAL COMPRESSION TEST

Project : C. E. L. P.O. #3689

Location : PICKLES BUTTE L/F- IDAHO

Project No. : 941138NA

Test No. : GT1-BOTTOM

Boring No. : GT-1

Test Date : 03/06/97

Tested by : C. WASON

Sample No. : BOTTOM

Depth: 10-12 FEET

Checked by : C. CAPPS

Sample Type : SHELBY

Elevation: NA

Soil Description : BROWN SI-SAND TO SA-SILT W/ TRACES OF CLAY & MICA

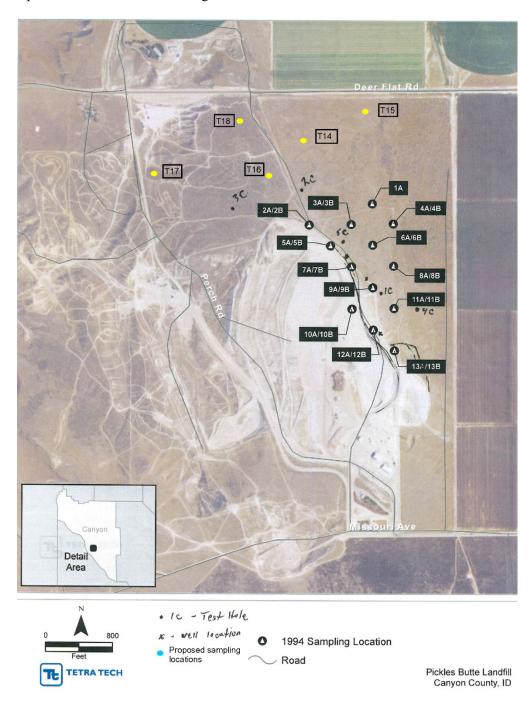
Remarks : TXUU TEST WITH CONFINING PRESSURE OF 20 PSI

Liquid Limit: 0

Plastic Limit : 0

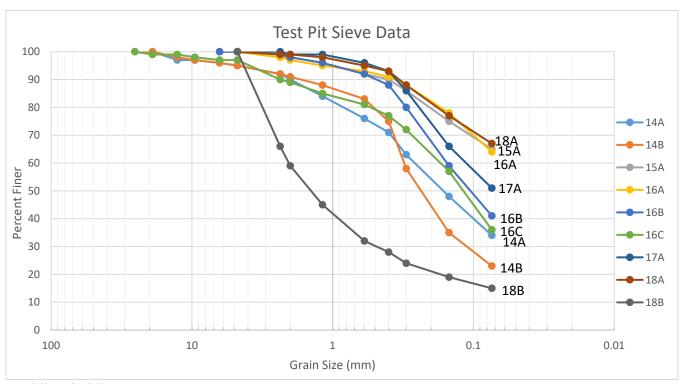
Specific Gravity: 2.72

	WATER CONTENT		
	BEFORE TEST	AFTER TEST	TRIMMINGS
CONTAINER NO.			
WT CONTAINER + WET SOIL (gm)	1146.40	1146.40	0.00
WT CONTAINER + DRY SOIL (gm)	1042.70	1042.70	0.00
WT WATER (gm)	103.70	103.70	0.00
WT CONTAINER (gm)	0.00	0.00	0.00
WT DRY SOIL (gm)	1042.70	1042.70	0.00
WATER CONTENT (%)	9.95	9.95	0.00


	INITIAL	AT CONSOLIDATION
WATER CONTENT (%)	9.95	9.95
VOID RATIO	0.64	0.64
WET DENSITY (lb/ft-3)	113.61	113.61
DRY DENSITY (lb/ft-3)	103.33	103.33
DEGREE OF SATURATION (%)	42.10	42.10

Maximum Shear Stress = 16.95 (lb/in⁻2) at a Vertical Strain of 3.99 %

Sample Results for Pickles Butte Landfill, Canyon County, Idaho


The Pickles Butte Landfill is evaluating the use of a Monolithic Cover rather than the Capillary Barrier Cover approved as part of the original landfill design. Soil samples were collected to analyze soil that could potentially be part of the final landfill cover from the area east of Perch Road, North of the existing landfill, and south of Deer Flat Rd at the sample locations marked on the figure.

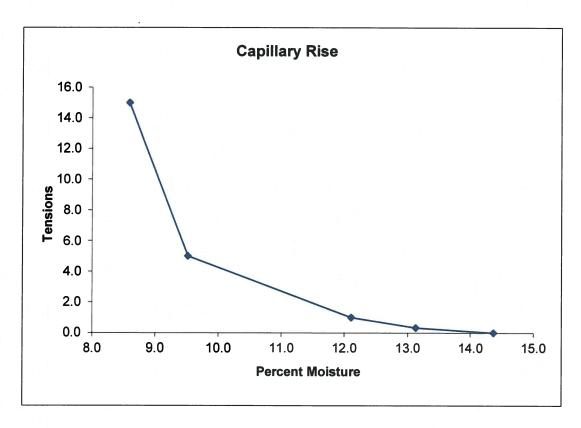
Samples were selected for analysis of capillary rise, permeability, modified proctor compaction, and sieve analysis. Laboratory test were not conducted on all samples.

Based on various test, the best soil for the final cover is ML (silt with low plasticity). Soil sample 15A represents the ML material for permeability. The sample has a permeability of 4.24 E-5 cm/s, and the percent passing a 200 sieve is 65%. This material is present below the topsoil/organic material and varies in thickness between two to six feet across the site. The estimated area for borrow material for the final cover is approximately 70 acres. If the landfill CAP for a 116 area landfill is 3 feet thick that means that the average depth of the borrow material would need to be 4.9 feet to have enough material for the CAP. So there is sufficient material available for the CAP.

Sample 18B was not selected because, although the permeability is low, the compaction test indicates that the material does not compact well or at a sufficient pressure to be used for cover. The differences between samples can be seen well in the sieve data. Samples 18A, 15A, 16A and 17A are all ML samples that exhibit a high percentage of fines (>50%). The other material is not as well suited for the cover. So sieve data, along with field observations can be used to delineate ML material in the field. These results are consistent with the analysis conducted in 2014 that indicates that ML material is in the upper layer below the topsoil, and that when the percent fines is >50% the material is generally classified as ML for this site.

Modeling decision:

- For 3 feet of CAP use the permeability and capillary rise properties for sample T15A.
- For 1 foot of intermediate cover, conservatively assume properties of SM material found below the ML and use the permeability and capillary properties from sample T16B.


2515 East University Drive Phoenix, Arizona 85034 (602) 273-7248 Fax (602) 275-3836 Date: April 28, 2016 Submitted by: Tetra Tech Report to: Keith A. Johnson

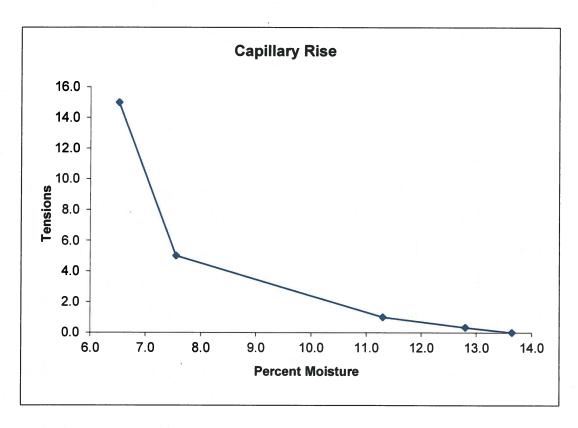
Report #: 6652671

Date Received: April 18, 2016

Lab#: 884

Sender ID: T14B

Moisture	Equivale	nt Pressure	Tension	
%	psi	mmHg	Bars	
14.37	1.5	76	0.0	
13.13	4.9	251	0.33	Field Capacity
12.11	29.4	1520	1.0]
9.52	73.5	3800	5.0	_
8.59	220.5	11400	15.0	Wilting Point


2515 East University Drive Phoenix, Arizona 85034 (602) 273-**7**248 Fax (602) 275-3836 Date: April 28, 2016
Submitted by: Tetra Tech
Report to: Keith A. Johnson

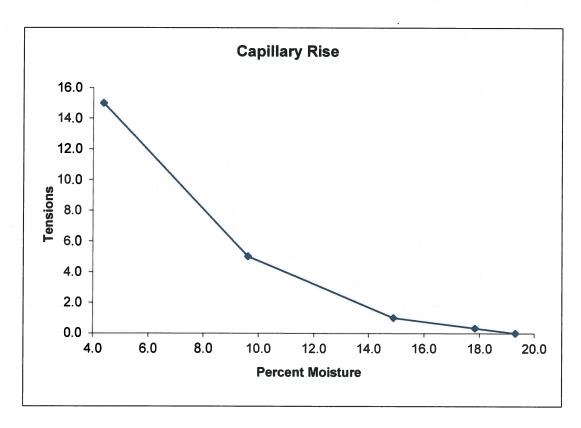
Report #: 6652671

Date Received: April 18, 2016

Lab#: 887

Sender ID: T17A

Moisture	loisture Equivalent		Equivalent Pressure		Tension		
%	psi	mmHg	Bars				
13.64	1.5	76	0.0				
12.80	4.9	251	0.33	Field Capacity			
11.30	29.4	1520	1.0				
7.55	73.5	3800	5.0].			
6.52	220.5	11400	15.0	Wilting Point			


2515 East University Drive Phoenix, Arizona 85034 (602) 273-7248 Fax (602) 275-3836 Date: April 28, 2016
Submitted by: Tetra Tech
Report to: Keith A. Johnson

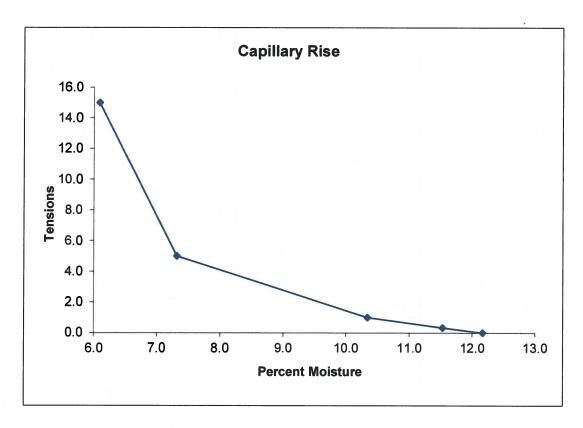
Report #: 6652671

Date Received: April 18, 2016

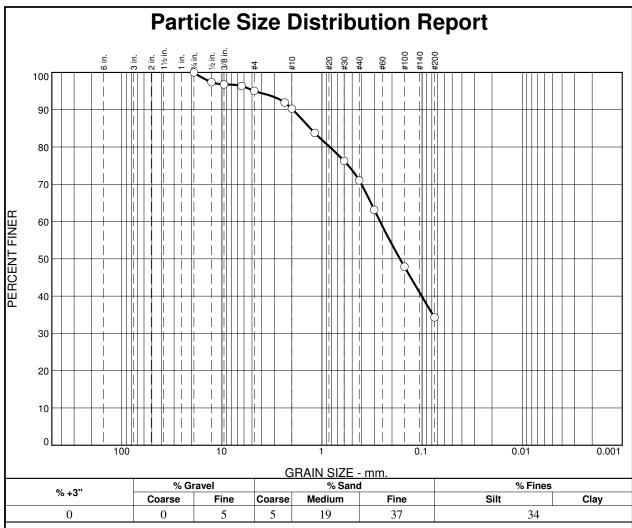
Lab#: 885

Sender ID: T15A

Moisture	Equivale	nt Pressure	Tension	
%	psi	mmHg	Bars	
19.31	1.5	76	0.0	
17.84	4.9	251	0.33	Field Capacity
14.90	29.4	1520	1.0	
9.62	73.5	3800	5.0	
4.37	220.5	11400	15.0	Wilting Point


2515 East University Drive Phoenix, Arizona 85034 (602) 273-7248 Fax (602) 275-3836 Date: April 28, 2016
Submitted by: Tetra Tech
Report to: Keith A. Johnson

Report #: 6652671


Date Received: April 18, 2016

Lab#: 886

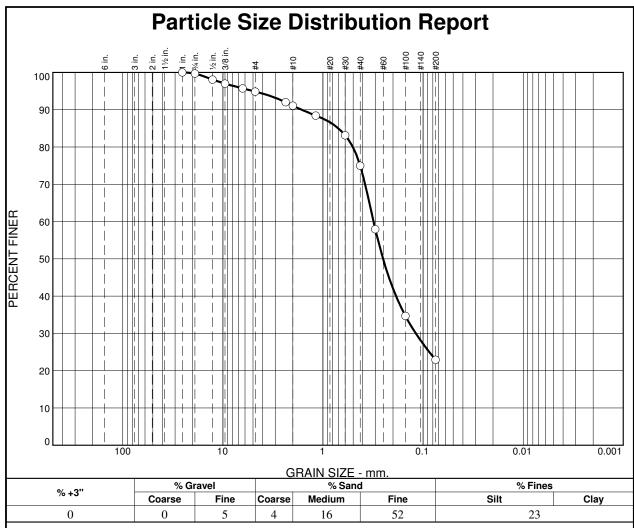
Sender ID: T16B

Moisture		Tension		
%	psi	mmHg	Bars	
12.17	1.5	76	0.0	
11.53	4.9	251	0.33	Field Capacity
10.34	29.4	1520	1.0	
7.32	73.5	3800	5.0	
6.09	220.5	11400	15.0	Wilting Point

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3/4"	100		
1/2"	97		
3/8"	97		
1/4"	96		
#4	95		
#8	92		
#10	90		
#16	84		
#30	76		
#40	71		
#50	63		
#100	48		
#200	34		

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 1.9557 D ₅₀ = 0.1663 D ₁₀ =	<u>Coefficients</u> D ₈₅ = 1.3048 D ₃₀ = C _u =	D ₆₀ = 0.2628 D ₁₅ = C _c =
USCS=	Classification AASHTC)=
	<u>Remarks</u>	

(no specification provided)


Location: T14A Sample Number: 16L0094 **Date:** 4-16-16

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

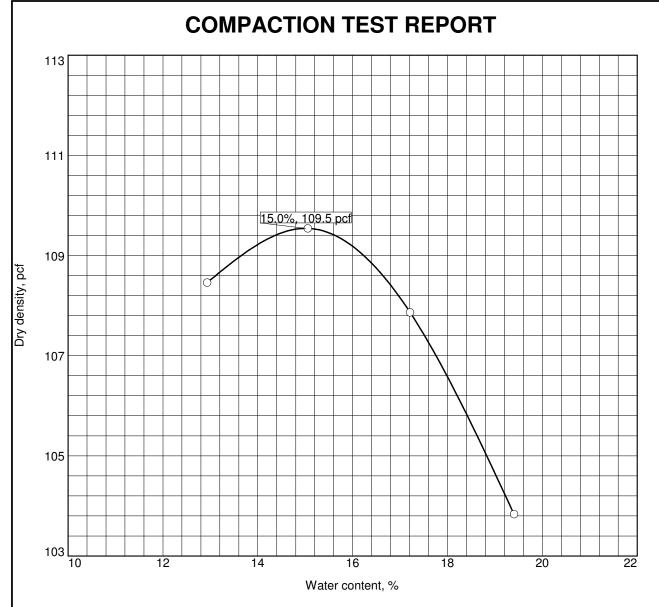
Project: Pickles Butte Landfill

Lab Number 16L0094 Project No: 16042

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100		
3/4"	100		
1/2"	98		
3/8"	97		
1/4"	96		
#4	95		
#8	92		
#10	91		
#16	88		
#30	83		
#40	75		
#50	58		
#100	35		
#200	23		

	Soil Description	
silty sand		
PL= NP	Atterberg Limits	PI= NP
D ₉₀ = 1.6326 D ₅₀ = 0.2508 D ₁₀ =	Coefficients D ₈₅ = 0.7020 D ₃₀ = 0.1185 C _u =	D ₆₀ = 0.3125 D ₁₅ = C _c =
USCS= SM	Classification AASHT	TO= A-2-4(0)
	Remarks	

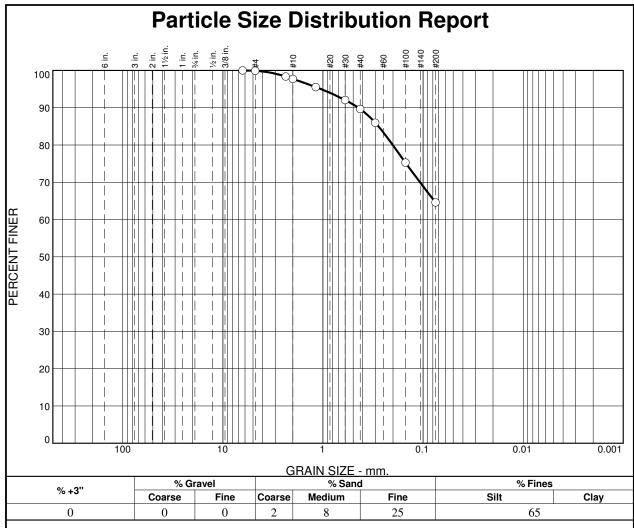
* (no specification provided)


Location: T14B Sample Number: 16L0095 **Date:** 4-16-16

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

Project: Pickles Butte Landfill


Lab Number 16L0095 Project No: 16042

Test specification: ASTM D 1557-00 Method A Modified

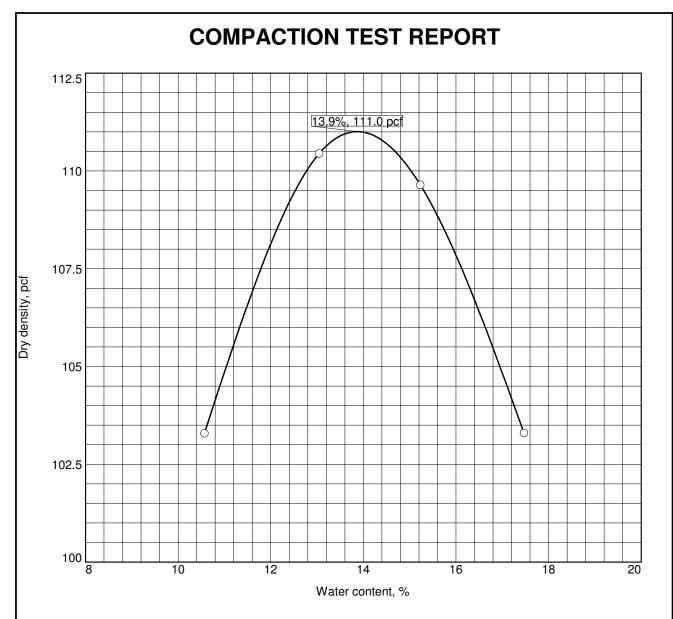
Elev/	Classif	ication	Nat.	Nat. Sp.G.		PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200
	SM	A-2-4(0)			NV	NP	5	23

	TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry densi	ty = 109.5 pcf	silty sand
Optimum moisture :	= 15.0 %	
Project No. 16042	Client: Tetra Tech	Remarks:
Project: Pickles Butte	Landfill	
○ Location: T14B	Sample Number: 16L0095	
	Hoque & Associates, Inc.	
	4325 South 34th Street	
	Phoenix, Arizona 85040	Lab Number 16L0095

	SIEVE	PERCENT	SPEC.*	PASS?
	SIZE	FINER	PERCENT	(X=NO)
ſ	1/4"	100		
	#4	100		
	#8	98		
	#10	98		
	#16	96		
	#30	92		
	#40	90		
	#50	86		
	#100	75		
	#200	65		
٠	* (no specif	fication provid	ed)	

	Soil Description	n
sandy silt	<u></u>	
PL= NP	Atterberg Limit	<u>s</u> PI= NP
D ₉₀ = 0.4430 D ₅₀ = D ₁₀ =	Coefficients D ₈₅ = 0.2793 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS= ML	Classification AASH	TO= A-4(0)
	<u>Remarks</u>	

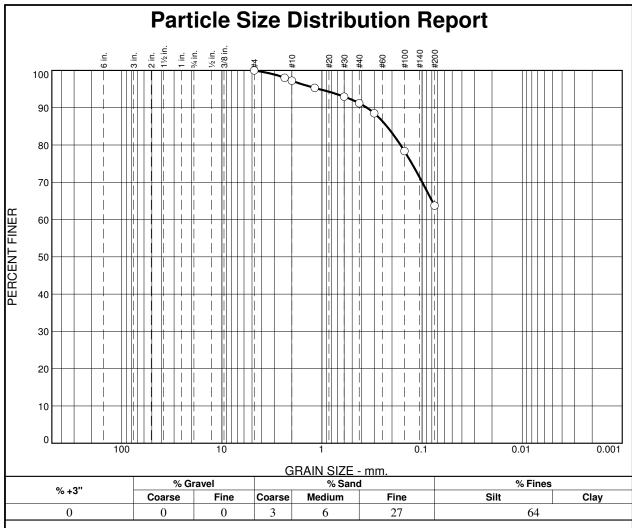
(no specification provided)


Location: T15A **Sample Number:** 16L0096 **Date:** 4-16-16

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

Project: Pickles Butte Landfill


Lab Number 16L0096 Project No: 16042

Test specification: ASTM D 1557-00 Method A Modified

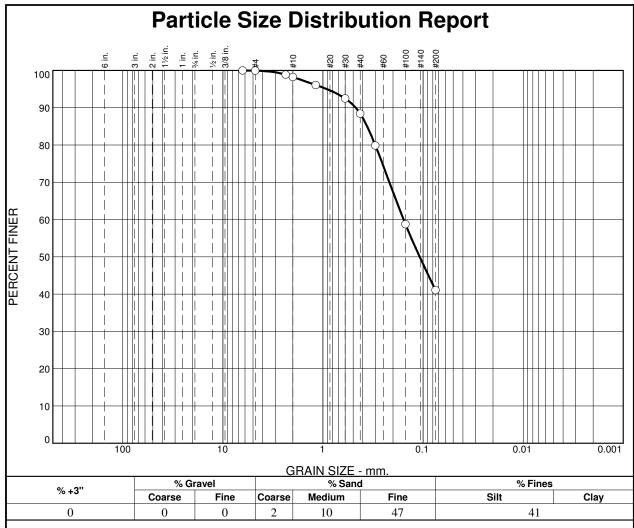
Elev/	Classification		Nat. Sp.G.	Cn C		<u></u>	DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200	
	ML	A-4(0)			NV	NP	0	65	
	IVIL	11-4(0)			111	111		05	

TEST	RESULTS	MATERIAL DESCRIP	TION	
Maximum dry density = 111.0 pcf		sandy silt		
Optimum moisture = 13.9 %				
Project No. 16042 Client: Tet	ra Tech	Remarks:		
Project: Pickles Butte Landfill				
Lagation, T15A Commis Nor	ah an 171 0007			
-	nber: 16L0096			
Hoque & A	ssociates, Inc.			
4325 Sou	th 34th Street			
Phoenix,	Arizona 85040	Lab Number	16L0096	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100		
#8	98		
#10	97		
#16	95		
#30	93		
#40	91		
#50	88		
#100	78		
#200	64		
* (no speci	fication provid	ed)	I

	Soil Description	
PL=	Atterberg Limits	PI=
D ₉₀ = 0.3558 D ₅₀ = D ₁₀ =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{85} = 0.2245 \\ D_{30} = \\ C_u = \end{array}$	D ₆₀ = D ₁₅ = C _c =
USCS=	Classification AASHT	O=
	<u>Remarks</u>	

(no specification provided)


Location: T16A Sample Number: 16L0097 **Date:** 4-16-16

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

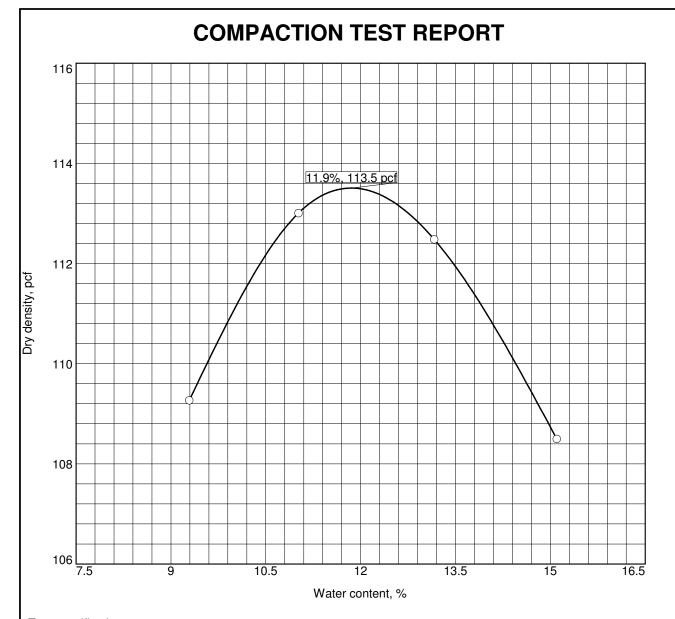
Project: Pickles Butte Landfill

Lab Number 16L0097 Project No: 16042

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1/4"	100		
#4	100		
#8	99		
#10	98		
#16	96		
#30	92		
#40	88		
#50	80		
#100	59		
#200	41		
* (no specif	ication provid	ed)	

silty sand	Soil Description	1
Ž		
PL= NP	Atterberg Limits LL= NV	PI= NP
D ₉₀ = 0.4697 D ₅₀ = 0.1082 D ₁₀ =	Coefficients D ₈₅ = 0.3623 D ₃₀ = C _u =	D ₆₀ = 0.1565 D ₁₅ = C _c =
USCS= SM	Classification AASH	ΓO= A-4(0)
	<u>Remarks</u>	

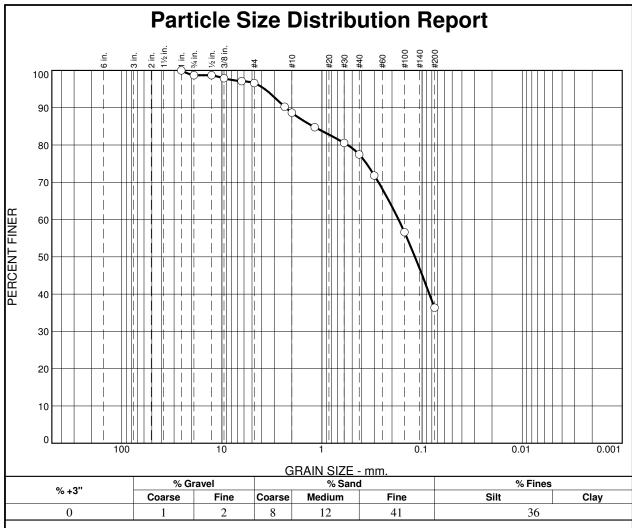
(no specification provided)


Location: T16B Sample Number: 16L0098 **Date:** 4-16-16

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

Project: Pickles Butte Landfill


Lab Number 16L0098 Project No: 16042

Test specification: ASTM D 1557-00 Method A Modified

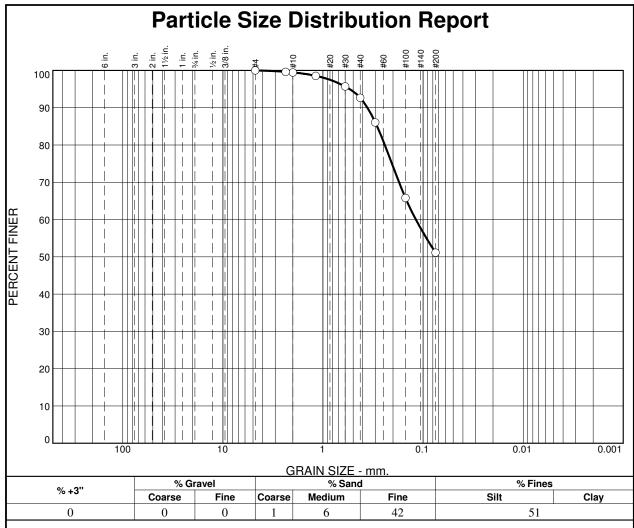
Elev/	Classif	ication	Nat.	Cm C	Sp.G.	C C	C C	cn C	1	PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	#4	No.200				
	SM	A-4(0)			NV	NP	0	41				

	TEST RESULTS	MATERIAL DESCRIPTION	ON	
Maximum dry densi	ty = 113.5 pcf	silty sand		
Optimum moisture =	= 11.9 %			
Project No. 16042	Client: Tetra Tech	Remarks:		
Project: Pickles Butte Landfill				
○ Location: T16B	Sample Number: 16L0098			
	Hoque & Associates, Inc.			
	4325 South 34th Street			
	Phoenix, Arizona 85040	Lab Number 1	6L0098	

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1"	100		
3/4"	99		
1/2"	99		
3/8"	98		
1/4"	97		
#4	97		
#8	90		
#10	89		
#16	85		
#30	81		
#40	77		
#50	72		
#100	57		
#200	36		

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 2.2967 D ₅₀ = 0.1180 D ₁₀ =	Coefficients D ₈₅ = 1.2234 D ₃₀ = C _u =	D ₆₀ = 0.1719 D ₁₅ = C _c =
USCS= Classification AASHTO=		
	<u>Remarks</u>	

(no specification provided)


Location: T16C **Sample Number:** 16L0099 **Date:** 4-16-16

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

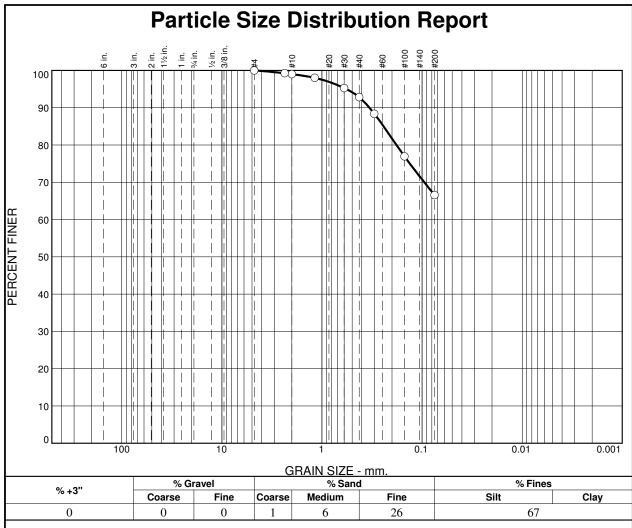
Project: Pickles Butte Landfill

Lab Number 16L0099 Project No: 16042

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100		
#8	100		
#10	99		
#16	99		
#30	96		
#40	93		
#50	86		
#100	66		
#200	51		
* ,	ification provid		

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₉₀ = 0.3599 D ₅₀ = D ₁₀ =	$\begin{array}{c} \underline{\text{Coefficients}} \\ D_{85} = 0.2880 \\ D_{30} = \\ C_{\text{U}} = \end{array}$	D ₆₀ = 0.1182 D ₁₅ = C _c =
<u>Classification</u> USCS= AASHTO=		
	<u>Remarks</u>	

(no specification provided)


Location: T17A Sample Number: 16L0100 **Date:** 4-16-16

Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

Project: Pickles Butte Landfill

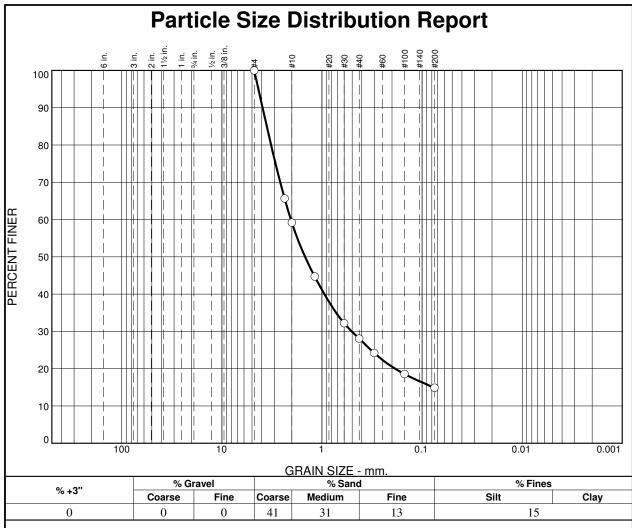
Lab Number 16L0100 Project No: 16042

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100		
#8	99		
#10	99		
#16	98		
#30	95		
#40	93		
#50	88		
#100	77		
#200	67		
* .	oification provid		

	Soil Description	
	Soil Description	
PL=	Atterberg Limits	PI=
D ₉₀ = 0.3360 D ₅₀ = D ₁₀ =	<u>Coefficients</u> D ₈₅ = 0.2425 D ₃₀ = C _u =	D ₆₀ = D ₁₅ = C _c =
USCS=	Classification AASHT	O=
	Remarks	

(no specification provided)

Location: T18A Sample Number: 16L0101 **Date:** 4-16-16


Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

Project: Pickles Butte Landfill

Lab Number 16L0101 Project No: 16042

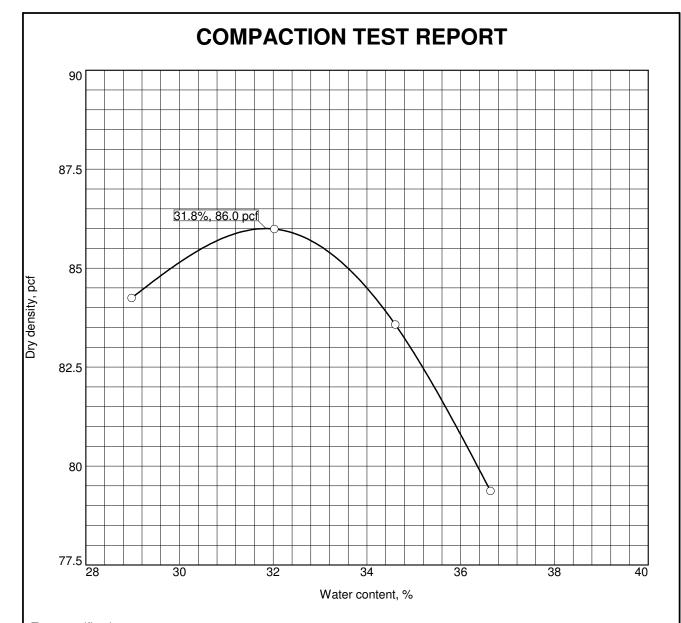
Tested By: AJ Checked By: TT

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
#4	100		
#8	66		
#10	59		
#16	45		
#30	32		
#40	28		
#50	24		
#100	19		
#200	15		
* (no specif	ication provid	ed)	

	•	
silty sand	Soil Description	l
PL= 42	Atterberg Limits	PI= 22
D ₉₀ = 3.9244 D ₅₀ = 1.4768 D ₁₀ =	Coefficients D ₈₅ = 3.5604 D ₃₀ = 0.5046 C _u =	D ₆₀ = 2.0461 D ₁₅ = 0.0768 C _c =
USCS= SM	Classification AASHT	TO= A-2-7(0)
	<u>Remarks</u>	

(no specification provided)

Location: T18B **Sample Number:** 16L0102 **Date:** 4-16-16


Hoque & Associates, Inc. 4325 South 34th Street Phoenix, Arizona 85040

Client: Tetra Tech

Project: Pickles Butte Landfill

Lab Number 16L0102 Project No: 16042

Tested By: AJ Checked By: TT

Test specification: ASTM D 1557-00 Method A Modified

Elev/	Classif	ication	Nat.	Sp.G.	Cm C	C= C	Cn C	Sm C	Sn C	en C	Nat.	Sn. C	Sn. C	Cn C	Cm C	C C	Cm C	C= C	C C	Sn C	Cm C	Cm C	Cm C	Cm C	C C		PI	% >	% <
Depth	USCS	AASHTO	Moist.			PI	#4	No.200																					
	SM	A-2-7(0)			64	22	0	15																					

	TEST RESULTS	MATERIAL DESCRIPTION			
Maximum dry densi	ity = 86.0 pcf	silty sand			
Optimum moisture :	= 31.8 %				
Project No. 16042	Client: Tetra Tech	Remarks:			
Project: Pickles Butte	Landfill				
○ Location: T18B	Sample Number: 16L0102				
	Hoque & Associates, Inc. 4325 South 34th Street				
	Phoenix, Arizona 85040	Lab Number 16L0102			

Tested By: AJ Checked By: TT

Submitted by:

4325 South 34th Street Phoenix, Arizona 85040 Tel: 480-921-1368

Fax: 480-921-0194

Client: Tetra Tech BAS HA Project No.: 16042 Project: Pickles Butte Sanitary Landfill HA Lab No.: 16L0095 Location: Nampa, ID Date Received: 4/16/16 Test Type: Material: Silty Sand Method: ASTM D5084 T14B AJ/TT Mat. Source: Tested By: 4/28/2016 Sampled By: Client Test Dates: Sampled Date: Notes:

Sample No.:	16L0095
Dry density (pcf):	96.3
Moisture Content:	15.6%

Client

Cell Pressure (psi):	66.0
Top Pressure (psi):	60.0
Bottom Pressure (psi):	61.0
Bias Pressure (psi):	1.0

Volume of flow (cm ³):	24.3
Length of sample (cm):	11.7
Area of sample (cm ²):	41.5
Time of flow (sec):	173.0

Permeability, k = 7.98E-01 in/hr 5.63E-04 cm/sec)

4325 South 34th Street Phoenix, Arizona 85040 Tel: 480-921-1368

Fax: 480-921-0194

Client: Tetra Tech BAS HA Project No.: 16042 Project: Pickles Butte Sanitary Landfill HA Lab No.: 16L0096 Location: Nampa, ID Date Received: 4/16/16 Test Type: Sandy Silt Material: Method: ASTM D5084 T15A AJ/TT Mat. Source: Tested By: 5/10/2016 Sampled By: Test Dates: Client Sampled Date: Notes: Submitted by: Client

Sample No.:	16L0096
Dry density (pcf):	96.3
Moisture Content:	14.6%

Cell Pressure (psi):	67.0
Top Pressure (psi):	60.0
Bottom Pressure (psi):	62.0
Bias Pressure (psi):	2.0

Volume of flow (cm ³):	23.7
Length of sample (cm):	12.2
Area of sample (cm ²):	40.2
Time of flow (sec):	1200.0

Permeability, k = 6.01E-02 in/hr 4.24E-05 cm/sec)

4325 South 34th Street Phoenix, Arizona 85040 Tel: 480-921-1368

Fax: 480-921-0194

Client: Tetra Tech BAS HA Project No.: 16042 Project: Pickles Butte Sanitary Landfill HA Lab No.: 16L0098 Location: Nampa, ID Date Received: 4/16/16 Test Type: Material: Silty Sand Method: ASTM D5084 T16B AJ/TT Mat. Source: Tested By: 5/12/2016 Sampled By: Client Test Dates: Sampled Date: Notes: Submitted by: Client

Sample No.:	16L0098
Dry density (pcf):	95.3
Moisture Content:	12.0%

Cell Pressure (psi):	67.0
Top Pressure (psi):	60.0
Bottom Pressure (psi):	62.0
Bias Pressure (psi):	2.0

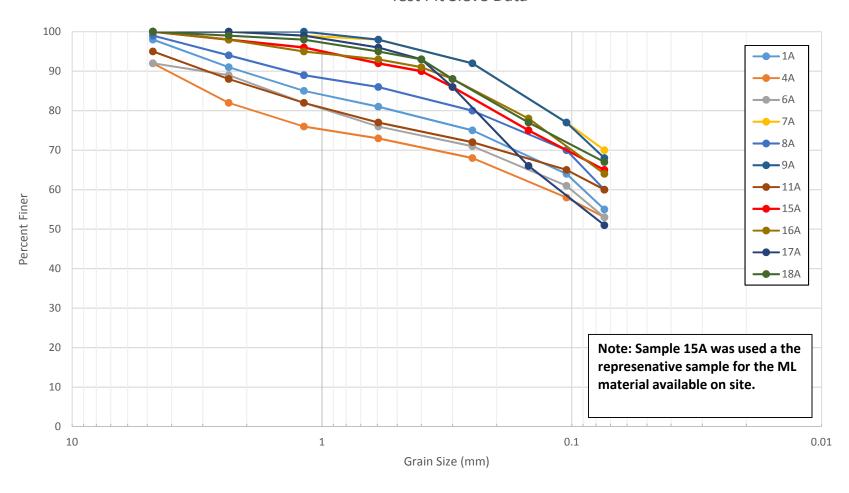
Volume of flow (cm ³):	24.0
Length of sample (cm):	12.5
Area of sample (cm ²):	40.8
Time of flow (sec):	300.0

Permeability, k = 2.46E-01 in/hr 1.74E-04 cm/sec)

4325 South 34th Street Phoenix, Arizona 85040 Tel: 480-921-1368

Fax: 480-921-0194

Client: Tetra Tech BAS HA Project No.: 16042 Project: Pickles Butte Sanitary Landfill HA Lab No.: 16L0102 Location: Nampa, ID Date Received: 4/16/16 Test Type: Material: Silty Sand Method: ASTM D5084 T18B AJ/TT Mat. Source: Tested By: 5/13/2016 Sampled By: Client Test Dates: Sampled Date: Notes: Client Submitted by:


Sample No.:	16L0102
Dry density (pcf):	79.6
Moisture Content:	32.6%

Cell Pressure (psi):	68.0
Top Pressure (psi):	60.0
Bottom Pressure (psi):	63.0
Bias Pressure (psi):	3.0

Volume of flow (cm ³):	16.1
Length of sample (cm):	12.2
Area of sample (cm ²):	41.0
Time of flow (sec):	1860.0

Permeability, k = 1.73E-02 in/hr 1.22E-05 cm/sec)

Test Pit Sieve Data

TEST PIT LITHOLOGIC LOG											
Project No.		114-571040		Project Name: Pickles Butte Sanitary Landfill				andfill Mo	onolithic	Cover De	sign
City:	South of N	ampa	State:	ID	County:	Can	/on	Test P	it No.:	T ²	14
Legal Location:	т	R	s	Tract	_	Descriptive Location:	North of active	landfill			
Date Started:	4/8/2016	Date Completed:	4/8/2	016	Excavation C Operator:	. ,	unty Solid Waste	e / Randy			
Excavation Method:	Bac	khoe	Test Pit size (ft.		3 x 12	Total Depth Excavated (ft	.) : <u>12.5</u>	Logge	ed by:_	R. Pi	hillips
Groundwater	r Encounte	ered?	N		Approx. Depth:	NA	Groundwate	r Sample	s Collec	ted?	NA
REMARKS:	Depth t	to top of usab	le material	= 0.75	feet. Depth to bo	ttom of usable	material = 3.5 fe	et.			
Depth (FT) below ground surface	d			LITI	HOLOGIC DESCRIP	TION			Sa	mple Coll	ected
0	Topsoil	l, organic mat	erial (roots))							
0.75	SILT v	vith lean clay	y, firm to s	stiff, m	oist, some weak	cementation	, brown (ML)		14A (5 gallon bucket)		
	Becom	es lighter bro	wn with a li	ttle mo	re cementation nea	ar 3 feet deep					
3.5	Silty SA	AND; loose, m	noist, poorly	/ grade	ed, fine grained, so	me weak ceme	entation, light		14B	(5 gallon l	bucket)
	brown	to tan (SM)									
5.5	Poorly	Graded Sand	; loose, slig	htly m	oist to moist, fine g	rained, trace s	ilt, tan to		14C (4	1 x 1 gall	on bags)
	light br	own (SP)		•					,		<u> </u>
		,	creases wit	h deptl	h, as does the silt o	content					
12.5		of Hole - Sid									

Project No.	114-571040				Project Name:	Pickles Butte Sanitary Landfill Monolithic Cover Design			
City:	South of N	ampa	State:	ID	_ County:	Canyo	on	Test Pit No.:	T15
Legal Location:	т	R	s	Tract		Descriptive Location:	North of active	landfill, close to De	eer Flat Road
Date Started:	Date Excavation Company/ 4/8/2016 Completed: 4/8/2016 Operator: Canyon County Solid Waste / Randy								
Excavation	4/0/2010	Completed	Test Pi		_ Operator.	Total Depth	ity Solid Waste	/ Italiuy	
Method:	Bac	khoe	size (ft.)	3 x 16	Excavated (ft.)	: 13.5	Logged by:	R. Phillips
Groundwate	er Encounte	red?	N		Approx. Depth:	NA	Groundwater	Samples Collect	ed? NA
REMARKS: Depth to top of usable material = 0.5 feet. Depth to bottom of usable material = 7.5 feet.									

Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Sample Collected
0	Topsoil, organic material (roots)	
0.5	SILT with sand; stiff to hard at 12", moist, non plastic. Trace clay, sand is fine	15A (5 gallon bucket)
	grained, a few cemented nodules and layers beginning at about 12", cementation is	
	moderate, then out of the harder cementation by 3.8 feet. Weaker cementation below	
	that (ML)	
5.0	SILT; hard, slightly moist, non-plastic, moderately to weakly cemented. Most	15B (1 gallon bag of
	cemented pieces crumble with moderate to firm thumb pressure. However there are	cemented pieces)
	layers, usually ~1" thick, that are strongly cemented and cannot be broken by hand.(ML)	
7.5	SILT with sand; as above, but there has been a gradual increase in fine sand. (ML)	
9.5	Silty SAND; dense, slightly moist, poorly graded, fine grained. Cementation present,	15C (5 gallon bucket)
	~10% to 15% of spoils are cemented pieces, usually strong, very light brown (SM)	
12.0	Sand/silt ratio increases with depth, by ~12 feet I would classify as Poorly Graded	
	SAND with silt. Still fine grained, but grain size has increased. Cementation still	
	present as described in the layer from 9.5 to 12 feet.	
13.5	Bottom of Hole	

Project No.	o. 114-571040 Project Name: Pickles Butte Sanitary Landfill Monolithic Cover Design								over Design	
City:	South of N	ampa	State:	ID	_ County:	Canyon Test Pit No.: T16				
Legal Location:	т	R	s	Tract		Descriptive Location:	North of landfill	, near top of slope	to west	
Date	Date Excavation Company/									
Started:	4/8/2016	Completed	d: 4/8/2	2016	_ Operator:	Canyon Coun	ty Solid Waste	/ Randy		
Excavation			Test Pi	t		Total Depth				
Method:	Bac	khoe	size (ft.	.)	3 x 16	Excavated (ft.)	: 12.5	Logged by:	R. Phillips	
Groundwate	er Encounte	ered?	N		Approx. Depth:	NA	Groundwater	Samples Collect	ed? NA	
REMARKS:	Depth 1	to top of usa	ble material	= 0.33	feet. Depth to bo	ttom of usable m	aterial = 5.5 fe	et.		
The material	from 8.5 to	10.5 couild a	also be usefu	ul, but it	t is under 3 feet of	unusable materia	al.			

Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Sample Collected
0	Topsoil, organic material (roots)	
0.33	SILT with sand and clay; firm to stiff, moist, non plastic, medium to dark brown	16A (5 gallon bucket)
	(ML)	(from 6 to 18")
	some cementation beginning at 1.5 feet, then stronger at 2 feet	
	Lighter color (medium brown) below 3.5 feet but still similar material. Sand content	
	probably increases at that depth. Moderately hard to dig, but cemented pieces break	16B (5 gallon bucket)
	with moderate to firm thumb pressure	(from 4 to 5.5')
5.5	Silty SAND: loose to medium dense, slightly moist, fine grained, poorly graded, some	
	cementation, light brown (SM)	
7.3	Cemented SILT; hard, dry, very light brown (typical SW Idaho 'hardpan')	
8.5	Back into Sandy SILT. Quite similar to the material from 3.5 to 5.5, with smaller	16C (4 - 1 gallon bags)
	blocks in the spoils, and a lighter color. Blocks crumble easily. Silt/Sand ratio	(8.5 to 9.5)
	increases with depth, becoming SILT with sand then SILT	
	Stronger cementation again below 10.5 feet, continues to bottom of hole	
12.5	Bottom of Hole	

					<u></u>	EST FIT LITHO	LUGIC LUG				
Project No.	. 114-571040 Project Name: Pickles Butte Sanitary Landfi								Landfill Mo	nolithic Cove	r Design
City:	South of I	South of Nampa State: ID County: Canyon Test					Test Pi	t No.:	T17		
Legal Location:	т	_ R	s		Tract		Descriptive Location:	Northwest of	Landfill, ne	ar Perch Roa	ad
Date Started:	4/8/2016	Date Excavation Company/ 4/8/2016 Completed: 4/8/2016 Operator: Canyon County Solid Waste / Randy									
Excavation Method:	Ва	ickhoe		Test Pit size (ft.		3 x 16	ed by:	R. Phillips			
Groundwate	r Encount	ered?		N	,	Approx. Depth:	NA	Groundwat	er Sample	s Collected?	NA NA
REMARKS:	Depth	to top of u	sable	material	= 0.5 fe	et. Depth to bott	om of usable r	material = 5.5 fe	eet.		
Depth (FT) below ground surface	d	LITHOLOGIC DESCRIPTION								Sample	Collected
0	Topso	Topsoil, organic material (roots)									
0.5	SILT	with sand	l; stiff,	, slightly	moist	, non plastic, lig	ht brown, sar	nd is very fine	(ML)		
1.5	SILT	with sand a	and cla	ay; firm to	stiff, n	noist, non-plastic,	very fine sand	, a bit blocky in		17A (5 ga	llon bucket)
	the sp	oils (ML)								(1.5 to	5.5 feet)
5.5	Trans	itions to Sil	lty SAI	ND; med	ium der	nse, moist, poorly	graded, fine g	rained, brown			
	(SM)										
8.5	Trans	itions to Po	orly G	raded Sa	and with	n some silt; mediu	m dense, mois	st to slightly			
	moist	, fine graine	ed, bro	wn (SP-	SM)						
9.5	Bottor	m of Hole									

				<u> </u>		<u> </u>						
	114-571	040			Project Name:	Pickles B	utte Sanitary La	andfill Mor	nolithic Co	ver Design		
South of I	Nampa		State:	ID	County:	Canyo	on	Test Pit	No.:	T18		
т	_ R	s		Tract		Descriptive Location: N.	of LF, near top	of slope t	to W and I	Deer Flat Rd.		
4/8/2016	Date Comple	eted:	4/8/2	2016			ty Solid Waste	/ Randy				
Ba	Test Pit Total Depth Backhoe size (ft.) 3 x 16 Excavated (ft.): 10 Logged by: R. Phillips											
Groundwater Encountered? N Approx. Depth: NA Groundwater Samples Collected? NA												
Depth	to top of	usable	material	= 0.5 fe	eet. Depth to bott	om of usable ma	aterial = 3.9 feet	: .				
d	LITHOLOGIC DESCRIPTION									le Collected		
Topso	oil, organic	mater	ial (roots))								
SILT	with sand	d and	clay; firr	n to ve	ery stiff, moist, n	on plastic, brov	wn (ML)					
weakl	y cemente	ed begi	nning at 2	2 feet					18A (5 g	gallon bucket)		
SILT	with fine sa	and; ha	ard, sligh	tly mois	t to dry, moderate	ly cemented bro	wn (ML)		(2 to	3.2 feet)		
strong	gly cement	ted and	l light bro	wn beg	inning at 3.9 feet							
Lean	CLAY; har	rd, sligl	ntly mois	t, mode	rately cemented (otherwise might	be slightly		18B (5	gallon bucket)		
plastic	c), green (CL)										
Bottor	m of Hole											
	South of I T 4/8/2016 Ba r Encount Depth Topso SILT weakl SILT strong Lean G plastic	South of Nampa T R Date 4/8/2016 Comple Backhoe r Encountered? Depth to top of Topsoil, organic SILT with sand weakly cemente SILT with fine s strongly cement	Date 4/8/2016 Completed: Backhoe r Encountered? Depth to top of usable Topsoil, organic mater SILT with sand and weakly cemented beging SILT with fine sand; has strongly cemented and Lean CLAY; hard, slight plastic), green (CL)	South of Nampa State: T R S Date 4/8/2016 Completed: 4/8/2 Test Pit Backhoe Size (ft. r Encountered? N Depth to top of usable material Topsoil, organic material (roots) SILT with sand and clay; firm weakly cemented beginning at 2 SILT with fine sand; hard, slight strongly cemented and light bro Lean CLAY; hard, slightly moist plastic), green (CL)	South of Nampa State: ID T R S Tract Date 4/8/2016 Completed: 4/8/2016 Test Pit Backhoe Size (ft.) r Encountered? N Depth to top of usable material = 0.5 fe Topsoil, organic material (roots) SILT with sand and clay; firm to ve weakly cemented beginning at 2 feet SILT with fine sand; hard, slightly mois strongly cemented and light brown beg Lean CLAY; hard, slightly moist, mode	South of Nampa State: ID County: T R S Tract Date Excavation County: Test Pit Backhoe Size (ft.) 3 x 16 Tencountered? N Approx. Depth: Depth to top of usable material = 0.5 feet. Depth to bott Topsoil, organic material (roots) SILT with sand and clay; firm to very stiff, moist, noweakly cemented beginning at 2 feet SILT with fine sand; hard, slightly moist to dry, moderated strongly cemented and light brown beginning at 3.9 feet Lean CLAY; hard, slightly moist, moderately cemented (context)	South of Nampa State: ID County: Canyon Descriptive Location: N. Date 4/8/2016 Completed: 4/8/2016 Operator: Canyon Coun Test Pit Backhoe Size (ft.) Approx. Depth: NA Depth to top of usable material = 0.5 feet. Depth to bottom of usable material LITHOLOGIC DESCRIPTION Topsoil, organic material (roots) SILT with sand and clay; firm to very stiff, moist, non plastic, brow weakly cemented beginning at 2 feet SILT with fine sand; hard, slightly moist to dry, moderately cemented browstrongly cemented and light brown beginning at 3.9 feet Lean CLAY; hard, slightly moist, moderately cemented (otherwise might) plastic), green (CL)	South of Nampa State: ID County: Canyon Descriptive T R S Tract Date Test Pit Backhoe Size (ft.) Depth to top of usable material = 0.5 feet. Depth to top of usable material (roots) SILT with fine sand; hard, slightly moist to dry, moderately cemented brown (ML) strongly cemented and light brown beginning at 3.9 feet Lean CLAY; hard, slightly moist, moderately cemented (otherwise might be slightly plastic), green (CL)	Project Name: Pickles Butte Sanitary Landfill Mor South of Nampa State: ID County: Canyon Test Pit	Project Name: Pickles Butte Sanitary Landfill Monolithic Co		

Project No.		114-571040		_	Project Name:	: Pickles Butte Sanitary Landfill Monolithic Cover Desig				
City:	South of Nampa		State	: <u>ID</u>	_ County:	Cany	Canyon Test Pit No.:		T19	
Legal Location:	т	R	s	_ Tract		Descriptive Location:	North of LF, N	W part of potential	borrow area	
Date		Date			Excavation Company/					
Started:	7/6/2016	Completed	l: <u>7/6</u>	/2016	Operator:	e / Daniel				
Excavation		Appro				Total Depth				
Method:	Bac	khoe	Pit siz	e (ft.)	3 x 15	Excavated (ft.): <u>10.6</u>	Logged by:	R. Phillips	
Groundwate	er Encounte	red?	N	_	Approx. Depth:	NA	Groundwate	r Samples Collect	ted? NA	
REMARKS:	Depth t	o top of usa	ble materia	al = 1.2 f	eet. Depth to bot	tom of usable m	aterial = 4 feet.			
Material from	4 to 6.7 ma	y also be us	able.							

Depth (FT)		
below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots)	
0.3	Poorly graded Sand with silt; loose, slightly moist, very fine grained, some roots, (SP-SM)	
1.2	Sandy SILT to SILT with sand; stiff to hard, non-plastic, weakly to moderately cemented, then becomes moderately to strongly cemented below 1.8 feet. Cementation from 1.2 to 1.8 feet is mostly nodules, then mostly the whole matrix below that. Light brown to light tan (SM/ML)	1.4 - 2.3
4	SILT with Sand, very stiff to hard, slightly moist, non plastic, very fine grained sand, moderately cemented - comes out in chunks up to 4". A scraper should have no trouble with this material. Less cementation and more sand with depth	5 - 5.8
6.7	Silty SAND; dense, slightly moist, fine grained, weak cementation in matrix, and some stronger cementation in nodules to 1" diameter. These break easily with moderate pressure. (SM)	
10.6	Bottom of excavation	

Project No.		114-571040	_		Project Name: Pickles Butte Sanitary Landfill Monolith				Cover Design
City:	South of N	ampa	State:	ID	County:	Cany	on	Test Pit No.:	T20
Legal Location:	т	R	s	Tract		Descriptive Location:	NE corner of po	otential borrow are	a
Date Started:	7/5/2016	Date Completed	: 7/5/2	016	Excavation C Operator:	. ,	nty Solid Waste	/ Daniel	
Excavation Method:	Bac	khoe	Approx. Pit size		3 x 15	Total Depth Excavated (ft.) : <u>13.3</u>	Logged by:	R. Phillips
Groundwate	r Encounte	red?	N		Approx. Depth:	NA	Groundwater	Samples Collect	ed? NA
REMARKS:	Depth t	o top of usat	ole material	= 0.5 f	eet. Depth to bott	om of usable m	aterial = 5 feet.		

Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots), Silty SAND	
0.5	SILT; stiff, dry, non-plastic, small cemented nodules (ML)	0.8 - 1.6
1.7	Cemented SILT; very stiff to hard, dry, non-plastic, cementation varies from moderate to hard, pieces generally break with effort. (ML)	
5	Cemented SILT; hard, dry, non-plastic, light tan (ML)	
	even harder below 5.7 feet	
6.7	Cemented SILT with fine sand; hard slightly moist, non-plastic, brown. (ML). Cementation is not as strong as the material above. Chunks can be broken without much effort. (ML)	
9.5	grades to Sandy SILT. Still cemented but weaker.	
12.5	Poorly graded GRAVEL with sand.	
13.3	Bottom of excavation	

				<u> </u>	EST PIT LITHO	LUGIC LUG					
Project No.		114-571040			Project Name:	Pickles	Butte Sanitary	Landfill Mo	onolithic	Cover Design	
City:	South of N	lampa	State:	ID	_ County:	Can	yon	Test Pi	it No.:_	T21	
Legal Location:	т	_ R	s	Tract		Descriptive Location:	Western part	of potentia	al borrow	[,] area	
Date Started:	7/6/2016	Date Completed:	7/6/2	2016	Excavation (Operator:	. ,	unty Solid Wast	e / Daniel			
Excavation Method:	Bac	ckhoe	Approx Pit size			Total DepthExcavated (ft.):9 Logged by: R. Phillips					
Groundwate	r Encounte	Encountered? N Approx. Depth: NA Groundwater Sar								cted? NA	
REMARKS:	The go	ood usable ma	terial was	not four	nd at this location.	The material f	rom 5 to 7.5 <i>ma</i>	ay be usal	ole.		
Depth (FT) below groun surface	d			•	of Sample Collected (Quart bags)						
0	Topso	il, organic mat									
0.5	Poorly	graded SANE); loose, sli	ghtly m	oist to dry, very fir	ne to fine graine	ed, brown (SP)				
1.3	Silty S	AND; loose to	medium d	ense, s	lightly moist, fine t	o very fine grai	ined, brown (SP	P-SM)		1.3 - 2	
5	grades non-pl	_	be classif	ed as S	Sandy SILT, slightl	y cohesive, slig	ghtly moist to m	oist, firm,		5.8 - 6.6	
7.5	Poorly	graded SANE); dense, s	lightly n	noist, fine grained,	brown (SP)					
9.0	Botton	n of Excavation	n								

						<u> </u>	<u> </u>					
Project No.		114-5710	040			Project Name:	Pickles E	Butte Sanitary L	andfill Mo	onolithic (Cover Des	ign
City:	South of N	lampa		State:	ID	County:	Canyo	on	Test P	it No.:	T22	2
Legal Location:	т	_ R	s		Tract		Descriptive Location: W	/-Central part o	f northerr	n potentia	ıl borrow a	ırea
Date Started:	7/6/2016	Date Comple	ted:	7/6/2	016	Excavation (Operator:	Company/ Canyon Cour	nty Solid Waste	e / Daniel			
Excavation Method:	Bac	ckhoe		Approx Pit size		3 x 15	Total Depth Excavated (ft.)):	Logge	ed by:	R. Phi	illips
Groundwate	r Encounte	ered?		N	,	Approx. Depth:	NA	Groundwate	r Sample	s Collec	ted?	NA
REMARKS:	The go	od usable	e mater	ial was r	ot foun	d at this location.						
Depth (FT) below ground surface	d				LITH	IOLOGIC DESCRIF	PTION			•	f Sample C Quart bags	
0	Ţ	l, roots, fi										
0.4	deep.	Non-cohe	esive b	ut excava	ation wa	oist, fine to very fi alls do stand open	(SP)		ts to 16"			
4.0	Poorly	graded S	AND w	ith silt -	as abov	e but with some s	silt and weak cer	mentation				
6		graded S , some iro			ghtly m	oist, medium to fir	ne grained, clear	n, brown (darke	r than			
7.0	Bottom	of Excav	ation									

Project No.		114-571040			Project Name: Pickles Butte Sanitary Landfill Monolith			ndfill Monolithic C	Cover Design
City:	South of N	South of Nampa State:			_ County:	Canyon Test Pit No.:			T23
Legal Location:	т	_ R	s	Tract		Descriptive Location: Cen	ter of northern	part of potential l	borrow area
Date Started:	7/5/2016	Date Completed:	7/5/2	.016	Excavation Company/ Operator: Canyon County Solid Waste / Daniel				
Excavation Method:	Bac	khoe	Approx Pit size		3 x 15	Total Depth Excavated (ft.):	10.8	Logged by:	R. Phillips
Groundwate	r Encounte	red?	N	1	Approx. Depth:	NA G	Groundwater	Samples Collect	ed? NA
REMARKS:	Depth t	to top of usab	le material	= 0.6 fe	eet. Depth to bott	om of usable mate	erial = 10 feet.		

Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots)	
0.2		
0.6	SILT; stiff to very stiff, slightly moist, some fine sand, non-plastic, blocky but not cemented, brown (ML)	0.8 - 1.6
2.2	SILT; hard, slightly moist, non-plastic, light brown (ML). It is hard but not cemented.	
2.5	SILT; hard, slightly moist to dry, non-plastic, light brown, strongly cemented (generally), but not CaCO3, difficult digging but a scraper would not have trouble with it.	
5	Easier digging below 5 feet, material still comes out in chunks but they break easier than the material above.	
	slightly sandier below 7.7 feet	7.7 - 8
10.0	Cemented SILT with sand; very stiff, fine grained sand, weak to moderate CaCO3 cementation, probably too sandy to use as cover material (ML)	
10.8	Bottom of Excavation	

Project No.		114-571040			Project Name: Pickles Butte Sanitary Landfill Monoli				Cover Design
City:	South of Nampa		State:	ID	_ County:	Canyon		Test Pit No.:	T24
Legal Location:	т	R	s	Tract		Descriptive Location:	W Central p	art of northern potent	tial borrow area
Date		Date			Excavation C	company/			
Started:	7/5/2016 Completed : 7/5/2			2016	_ Operator:	Canyon Cou	unty Solid Was	ste / Daniel	
Excavation			Approx	. Test		Total Depth			
Method:	Bac	khoe	Pit size	(ft.)	3 x 15	Excavated (ft	: .) : 6	Logged by:	R. Phillips
Groundwate	r Encounte	red?	N		Approx. Depth:	NA	Groundwa	ter Samples Collect	ted? NA
REMARKS:	Depth t	o top of usab	ole material	= 0.4 fe	eet. Depth to bott	om of usable n	naterial = 1.1 f	eet.	

Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots), Silty SAND	
0.4	SILT with sand; firm, slightly moist, non to slightly plastic, slightly blocky, brown (ML)	
1.1	Cemented SILT; very stiff to hard, slightly moist to dry, non plastic, weak to moderate cementation but not really the same as the cementation found in adjacent test pits 20 and 23 - this is more CaCO3 type, color is light brown (ML)	1.5 - 2.5
3.2	Cemented SILT; harder, CaCO3 cementation (ML)	3.4 - 3.5
3.5	Cemented SILT; as directly above, but harder still. Digging is difficult. Material comes out in layers. (ML)	
4.8	Cemented SILT; weaker than above, brown (ML)	
5.8	Silty GRAVEL with sand; poorly graded, very dense, slightly moist (GM)	
6.0	Bottom of excavation	

			<u> </u>	,, , ,,, <u> </u>	<u> </u>								
Project No.	114-571040	0	Р	roject Name:	tte Sanitary Landfill M	onolithic Cover Design							
City:	South of Nampa	State:	ID	County:	Canyor	Test P	it No.: T25						
Legal Location:	T R	_ S 1	Tract _		Descriptive Location:	W corner of northern	potential borrow area						
Date Started:	7/6/2016 Complete	d : 7/6/20	16	Excavation Coperator:		y Solid Waste / Daniel							
Excavation Method:	Backhoe	Approx. Test Total Depth Backhoe Pit size (ft.) 3 x 15 Excavated (ft.): 7.5 Logo											
Groundwate	r Encountered?	N	Ap	prox. Depth:	NA	Groundwater Sample	es Collected? NA						
REMARKS:	Good usable mater	rial not found.	Materia	I from 2 feet to 6	6.7 <i>may</i> be usabl	e.							
Depth (FT) below groun surface	d	LITHOLOGIC DESCRIPTION Depth of Sample C (Quart bags											
0	Topsoil, organic m	opsoil, organic material (roots)											
0.33	Poorly graded SAN uncohesive but wa			•	to very fine graine	ed, some silt,							
2.0	Slightly higher silt of	content beginn	ning at 2	feet. Weak cer	nentation from 5	to 6.7 feet	2 - 2.5						
6.7	Poorly graded SAN fine grained, clean				more moisture tha	an the upper layer),							
7.5	Bottom of excavation	on											
								_					

		<u></u>	011112111101	<u> </u>						
Project No.	114-571040		Project Name:	Pickles Bu	tte Sanitary Landfill M	onolithic Cover Design				
City:	South of Nampa	State: ID	County:	Canyon	Test P	it No.: T26				
Legal Location:	T R S	Tract _		Descriptive Location: N	ear the middle of the p	potential borrow area				
Date Started:	7/5/2016 Completed:	7/5/2016	Excavation C Operator:		√ Solid Waste / Daniel					
Excavation Method:	Backhoe	Approx. Test Pit size (ft.)		Total Depth Excavated (ft.):	5.6Logg	ed by: R. Phillips				
Groundwate	r Encountered?	N A	pprox. Depth:	NA (Groundwater Sample	es Collected? NA				
REMARKS:	Depth to top of usable	material = 0.25 fe	et. Depth to bot	ttom of usable ma	terial = 4.2 feet.					
Depth (FT) below groun surface	d	Depth of Sample Collected (Quart bags)								
0	Topsoil, organic materi	Topsoil, organic material (roots)								
0.25	SILT; firm, slightly moi	SILT; firm, slightly moist, non-plastic, trace fine sand, brown (ML)								
0.75	becomes light brown					0.75 - 2.2				
1.8	weakly cemented nodu	ıles in a layer fror	n 1.8 to 2.2 feet							
3.8	becomes weakly to mo	derately cemente	ed							
4.2	Poorly graded SAND;	dense, slightly m	oist, very fine gra	ained, trace silt, br	rown (SP)					
5.6	Bottom of excavation									
	•					•				

Project No.	114-571040				Project Name:	Pickles Butte Sanitary Landfill Monolithic Cover Design			
City:	South of Na	ampa	State:	ID	_ County:	Cany	on	Test Pit No.:	T27
Legal Location:	т	R	s	Tract		Descriptive Location:	Eastern edge o	of potential borrow	area
Date Started:	7/5/2016	Date Completed	: 7/5/2	016	Excavation C Operator:		nty Solid Waste	/ Daniel	
Excavation Method:	Bac	khoe	Approx Pit size			Total Depth Excavated (ft.): <u>8.3</u>	Logged by:	R. Phillips
Groundwate	r Encounte	red?	N		Approx. Depth:	NA	Groundwater	Samples Collect	ed? NA
REMARKS:	Depth t	o top of usal	ole material	= 0.4 fe	eet. Depth to bott	om of usable m	aterial = 5.5 fee	t.	

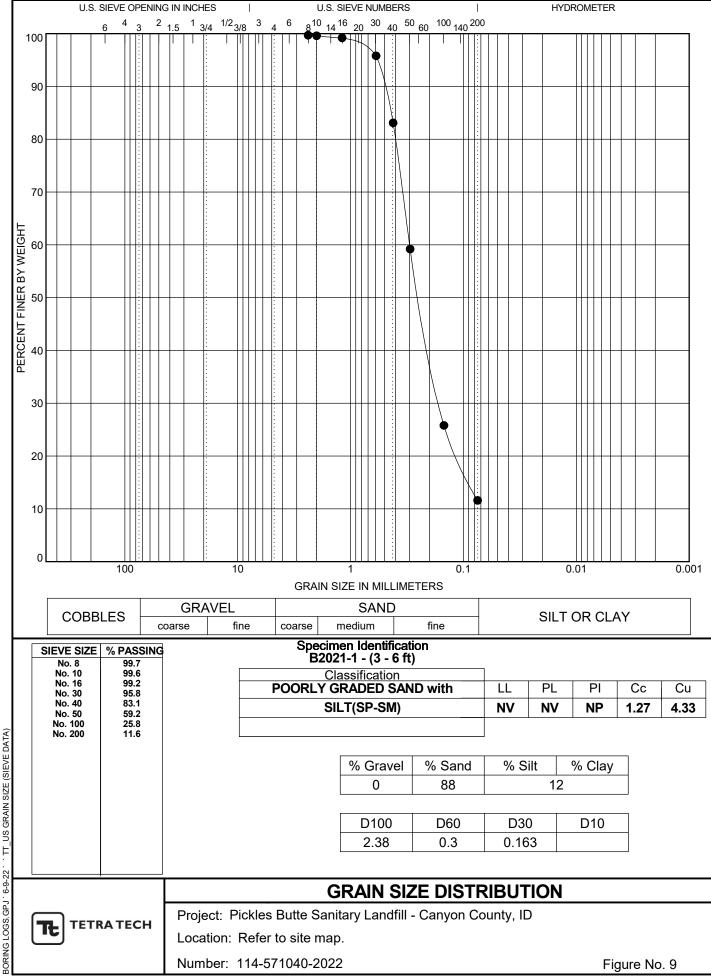
Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots), Silty SAND	
0.4	Silt with sand; firm to stiff, slightly moist, non-plastic, sand is very fine grained (ML)	0.8 - 2.5
3.0	SILT with sand. As above except that the material is variably cemented. Mostly weak to moderate cementation. Does not impeded the digging and the blocks mostly break easily. (ML)	
5.5	Cemented SILT; hard, dry to slightly moist, light tan, CaCO3 cementation, hard digging (ML)	
6.0	color changes back to brown at about 6 feet, not quite as hard as the material above it	
8.3	Poorly graded GRAVEL - tagged the top of it and stopped excavating	
8.3	Bottom of Excavation	

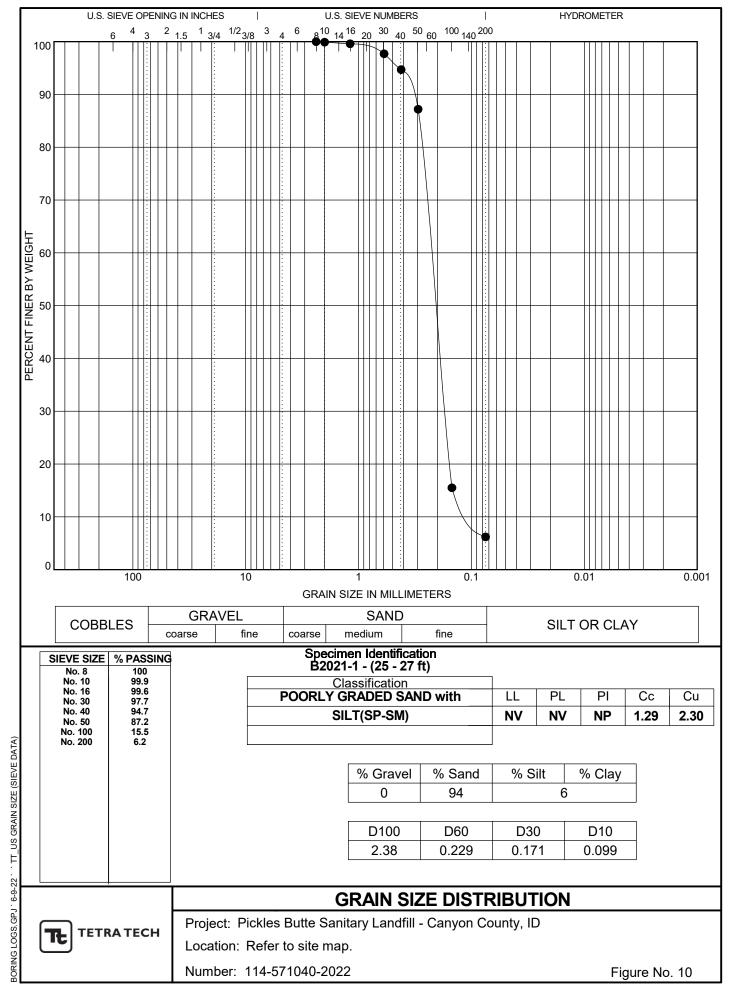
Project No.		114-571	040		_	Project Name:	Pickles I	Butte Sanitary	Landfill Mo	onolithic (Cover Design
City:	South of N	ampa		State:	ID	_ County:	Cany	on	Test P	it No.:	T28
Legal Location:	т	R	s		Tract		Descriptive Location:	Near the midd	dle of the p	otential b	oorrow area
Date Started:	7/5/2016	Date Comple	eted:	7/5/2	.016	Excavation (Operator:	Company/ Canyon Cou	nty Solid Wast	e / Daniel		
Excavation Method:	Bac	:khoe		Approx Pit size		3 x 15	Total Depth Excavated (ft.): <u>10.5</u>	Logge	ed by:	R. Phillips
Groundwate	r Encounte	red?		N		Approx. Depth:	NA	Groundwate	er Sample	s Collec	ted? NA
REMARKS:	Depth t	to top of u	usable	material	= 0.25	feet. Depth to bo	ottom of usable r	material = 4.2 f	eet.		
Depth (FT) below groun surface	d				LITI	HOLOGIC DESCRIF	PTION			•	f Sample Collected Quart bags)
0	Topsoil	l, organic	materi	ial (roots))						uuge,
0.25	SILT w	ith fine s	and; st	iff, slightl	y mois	t, non-plastic, brov	wn (ML)				
1.0	As abo	As above but with weakly cemented nodules in the matrix, generally 1/2 inch diameter or 1 - 2									1 - 2
2.4		as 0.25 to	1.0								
4.2	Poorly depth (-	AND;	dense, sl	ightly r	noist, very fine gra	ained, trace silt,	some cementa	tion with		
10.50	Bottom	of Exca	/ation								

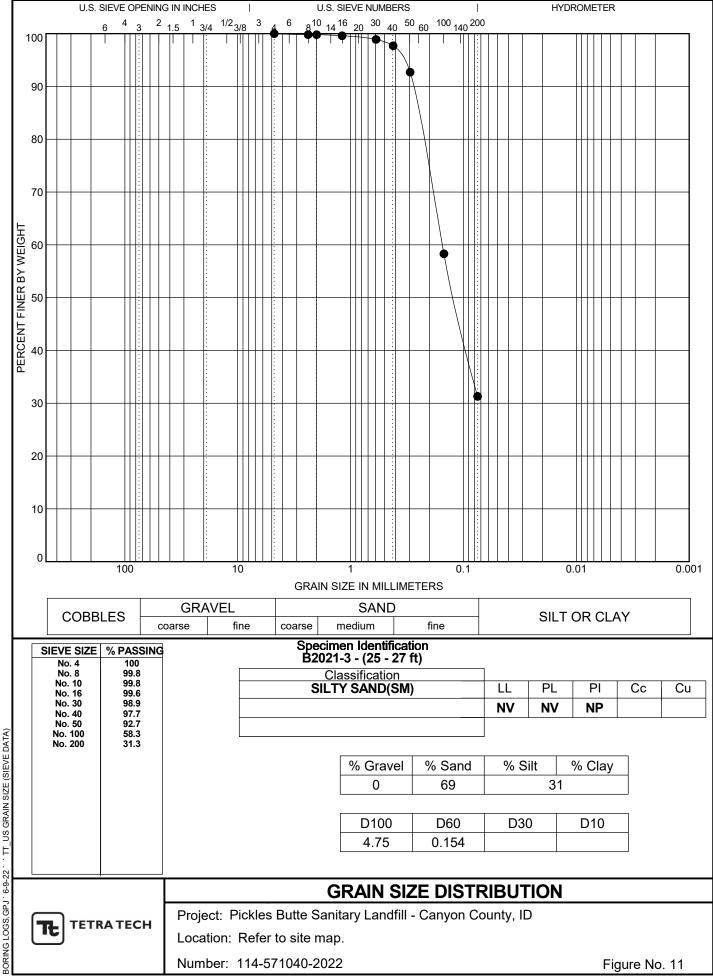
				_					
Project No.		114-571040			Project Name:	Pickles	Butte Sanitary Landfill M	Monolithic Cover	Design
City:	South of N	ampa	State:	ID	_ County:	Cany	/on Test I	Pit No.:	T29
Legal Location:	т	R	s	Tract		Descriptive Location:	Eastern edge of potent	tial borrow area	
Date Started:	7/5/2016	Date Completed	: 7/5/2	016	Excavation (Operator:		ınty Solid Waste / Danie	!	
Excavation Method:	Bac	khoe	Approx Pit size		3 x 15	Total Depth Excavated (ft	.): 8.5 Log g	ged by: R	. Phillips
Groundwate	r Encounte	ered?	N			•	Groundwater Sample		
REMARKS:	Depth t	to top of usal	ole material	= 0.25	feet. Depth to bo	ttom of usable	material = 5.5 feet.		
Depth (FT) below groun surface	below ground LITHOLOGIC DESCRIPTION Depth of Sample Collected								•

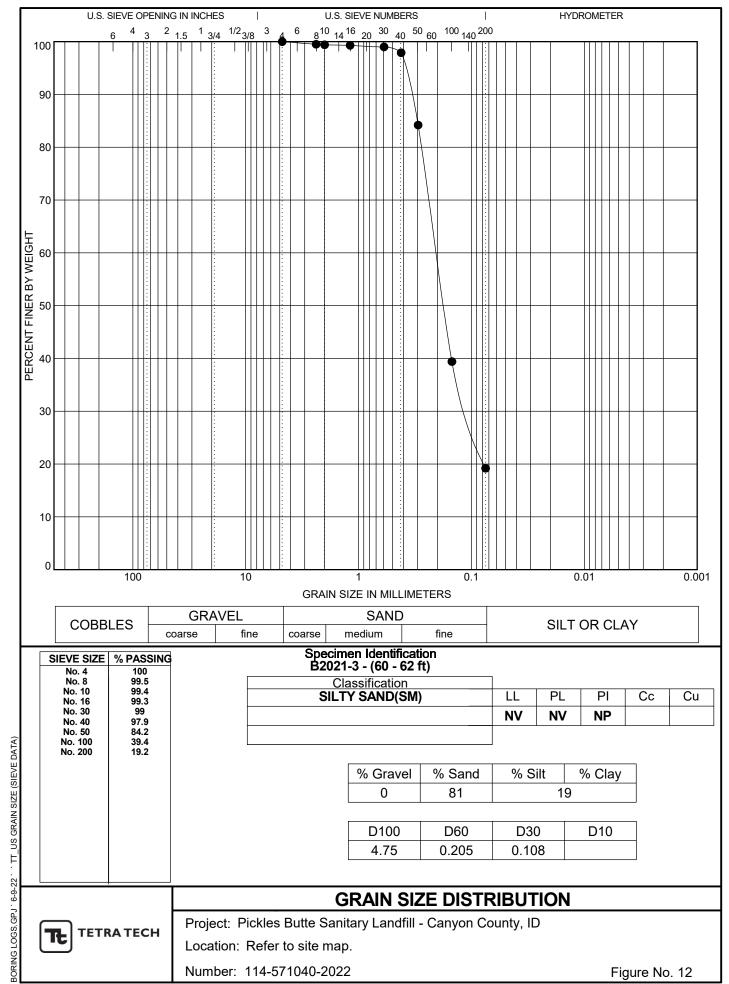
Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots), silty SAND	
0.25	SILT with sand; firm to stiff, slightly moist, non-plastic, sand is very fine grained, brown (ML)	0.7 - 1.5
2.3	As above, but weakly cemented	
5.5	Cemented SILT with sand; hard, slightly moist, non-plastic (ML). CaCO3 cementation, but it is not hard enough that digging is impeded.	
8.3	Poorly Graded GRAVEL; went just a few inches into it to verify it's presence (GP)	
8.50	Bottom of excavation	

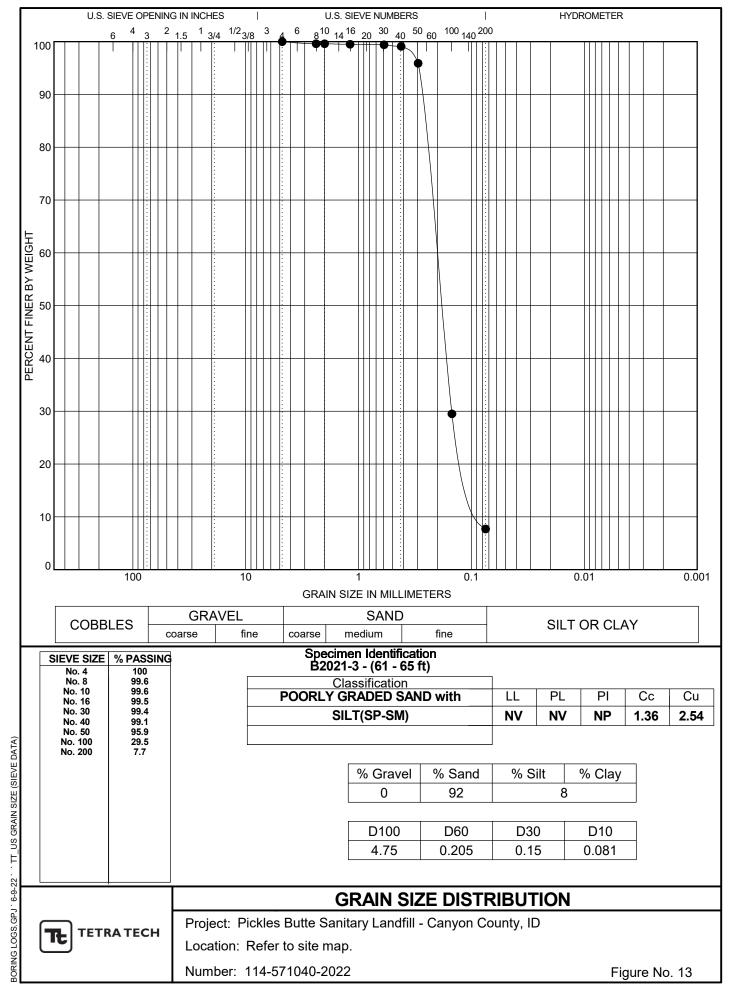
Project No.	114-571040				Project Name:	Pickles Butte Sanitary Landfill Monolithic Cover Design			Cover Design
City:	South of N	ampa	State:	ID	County:	Canyon		Test Pit No.:	T30
Legal	_	_	_			Descriptive			
Location:	' <u> </u>	R \$	S	Tract		Location: Sout	thern part of p	otential borrow ar	ea
Date		Date			Excavation C	Company/			
Started:	7/5/2016	Completed:	7/5/2	016	Operator:	Canyon County	Solid Waste	/ Daniel	
Excavation			Approx	. Test		Total Depth			
Method:	Bac	khoe	Pit size	(ft.)	3 x 15	Excavated (ft.):	5.8	Logged by:	R. Phillips
Groundwater	r Encounte	red?	N		Approx. Depth:	NAG	Groundwater	Samples Collect	ted? NA
REMARKS:	Depth t	top of usabl	e material	= 0.7 fe	eet. Depth to bott	om of usable mate	rial = 1.9 feet	•	
Material from	1.9 to 3 fee	t <i>may</i> be usa	ble.						

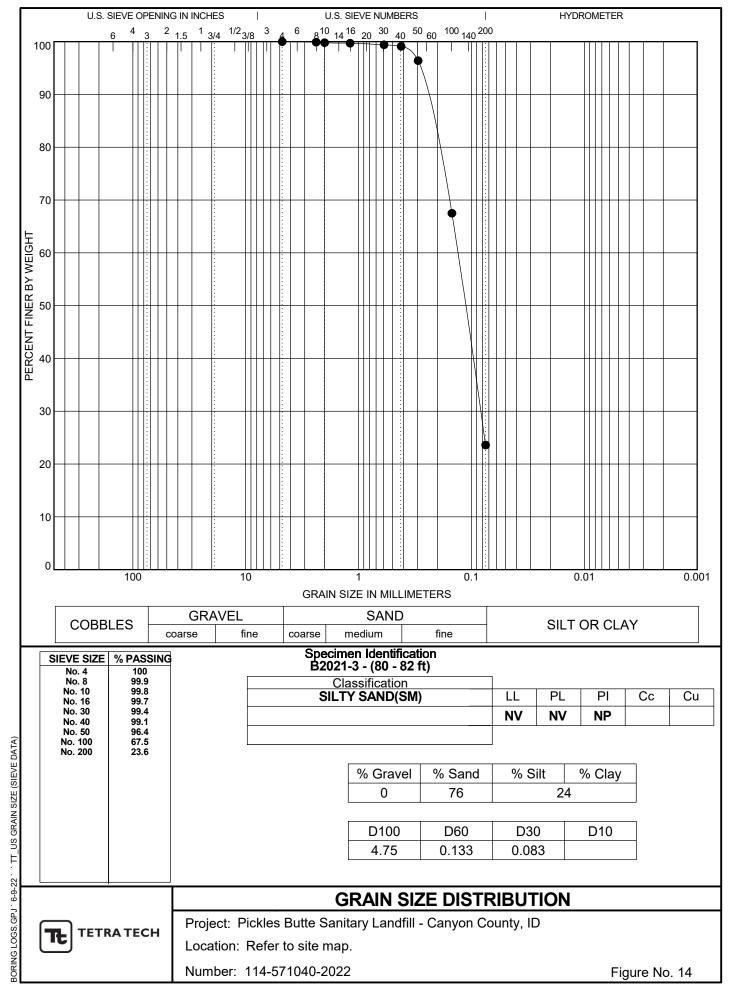

Īr.		
Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots), Sandy SILT to silty SAND	
0.7	SILT with fine sand; stiff, slightly moist, non-plastic, blocky and very weakly cemented, brown (ML)	0.7 - 1.4
1.4	SILT with fine sand; firm, slightly moist, non-plastic, non-cemented, lighter brown than the material above (ML)	
1.9	Becomes cemented. Matrix is moderately cemented and contains harder (more strongly cemented) nodules	
3.0	Strongly cemented	
4.6	Contains scattered gravel	
5.4	Poorly graded SAND with Gravel (SP-SG)	
5.8	Bottom of excavation	

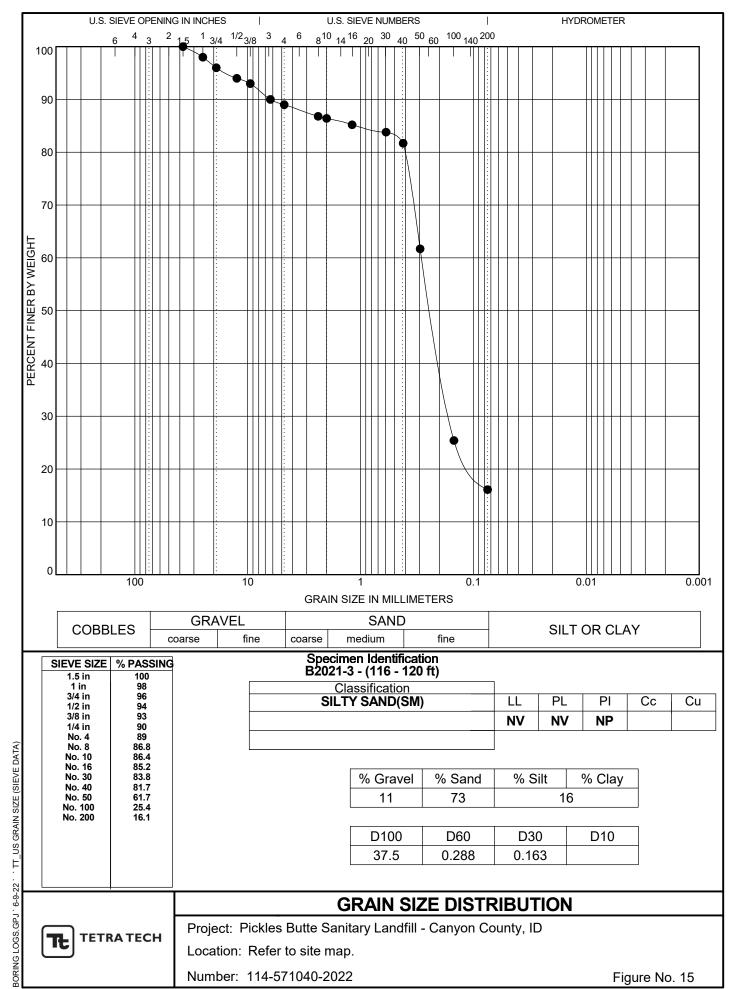

Project No.		114-5710	40			Project Name:	e: Pickles Butte Sanitary Landfill Monolithic Cover Design				
City:	South of N	ampa		State:	ID	_ County:	Canyon	<u> </u>	Test Pit No.:	T31	
Legal Location:	т	_ R	_ s		Tract		Descriptive Location: Sou	uthern extent o	f potential borrow	area	
Date		Date Excavation Company/									
Started:	7/5/2016	Complet	ed:	7/5/2	016	_ Operator:	: Canyon County Solid Waste / Daniel				
Excavation				Approx	. Test		Total Depth				
Method:	Bac	khoe		Pit size	(ft.)	3 x 15	Excavated (ft.):	2	Logged by:	R. Phillips	
Groundwate	Groundwater Encountered? N Approx. Depth: NA Groundwater Samples Collected? NA										
REMARKS:	Depth	to top of us	sable	material	= 0.25	feet. Depth to bo	ttom of usable ma	aterial = 1.4 fee	et.		
Excavation w	as moved n	orth of pro	posed	location	due to	topography					

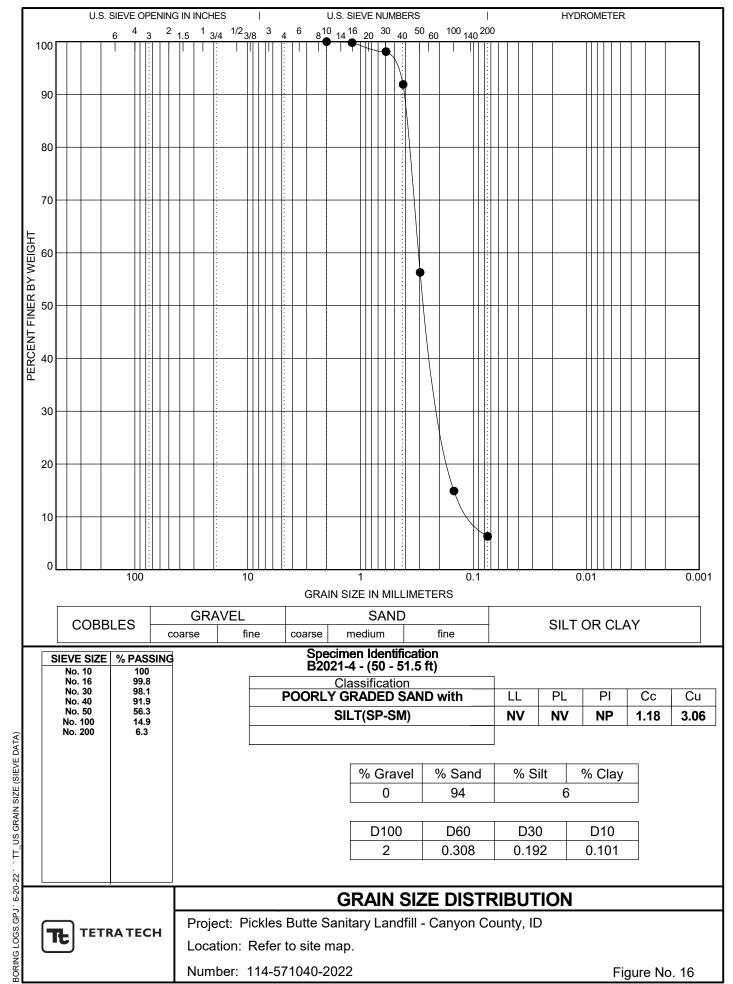

Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots)	
0.25	SILT with fine sand; firm to stiff, slightly moist, non-plastic, brown (ML)	0.5 - 1.3
1.4	Transition zone to gravel, silt is blocky and weakly cemented	
1.6	Silty GRAVEL with fine sand; hard, slightly moist, some weak cementation in matrix, gravel is subangular, brown (GM)	
2.0	Bottom of excavation	

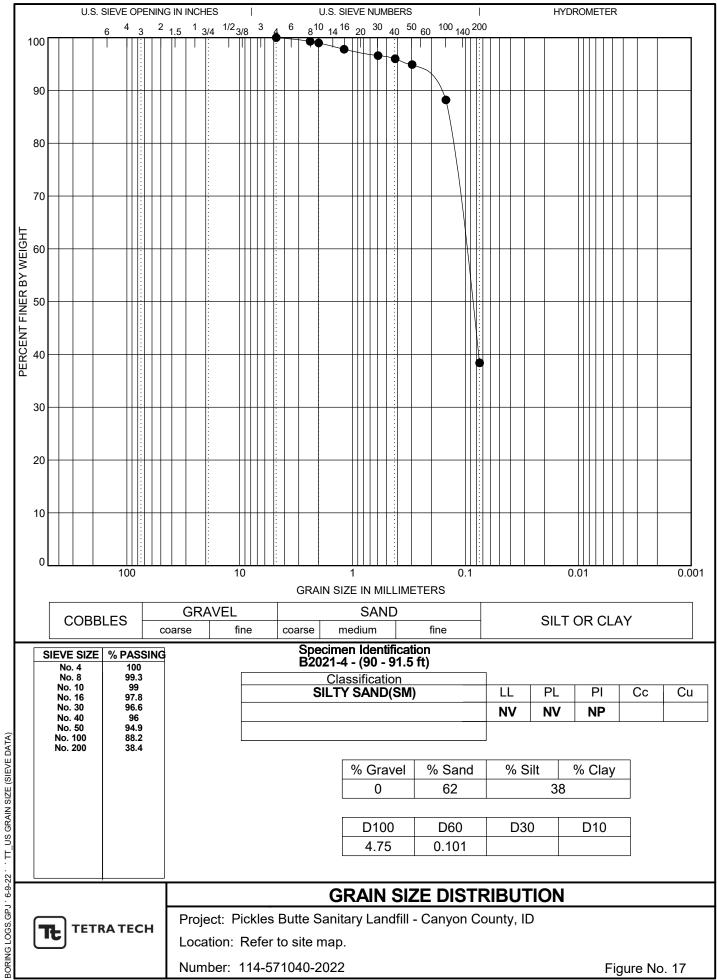

Project No.		114-571040	1		Project Name:	: Pickles Butte Sanitary Landfill Monolithic Cover Design				
City:	South of N	ampa	State:	ID	_ County:	Canyon		Test Pit No.:	T32	
Legal						Descriptive				
Location:	T	R	s	Tract	-	Location: Nor	thwest central	part of borrow are	ea	
Date		Date			Excavation (Company/				
Started:	7/6/2016	Completed	1 : 7/6/2	2016	Operator:	Canyon County	Solid Waste	/ Daniel		
Excavation			Approx	. Test		Total Depth				
Method:	Bac	khoe	Pit size	(ft.)	3 x 15	Excavated (ft.):	7.7	Logged by:	R. Phillips	
Groundwate	r Encounte	ered?	N		Approx. Depth:	NA C	Groundwater	Samples Collect	ed? NA	
REMARKS:	Depth t	to top of usa	ble material	= 0.4 f	eet. Depth to bot	tom of usable mate	erial = 2.5 feet			
Material from	2.5 to 6.8 fe	eet <i>may</i> be	usable.							

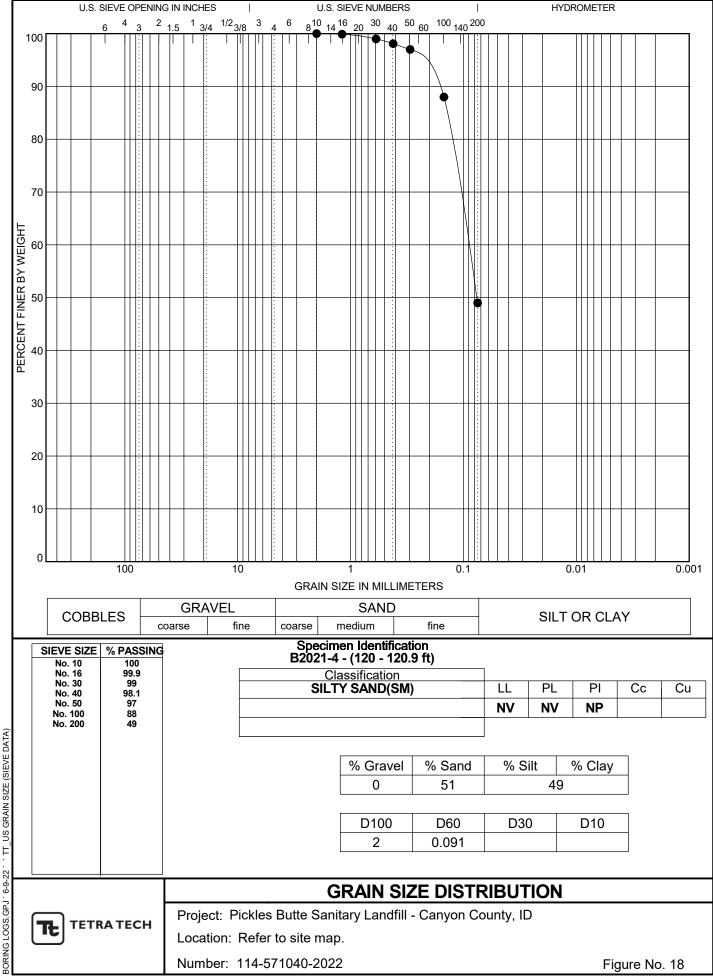

	T	ı
Depth (FT) below ground surface	LITHOLOGIC DESCRIPTION	Depth of Sample Collected (Quart bags)
0	Topsoil, organic material (roots), fine sand	
0.4	Poorly graded SAND with silt; loose, slightly moist to moist, very fine grained, brown (SP-SM)	
1.1	SILT with fine sand; stiff to very stiff, slightly moist to moist, non-plastic, scattered weakly cemented nodules, brown (ML)	
2.3	SILT; hard, slightly moist, some fine sand, cemented throughout matrix, but a scraper would not have trouble with it (ML)	
2.5	Silty SAND; medium dense, slightly moist to moist, brown (SM)	3.3 - 5
6.8	SILT with sand; hard, dry to slightly moist, strong CaCO3 cementation, very light brown (ML)	
7.7	Bottom of excavation	

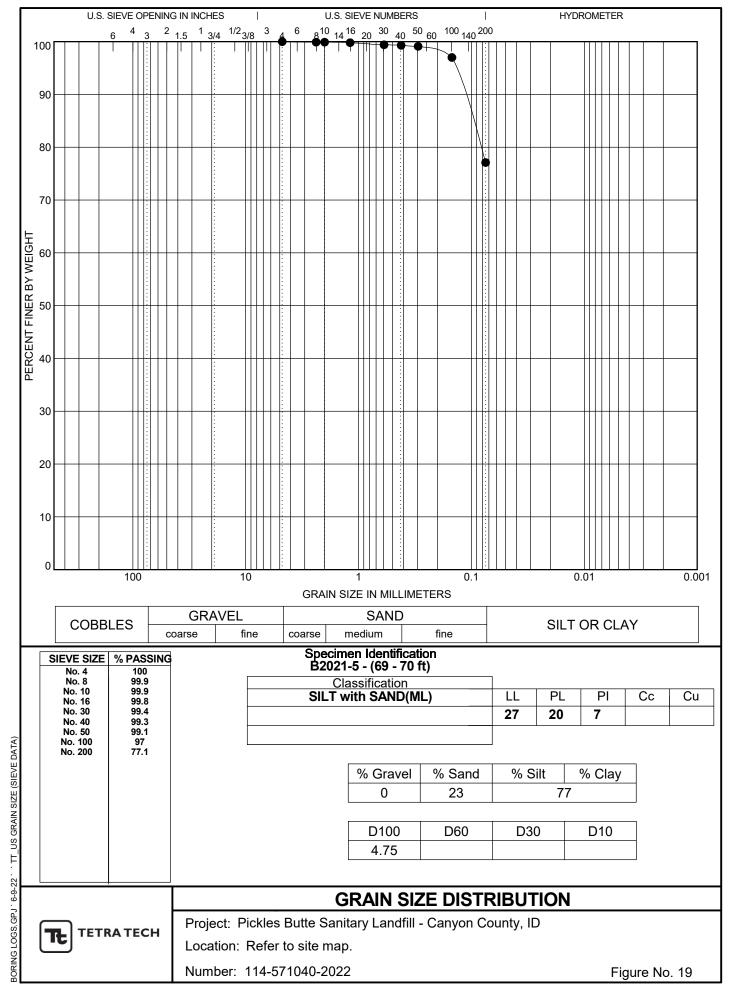


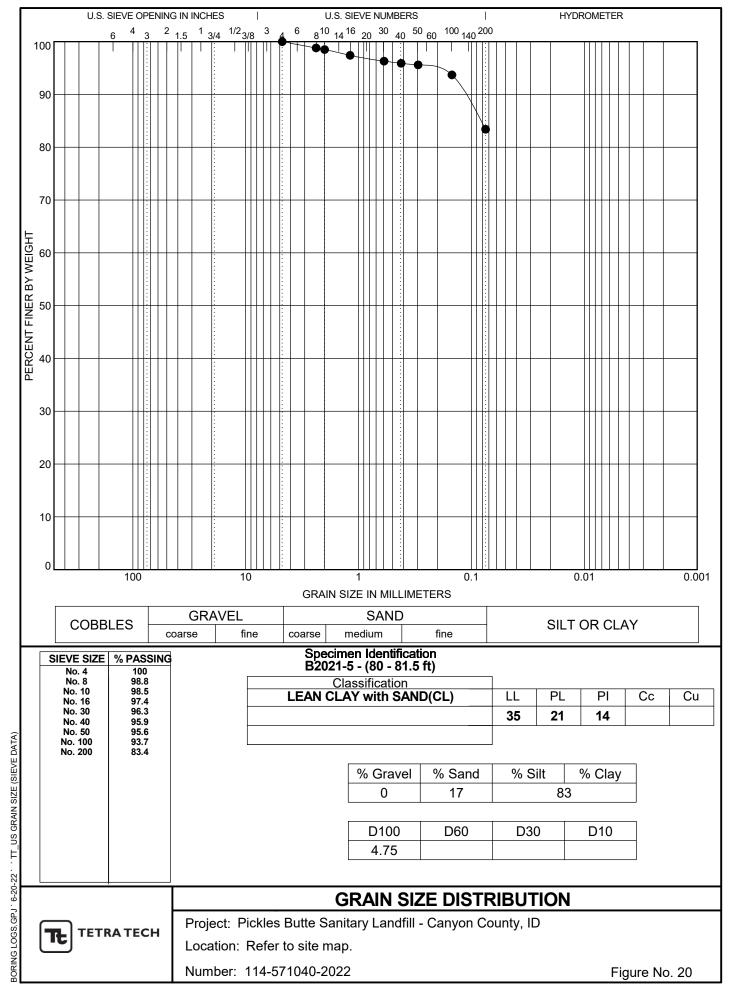


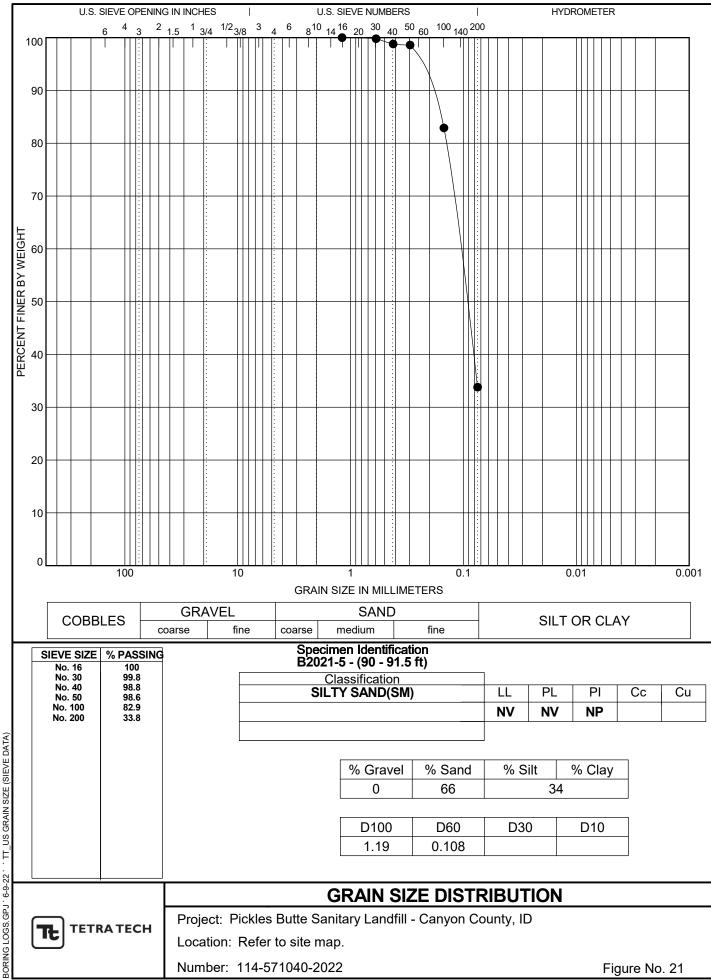


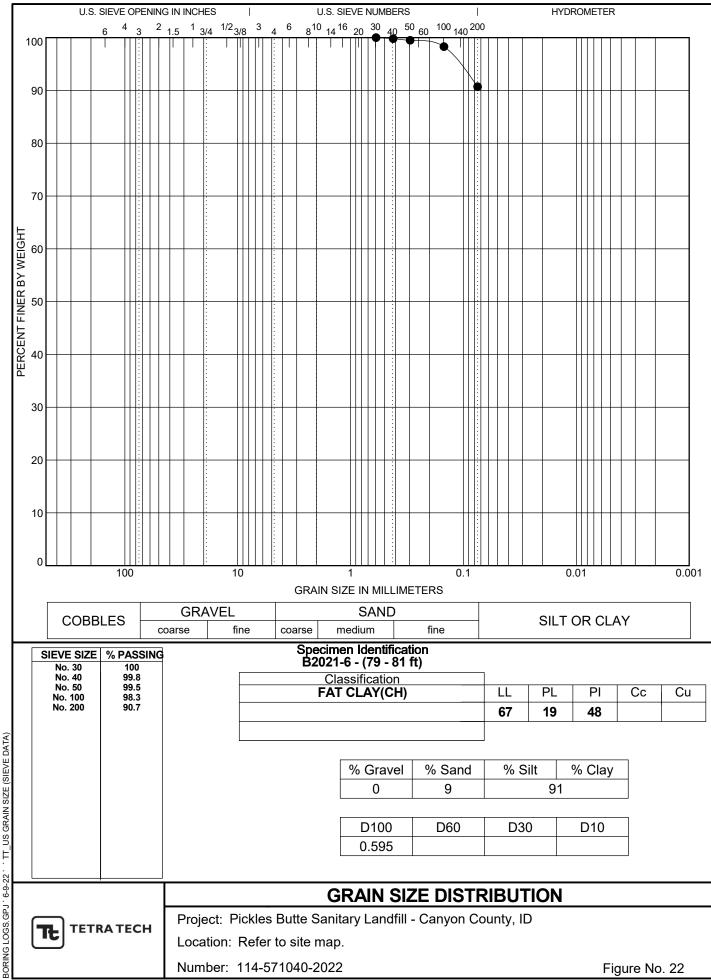


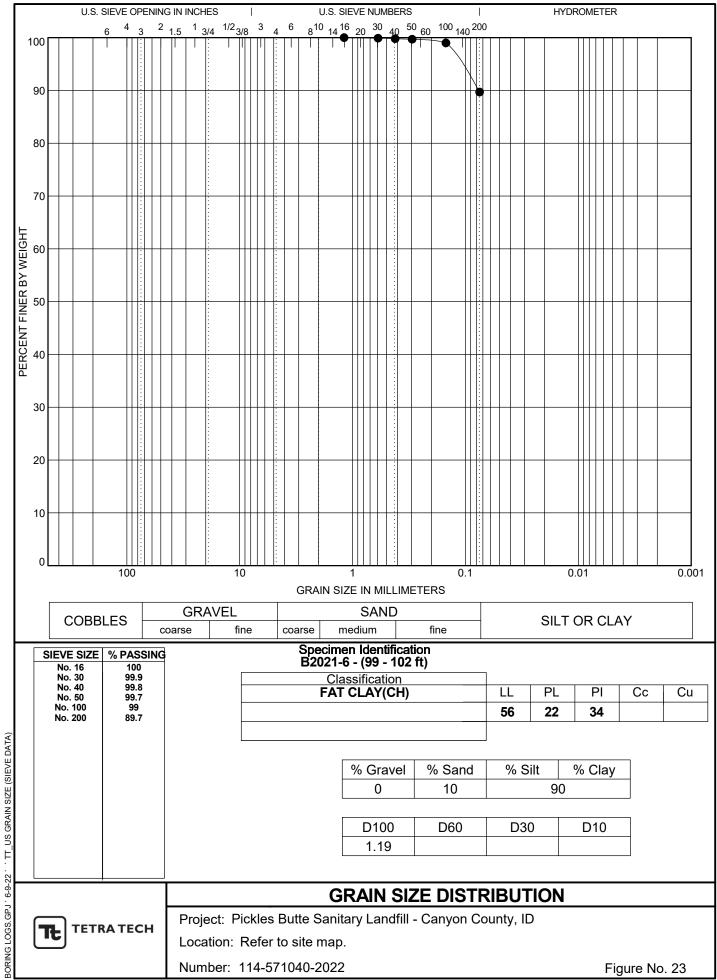


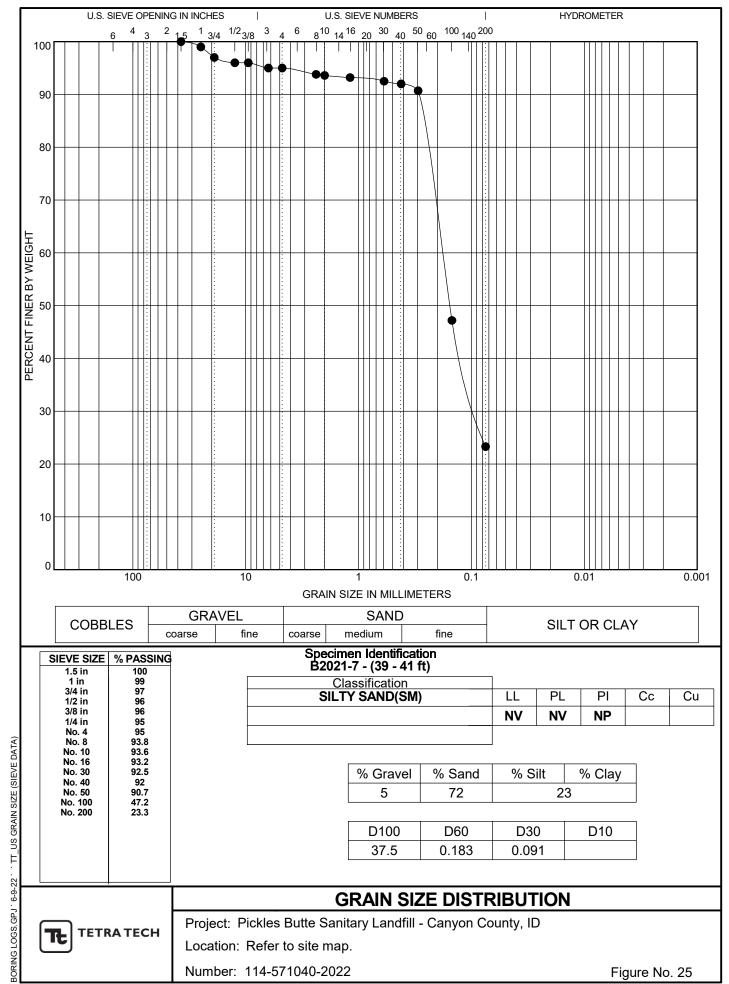


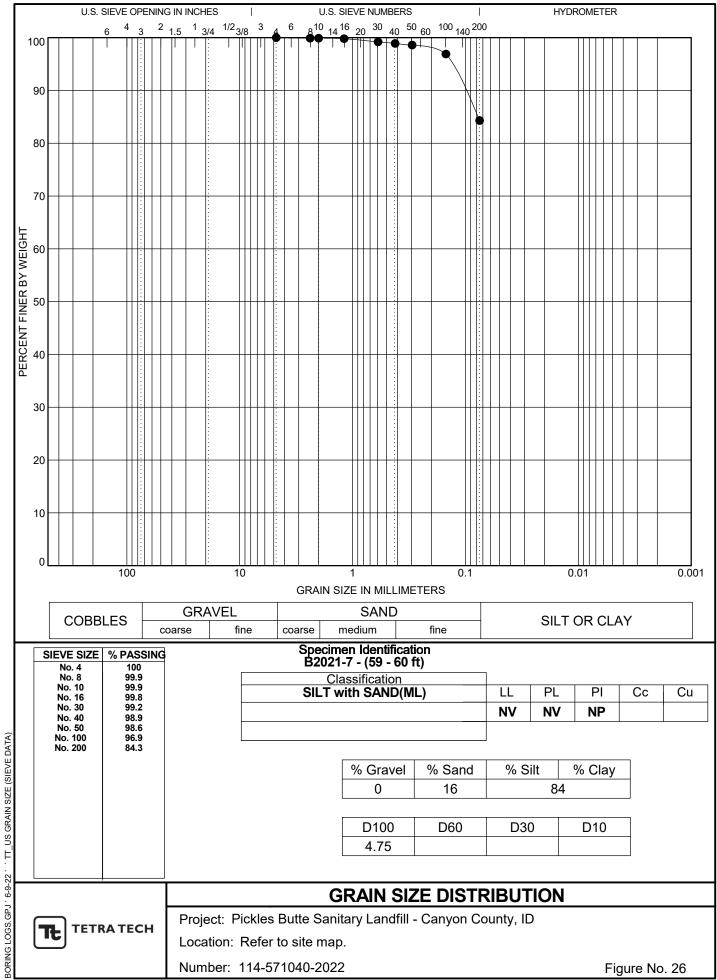


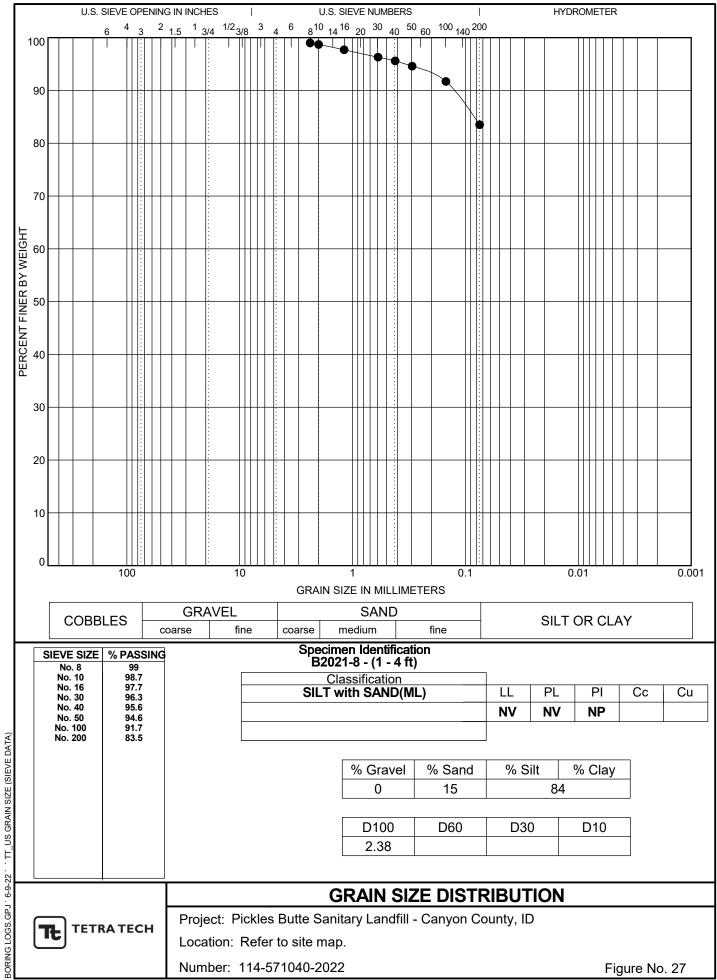


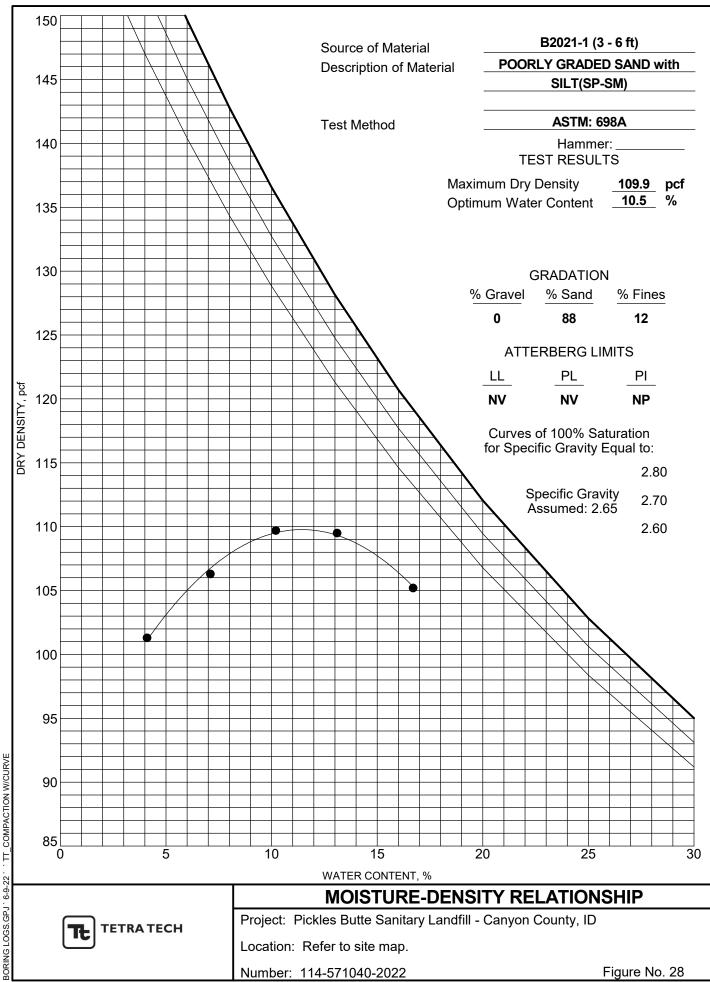


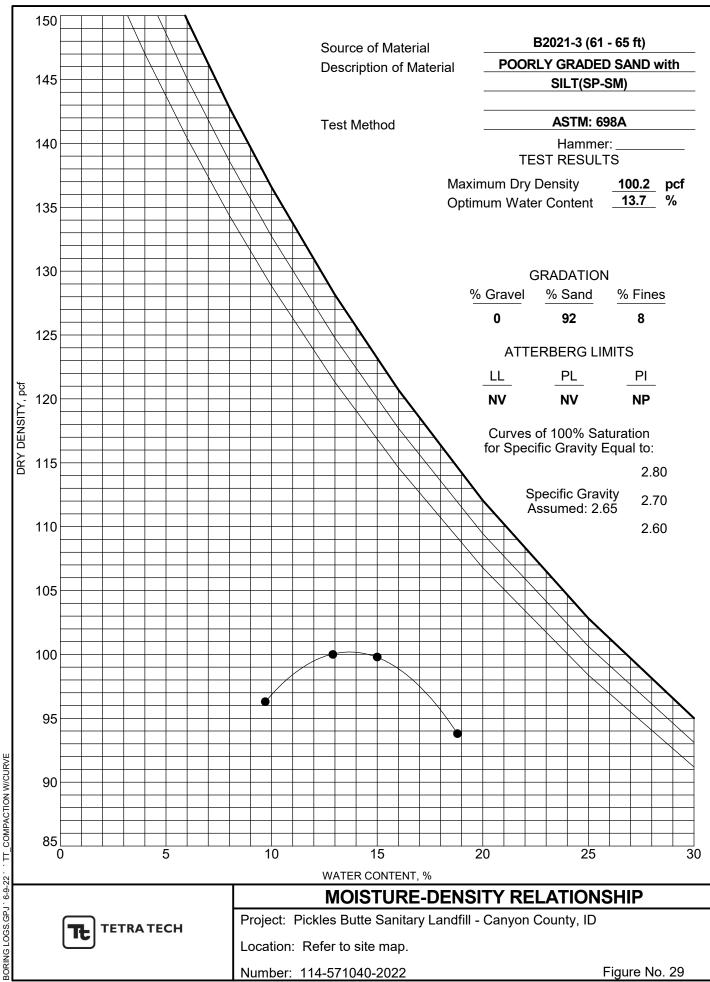


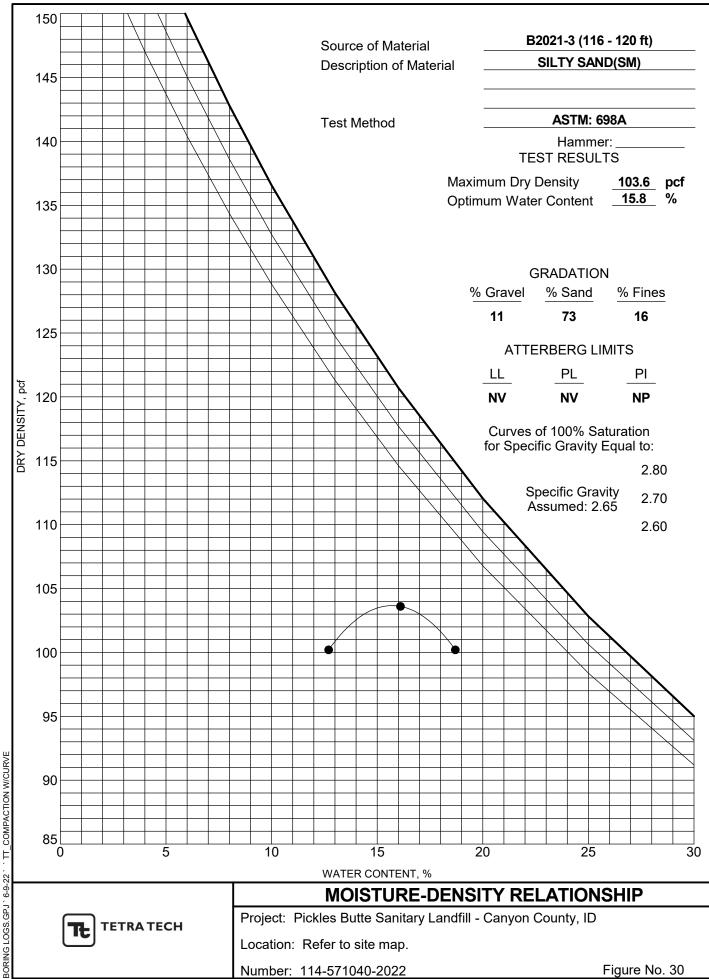


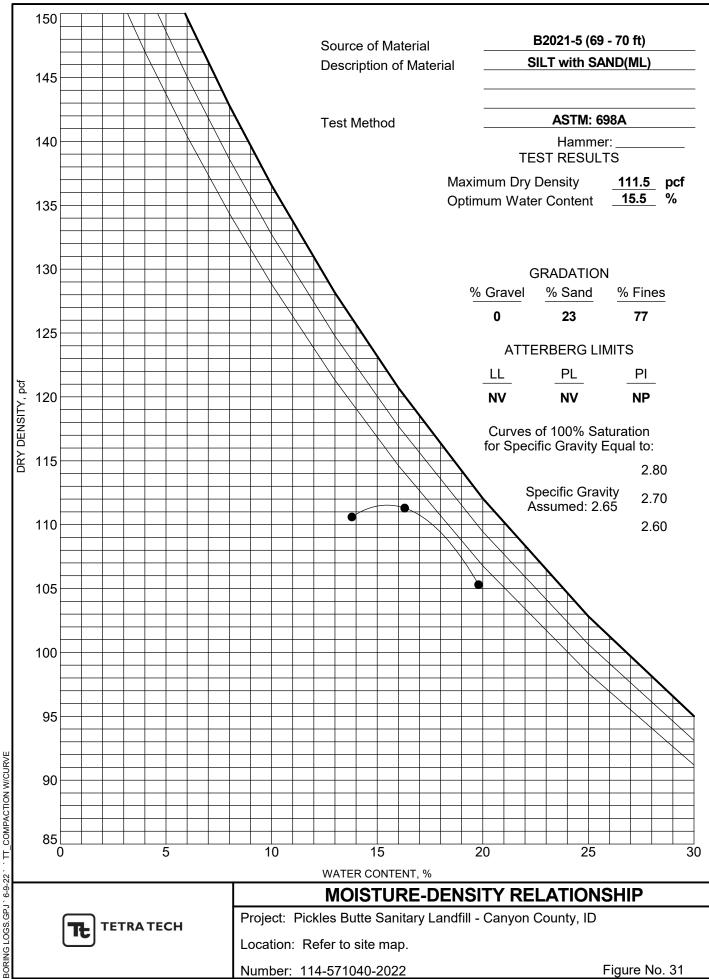


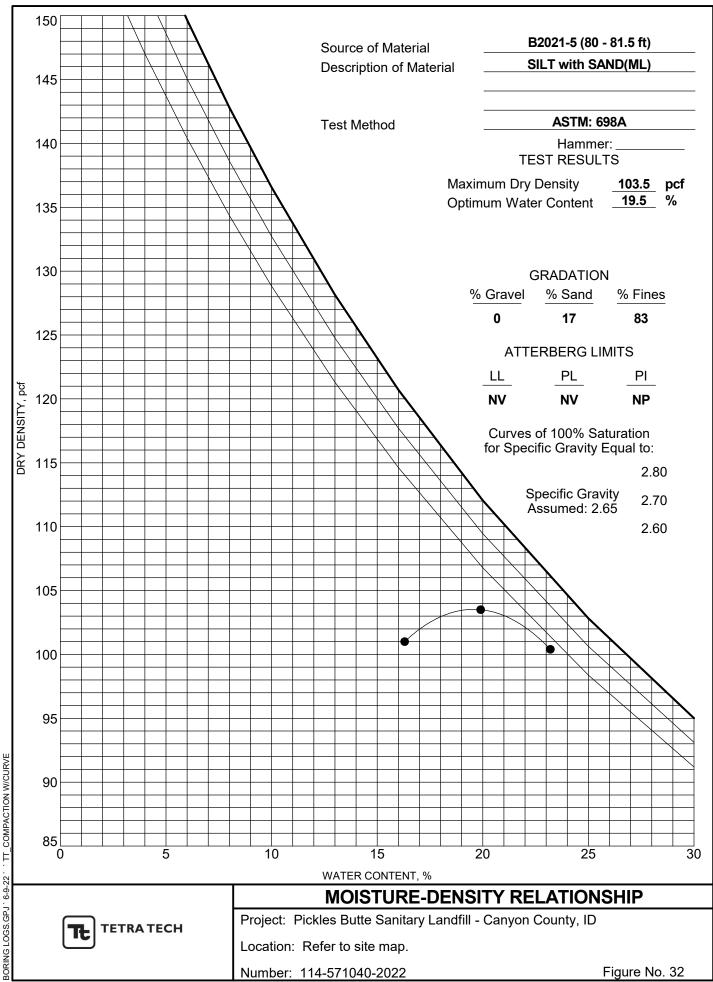


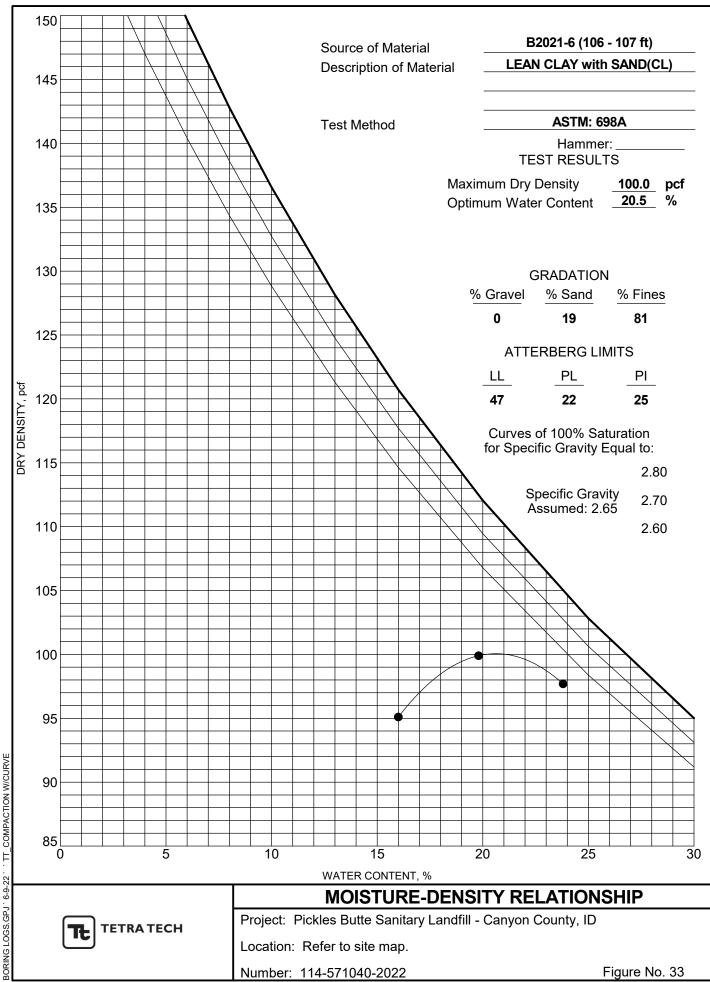


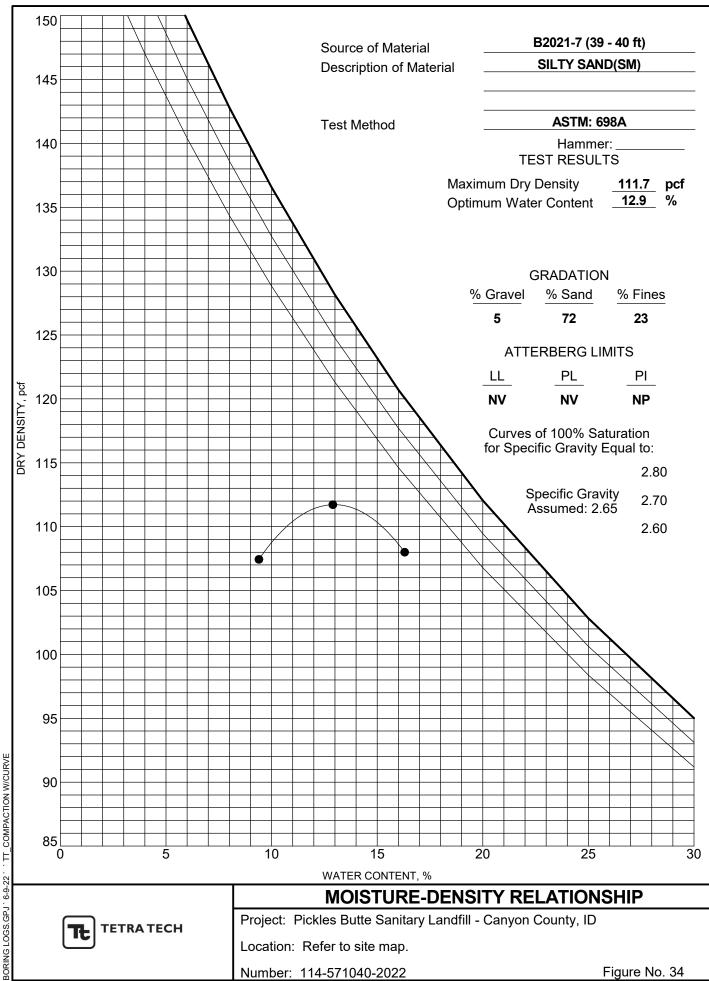


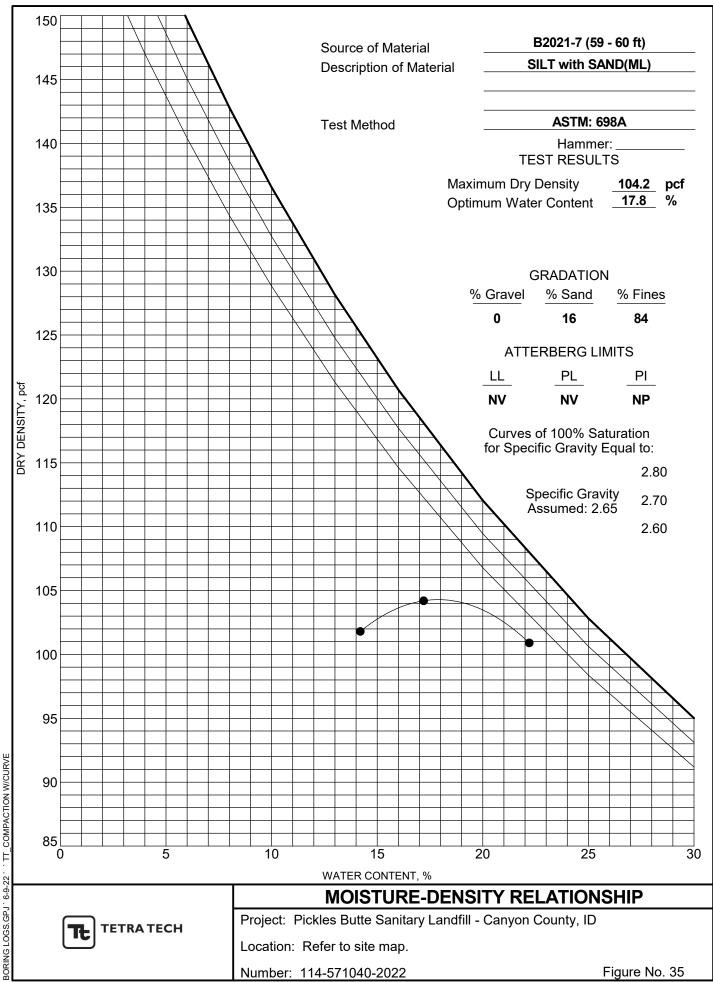


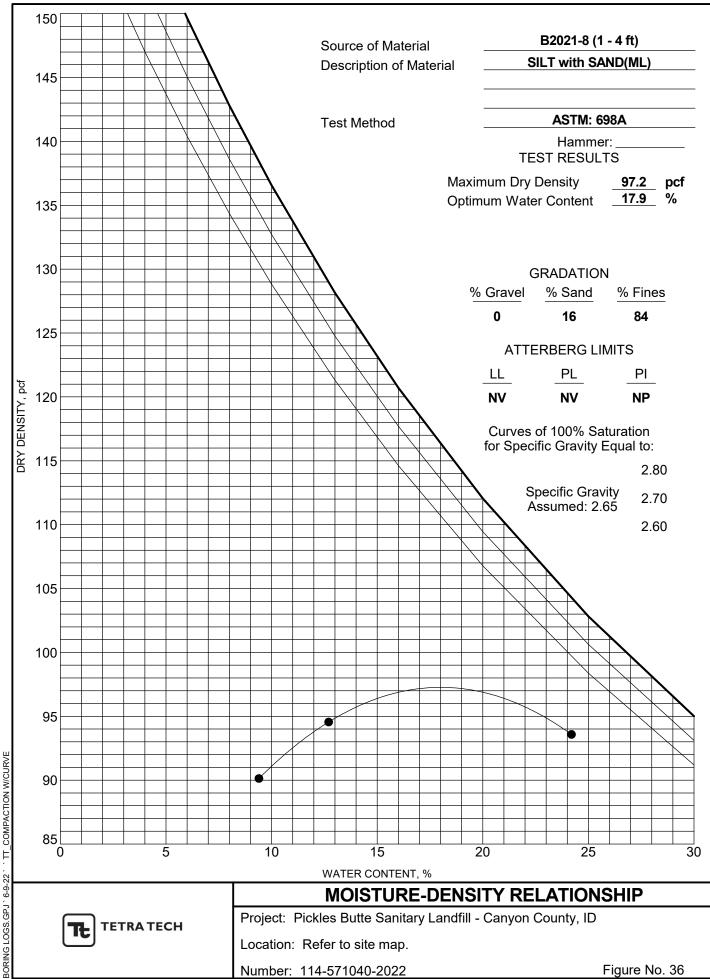


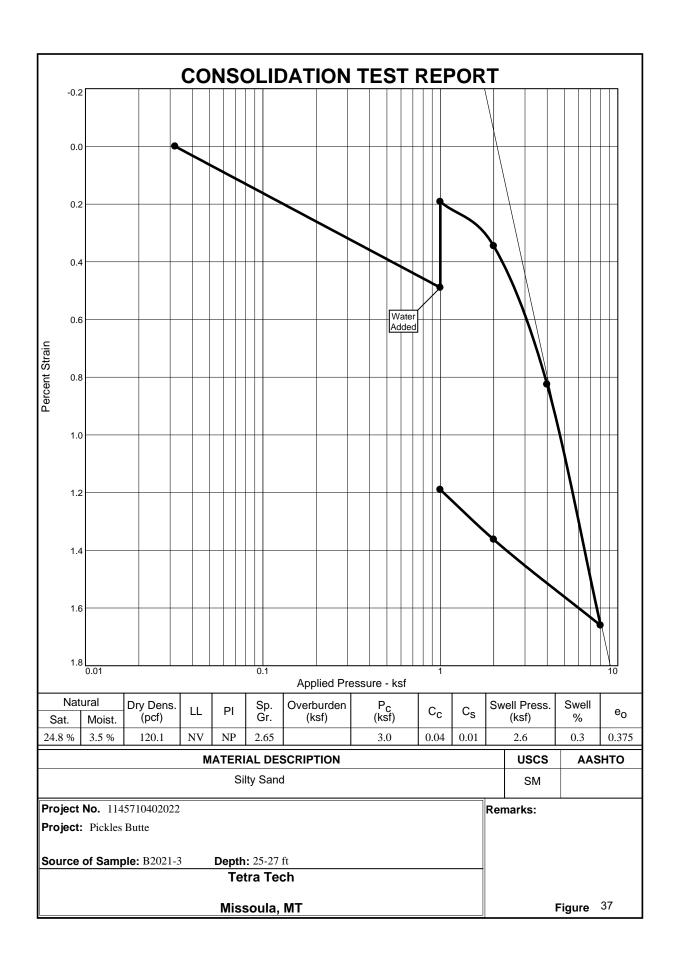


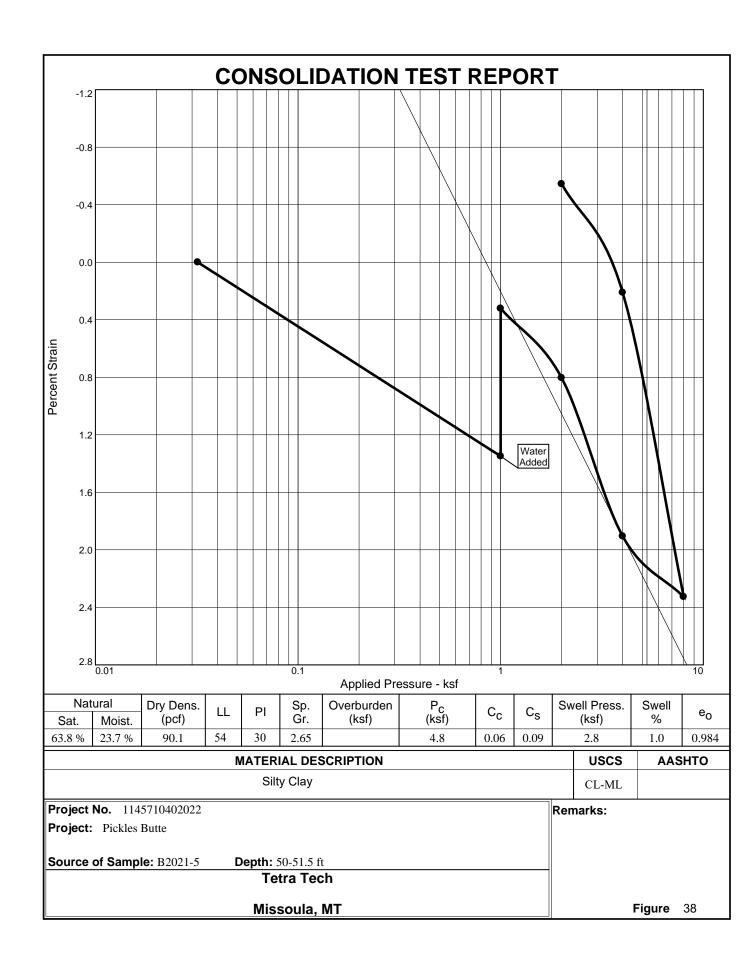


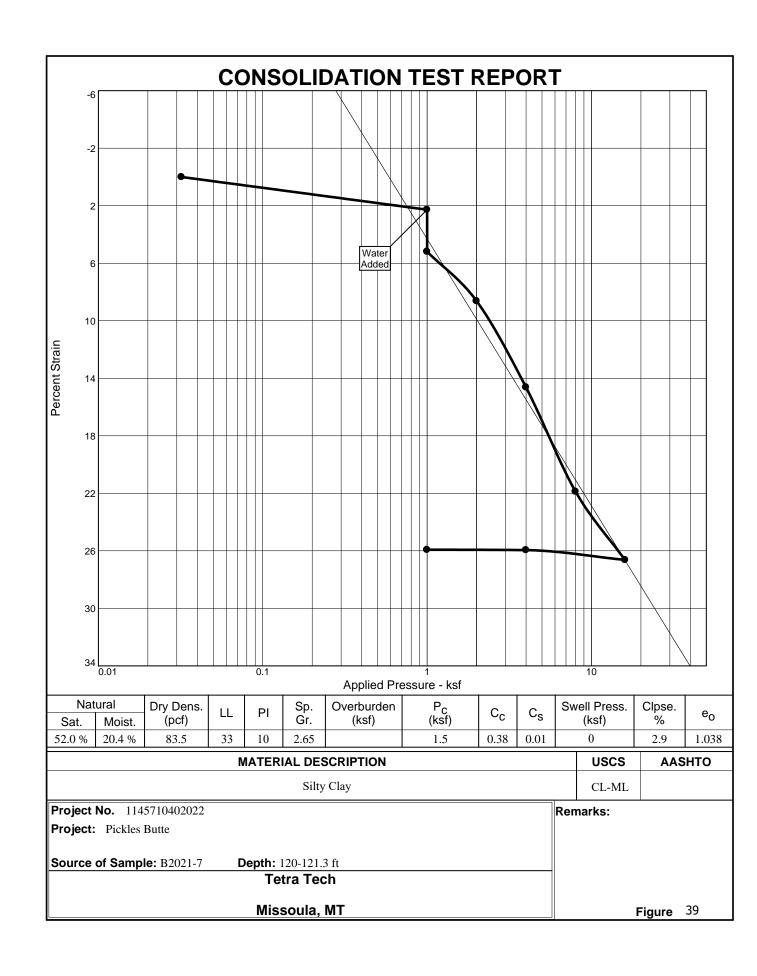


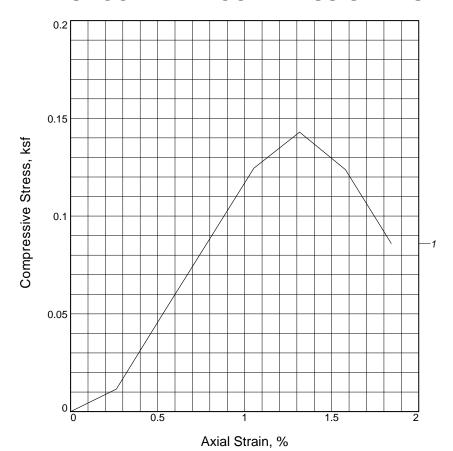












Sample No.	1	
Unconfined strength, ksf	0.143	
Undrained shear strength, ksf	0.071	
Failure strain, %	1.3	
Strain rate, in./min.	0.030	
Water content, %	8.3	
Wet density, pcf	103.1	
Dry density, pcf	95.2	
Saturation, %	29.7	
Void ratio	0.7369	
Specimen diameter, in.	2.790	
Specimen height, in.	5.700	
Height/diameter ratio	2.04	

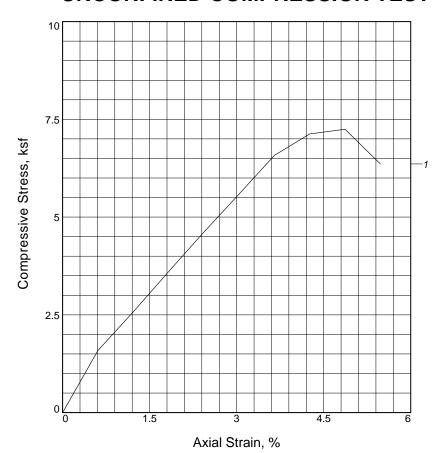
Description: bulk

LL = NV PL = NV PI = NV Assumed GS = 2.65 Type: SP

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte

Source of Sample: B2021-3

Depth: 61-65 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Sample No.	1	
Unconfined strength, ksf	7.246	
Undrained shear strength, ksf	3.623	
Failure strain, %	4.9	
Strain rate, in./min.	0.060	
Water content, %	24.0	
Wet density, pcf	119.4	
Dry density, pcf	96.3	
Saturation, %	88.5	
Void ratio	0.7184	
Specimen diameter, in.	2.450	
Specimen height, in.	4.930	
Height/diameter ratio	2.01	

Description: Special

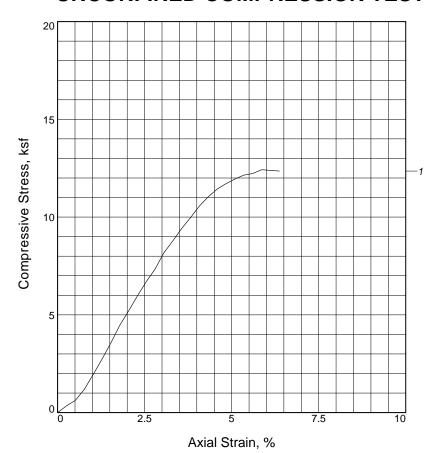
LL = N/A PL = N/A PI = N/A Assumed GS= 2.65 Type: ML

Project No.: 1145710402022

Date Sampled:

Remarks:

Project: Pickles Butte


Source of Sample: B2021-6

Depth: 57-58 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Figure __41

Sample No.	1		
Unconfined strength, ksf	12.421		
Undrained shear strength, ksf	6.211		
Failure strain, %	5.9		
Strain rate, in./min.	0.020		
Water content, %	24.6		
Wet density, pcf	124.9		
Dry density, pcf	100.2		
Saturation, %	100.3		
Void ratio	0.6508		
Specimen diameter, in.	1.918		
Specimen height, in.	3.925		
Height/diameter ratio	2.05		

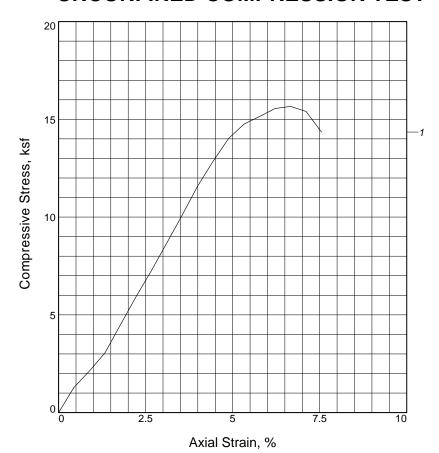
Description: Special

LL = 67 PL = 19 PI = 48 Assumed GS = 2.65 Type: CH

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte

Source of Sample: B2021-6

Depth: 79-81 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Sample No.	1		
Unconfined strength, ksf	15.661		
Undrained shear strength, ksf	7.831		
Failure strain, %	6.7		
Strain rate, in./min.	0.050		
Water content, %	22.8		
Wet density, pcf	122.8		
Dry density, pcf	100.0		
Saturation, %	92.4		
Void ratio	0.6550		
Specimen diameter, in.	2.473		
Specimen height, in.	5.629		
Height/diameter ratio	2.28		

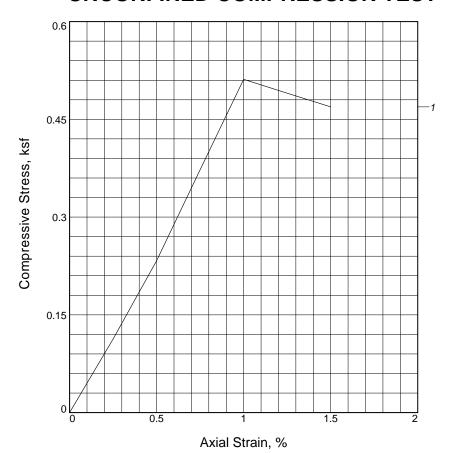
Description: Special

Project No.: 1145710402022

Date Sampled:

Remarks:

Project: Pickles Butte


Source of Sample: B2021-6

Depth: 99-102 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Figure ____43

Sample No.	1		
Unconfined strength, ksf	0.511		
Undrained shear strength, ksf	0.256		
Failure strain, %	1.0		
Strain rate, in./min.	0.030		
Water content, %	4.5		
Wet density, pcf	109.9		
Dry density, pcf	105.2		
Saturation, %	20.8		
Void ratio	0.5722		
Specimen diameter, in.	2.710		
Specimen height, in.	6.000		
Height/diameter ratio	2.21		

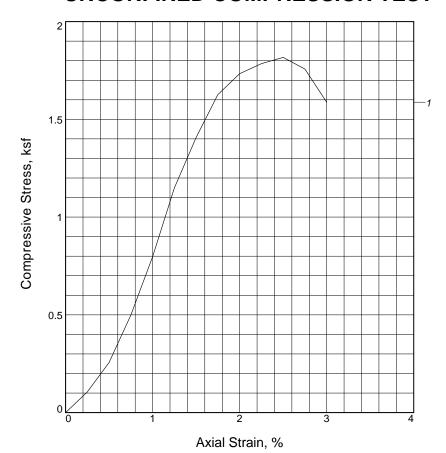
Description: grab

LL = NV PL = NV PI = NV Assumed GS = 2.65 Type: SP

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte"

Source of Sample: B2021-7

Depth: 39-40 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Sample No.	1	
Unconfined strength, ksf	1.817	
Undrained shear strength, ksf	0.908	
Failure strain, %	2.5	
Strain rate, in./min.	0.030	
Water content, %	19.9	
Wet density, pcf	112.4	
Dry density, pcf	93.8	
Saturation, %	68.9	
Void ratio	0.7646	
Specimen diameter, in.	2.800	
Specimen height, in.	6.000	
Height/diameter ratio	2.14	

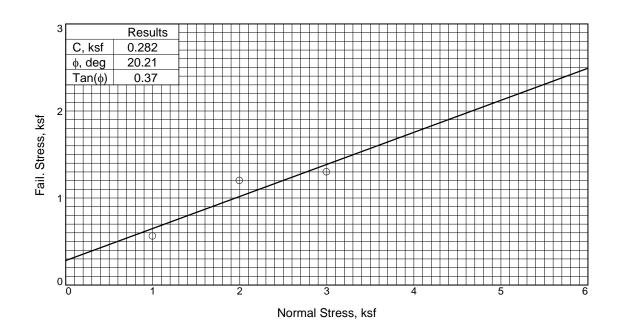
Description: grab

LL = NV PL = NV PI = NV Assumed GS = 2.65 Type: ML

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte

Source of Sample: B2021-7

Depth: 59-60 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

1.25

1.25

2

2

0.75

0.5

0.25

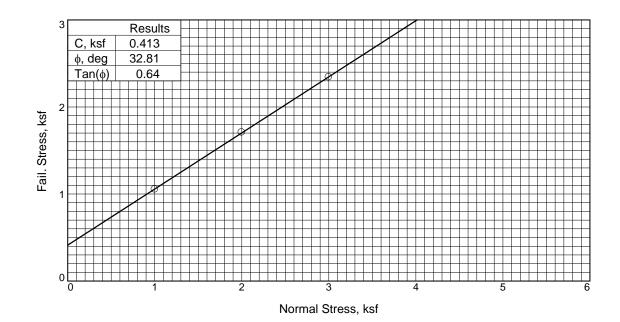
Strain, %

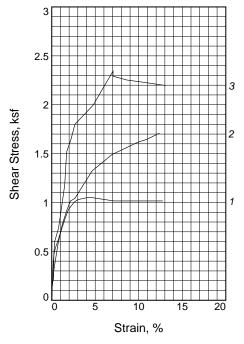
Sa	mple No.	1	2	3	
	Water Content, %	12.2	11.6	12.3	
	Dry Density, pcf	104.5	106.4	101.5	
Initial	Saturation, %	55.7	55.5	51.6	
<u>=</u>	Void Ratio	0.5829	0.5554	0.6306	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.210	1.200	1.259	
	Water Content, %	16.4	17.4	18.2	
	Dry Density, pcf	104.6	106.6	104.8	
At Test	Saturation, %	74.7	83.4	83.5	
\f	Void Ratio	0.5816	0.5524	0.5787	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.209	1.198	1.219	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fai	il. Stress, ksf	0.560	1.197	1.297	
S	train, %	2.8	2.7	7.0	
Ult	. Stress, ksf				
S	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

Sample Type: Shelby Description: Silty Sand

Assumed Specific Gravity= 2.65

Remarks: Remolded


Project: Pickles Butte


Source of Sample: B2021-3

Date Sampled:

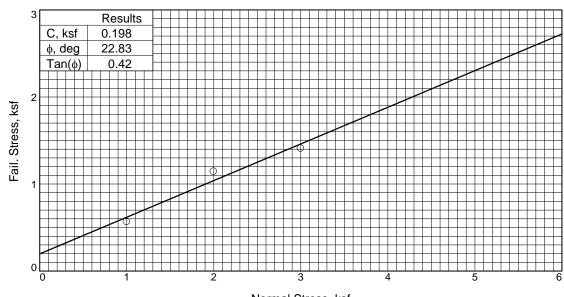
DIRECT SHEAR TEST REPORT

Tetra Tech Missoula, MT

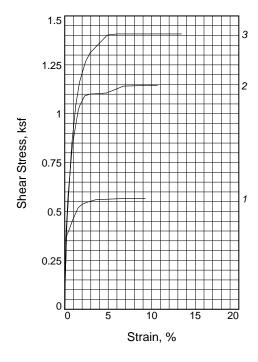
Sa	mple No.	1	2	3	
	Water Content, %	13.7	12.8	13.0	
	Dry Density, pcf	104.1	92.2	84.3	
Initial	Saturation, %	61.7	42.7	35.9	
<u>=</u>	Void Ratio	0.5892	0.7944	0.9626	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	0.934	1.068	1.240	
	Water Content, %	21.2	22.3	20.2	
	Dry Density, pcf	105.2	96.7	84.8	
At Test	Saturation, %	98.1	83.1	56.4	
¥	Void Ratio	0.5722	0.7104	0.9499	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	0.924	1.018	1.232	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fa	il. Stress, ksf	1.054	1.708	2.343	
s	train, %	4.3	12.4	7.0	
Ult	. Stress, ksf				
S	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

Sample Type: Shelby Description: Silty Sand

Assumed Specific Gravity= 2.65


Remarks: Remolded

Project: Pickles Butte


Source of Sample: B2021-3

Date Sampled:

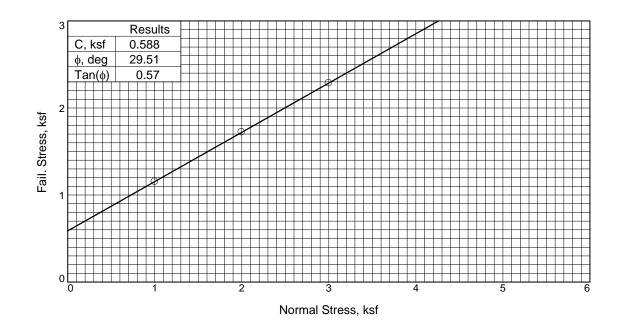
DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

mple No.	1	2	3	
Water Content, %	15.0	15.0	15.0	
Dry Density, pcf	97.7	89.6	96.1	
Saturation, %	57.4	47.0	55.1	
Void Ratio	0.6932	0.8458	0.7217	
Diameter, in.	2.500	2.500	2.500	
Height, in.	1.210	1.310	1.210	
Water Content, %	29.0	29.5	28.0	
Dry Density, pcf	97.8	89.9	96.3	
Saturation, %	111.2	93.0	103.2	
Void Ratio	0.6910	0.8400	0.7180	
Diameter, in.	2.500	2.500	2.500	
Height, in.	1.208	1.306	1.207	
rmal Stress, ksf	1.000	2.000	3.000	
il. Stress, ksf	0.566	1.144	1.408	
train, %	6.8	9.2	6.0	
. Stress, ksf				
train, %				
ain rate, in./min.	0.001	0.001	0.001	
	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in. rmal Stress, ksf train, % . Stress, ksf train, %	Water Content, % 15.0 Dry Density, pcf 97.7 Saturation, % 57.4 Void Ratio 0.6932 Diameter, in. 2.500 Height, in. 1.210 Water Content, % 29.0 Dry Density, pcf 97.8 Saturation, % 111.2 Void Ratio 0.6910 Diameter, in. 2.500 Height, in. 1.208 rmal Stress, ksf 1.000 il. Stress, ksf 0.566 train, % 6.8 . Stress, ksf 6.8	Water Content, % 15.0 15.0 Dry Density, pcf 97.7 89.6 Saturation, % 57.4 47.0 Void Ratio 0.6932 0.8458 Diameter, in. 2.500 2.500 Height, in. 1.210 1.310 Water Content, % 29.0 29.5 Dry Density, pcf 97.8 89.9 Saturation, % 111.2 93.0 Void Ratio 0.6910 0.8400 Diameter, in. 2.500 2.500 Height, in. 1.208 1.306 rmal Stress, ksf 1.000 2.000 il. Stress, ksf 0.566 1.144 train, % 6.8 9.2 Stress, ksf train, % 6.8	Water Content, % 15.0 15.0 15.0 Dry Density, pcf 97.7 89.6 96.1 Saturation, % 57.4 47.0 55.1 Void Ratio 0.6932 0.8458 0.7217 Diameter, in. 2.500 2.500 2.500 Height, in. 1.210 1.310 1.210 Water Content, % 29.0 29.5 28.0 Dry Density, pcf 97.8 89.9 96.3 Saturation, % 111.2 93.0 103.2 Void Ratio 0.6910 0.8400 0.7180 Diameter, in. 2.500 2.500 2.500 Height, in. 1.208 1.306 1.207 rmal Stress, ksf 1.000 2.000 3.000 il. Stress, ksf 0.566 1.144 1.408 train, % 6.8 9.2 6.0 Stress, ksf train, % 6.8 9.2 6.0

Sample Type: MC **Description:** Silty Sand

LL= NV PI= NP Assumed Specific Gravity= 2.65


Remarks:

Project: Pickles Butte

Source of Sample: B2021-4

Date Sampled:

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

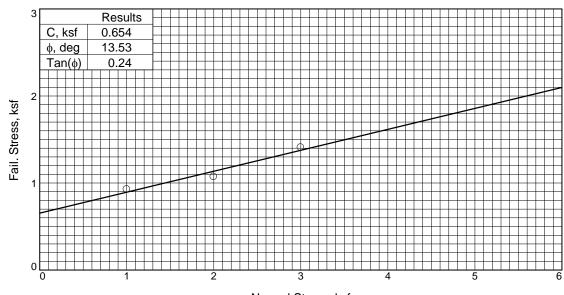
Strain, %

Sa	mple No.	1	2	3	
	Water Content, %	6.9	6.2	6.2	
	Dry Density, pcf	89.6	94.1	95.0	
Initial	Saturation, %	21.8	21.8	22.3	
<u>=</u>	Void Ratio	0.8457	0.7582	0.7415	
	Diameter, in.	2.400	2.400	2.410	
	Height, in.	1.150	1.138	1.122	
	Water Content, %	28.7	27.7	25.8	
	Dry Density, pcf	90.0	96.2	100.9	
Test	Saturation, %	90.8	101.9	107.0	
ΑŦ	Void Ratio	0.8377	0.7195	0.6390	
	Diameter, in.	2.400	2.400	2.410	
	Height, in.	1.145	1.113	1.056	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fai	il. Stress, ksf	1.153	1.723	2.285	
S	train, %	2.6	12.8	9.9	
Ult	. Stress, ksf				
S	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

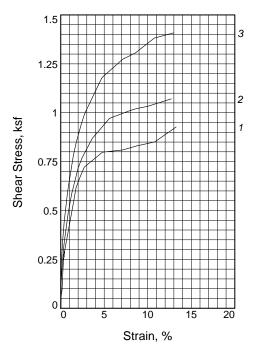
Sample Type: MC
Description: Silty Sand

Assumed Specific Gravity= 2.65

Remarks: Remolded


Project: Pickles Butte

Source of Sample: B2021-4


Date Sampled:

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

Figure ____49

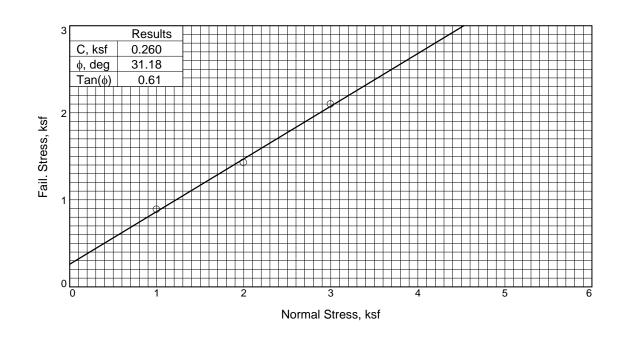
Normal Stress, ksf

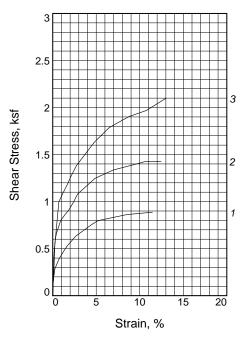
Sa	mple No.	1	2	3	
	Water Content, %	11.3	11.3	11.2	
	Dry Density, pcf	99.2	98.3	98.8	
Initial	Saturation, %	44.6	43.7	43.8	
'Ξ	Void Ratio	0.6682	0.6829	0.6750	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.200	1.190	1.206	
	Water Content, %	27.5	25.7	27.1	
l.,	Dry Density, pcf	101.9	102.9	102.0	
At Test	Saturation, %	117.0	112.1	115.6	
₹	Void Ratio	0.6233	0.6075	0.6217	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.168	1.137	1.168	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fa	il. Stress, ksf	0.927	1.071	1.408	
s	train, %	13.3	12.7	13.0	
Ult	. Stress, ksf				
S	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

Sample Type: MC

Description: Lean Clay With Sand

Assumed Specific Gravity= 2.65


Remarks: Remolded


Project: Pickles Butte

Source of Sample: B2021-5

Date Sampled:

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

Sa	mple No.	1	2	3	
	Water Content, %	18.0	18.2	18.3	
	Dry Density, pcf	80.6	84.6	78.3	
Initial	Saturation, %	45.3	50.4	43.7	
<u>=</u>	Void Ratio	1.0522	0.9546	1.1118	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	1.240	1.190	1.250	
	Water Content, %	25.0	24.1	24.1	
١	Dry Density, pcf	82.7	87.5	82.3	
At Test	Saturation, %	66.2	71.7	63.1	
A	Void Ratio	1.0009	0.8905	1.0104	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	1.209	1.151	1.190	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fai	il. Stress, ksf	0.887	1.426	2.098	
S	train, %	11.5	10.6	13.0	
Ult	. Stress, ksf				
S	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

Sample Type: MC
Description: Silty Sand

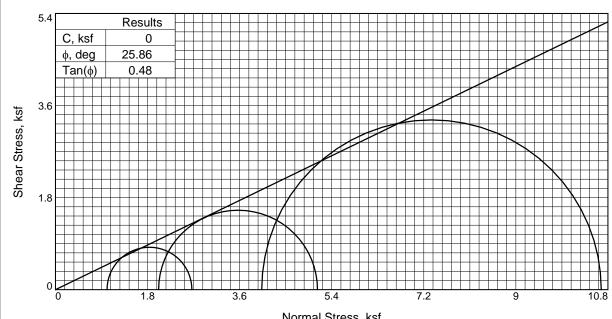
Assumed Specific Gravity= 2.65

Remarks: Remolded

Proj. No.: 1145710402022

Project: Pickles Butte

Source of Sample: B2021-5


Depth: 90-91.5 ft

Date Sampled:

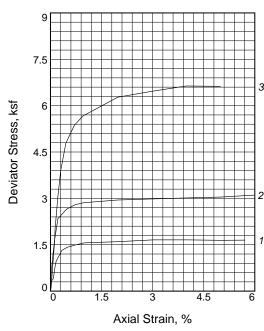

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

Figure ___51

Tested By: DB Checked By: LP

Normal Stress, ksf

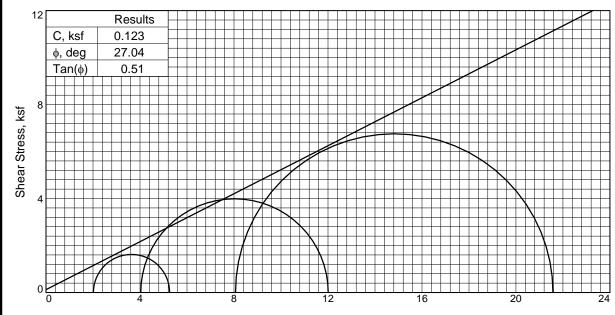
	Sa	mple No.	1	2	3	
3	Initial	Water Content, % Dry Density, pcf	5.0 100.9			
		Saturation, % Void Ratio Diameter, in.	20.7 0.6394 2.803	0.6394	0.6394	
		Height, in.	6.001			
2	At Test	Water Content, % Dry Density, pcf Saturation, %	22.7 101.4 95.4	102.9	104.6	
		Void Ratio Diameter, in. Height, in.	0.6312 2.803 5.972	0.6074 2.869	0.5820 2.945	
,	Strain rate, in./min.		0.001	0.001	0.001	
,	Back Pressure, psi		85.000	85.000	85.000	
	Cell Pressure, psi		92.000	99.000	113.000	
	Fail. Stress, ksf		1.66	3.11	6.64	
	Ult. Stress, ksf					
	σ ₁ Failure, ksf		2.67	5.12	10.67	
	σ_3	Failure, ksf	1.01	2.02	4.03	

Type of Test:

Consolidated Undrained **Description:** Silty Sand

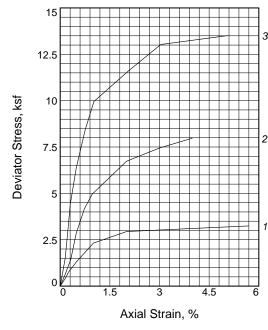
Assumed Specific Gravity=

2.65 **Remarks**:


Project: Pickles Butte

Source of Sample: B2021-3

Proj. No.: 1145710402022 **Depth:** 25-27 ft


Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

Sample No.

Dry Density, Saturation, % Void Ratio Diameter, in.			100.4	
Diameter, in.	20.5			
Diameter, in.	20.3	20.5	20.5	
	0.6481	0.6481	0.6481	
	2.801	2.801	2.801	
Height, in.	6.001	6.001	6.001	
Water Conte	nt, % 23.2	22.3	20.9	
Dry Density	pcf 100.7	102.2	104.5	
Saturation, % Void Ratio	95.5	95.3	95.0	
→ Void Ratio	0.6431	0.6195	0.5836	
Diameter, in.	2.800	2.865		
Height, in.	5.986	5.638	5.397	
Strain rate, in./m	in. 0.001	0.001	0.001	
Back Pressure, p	103.000	103.000	103.000	
Cell Pressure, ps	i 117.000	131.000	159.000	
Fail. Stress, ksf	3.24	7.98	13.51	
Ult. Stress, ksf				
σ ₁ Failure, ksf	5.26	12.01	21.57	
σ ₃ Failure, ksf	2.02	4.03	8.06	

1

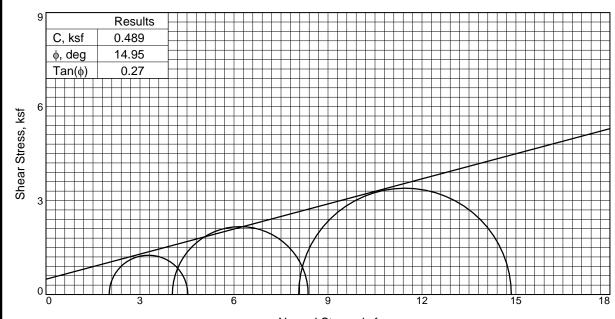
2

3

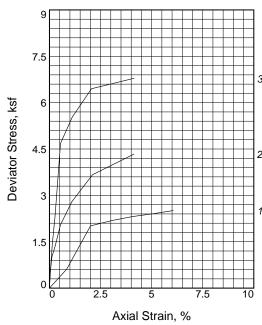
Type of Test:

Consolidated Undrained

Description: Poorly Graded Sand with Silt


Assumed Specific Gravity= 2.65 **Remarks:**

Source of Sample: B2021-4


Project: Pickles Butte

Date Sampled:

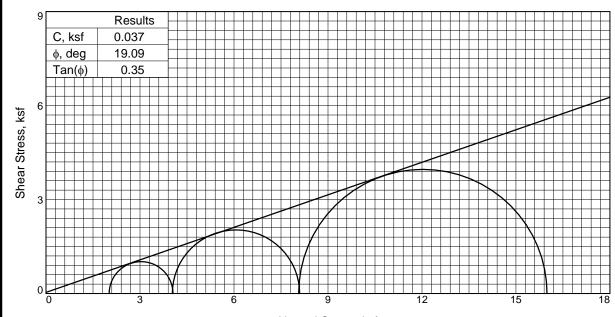
TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

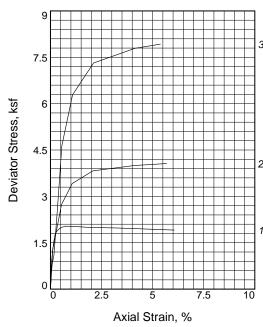
	Sa	mple No.	1	2	3	
		Water Content, %	23.0	23.0	23.0	
		Dry Density, pcf	90.1	90.1	90.1	
3	<u>a</u>	Saturation, %	73.0	73.0	73.0	
3	Initia	Void Ratio	0.8354	0.8354	0.8354	
		Diameter, in.	2.800	2.800	2.800	
		Height, in.	6.030	6.030	6.030	
		Water Content, %	27.4	23.7	21.3	
2	پ	Dry Density, pcf	95.2	100.9	104.9	
	At Test	Saturation, %	98.4	98.2	98.0	
	<u>_</u>	Void Ratio	0.7372	0.6404	0.5770	
	4	Diameter, in.	2.747	2.776	2.793	
1		Height, in.	5.930	5.481	5.206	
	Str	ain rate, in./min.	0.001	0.001	0.001	
	Ва	ck Pressure, psi	63.000	63.000	63.000	
	Се	Il Pressure, psi	77.000	91.000	119.000	
	Fai	il. Stress, ksf	2.51	4.34	6.79	
	Ult	. Stress, ksf				
	σ ₁	Failure, ksf	4.52	8.37	14.85	
	σ_3	Failure, ksf	2.02	4.03	8.06	

Type of Test:

Consolidated Undrained **Description:** Silty Clay


Assumed Specific Gravity= 2.65 **Remarks:**

Source of Sample: B2021-5


Project: Pickles Butte

Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

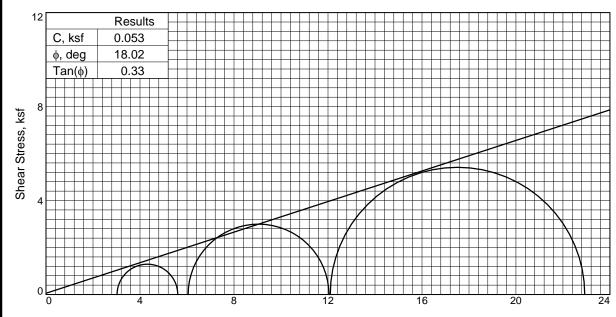
	Sa	mple No.	1	2	3	
3		Water Content, % Dry Density, pcf	16.2 101.9	16.2 101.9		
	Initial	Saturation, %	69.1	69.1		
	ī	Void Ratio	0.6231	0.6231	0.6231	
		Diameter, in.	2.790	2.790	2.790	
		Height, in.	6.000	6.000	6.000	
		Water Content, %	22.2	21.2	19.2	
	يد	Dry Density, pcf	102.4	104.1	107.8	
2	At Test	Saturation, %	95.7	95.5	95.0	
	Ι.Τ.	Void Ratio	0.6160	0.5892	0.5344	
	1	Diameter, in.	2.800	2.873	2.924	
		Height, in.	5.930	5.541	5.164	
1	Str	ain rate, in./min.	0.001	0.001	0.001	
	Ba	ck Pressure, psi	53.000	53.000	53.000	
	Се	ll Pressure, psi	67.000	81.000	109.000	
	Fai	il. Stress, ksf	2.03	4.06	7.93	
	Ult	. Stress, ksf				
	σ ₁	Failure, ksf	4.05	8.09	15.99	
	σ_3	Failure, ksf	2.02	4.03	8.06	

Type of Test:

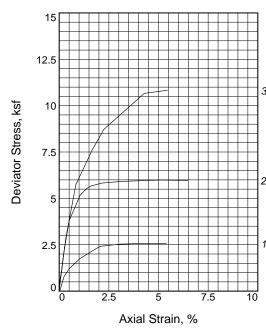
Consolidated Undrained

Description: Silt

Assumed Specific Gravity= 2.65


Remarks:

Project: Pickles Butte


Source of Sample: B2021-5

Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

	Sa	mple No.	1	2	3	
		Water Content, %	18.1			
	-	Dry Density, pcf	85.7			
_	Initial	Saturation, %	51.4			
3	_	Void Ratio	0.9314			
		Diameter, in.	2.801			
		Height, in.	6.020	6.020	6.020	
		Water Content, %	24.5	24.5	24.5	
	, t	Dry Density, pcf	98.3	98.3	98.3	
	At Test	Saturation, %	95.0	95.0	95.0	
2	۸t -	Void Ratio	0.6826	0.6826	0.6826	
	`	Diameter, in.	2.618	2.694	2.795	
		Height, in.	6.004	5.670	5.268	
1	Str	ain rate, in./min.	0.001	0.001	0.001	
,	Ва	ck Pressure, psi	65.000	65.000	65.000	
	Се	Il Pressure, psi	86.000	107.000	149.000	
	Fai	I. Stress, ksf	2.58	5.99	10.83	
	Ult	. Stress, ksf				
	σ ₁	Failure, ksf	5.61	12.04	22.93	
	σ_3	Failure, ksf	3.02	6.05	12.10	

Type of Test:

Consolidated Undrained

Description: Clay

Assumed Specific Gravity= 2.65

Remarks:

Project: Pickles Butte

Source of Sample: B2021-7

Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

PAGE 1 OF 8

L	PROJEC	T NUMBER	114-571040	-2022										PF	ROJEC	CT NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	<u>, ID</u>	
NG LUGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	0 - 1.5																				
185	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	2 - 3.5										9										
٦٦	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	-		NV	NP		99.6	83.1	11.6	110	109.9		10.5									
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	4 - 5.5																				
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	6 - 7.5										8										
3 - -	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	8 - 9.5																				
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	10 - 11.5										6										
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	15 - 16.5										5										
2	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	20 - 21.5																				
2022	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	25 - 27		NV	NP		99.9	94.7	6.2	113								0.03				
<u>₹</u> [B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	27 - 28.5																				
N/KE	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	30 - 31.5																				
3	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	0 - 1.5										7										
Ä	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	2 - 3.5																				
	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	4 - 5.5										3										
	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	6 - 7.5																				
ź	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	8 - 9.5										3										
12:0	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	10 - 11.5																				
73/57	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	15 - 16.5										5										
-	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	20 - 21										3										
3	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	25 - 26.5																				
MAK	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	30 - 31.5																				
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	5 - 6.5																				
] P	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	10 - 11.5																				
-[B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	15 - 16.5																				
JAK	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	20 - 21.5										3										
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	25 - 27		NV	NP		99.8	97.7	31.3					25.86	0			0.04				
LAB.	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	26 - 30																				

PAGE 2 OF 8

L	PROJEC	T NUMBER	114-571040	-2022			-							PF	ROJEC	T NA	ME _F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	<u>, ID</u>	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
S S	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	27 - 28.5																				
GS/E	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	30 - 31.5										3										
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	35 - 36.5																				
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	40 - 41.5																				
NDF	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	45 - 46.5																				
<u>~</u> [B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	50 - 51.5										3										
BOL	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	60 - 62		NV	NP		99.4	97.9	19.2					20.21	0.282							
(LES	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	61 - 65		NV	NP		99.6	99.1	7.7	100	100.2		13.7			0.143						
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	70 - 71.5																				
2022	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	80 - 82		NV	NP		99.8	99.1	23.6					32.81	0.413							
Š	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	82 - 83.5										2										
SIRE	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	90 - 91.5																				
ORT THE	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	100 - 100.2																				
IREP	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	101 - 107																				
힏	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	110 - 110.7																				
GEO	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	112 - 115																				
ź	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	116 - 120		NV	NP		86.4	81.7	16.1	104	103.6		15.75									
12:00	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	121 - 121.8										4										
29/22	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	135 - 138																				
-	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	139 - 142																				
9	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	140 - 141.5																				
MAR	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	147 - 151																				
MUS [B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	150 - 151.5																				
-LAB	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	159 - 161																				
Ė[B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	160 - 161.5																				
MAR	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	5 - 6.5										6										
SUMI	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	9 - 10																				
ΙΆΒ	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	10 - 11.5																				

PAGE 3 OF 8

L	PROJEC	T NUMBER	114-571040	-2022										PF	ROJEC	T NA	ME _P	Pickles	Butte	Sanitary	Landfill -	Cany	on C	county	<u>, ID</u>	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	Н	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
Š	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	15 - 16.5																				
185	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	20 - 21.5										5										
9 E	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	25 - 26.5																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	30 - 31.5																				
Ä	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	35 - 36.5										8										
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	40 - 41.5																				
2	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	44 - 45																				
(LES	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	45 - 46.5										16										
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	50 - 51.5		NV	NP		100	91.9	6.3					27.04	0.123							
2022	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	51 - 52																				
칡	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	60 - 61.5										2										
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	69 - 70																				
8	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	70 - 71.5																				
취	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	79 - 80																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	80 - 81.5																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	89 - 90																				
ź[B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	90 - 91.5		NV	NP		99	96	38.4					22.83	0.198							
12:0	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	98 - 99																				
22/67	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	99 - 100.5										22										
-	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	109 - 110																				
3	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	110 - 111.5																				
MAK	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	119 - 120																				
SON SON	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	120 - 120.9		NV	NP		100	98.1	49					29.51	0.588							
LAB	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	129 - 130																				
_[B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	130 - 131.5																				
]¥ J¥	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	139 - 140																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	140 - 141.5										2										
YAB.	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	149 - 150																				

PAGE 4 OF 8

L	PROJEC	T NUMBER	114-571040	-2022										PF	ROJEC	T NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	<u>, ID</u>	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
2	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	150 - 150.9																				
200	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	157 - 159																				
낅	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	160 - 160.9																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	169 - 170																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	170 - 170.8																				
<u>₹</u>	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	175 - 177																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	179 - 180																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	189 - 190																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	5 - 6.5										4										
707	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	9 - 10																				
5	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	10 - 11.5																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	15 - 16.5										3										
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	19 - 20																				
취	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	20 - 21.5																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	27 - 28																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	30 - 31.5																				
ź[B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	35 - 36.5										4										
] 	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	39 - 40																				
77/63	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	40 - 41																				
-	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	45 - 46.5																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	49 - 50																				
MAR	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	50 - 51.5		54	30									14.95	0.489			0.06				
202	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	59 - 60																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	60 - 60.6										4										
<u>-</u> [B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	69 - 70		NV	NP		99.9	99.3	77.1	112	111.5		15.5	19.09	0.037	· ·						
AR AR	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	70 - 71.5										29										
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	79 - 80																				
Ϋ́E	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	80 - 81.5		35	14	0.000	98.5	95.9	83.4	104	103.5	21	19.5	31.18	0.26							

PAGE 5 OF 8

PROJEC	T NUMBER	114-571040	-2022										P	ROJE	CT NA	ME _F	ickles	Butte	Sanitary	Landfill -	Can	yon C	ounty.	<u>, ID</u>	
Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	Hd	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	89 - 90	,	, ,																		
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	90 - 90.8		NV	NP			98.8	33.8					13.53	0.654							
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	99 - 100										11										
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	100 - 101.3																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	109 - 110																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	110 - 110.6																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	119 - 120																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	120 - 121.5																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	126 - 127																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	130 - 131.4																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	139 - 140																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	140 - 140.9																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	149 - 150																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	150 - 151.4																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	159 - 160																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	160 - 160.6																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	169 - 170																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	170 - 171.5																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	174 - 175																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	179 - 180																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	189 - 190																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	199 - 200																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	204 - 205																				
B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	209 - 210																			<u> </u>	
B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	5 - 6.5																				
B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	9 - 11																				
B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	10 - 11.5										6									<u> </u>	
B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	20 - 21.5																				

PAGE 6 OF 8

	PROJEC.	T NUMBER	114-571040	-2022										PI	ROJE	CT NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	, ID	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
2	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	25 - 26.5										18										
GS/E	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	39 - 41																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	40 - 41.5										22										
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	45 - 46.5																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	50 - 51.5																				
Y	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	57 - 58														7.246						
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	59 - 61																				
LES	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	60 - 61.5										25										
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	68 - 69																				
2022	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	69 - 71																				
) PRT	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	70 - 71.5																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	75 - 76																				
3	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	79 - 81		67	48			99.8	90.7													
IREP	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	80 - 81.1																				
밁	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	84 - 85																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	89 - 91																				
ź[B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	90 - 91.5																				
12:0	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	99 - 102		56	34			99.8	89.7							15.661						
73/67	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	100 - 101.5																				
-	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	106 - 107		47	25		99.2	97.6	80.8	100	100		20.5									
3	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	110 - 111.5										21										
MAK	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	120 - 121.5										22										
NOS SOI	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	129 - 130																				
] B	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	130 - 131.3																				
-[B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	140 - 141.5																				
JAK	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	149 - 150																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	150 - 151.4																				
LAB.	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	159 - 160																				

PAGE 7 OF 8

L	PROJEC.	T NUMBER	114-571040	-2022										PF	ROJEC	ET NA	ME P	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	, ID	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	Н	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
Š	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	160 - 161.3																				
165	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	164 - 165																				
3 E	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	5 - 6.5										4										
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	10 - 11.5																				
NDF	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	15 - 16.5																				
∀	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	19 - 20																				
9	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	25 - 26.5																				
(LES	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	30 - 30.6																				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	35 - 35.8																				
2022	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	39 - 40		NV	NP		93.6	92	23.3	112	111.7		12.9			0.511						
20RT	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	40 - 41.4										23										
S'REF	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	45 - 46.5																				
ORTS	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	49 - 50																				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	50 - 51.5																				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	59 - 60		NV	NP		99.9	98.9	84.3	104	104.2		17.8			1.817						
GEO	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	60 - 61.4										12										
ź[B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	69 - 70																				
12:00	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	70 - 71.5																				
23/52	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	79 - 80																				
- 1	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	80 - 80.7																				
<u>3</u> [B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	89 - 90																				
MAK	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	90 - 90.3																				
NOS SOM	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	99 - 100																				
LAB	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	100 - 101.5										20										
-[B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	110 - 111.5																				
\AR\ 	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	120 - 121.3		33	10									18.02	0.053			0.38				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	125 - 126																				
IAB;	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	129 - 130																				

SUMMARY OF LABORATORY RESULTS

PAGE 8 OF 8

PROJECT NUMBER 114-571040-2022

PROJECT NAME Pickles Butte Sanitary Landfill - Canyon County, ID

PROJEC	I NUMBER	114-37 1040	-2022			_							F	KOJE	JI NA		ICKIES	Dulle	Samuary	Lanunn -	Carry	yon C	ourity,	ַ טו	
Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	Cc	Н	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	130 - 131.5										19										
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	139 - 140																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	140 - 141.5										24										
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	149 - 150																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	150 - 151.5																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	160 - 161.4																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	169 - 170																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	170 - 171.5																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	179 - 180																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	189 - 190																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	199 - 200																				
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	0 - 1.5										11										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	1 - 4		NV	NP		98.7	95.6	83.5	97	97.2		17.9									
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	2 - 3.5																				
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	4 - 5.5										11										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	8 - 10										12										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	10 - 11.5										6										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	11 - 15																				
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	15 - 16.5										5										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	20 - 21.5										5										

MMARY_TT - LAB SUMMARY.GDT - 7/29/22 12:00 - N:\GEOTECH\REPORTS\REPORT 2022\PICKLES

IAS LABORATORIES 2515 East University Drive

Phoenix, AZ 85034 Office: (602) 273-7248 Fax: (602) 275-3836 www.iaslabs.com

November 15, 2022

Maureen McGraw Tetra Tech 3822 E University Phoenix, AZ 85034

Project: Pickles Butte Landfill

Enclosed are the results of analyses for samples received by our laboratory on 10/17/2022. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sheri McLane Certified Professional Agronomist Certified Crop Advisor License #359920

Date Received: Od Work Order: 22

October 17, 2022 22J0250 Submitted By: Report To:

Project:

Maureen McGraw Tetra Tech

Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-3 (2-3) **IAS Lab ID:** 22J0250-01 (Soil)

	Result	MRL	Units	Method
Chemical Properties				
SMR - Field Capacity (1/3 Bar)	35.2	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:09:18PM				
SMR - (2 Bar)	11.5	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:16:09PM				
SMR - (5 Bar)	10.1	<0.01	%	ASTM D6836
Time Analyzed: 11/8/2022 10:31:13AM				
SMR - (10 Bar)	9.73	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:17:26PM				
SMR - Wilting Point (15 Bar)	8.85	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:11:10PM				
Physical Properties				
Porosity	48.44	<0.01	%	Methods of Soil Analysis - ASA/SSSA
Time Analyzed: 10/28/2022 4:47:45PM				

MRL: Minimum Reporting Limit

Date Received: Work Order:

October 17, 2022 22J0250

Submitted By: Report To:

Project:

Maureen McGraw Tetra Tech

Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-4 (4-5) 22J0250-02 (Soil) IAS Lab ID:

	Result	MRL	Units	Method
Chemical Properties				
SMR - Field Capacity (1/3 Bar)	37.6	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:09:18PM				
SMR - (2 Bar)	9.78	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:16:09PM				
SMR - (5 Bar)	8.34	<0.01	%	ASTM D6836
Time Analyzed: 11/8/2022 10:31:13AM				
SMR - (10 Bar)	6.65	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:17:26PM				
SMR - Wilting Point (15 Bar)	6.10	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:11:10PM				
Physical Properties				
Porosity	51.82	<0.01	%	Methods of Soil Analysis - ASA/SSSA
Time Analyzed: 10/28/2022 4:47:45PM				

MRL: Minimum Reporting Limit

Date Received: Work Order: October 17, 2022 22J0250 Submitted By: Report To:

Project:

Maureen McGraw Tetra Tech

Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-7 (5-4) **IAS Lab ID:** 22J0250-03 (Soil)

Result	MRL	Units	Method
36.3	<0.01	%	ASTM D6836
8.51	<0.01	%	ASTM D6836
7.07	<0.01	%	ASTM D6836
7.05	<0.01	%	ASTM D6836
6.60	<0.01	%	ASTM D6836
48.67	<0.01	%	Methods of Soil Analysis - ASA/SSSA
	36.3 8.51 7.07 7.05 6.60	36.3 <0.01 8.51 <0.01 7.07 <0.01 7.05 <0.01 6.60 <0.01	36.3 <0.01 % 8.51 <0.01 % 7.07 <0.01 % 7.05 <0.01 % 6.60 <0.01 %

MRL: Minimum Reporting Limit

Date Received: 0

October 17, 2022 22J0250 Submitted By: Report To:

Project:

Maureen McGraw Tetra Tech

Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-9 (4-8) **IAS Lab ID:** 22J0250-04 (Soil)

	Result	MRL	Units	Method
Chemical Properties				
SMR - Field Capacity (1/3 Bar)	41.6	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:09:18PM				
SMR - (2 Bar)	9.61	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:16:09PM				
SMR - (5 Bar)	8.39	<0.01	%	ASTM D6836
Time Analyzed: 11/8/2022 10:31:13AM				
SMR - (10 Bar)	7.37	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:17:26PM				
SMR - Wilting Point (15 Bar)	7.15	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:11:10PM				
Physical Properties				
Porosity	53.14	<0.01	%	Methods of Soil Analysis - ASA/SSSA
Time Analyzed: 10/28/2022 4:47:45PM				

MRL: Minimum Reporting Limit

Date Received: Work Order: October 17, 2022 22J0250 Submitted By: Report To:

Project:

Maureen McGraw

Tetra Tech
Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-10 (5-6) **IAS Lab ID:** 22J0250-05 (Soil)

	Result	MRL	Units	Method
Chemical Properties				
SMR - Field Capacity (1/3 Bar)	37.4	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:09:18PM				
SMR - (2 Bar)	10.1	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:16:09PM				
SMR - (5 Bar)	8.87	<0.01	%	ASTM D6836
Time Analyzed: 11/8/2022 10:31:13AM				
SMR - (10 Bar)	8.69	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:17:26PM				
SMR - Wilting Point (15 Bar)	8.43	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:11:10PM				
Physical Properties				
Porosity	49.85	<0.01	%	Methods of Soil Analysis - ASA/SSSA
Time Analyzed: 10/28/2022 4:47:45PM				

MRL: Minimum Reporting Limit

Date Received: 0
Work Order: 2

October 17, 2022 22J0250 Submitted By: Report To:

Project:

Maureen McGraw Tetra Tech

Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-14 (4-5) **IAS Lab ID:** 22J0250-06 (Soil)

	Result	MRL	Units	Method
Chemical Properties				
SMR - Field Capacity (1/3 Bar)	36.6	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:09:18PM				
SMR - (2 Bar)	12.0	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:16:09PM				
SMR - (5 Bar)	10.2	<0.01	%	ASTM D6836
Time Analyzed: 11/8/2022 10:31:13AM				
SMR - (10 Bar)	9.73	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:17:26PM				
SMR - Wilting Point (15 Bar)	10.8	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:11:10PM				
Physical Properties				
Porosity	50.86	<0.01	%	Methods of Soil Analysis - ASA/SSSA
Time Analyzed: 10/28/2022 4:47:45PM				

MRL: Minimum Reporting Limit

Date Received: Work Order:

October 17, 2022 22J0250 Submitted By: Report To:

Project:

Maureen McGraw Tetra Tech

Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-16 (4-8) **IAS Lab ID:** 22J0250-07 (Soil)

	Result	MRL	Units	Method
Chemical Properties				
SMR - Field Capacity (1/3 Bar)	40.8	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:09:18PM				
SMR - (2 Bar)	11.4	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:16:09PM				
SMR - (5 Bar)	9.95	<0.01	%	ASTM D6836
Time Analyzed: 11/8/2022 10:31:13AM				
SMR - (10 Bar)	9.72	<0.01	%	ASTM D6836
Time Analyzed: 11/4/2022 5:17:26PM				
SMR - Wilting Point (15 Bar)	8.11	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:11:10PM				
Physical Properties				
Porosity	53.68	<0.01	%	Methods of Soil Analysis - ASA/SSSA
Time Analyzed: 10/28/2022 4:47:45PM				

MRL: Minimum Reporting Limit

Date Received: Work Order:

October 17, 2022 22J0250 Submitted By: Report To: Maureen McGraw Tetra Tech

Project: Pickles Butte Landfill

Sample Results

Sample Name: PBSL-TP-17 (1-3) **IAS Lab ID:** 22J0250-08 (Soil)

	Result	MRL	Units	Method
Chemical Properties				
SMR - Field Capacity (1/3 Bar)	37.7	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:09:18PM				
SMR - (2 Bar)	8.28	<0.01	%	ASTM D6836
Time Analyzed: 11/8/2022 10:45:44AM				
SMR - (5 Bar)	7.49	<0.01	%	ASTM D6836
Time Analyzed: 11/11/2022 12:28:41PM				
SMR - (10 Bar)	7.15	<0.01	%	ASTM D6836
Time Analyzed: 11/15/2022 11:11:48AM				
SMR - Wilting Point (15 Bar)	6.96	<0.01	%	ASTM D6836
Time Analyzed: 11/1/2022 3:11:10PM				
Physical Properties				
Porosity	51.15	<0.01	%	Methods of Soil Analysis - ASA/SSSA
Time Analyzed: 10/28/2022 4:47:45PM				

MRL: Minimum Reporting Limit

2250250

IAS Laboratories

Chain of Custody

2515 East University Drive Phoenix, Arizona 85034 (602) 273-7248 Fax (602) 275-3836

(Print and send in with Samples)

Date	12 October 2022
Time	

aureen A. McGraw, Tetra Tech	Email:	maureen.mcgraw@tetratech.com	
380 Americana Terrace, Suite 201	Phone	406-546-7839	
loise, ID 83706			
3		80 Americana Terrace, Suite 201 Phone	80 Americana Terrace, Suite 201 Phone 406-546-7839

Test Required Sample ID Sample Description (What are your concerns) Lab No PBSL-TP-3 (2-3) Landfill cover material evaluation Capillary Rise (field capacity & wilting point), porosity Capillary Rise (field capacity & wilting point), porosity PBSL-TP-4 (4-5) Landfill cover material evaluation PBSL-TP-7 (5-4) Landfill cover material evaluation Capillary Rise (field capacity & wilting point), porosity PBSL-TP-9 (4-8) Landfill cover material evaluation Capillary Rise (field capacity & wilting point), porosity Landfill cover material evaluation Capillary Rise (field capacity & wilting point), porosity PBSL-TP-10 (5-6) Capillary Rise (field capacity & wilting point), porosity PBSL-TP-14 (4-5) Landfill cover material evaluation PBSL-TP-16 (4-8) Landfill cover material evaluation Capillary Rise (field capacity & wilting point), porosity Capillary Rise (field capacity & wilting point), porosity PBSL-TP-17 (1-3) Landfill cover material evaluation

Method of Shipment	Relinquished by:	Marrier A. M. Draw	
Payment	Print Name:	Maureen A. McGraw	
Paynal CC# Check #			

IAS Labs

From:

McGraw, Maureen < Maureen. McGraw@tetratech.com>

Sent:

Friday, October 14, 2022 9:32 AM

To:

IAS Labs

Subject:

Pickles Butte Landfill Samples

Attachments:

PBSL Cover Soil IAS COC 111222.pdf

Hi Shari,

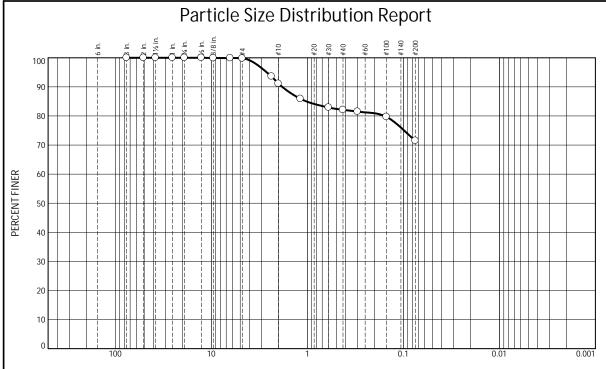
I wanted to let you know that we shipped soil samples to you yesterday that are expected to arrive on Monday the 17th. There are 8 samples for Pickles Butte Landfill. I have attached the COC to the email. Similar for Bear Lake and IDAWY, the invoice for these samples should come to me. Please let me know if you need anything else.

Maureen

Maureen McGraw, Ph.D., PE (ID, MT, NM) | Project Manager/Senior Engineer 406.546.7839 Cell, 208.389.1030 Office, 208.489.2826 Direct maureen.mcgraw@tetratech.com

Tetra Tech | Leading with Science® | Environmental Commercial Accounts (ECA) 3380 Americana Terrace, Suite 201 | Boise, ID 83706 | www.tetratech.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.



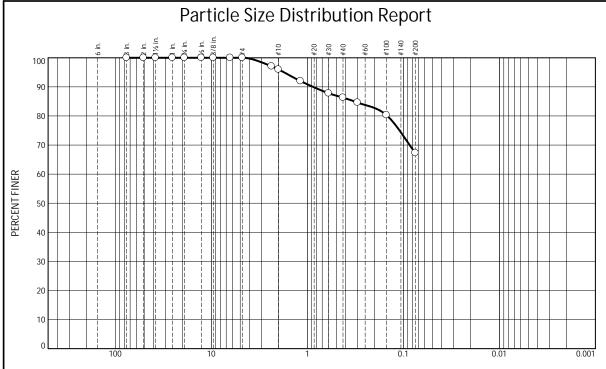
Please consider the environment before printing. Read more

TETRA TECH

GRAIN	SIZE	- mm.
GRAIN	SILL	- 1111111.

0/ . 2"	, % Gravel			% Sand		% Fines		
70 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.2	8.7	9.0	10.6	71.5		

Tes	Test Results (ASTM D422)			Material Description	Atterberg (A	ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)			NP PI= NP
3	100.0				Coeff	<u>icients</u>
1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 1.8253	D ₈₅ = 1.0229
1	100.0					
.75 .5	100.0 100.0			Test Date: <u>11-9-22</u> Technician: <u>PL/AB</u>	D ₆₀ =	D ₅₀ =
.375	99.9				D ₃₀ =	D ₁₅ =
.25 #4	99.9 99.8			Test Notes	D ₁₀ =	
#8	93.6				C _{II} =	C _C =
#10	91.1 85.9				u	C
#16 #30	82.9					
#40	82.1			<u>Hydrometer Test</u>	USCS (AST	TM D2487)
#50 #100	81.5 79.7			Total Bath	N	I L
#200	71.5			Test Date: Technician:		
				Test Notes		
					Data Sampled:	
					_	
· (no spec	ification	provided)			Checked By: I	LP
Location: TP- Depth: 2-3 ft	01				Title: _	

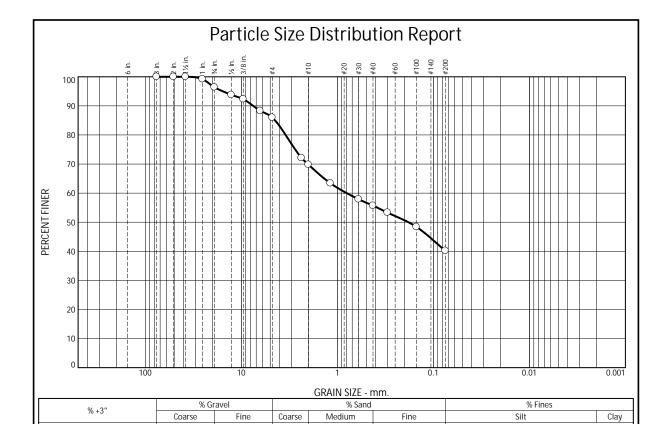

Client:

Project: Pickles Butte

Project No: 114-571040-2023

Figure

Tetra Tech


GRAIN	SIZE -	mm.

l	% +3"	% Gr	avel		% Sand		% Fines		
ı		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
ı	0.0	0.0	0.0	4.0	9.7	19.0	67.3		

Test Results (ASTM D422)				Material Description	Atterberg (A	ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= NP LL=	NP PI= NP
3	100.0				<u>Coeffi</u>	<u>icients</u>
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 0.8735	D ₈₅ = 0.3234
1	100.0					
.75 .5	100.0 100.0			Test Date: <u>11-10-22</u> Technician: <u>PM</u>	D ₆₀ =	D ₅₀ =
.375	100.0				D ₃₀ =	D ₁₅ =
.25 #4	100.0 100.0			Test Notes	D ₁₀ =	
#8	97.1				C _U =	C _C =
#10 #16	96.0 92.0				u	C
#30	87.8					
#40	86.3			<u>Hydrometer Test</u>	USCS (AST	TM D2487)
#50 #100 #200	84.6 80.3 67.3			Test Date: Technician:	M	ſL
				Test Notes		
					Date Sampled: _	
					Date Received: _	
· (no spec	ification	provided)			Checked By: I	LP
Location: TP- Depth: 6-8 ft	02				Title: _	
	Teti	ra Tech		Client:		
	1011	u i coii		B. I. I. BULL B.		

Project No: 114-571040-2023

Figure

0.0

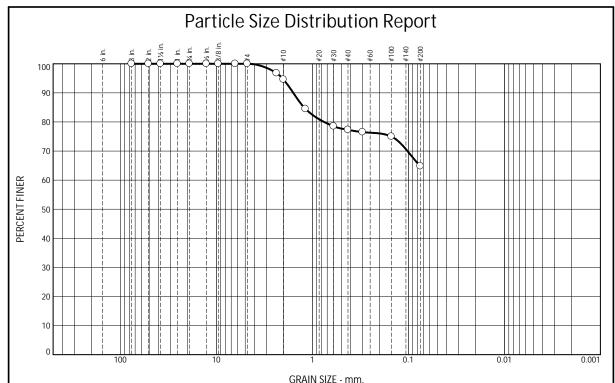
Missoula, MT

3.6

10.4

16.2

Tes	Test Results (ASTM D422)			Material Description	Atterberg (ASTM D4318)		
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= LL=	PI=	
3	100.0				Coeff	<u>ficients</u>	
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 7.5143	D ₈₅ = 4.4480	
.75	99.2 96.4			Test Date:11-14-22 _ Technician:AB/PM	D ₆₀ = 0.7984	D ₅₀ = 0.1818	
.5 .375	93.8 92.3				D ₃₀ =	D ₁₅ =	
.25 #4	88.3 86.0			Test Notes	D ₁₀ =		
#8 #10	72.1 69.8				c _u =	C _C =	
#16	63.4						
#30 #40	57.9 55.7			<u>Hydrometer Test</u>	USCS (AS	TM D2487)	
#50 #100 #200	53.3 48.4 40.2			Test Date: Technician:			
				Test Notes			
					Date Sampled:		
					Date Received:		
· (no spec	ification	provided)	<u> </u>		Checked By:	LP	
Location: TP- Depth: 2-3 ft	03				Title:		
	Tetr	a Tech		Client:			

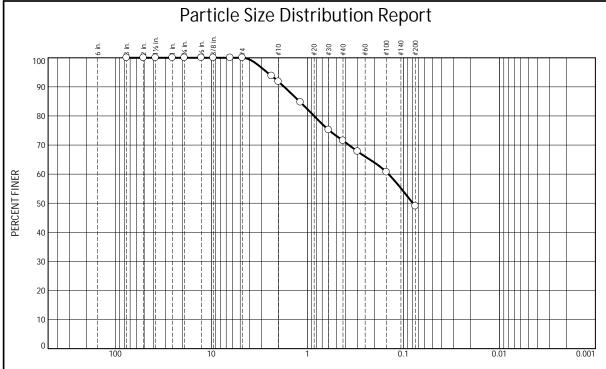

Project: Pickles Butte

Project No: 114-571040-2023

14.1

15.5

40.2



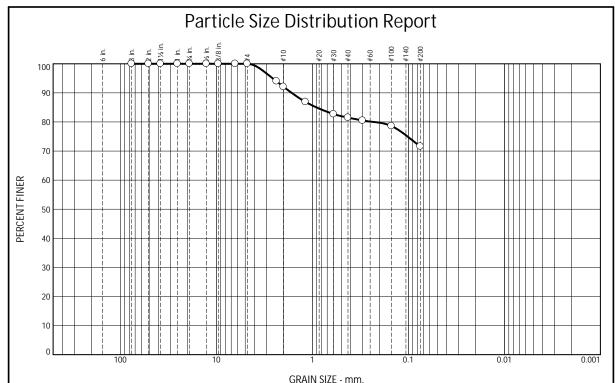
ORAIN SIZE - IIIII.										
9/ . 2"	% Gr	avel	% Sand			% Fines				
70 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0.0	0.0	0.0	5.4	17.3	12.5	64.8				

Tes	t Results	(ASTM D422)		Material Description	Atterberg (A	ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= LL=	PI=
3	100.0				<u>Coeffi</u>	<u>icients</u>
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 1.5800	D ₈₅ = 1.2205
1	100.0				D ₆₀ =	D ₅₀ =
.75 .5	100.0 100.0			Test Date: <u>11-15-22</u> Technician: <u>AB</u>		
.375	100.0				D ₃₀ =	D ₁₅ =
.25 #4	100.0 100.0			Test Notes	D ₁₀ =	
#8	96.8				C _u =	C _C =
#10 #16	94.6 84.5					
#30	78.5					
#40 #50	77.3 76.5			<u>Hydrometer Test</u>	USCS (AST	M D2487)
#100 #200	75.0 64.8			Test Date: Technician:		
				Test Notes		
					Date Sampled: _	
					Date Received: _	
· (no spec	ification	provided)			Checked By: $\underline{\mathbf{I}}$	_P
Location: TP- Depth: 4-5 ft	04				Title: _	
	Teti	ra Tech		Client:		
	1011	u i coii		D. I. I. Dilli D.		

Project No: 114-571040-2023

Figure

GRAIN SIZE - mm	١.

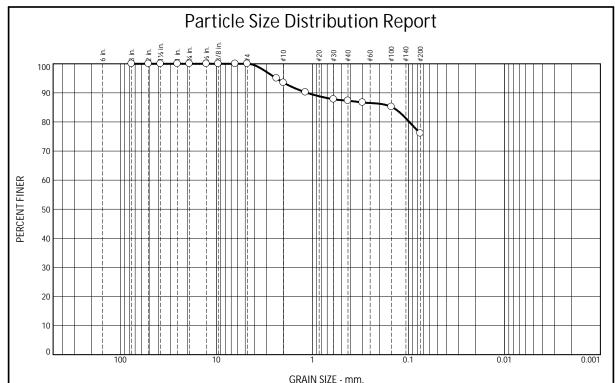

l	% +3"	% Gr	avel	% Sand			% Fines		
l		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
ı	0.0	0.0	0.0	8.2	20.3	22.5	49.0		

Tes	t Results	(ASTM D422)		Material Description	Atterberg (ASTM D4318)		
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)	 -	PL= NP LL=		
3	100.0				<u>Coeffi</u>	<u>cients</u>	
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 1.7419	D ₈₅ = 1.2060	
1	100.0						
.75 .5	100.0 100.0			Test Date: <u>11-10-22</u> Technician: <u>PM/TL</u>	D ₆₀ = 0.1427	D ₅₀ = 0.0793	
.375	100.0				D ₃₀ =	D ₁₅ =	
.25 #4	100.0 100.0			Test Notes	D ₁₀ =		
#8	93.8				c _u =	C _C =	
#10 #16	91.8 84.7				ū .	Ü	
#30	75.2						
#40 #50	71.5 67.8			<u>Hydrometer Test</u>	USCS (AST	M D2487)	
#100	60.7			Test Date: Technician:	S	M	
#200	49.0			100, 50, 50, 50, 50, 50, 50, 50, 50, 50,			
				Test Notes			
					Date Sampled: _		
					Date Received: _		
· (no spec	ification	provided)			Checked By: <u>I</u>	<u>.P</u>	
Location: TP- Depth: 2-3 ft	05				Title: _		
	Tetr	a Tech		Client:			
		a 10011		D. I. I. D. I. D.			

Missoula, MT

Project: Pickles Butte

Project No: 114-571040-2023

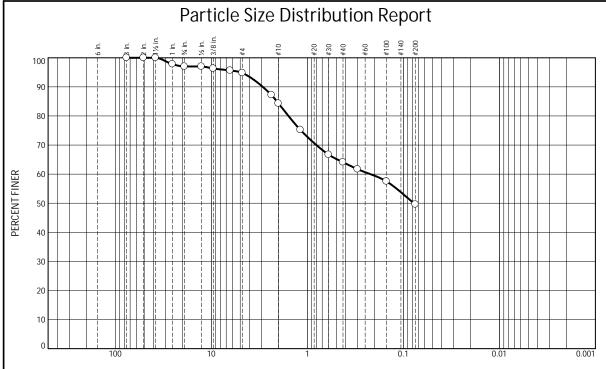


ORAIN SIZE - IIIII.										
0/ . 2"	% Gr	avel	% Sand			% Fines				
70 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay			
0.0	0.0	0.0	7.9	10.6	9.9	71.6				

Tes	t Results	(ASTM D422)		Material Description	Atterberg (A	ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= LL=	PI=
3	100.0				<u>Coeffi</u>	<u>icients</u>
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 1.6405	D ₈₅ = 0.9068
1	100.0					
.75 .5	100.0 100.0			Test Date: <u>11-16-22</u> Technician: <u>SH/AB</u>	D ₆₀ =	D ₅₀ =
.375	100.0				D ₃₀ =	D ₁₅ =
.25 #4	100.0 100.0			Test Notes	D ₁₀ =	
#8	94.0				C _u =	C _C =
#10 #16	92.1 86.9				u	C
#16	82.7					
#40	81.5			<u>Hydrometer Test</u>	USCS (AST	TM D2487)
#50 #100	80.5 78.6			Total Dates		
#200	71.6			Test Date: Technician:		
				Test Notes		
					Date Sampled: _	
					Date Received: _	
· (no spec	ification	provided)			Checked By: <u>I</u>	LP
Location: TP- Depth: 2-3 ft	06				Title: _	
	Teti	ra Tech		Client:		
	1011	u i coii		D. I. I. D. II. D.		

Project No: 114-571040-2023

Figure

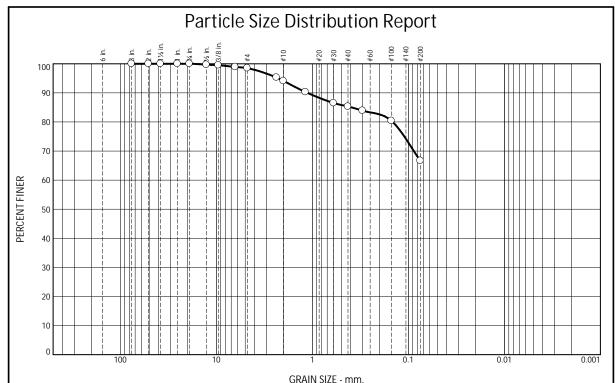


ı	GIVAIN SIZE - IIIII.											
П	0/ . 2"	% Gr	avel	% Sand			% Fines					
l	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay				
l	0.0	0.0	0.0	6.5	6.2	11.2	76.1					

Tes	Test Results (ASTM D422)			Material Description	Atterberg (ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= LL=	
3	100.0				Coeff	<u>ficients</u>
1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 1.1318	D ₈₅ = 0.1457
1	100.0				D ₆₀ =	D ₅₀ =
.75 .5	100.0 100.0			Test Date: <u>11-14-22</u> Technician: <u>TL/PM</u>		
.375	100.0				D ₃₀ =	D ₁₅ =
.25 #4	100.0 100.0			Test Notes	D ₁₀ =	
#8	95.0				C _U =	C _C =
#10 #16	93.5 90.2				<u>~</u>	J
#30	87.8					
#40 #50	87.3 86.7			<u>Hydrometer Test</u>	<u>USCS (AS</u>	TM D2487)
#100 #200	85.2 76.1			Test Date: Technician:		
				Test Notes		
					Date Sampled:	
					Date Received:	
· (no spec	ification	provided)			Checked By:	LP
Location: TP- Depth: 4-5 ft	07				Title:	
	Teti	ra Tech		Client:		
	1011	u 10011		D 1 1 D 11 D		

Project No: 114-571040-2023

Figure

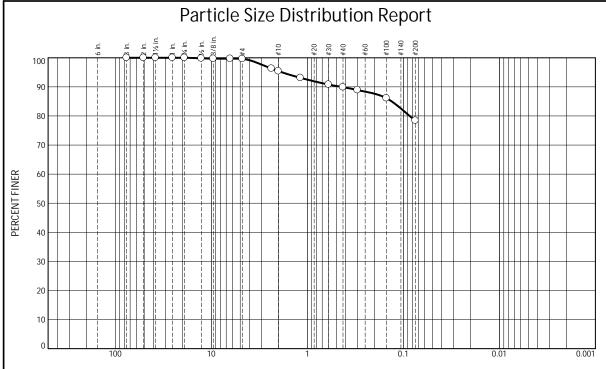

ΙГ	0/ . 2"	% Gr	ravel		% Sand		% Fines	
	70 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
ĺ	0.0	3.0	2.2	10.5	20.2	14.5	49.6	

Tes	Test Results (ASTM D422)			Material Description	Atterberg (ASTM D4318)			
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL=	LL=	PI=	
3	100.0					Coeffi	<u>cients</u>	
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	Don=	2.9108	D ₈₅ = 2.0791	
1	97.8							
.75 .5	97.0 97.0			Test Date: <u>11-15-22</u> Technician: <u>TL/AB</u>	D60=	0.2206	D ₅₀ = 0.0770	
.375	96.3				$D_{30} =$		D ₁₅ =	
.25 #4	95.6 94.8			Test Notes	D ₁₀ =			
#8	87.2				c _u =		C _C =	
#10	84.3				-u		-0	
#16 #30	75.2 66.7							
#40	64.1			<u>Hydrometer Test</u>	<u>l</u>	JSCS (AST	M D2487)	
#50 #100	61.7 57.5			Test Date: Testaleises				
#200	49.6			Test Date: Technician:				
				Test Notes				
					Date S	ampled: _		
					Date R	eceived: _		
· (no specification provided) Checked By: LP								
Location: TP- Depth: 2-3 ft	08					Title: _		
· · · · · · · · · · · · · · · · · · ·	Teti	ra Tech		Client:				
	icti	u i coll						

Missoula, MT

Project: Pickles Butte

Project No: 114-571040-2023

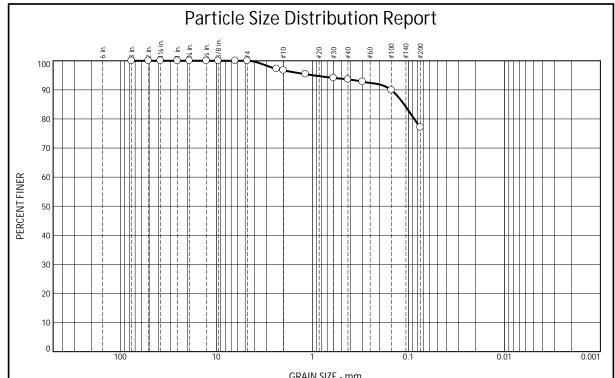


ORAN SIZE - IIIII.										
	9/ . 2"	% Gr	avel	% Sand			% Fines			
	76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
	0.0	0.0	1.5	4.4	8.8	18.6	66.7			

Tes	Test Results (ASTM D422)			Material Description	Atterberg (ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= LL=	
3	100.0				Coef	<u>ficients</u>
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	Don= 1.1257	D ₈₅ = 0.3925
1	100.0			<u> </u>	, 0	00
.75	100.0			Test Date: 11-16-22 Technician: AB	D ₆₀ =	D ₅₀ =
.5 .375	99.7 99.5				D ₃₀ =	D ₁₅ =
.25	98.9 98.5			Test Notes	D ₁₀ =	
#8	95.3				C _U =	C _C =
#10 #16	94.1 90.3				u	C
#30	86.5					
#40	85.3			<u>Hydrometer Test</u>	USCS (AS	STM D2487)
#50 #100	83.9 80.4					
#200	66.7			Test Date: Technician:		
				Test Notes		
					Date Sampled:	
					Date Received:	
· (no spec	ification	provided)			Checked By:	LP
ocation: TP- Depth: 5-6 ft	10				Title:	
	Teti	ra Tech		Client:		
	1011	u 10011		B. I. I. BULL B.		

Project No: 114-571040-2023

Figure

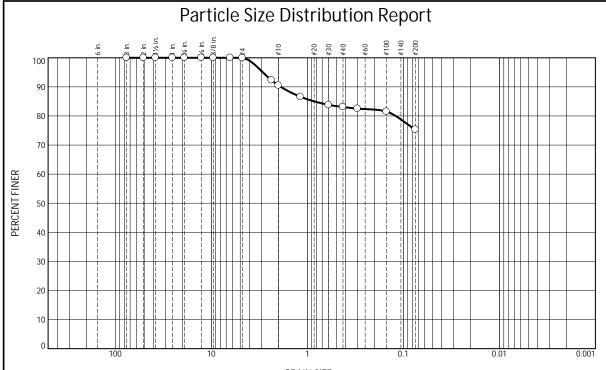

GRAIN	SIZE -	mm.

ΙГ	0/ . 2"	% Gr	ravel		% Sand		% Fines	
	70 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.4	4.2	5.5	11.5	78.4	

Tes	Test Results (ASTM D422)			Material Description	Atterberg (A	ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= NP LL=	NP PI= NP
3	100.0				Coeff	<u>icients</u>
1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 0.4412	D ₈₅ = 0.1323
1	100.0					
.75 .5	100.0 99.8			Test Date: <u>11-10-22</u> Technician: <u>SH/TL</u>	D ₆₀ =	D ₅₀ =
.375	99.7				D ₃₀ =	D ₁₅ =
.25	99.7			Test Notes	D ₁₀ =	
#4 #8	99.6 96.3				C _U =	C _C =
#10	95.4				ou-	oc-
#16 #30	93.1 90.8					
#40	89.9			<u>Hydrometer Test</u>	USCS (AST	TM D2487)
#50 #100	88.9 86.1				N	ИL
#200	78.4			Test Date: Technician:		
				Test Notes		
					Data Canada I	
					Date Received: _	
· (no spec	ification	provided)			Checked By: I	LP
Location: TP- Depth: 4-5 ft	14				Title: _	_
	Teti	ra Tech		Client:		
	1011	14 10011		D. I. I. Dilli D.		

Project No: 114-571040-2023

Figure



	GRAIN SIZE - IIIII.											
Ш	0/ . 2"	% Gr	avel	% Sand			% Fines					
	%+3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay				
	0.0	0.0	0.0	3.3	3.1	16.5	77.1					

Test Results (ASTM D422)				Material Description	Atterberg (A	ASTM D4318)
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		PL= LL=	
3	100.0				Coeff	<u>ficients</u>
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 0.1514	D ₈₅ = 0.1108
.75	100.0 100.0				D ₆₀ =	D ₅₀ =
.5	100.0			Test Date: 11-17-22 Technician: TL/AB		
.375 .25	100.0 100.0				D ₃₀ =	D ₁₅ =
#4	100.0			Test Notes	D ₁₀ =	
#8	97.2				$C_{u}=$	C _C =
#10 #16	96.7 95.4					
#30 #40	94.1 93.6			Hydrometer Test	IISCS (AS	TM D2487)
#40	93.6			<u>rrydrometer rest</u>	<u>0303 (A3)</u>	11VI D2467)
#100 #200	89.9 77.1			Test Date: Technician:		
#200	//.1					
				Test Notes		
					Data Sampladi	
					Date Received: _	
· (no spec	ification	provided)			Checked By: I	LP
Location: TP- Depth: 2-3 ft	15				Title: _	
	Tet	ra Tech		Client:		

Project No: 114-571040-2023

Figure

GRAIN SIZE - mm.	GRAIN	SIZE -	mm.
------------------	--------------	--------	-----

l	0/ . 2"	% Gravel		% Sand			% Fines	
ı	70 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
ı	0.0	0.0	0.1	9.4	7.4	7.8	75.3	

Test Results (ASTM D422)				Material Description	Atterberg (ASTM D4318)		
Sieve Size or Diam. (mm.)	Finer (%)	Spec.* (%)	Out of Spec. (%)		=	NP PI= NP	
3	100.0				Coeffi	<u>icients</u>	
2 1.5	100.0 100.0			Sieve Test (ASTM D422)	D ₉₀ = 1.8912	Dog= 0.8470	
1.5	100.0			Slove Test (North & 122)			
.75	100.0			Test Date: 11-9-22 Technician: TL/AB	D ₆₀ =	D ₅₀ =	
.5 .375	100.0 100.0				D ₃₀ =	D ₁₅ =	
.25	100.0			Test Notes		15	
#4	99.9			Test Notes	D ₁₀ =		
#8	92.3				c _u =	C _C =	
#10 #16	90.5 86.6						
#30	83.8						
#40	83.1			<u>Hydrometer Test</u>	<u>USCS (AST</u>	<u>ГМ D2487)</u>	
#50 #100	82.5 81.5			T. (D.)	N	1 L	
#200	75.3			Test Date: Technician:			
	!			Test Notes			
	!						
	!						
	!						
	!						
	!				Date Sampled: _		
					Date Received: _		
· (no spec	· (no specification provided)				Checked By: <u>LP</u>		
Location: TP- Depth: 4-8 ft	ocation: TP-16				Title: _		
Doptiii 1 C 22							
	Tetra Tech			Client:			

Project No: 114-571040-2023

Figure

COMPACTION TEST REPORT

Date:

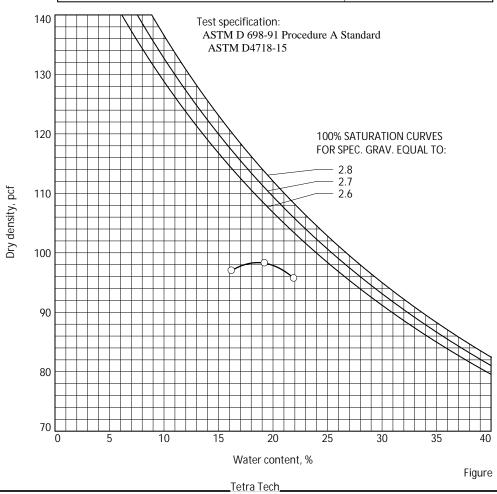
Project No.: 114-571040-2023

Project: Pickles Butte

Client:

Location: TP-01 Depth: 2-3 ft Remarks:

MATERIAL DESCRIPTION


Description:

Classifications - USCS: ML AASHTO: A-4(0)

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = NP Plasticity Index = NF %<No.10 = 91.1 % %<No.40 = 82.1 % %<No.60 = 81.2 % %<No.200 = 71.5 %

ROCK CORRECTED TEST RESULTS	UNCORRECTED		
Maximum dry density = 98.4 pcf	98.4 pcf		
Optimum moisture = 18.6 %	18.6 %		

Tested By: TL Checked By: LP

COMPACTION TEST REPORT

Project No.: 114-571040-2023

Date:

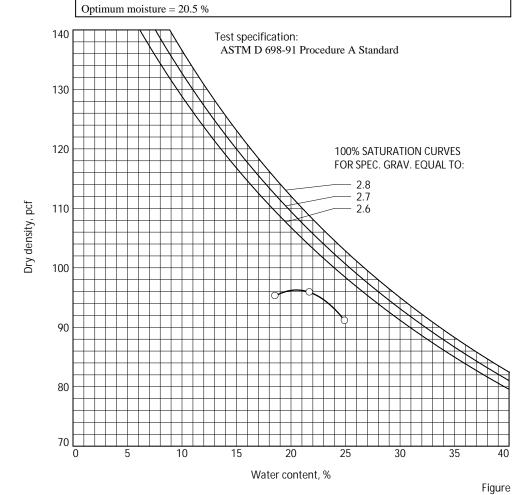
Project: Pickles Butte

Client:

Location: TP-02 Depth: 6-8 ft Remarks:

MATERIAL DESCRIPTION

Description:


Classifications - USCS: ML AASHTO: A-4(0)

Nat. Moist. = Sp.G. = 2.65

Maximum dry density = 96.3 pcf

Liquid Limit = NP Plasticity Index = NI %<No.10 = 96.0 % %<No.40 = 86.3 % %<No.60 = 83.8 % %<No.200 = 67.3 %

TEST RESULTS

Tetra Tech

Tested By: PM Checked By: LP

Project No.: 114-571040-2023 Date:

Project: Pickles Butte

Client:

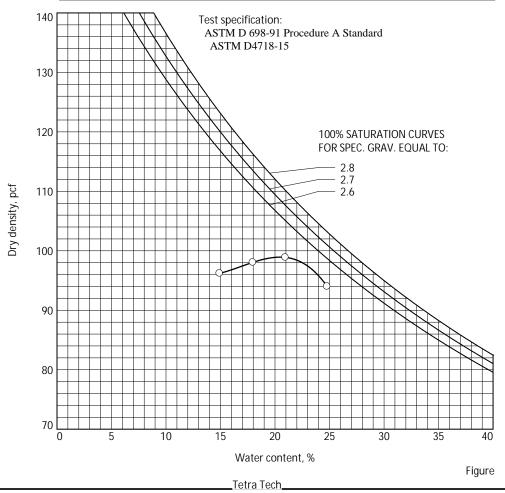
Location: TP-03 Depth: 2-3 ft Remarks:

MATERIAL DESCRIPTION

Description:

Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. = 2.65


Liquid Limit = Plasticity Index =

%<No.10 = 69.8 %

%<No.60 = 52.1 %

%<No.200 = 40.2 %

ROCK CORRECTED TEST RESULTS	UNCORRECTED
Maximum dry density = 104.8 pcf	98.9 pcf
Optimum moisture = 17.6 %	20.5 %

Tested By: AB Checked By: LP

Project No.: 114-571040-2023 Date:

Project: Pickles Butte

Client:

Location: TP-04 Depth: 4-5 ft Remarks:

MATERIAL DESCRIPTION

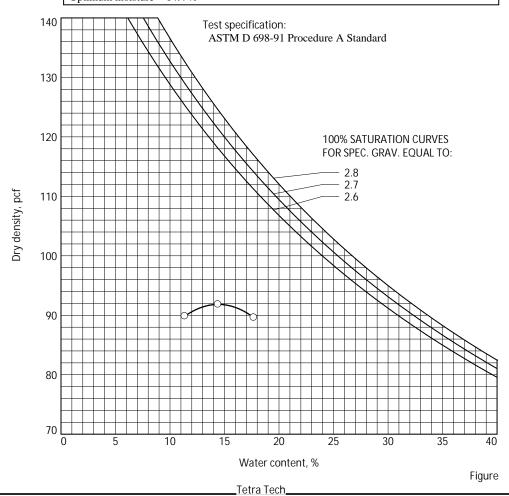
Description:

Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = Plasticity Index =

%<No.10 = 94.6 %


%<No.60 = 76.3 %

%<No.200 = 64.8 %

TEST RESULTS

Maximum dry density = 91.8 pcf

Optimum moisture = 14.4 %

Date:

Project No.: 114-571040-2023

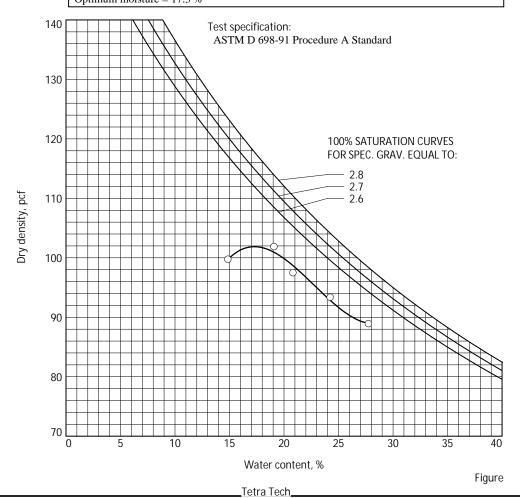
Project: Pickles Butte

Client:

Location: TP-05 Depth: 2-3 ft Remarks:

MATERIAL DESCRIPTION

Description:


Classifications - USCS: SM AASHTO: A-4(0)

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = NP Plasticity Index = NP %<No.10 = 91.8 % %<No.40 = 71.5 % %<No.60 = 66.0 % %<No.200 = 49.0 %

TEST RESULTS

Maximum dry density = 101.9 pcf Optimum moisture = 17.3 %

Tested By: AB Checked By: LP

Date:

Project No.: 114-571040-2023

Project: Pickles Butte

Client:

Location: TP-06 Depth: 2-3 ft Remarks:

MATERIAL DESCRIPTION

Description:

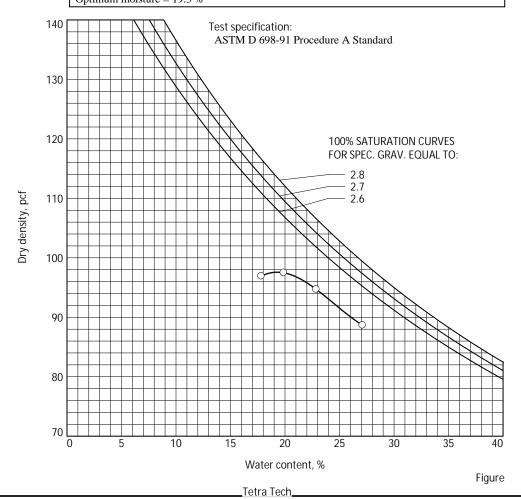
Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = Plasticity Index =

%<No.10 = 92.1 %

%<No.40 = 81.5 %


%<No.60 = 80.1 %

%<No.200 = 71.6 %

TEST RESULTS

Maximum dry density = 97.6 pcf

Optimum moisture = 19.3 %

Tested By: SH Checked By: LP

Date:

Project No.: 114-571040-2023

Project: Pickles Butte

Client:

Location: TP-07 Depth: 4-5 ft Remarks:

MATERIAL DESCRIPTION

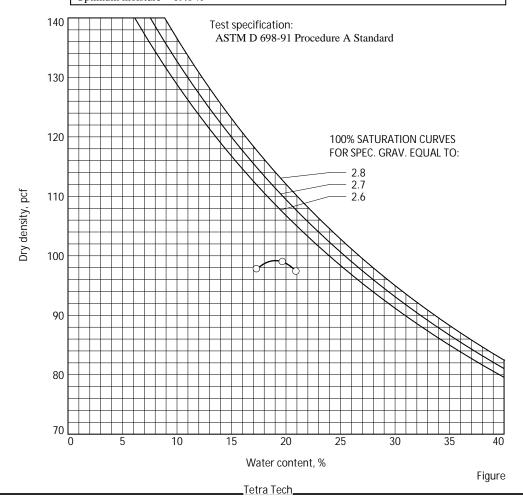
Description:

Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = Plasticity Index =

%<No.10 = 93.5 %


%<No.60 = 86.5 %

%<No.200 = 76.1 %

TEST RESULTS

Maximum dry density = 99.2 pcf

Optimum moisture = 19.0 %

Tested By: SH Checked By: LP

Project No.: 114-571040-2023 Date:

Project: Pickles Butte

Client:

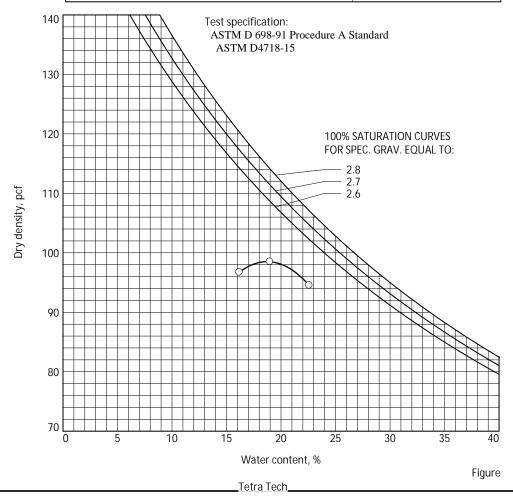
Location: TP-08 Depth: 2-3 ft Remarks:

MATERIAL DESCRIPTION

Description:

Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. = 2.65


Liquid Limit = Plasticity Index =

%<No.10 = 84.3 %

%<No.60 = 60.6 %

%<No.200 = 49.6 %

ROCK CORRECTED TEST RESULTS	UNCORRECTED
Maximum dry density = 100.6 pcf	98.5 pcf
Optimum moisture = 17.8 %	18.7 %

Tested By: TL Checked By: LP

Date:

Project No.: 114-571040-2023

Project: Pickles Butte

Client:

Location: TP-09 Depth: 4-8 ft Remarks:

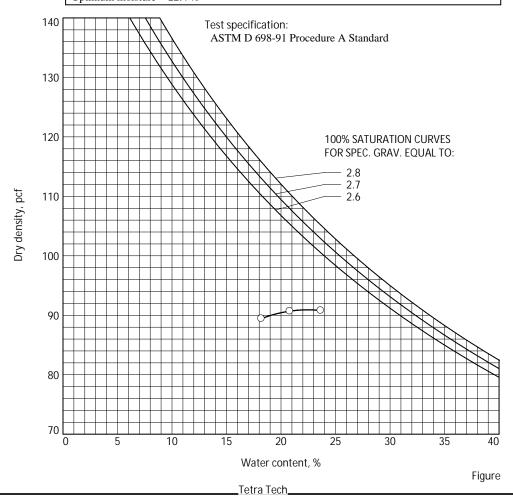
MATERIAL DESCRIPTION

Description:

 Classifications USCS:
 AASHTO:

 Nat. Moist. =
 Sp.G. = 2.65

 Liquid Limit =
 Plasticity Index =


 %<No.10 =</td>
 %<No.40 =</td>

 %<No.60 =</td>
 %<No.200 =</td>

TEST RESULTS

Maximum dry density = 90.9 pcf

Optimum moisture = 22.4 %

Tested By: AB Checked By: LP

Project No.: 114-571040-2023 Date:

Project: Pickles Butte

Client:

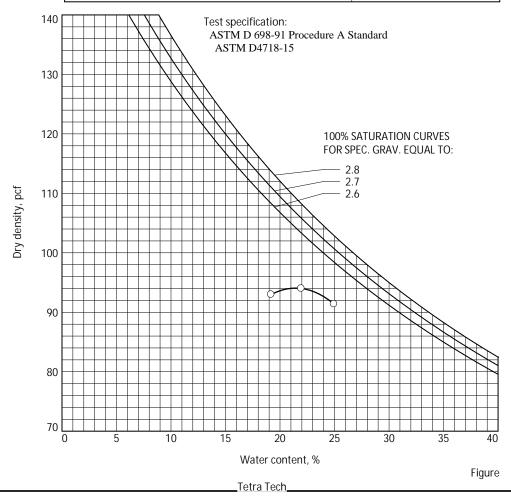
Location: TP-10 Depth: 5-6 ft Remarks:

MATERIAL DESCRIPTION

Description:

Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. = 2.65


Liquid Limit = Plasticity Index =

%<No.10 = 94.1 %

%<No.40 = 85.3 %

%<No.200 = 66.7 %

ROCK CORRECTED TEST RESULTS	UNCORRECTED
Maximum dry density = 94.7 pcf	94.1 pcf
Optimum moisture = 21.1 %	21.4 %

Tested By: AB Checked By: LP

Date:

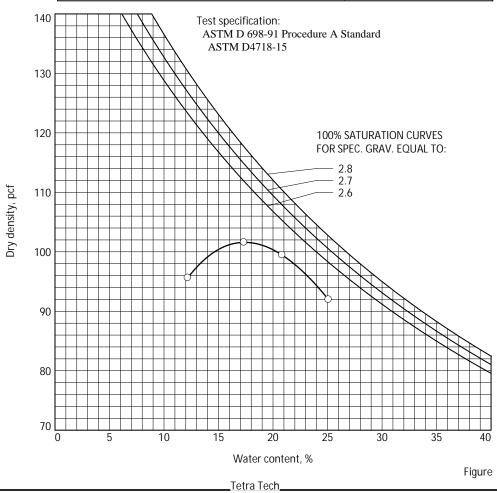
Project No.: 114-571040-2023

Project: Pickles Butte

Client:

Location: TP-14 Depth: 4-5 ft Remarks:

MATERIAL DESCRIPTION


Description:

Classifications - USCS: ML AASHTO: A-4(0)

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = NP Plasticity Index = NP %<No.10 = 95.4 % %<No.40 = 89.9 % %<No.60 = 88.3 % %<No.200 = 78.4 %

ROCK CORRECTED TEST RESULTS	UNCORRECTED
Maximum dry density = 101.7 pcf	101.6 pcf
Optimum moisture = 17.3 %	17.4 %

Tested By: SH Checked By: LP

Date:

Project No.: 114-571040-2023

Project: Pickles Butte

Client:

Location: TP-15 Depth: 2-3 ft Remarks:

MATERIAL DESCRIPTION

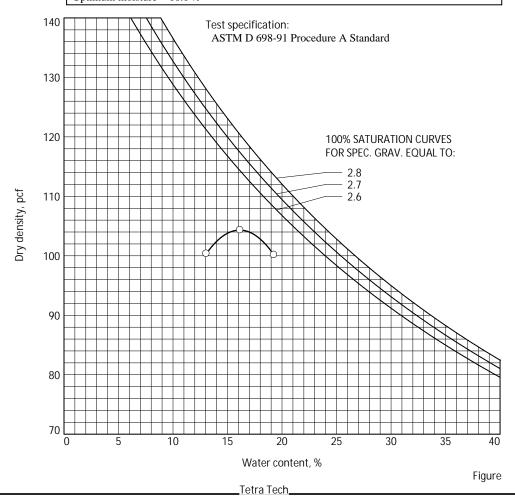
Description:

Classifications - USCS: AASHTO:

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = Plasticity Index =

%<No.10 = 96.7 %


%<No.40 = 93.6 %

%<No.200 = 77.1 %

TEST RESULTS

Maximum dry density = 104.3 pcf

Optimum moisture = 16.1 %

Tested By: TL Checked By: LP

Date:

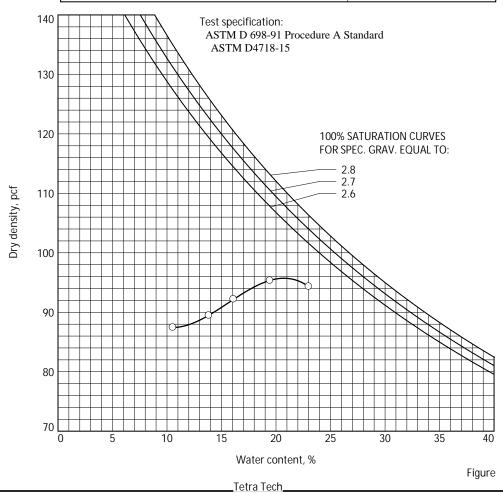
Project No.: 114-571040-2023

Project: Pickles Butte

Client:

Location: TP-16 Depth: 4-8 ft Remarks:

MATERIAL DESCRIPTION


Description:

Classifications - USCS: ML AASHTO: A-4(0)

Nat. Moist. = Sp.G. = 2.65

Liquid Limit = NP Plasticity Index = NF %<No.10 = 90.5 % %<No.40 = 83.1 % %<No.60 = 82.4 % %<No.200 = 75.3 %

ROCK CORRECTED TEST RESULTS	UNCORRECTED
Maximum dry density = 95.8 pcf	95.7 pcf
Optimum moisture = 20.7 %	20.7 %

Tested By: PM Checked By: LP

Project No.: 114-571040-2023 Date:

Project: Pickles Butte

Client:

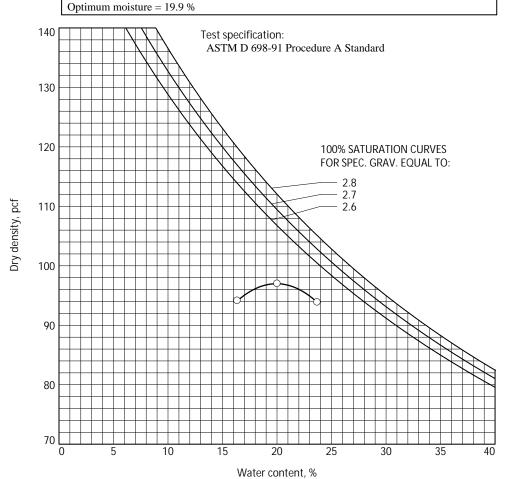
Location: TP-17 Depth: 1-3 ft Remarks:

MATERIAL DESCRIPTION

Description:

 Classifications USCS:
 AASHTO:

 Nat. Moist. =
 Sp.G. = 2.65


 Liquid Limit =
 Plasticity Index =

 %<No.10 =</td>
 %<No.40 =</td>

 %<No.60 =</td>
 %<No.200 =</td>

TEST RESULTS

Maximum dry density = 97.0 pcf

Tetra Tech

Figure

Tested By: SH Checked By: LP

гах:									Sheet i oi i				
Project: Pickles butte test pits Rig: CAT 312D Local Coord												Lat: 43.48655227 ft Long: -116.71010948 ft	Station: Offset:
Project Pickles					its		UPN:		Dimensions:	Syster	n: Decir	nal Degrees	Top of Surface Elevation:
Date S 10/11/2 Contra Logge	start 22 acto	ed: or:	Clie	ent	1	Date F 0/11/	inished:		Abandonment Meth Backfilled with Cuttin Comments:	od:	Locatio	on Source: eld GPS, Uncorrected	Elevation Source:
Depth (ft) Elev. (ft)	Sample Type	MC (%)	LL	PL	-200 (%)	Lithology		Mate	rial Description		Depth (ft) Elev. (ft)	Rem ar Other	nd
5					7		SILT (ML), mo	, Soft, ist, ta VI), sli vith de	breakable by hand. n. ghtly moist, tan, Increasing		3.5 4.2 6.2 8.5	Remarks:	

Fax:			TF	TP-02						
Project: Pickles butt	e test pi	ts	Rig: CAT 312D	Loca	tion Lat: 43.48770692 ft dinates Long: -116.69973327 ft	Station: Offset:				
Project Number:		UPN:	Dimensions:	Syste	em: Decimal Degrees	Top of Surface				
Pickles butte test pit	s			Datum: NAD83						
Date Started:	Date Fi	inished:	Abandonment Me	thod:	Location Source:	Elevation Source:				
10/11/22	10/11/2	22	Backfilled with Cu	Backfilled with Cuttings Handheld GPS, Uncorrected						
Contractor: Client			Comments:							
Logger: Tetra Tech										

Depth (ft) Elev. (ft)	Sample Type	MC (%)	רר	PL	-200 (%)	Lithology	Material Description	Depth (ft) Elev. (ft)	Remarks and Other Tests
							(ML), moist, tain. SILT, dry, tan, Soft, breakable by hand. (ML), moist, tan. Silty SAND (SM), slightly moist, tan, Increasing sand content with depth. Test Pt Depth: 9.6 ft, Bevation:	3.5 4.6 5.5	

Remarks:

TP-03 Sheet 1 of 1

ı ax.									117-	US			Silect 1 of 1
Projec	t: F	ick	les	bu	tte t	test p	its		Rig: CAT 312D	Locat		Lat: 43.48138965 ft Long: -116.70383105 ft	Station: Offset:
Projec							UPN:		Dimensions:	Syste	m: Decir	mal Degrees	Top of Surface
Pickle				t pi	\neg						n: NAD		Elevation:
Date S		ed:			- 1		inished:		Abandonment Method: Location Source: Backfilled with Cuttings Handheld GPS, Uncorrected				Elevation Source:
10/11/2 Contra			⊃li e	n+	1	0/11/	22			ngs	Handhe	eld GPS, Uncorrected	
Logge					,				Comments:				
Logge		Cure	1 1	001	_								
Depth	g					≥		Depth	_				
(ft)	Ę	્			%	olo		Mate	rial Description		(ft)		arks nd
Elev.	Sample Type	MC (%)	ار	╻	-200 (%)	Lithology			,		Elev.		Tests
(ft)	B	Σ		Ы	7						(ft)		
							Sandy SILT (I	VL), sl	ightly moist, tan.				
-													
-													
	1/2												
					Þ	000	Doorly Crost-	4 CVF	Dwith aroust (CD) sticket				
5					0		moist. brown	to blad	D with gravel (SP), slightly ck, fine to coarse grained,		4.7		
					0		angular.		, <i>g.</i> ,				
-						10001	Test F	it Dep	th: 6.0 ft, <i>Bevation:</i>		لر_6.0_ل		
												Remarks:	

Fax:	. (-	100		.U-U	, 10			TP-	04		•	Sheet 1 of 1	
Projec	t: F	Pick	les	bu	tte	test p	its	Rig: CAT 312D	Locatio		Lat: 43.485193 ft Long: -116.71111918 ft	Station: Offset:	
Project Pickles					its		UPN:	Dimensions:		: Deci	mal Degrees	Top of Surface Elevation:	
Date S	tart			<u>, </u>	I		inished:	Abandonment Meth	od:	Locatio	on Source: Elevation Source:		
10/11/2 Contra		r.	Clie	-nt		10/11/	/22	Backfilled with Cuttings Handheld GPS, Uncorrected Comments:					
Logge													
Depth	e					>		Depth					
(ft)	e Typ	(%			(%)	Lithology	Mate	erial Description	(ft)		arks nd		
Elev. (ft)	Sample Type	MC (%)	님	Ы	-200 (%)	=				Elev. (ft)	Other	Tests	
							SILT (ML), slightly n	noist.					
										2.0			
							SILT (ML), dry, tan.			3.2			
	1111						SILT (ML), slightly n	noist.		3.2			
_ 5 _													
-													
							O'LL OAND ON A L			8.7			
								ightly moist, brown, fine grants: Str. 9.5 ft, Bevation:	ained.	ار 9.5			
											Remarks:		

TP-05 Sheet 1 of 1

Projec	t: P	ick	les	bu	tte	test p	its		Rig: CAT 312D	Locat		Lat: 43.48138965 ft Long: -116.70383105 ft	Station:	
Projec							UPN:		Dimensions:	Syste	m: Deci	mal Degrees	Offset: Top of Surface	
Pickle:				t pi)ata E	inished:		Abandonment Meti		n: NAD	Elevation: on Source: Elevation Source:		
10/11/	22				1	0/11/			Backfilled with Cuttings Handh			eld GPS, Uncorrected	Elevation Source.	
Contra									Comments:					
Logger: Tetra Tech														
Depth (ft) WC (%) Flev. (ft) WG (%) TIT Material Description													arks	
Elev.	aldura	MC (%)	۰	PL	-200 (%)	Litho		wate	rial Description		Elev.		nd Tests	
(ft)	i))	2	_	Д	Υ,		Sandv SILT (N	∕IL), sli	ightly moist, tan.		(ft)			
-								,, -	3 ., ,					
	<i>*2</i>													
5							Poorly-Grader moist, brown	d SAN to blad	D with gravel (SP), slightly ck, fine to coarse grained,	′	4.7			
	-						angular.							
						<u> </u>	Test P	it Depi	th: 7.8 ft, <i>Bevation:</i>		ل <u>ر 7.8</u> ــــــــــــــــــــــــــــــــــــ			
												Remarks:		
												1		

rax:									Sheet i oi i				
Projec	t: P	ick	les	bu	tte t	test p	oits		Rig: CAT 312D	Locat		Lat: 43.48443481 ft Long: -116.70762806 ft	Station: Offset:
Project Pickles					its		UPN:		Dimensions:	Syster		mal Degrees	Top of Surface Elevation:
Date S 10/11/ Contra Logge	start 22 acto	ed: r:	Cli∈	ent	1	Date 0/11	Finished: /22		Abandonment Meth Backfilled with Cuttin Comments:	od:	Locatio	on Source: eld GPS, Uncorrected	Elevation Source:
Depth (ft) Elev. (ft)	₩	MC (%)	L	PL	-200 (%)	Lithology	N	/late	rial Description		Depth (ft) Elev. (ft)	Rem ar Other	nd
							Borderline silt.	1), m	noist, tan, very fine grained,		7.3		
												Remarks:	

Fax:	. (-	,00,		·U-U	, 10	•		TP-	07		•	Sheet 1 of 1
Projec	t: F	ick	les	bu	tte	test pi	its	Rig: CAT 312D	Locatio		Lat: 43.48449268 ft Long: -116.70415019 ft	Station: Offset:
Projec Pickle					ito		UPN:	Dimensions:	System	: Deci	mal Degrees	Top of Surface
Date S				ιp	-	Date F	inished:	Abandonment Meth	Datum:		ಶು on Source:	Elevation: Elevation Source:
10/11/			01:	4		10/11/2	22	Backfilled with Cutti	ings	Handh	eld GPS, Uncorrected	
Contra Logge								Comments:				
Depth	0									Depth		
(ft)	! ₩	(%			(%)	Lithology	Mate	rial Description		(ft)		narks nd
Elev. (ft)	Sample Type	MC (%)	占	చ	-200 (%)	불		·		Elev. (ft)	Other	Tests
							SILT (ML), slightly n	noist, tan.				
-												
							SILT (ML), dry, tan.			2.5		
							SILT (ML), slightly n	noist, tan.		3.3		
_ 5 _	-									5.5		
							Silty SAND (SM), m sand with depth.	oist, very fine grained, Incr	reasing	0.0		
-												
-						<u> </u>	Test Pit Dep	th: 8.5 ft, <i>Bevation:</i>		8.5		
											1	
											Remarks:	

TP-08 Sheet 1 of 1

Projec	t: P	ick	les	bu	tte	test p	its		Rig: CAT 312D		Locati		Lat: 43.48743981 ft Long: -116.69702086 ft	Station:
Projec							UPN:		Dimensions:		Syster	n: Deci	mal Degrees	Top of Surface
Pickles				t pi					Abandan marant N			: NAD		Elevation:
Date S 10/11/2		ed:			- 1	0/11/	Finished:		Abandonment N Backfilled with C				on Source: eld GPS, Uncorrected	Elevation Source:
Contra	icto					0/ 1 1/			Comments:		<u> </u>	Hallan	old of e, officerrooted	
Logge	r: T	etra	а Т	ech	1									
Depth	8					25						Depth		- auto-
(ft)	Sample Type	(%)			-200 (%)	Lithology		Mate	rial Description			(ft)	а	narks nd
Elev. (ft)	Samp	MC (%)	Ⅎ	PL	-200	=						Elev. (ft)	Other	Tests
							Sandy SILT (I	VIL), sl	ightly moist, tan.					
-														
							Poorly-Grade	d SAN	D with gravel (SP), sli	ghtly	ſ	4.2		
_ 5 _							moist, brown angular.	to blad	ck, fine to coarse grain	ned,				
						<u> </u>		it Dep	th: 6.0 ft, <i>Elevation:</i>			6.0		
													Remarks:	

Fax:	•	•						TP-	09			Sheet 1 of 1
Projec	t: P	ick	les	bu	tte	test pi	its	Rig: CAT 312D	Locatio		Lat: 43.48360081 ft Long: -116.70130153 ft	Station: Offset:
Projec							UPN:	Dimensions:			mal Degrees	Top of Surface
Pickles	s bu	tte	tes	t p	ts				Datum:	: NAD	83	Elevation:
Date S		ed:					inished:	Abandonment Meth			on Source:	Elevation Source:
10/11/2						0/11/2	22	Backfilled with Cutti	ngs	Handhe	eld GPS, Uncorrected	
Contra								Comments:				
Logge	r: ı	etra	a 1	ecr	1							
Depth	e e					_				Depth		
(ft)	Sample Type	િ			(%	Lithology	Mato	rial Description		(ft)		arks nd
Elev.	nple	MC (%)			-200 (%)	it	Wate	nai bescription		Elev.		Tests
(ft)	ଊ	ž	=	ፈ	Ģ	-				(ft)		
							SILT (ML), slightly m	noist, tan.				
							SILT (ML), dry, tan.			3.0		
						<u> </u>	OLI (IVL), CIY, tali.					
5							SILT (ML), moist, ta	n.		4.5		
						0,000	Silty SAND (SM), m	oist, brown, very fine grain	ned.	6.0		
-						***						
	<u> 134</u>									0.5		
						ŽΪ	Black. Pieces of bas			8.5 _9.0		
							Test Hit Depi	th: 9.0 ft, <i>Bevation:</i>				
											Remarks:	

TP-10 Sheet 1 of 1

Projec	t: P	ick	les	bu	tte t	test p	oits		Rig: CAT 312D	Locati	on inates	Lat: 43.48282091 ft Long: -116.69717814 ft	Station: Offset:
Project Pickles					its		UPN:		Dimensions:	Syster		mal Degrees	Top of Surface Elevation:
Date S						Date F	inished:		Abandonment Meth			on Source:	Elevation Source:
10/11/2					1	0/11/	/22		Backfilled with Cutti	ngs	Handh	eld GPS, Uncorrected	
Contra									Comments:				
Logge	r: ı	etra	3 16	ecr	1								
Depth (ft) Elev. (ft)	Sample Type	MC (%)	_ 	PL	-200 (%)	Lithology		Mate	erial Description		Depth (ft) Elev. (ft)	ar	arks nd Tests
	or and the second secon	2			00000		Poorly-Gradeo moist, brown angular.	SAN to red,	ightly moist, tan. Diwith silt (SP-SM), slightly, fine to medium grained, oth: 9.0 ft, Elevation:		8.0		
												Remarks:	

TP-11 Sheet 1 of 1

Projec	t: P	ick	es l	but	te t	est p	its		Rig: CAT 312D	Locatio		Lat: 43.48090709 ft Long: -116.69796449 ft	Station: Offset:
Projec Pickles				pit	ts		UPN:				ı: Deci	mal Degrees	Top of Surface Elevation:
Date S	tart	ed:			D	ate F	inished:		Abandonment Meth	od:	Location	on Source:	Elevation Source:
10/11/2					1	0/11/	22		Backfilled with Cutti	ngs	<u>Handh</u>	eld GPS, Uncorrected	
Contra									Comments:				
Logge	r: ı	etra	пе	cn	_								
Depth (ft)	Type				(9)	logy					Depth (ft)		arks
Elev. (ft)	Sample Type	MC (%)	ן ב	చ	-200 (%)	Lithology		Mate	rial Description		Elev. (ft)	ai Other	nd Tests
						Щ	basalt.		.), slightly moist, tan, Pieco	0.9			
	BASALT, black. Test Pit Depth: 1.0 ft, Elevation:												
							TEST	прф					
												Remarks:	
												1	

Fax:	. (¬	,00	-	0-3	10	ı			i i	TP-12				Sheet 1 o	of 1
Projec	t: P	Pick	les	bu	tte	test p	its		Rig: CAT 312D		catior oordin	n ates	Lat: 43.48134636 ft Long: -116.70124308 ft	Station: Offset:	
Project Pickle					its		UPN:		Dimensions:	Sys		Decir	mal Degrees	Top of Surface Elevation:	
Date S		ed:			- 1	Date F	Finished:		Abandonment N Backfilled with C	lethod:	: L	ocatio	on Source: eld GPS, Uncorrected	Elevation Source:	
Contra Logge	acto								Comments:		•		·		
Depth (ft) Elev. (ft)	Sample Type	MC (%)	LL	PL	-200 (%)	Lithology	M	late	rial Description		E	epth (ft) Elev. (ft)	á	narks nd r Tests	
 					8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Poorly-Graded S slightly moist, br grained, angular.	SAN rowr	.), slightly moist, tan, D with silt and gravel (n to black, fine to coan th: 4.0 ft, Bevation:	(SP-SM), se	,	1.5			
													Remarks:		

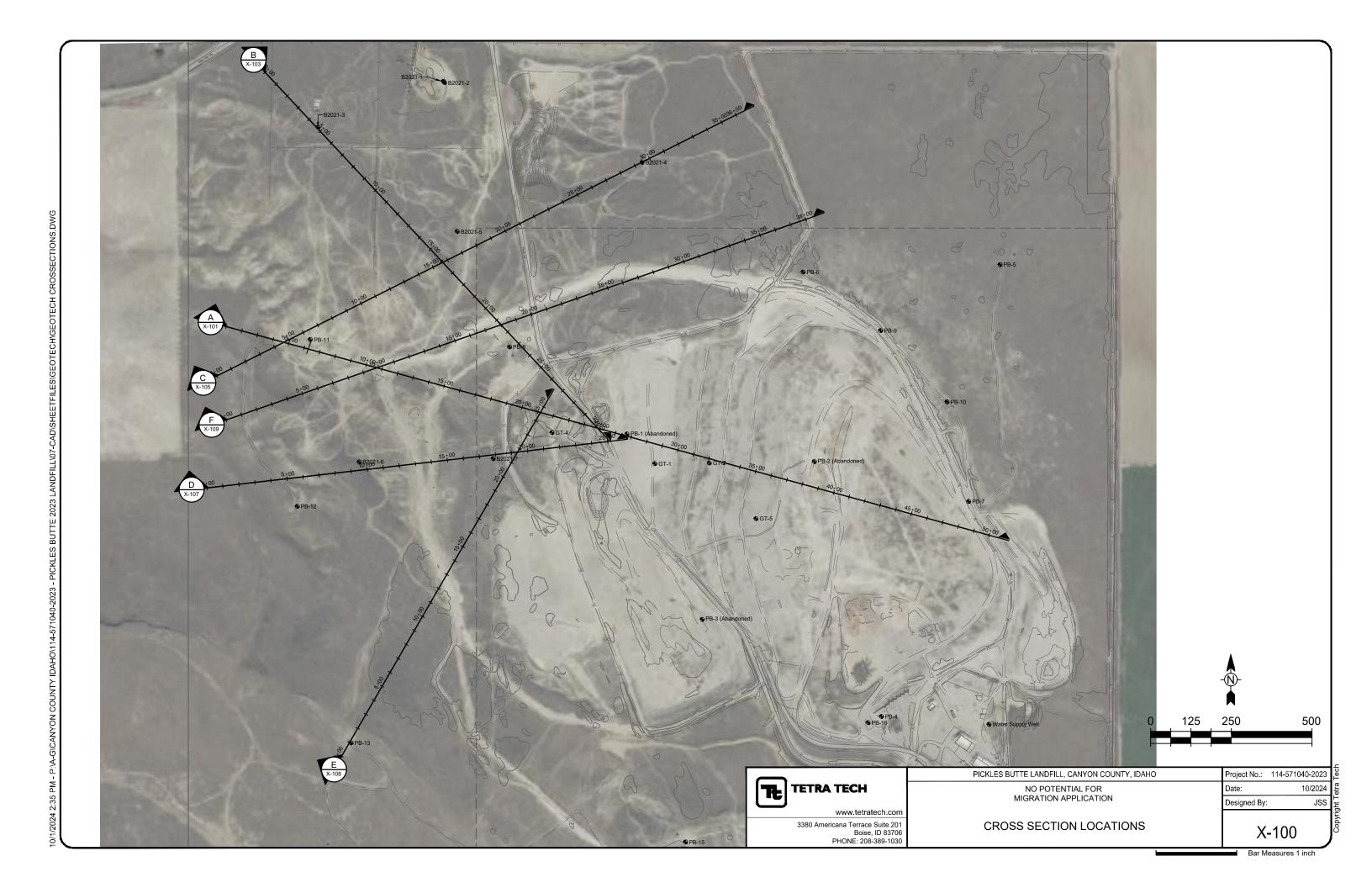
Fax:									TP-1	3 B			Sheet 1 of 1
Projec					tte	test pi	_		lig: CAT 312D	Locat	ion linates	Lat: 43.48138965 ft Long: -116.70383105 ft	Station: Offset:
Project Pickles					ts		UPN:	D	imensions:	_	m: Deci	mal Degrees 83	Top of Surface Elevation:
Date S		ed:		-			inished:		bandonment Meth	od:	Locatio	on Source:	Elevation Source:
10/11/2 Contra		r:	Clie	nt		10/11/	22		ackfilled with Cutti omments:	ngs	Handhe	eld GPS, Uncorrected	
Logge													
Depth	e					<u>></u>					Depth	_	
(ft)	Sample Type	(%)			-200 (%)	Lithology	Ma	ateria	al Description		(ft)	Rem ar	nd
Elev. (ft)												Other	lests
						00000	Silty SAND with g Pieces of basalt.	gravel	(SIM), slightly moist, tar	٦,			
	BASALT, black												
											1.5		
_ 5 _													
-							Test Pit D	Depth:	6.0 ft, <i>Elevation:</i>				
												Remarks:	

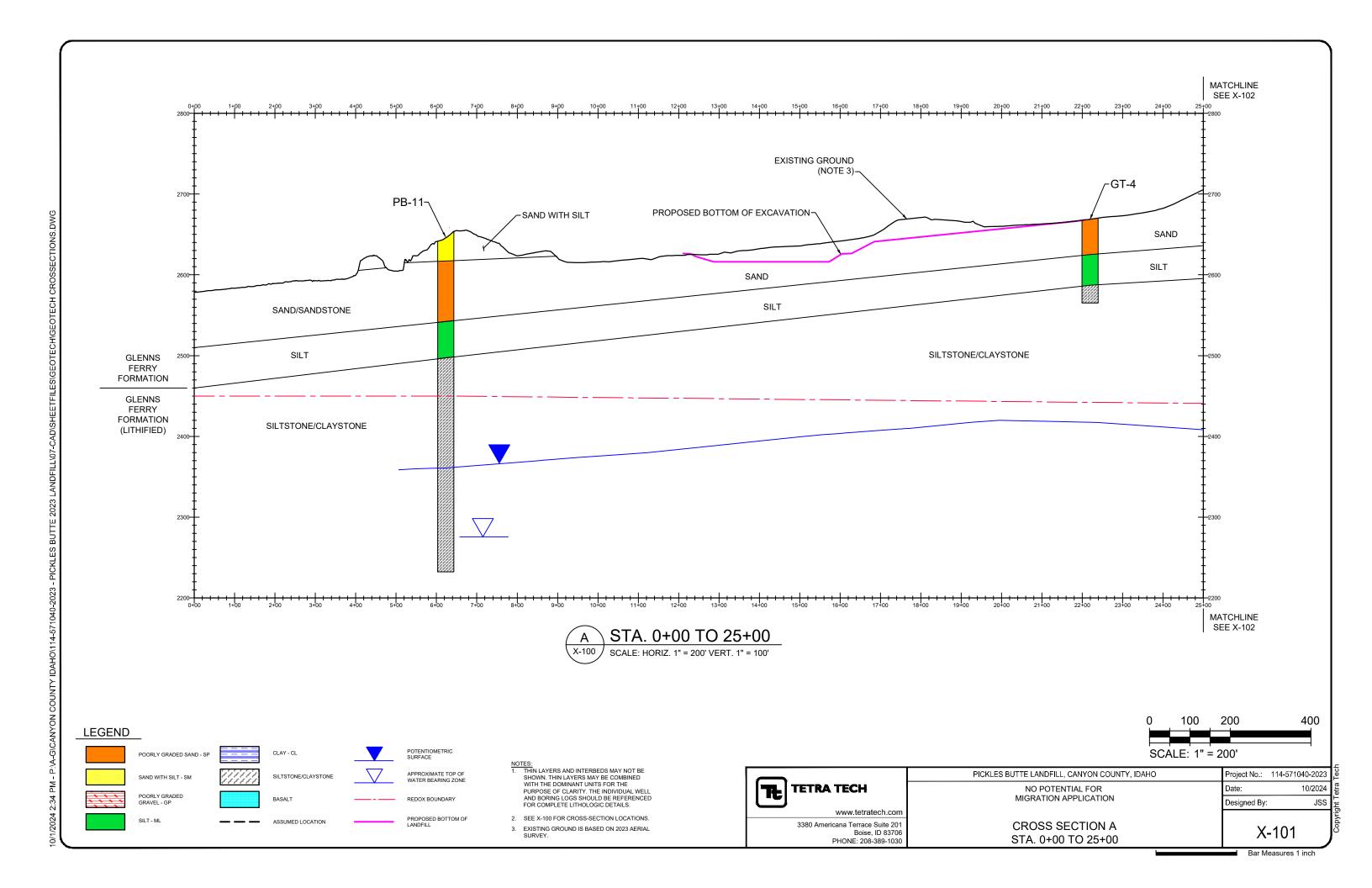
TP-14 Sheet 1 of 1

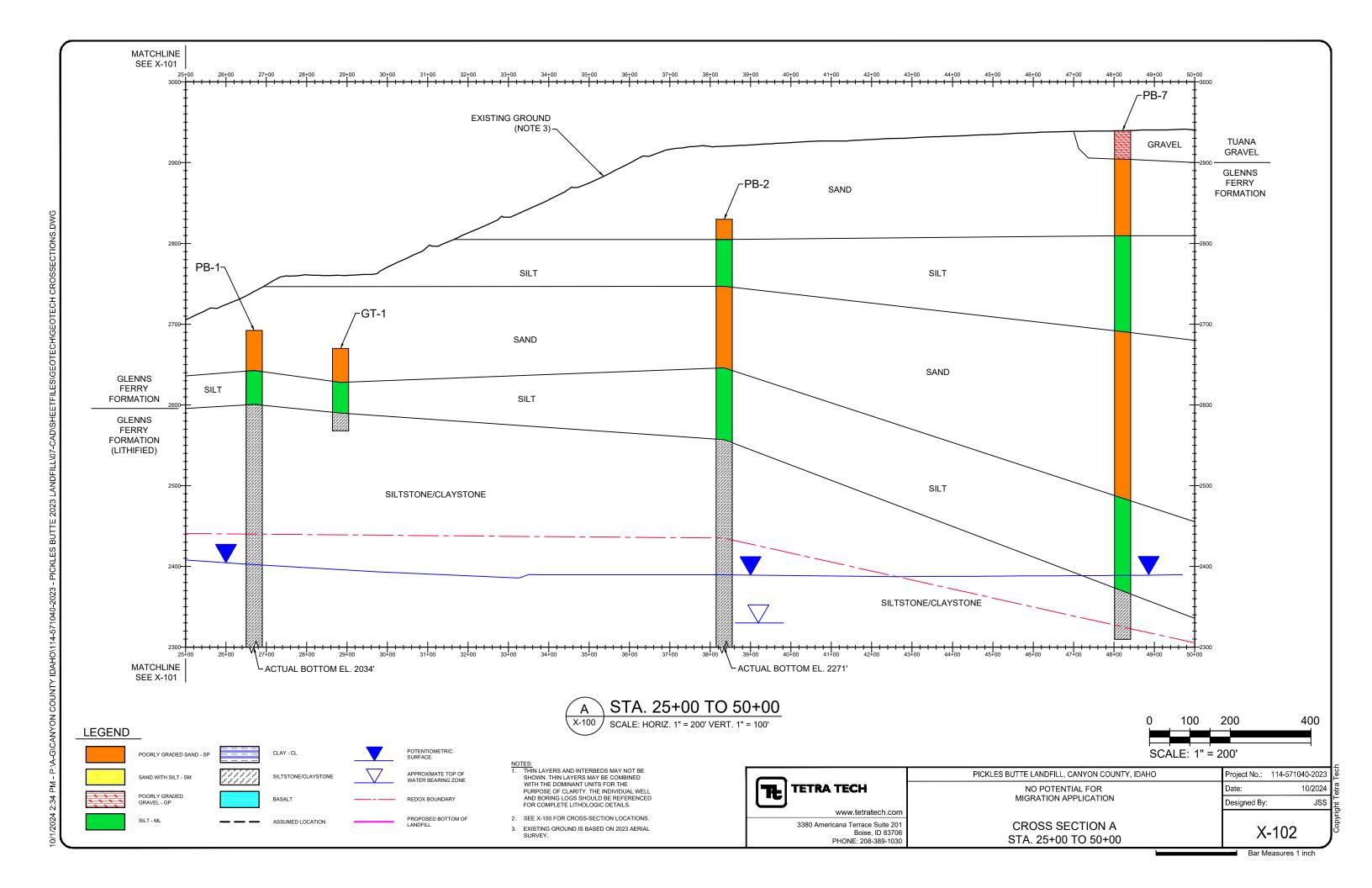
Projec	t: F	ick	les	bu	tte	test p	oits		Rig: CAT 312D	Locat	tion	Lat: 43.48138965 ft Long: -116.70383105 ft	Station: Offset:
Projec							UPN:		Dimensions:	Syste	m: Deci	mal Degrees	Top of Surface
Pickles Date S				t pi)ata l	 Finished:		Abandonment Metl		n: NAD	83 on Source:	Elevation: Elevation Source:
10/11/2		eu.				0/11			Backfilled with Cutt			eld GPS, Uncorrected	Lievation Source.
Contra									Comments:				
Logge	r: 1	etra	3 10	ecr	1								
Depth (ft)	f4\ E										Depth (ft)	Ren	narks
Elev.	Material Description										Elev.	а	nd Tests
(ft)											(ft)	Galloi	1000
	Sandy SILT (ML), slightly moist, tan.												
	<u> </u>												
	-												
_ 5 _											5.0		
							moist, brown		ID with gravel (SP), slightly ck, fine to coarse grained,	′			
							angular.	ft Don	th: 6.9 ft, <i>Bevation:</i>		6.9		
							163(1	пъф	ar. o.ər, <u>Devauor.</u>				
												Remarks:	
												- Comanto.	

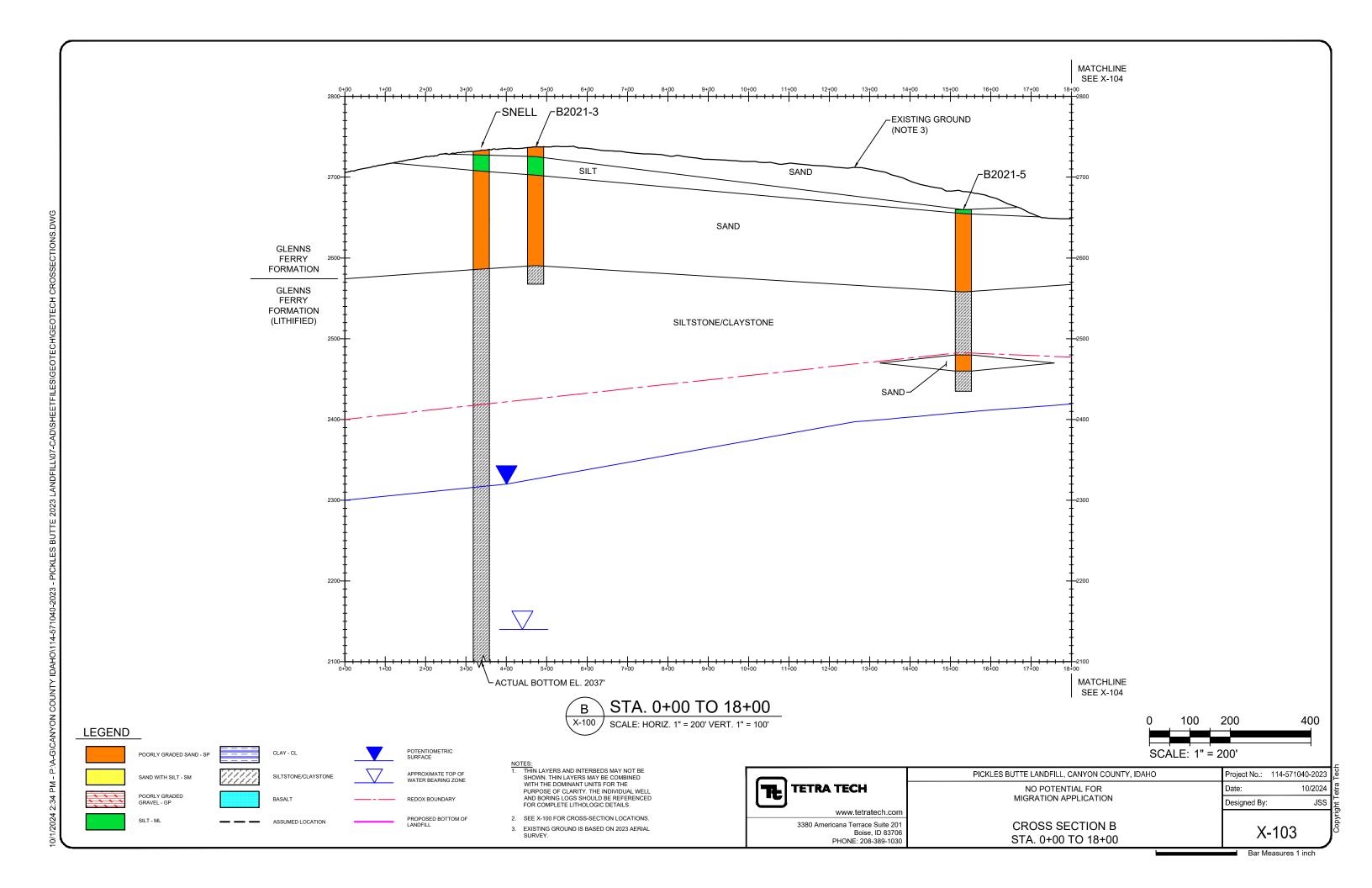
гах:									IP-	15			Sheet i oi i
Projec	t: P	Pick	les	bu	tte	test p	oits		Rig: CAT 312D	Locat		Lat: 43.47849928 ft Long: -116.69774994 ft	Station: Offset:
Projec Pickle					its		UPN:		Dimensions:	Syste		mal Degrees	Top of Surface Elevation:
Date S 10/11/ Contra Logge	tart 22 acto	ed: r:	Clie	ent	1	Date F 0/11/	Finished:		Abandonment Meth Backfilled with Cutti Comments:	od:	Locatio	on Source: eld GPS, Uncorrected	Elevation Source:
Depth (ft) Elev. (ft)	- ≥	MC (%)	LL	PL	-200 (%)	Lithology		Mate	rial Description		Depth (ft) Elev. (ft)	Rem ar Other	nd
								√ 1), m	oist, brown, very fine grain th: 8.2 ft, Bevation:	ed	8.2	Remarks:	
												1	

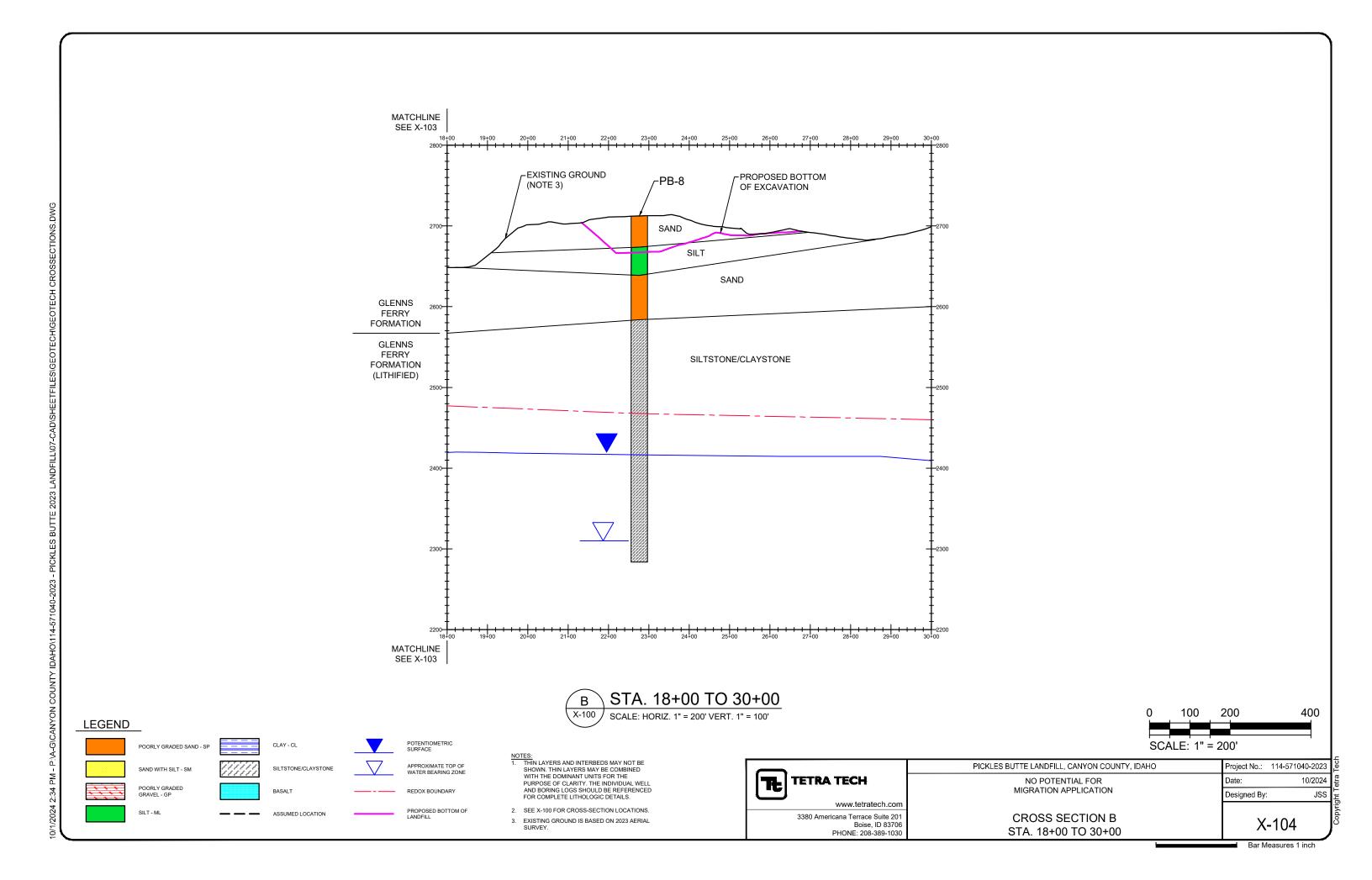
TP-16 Sheet 1 of 1

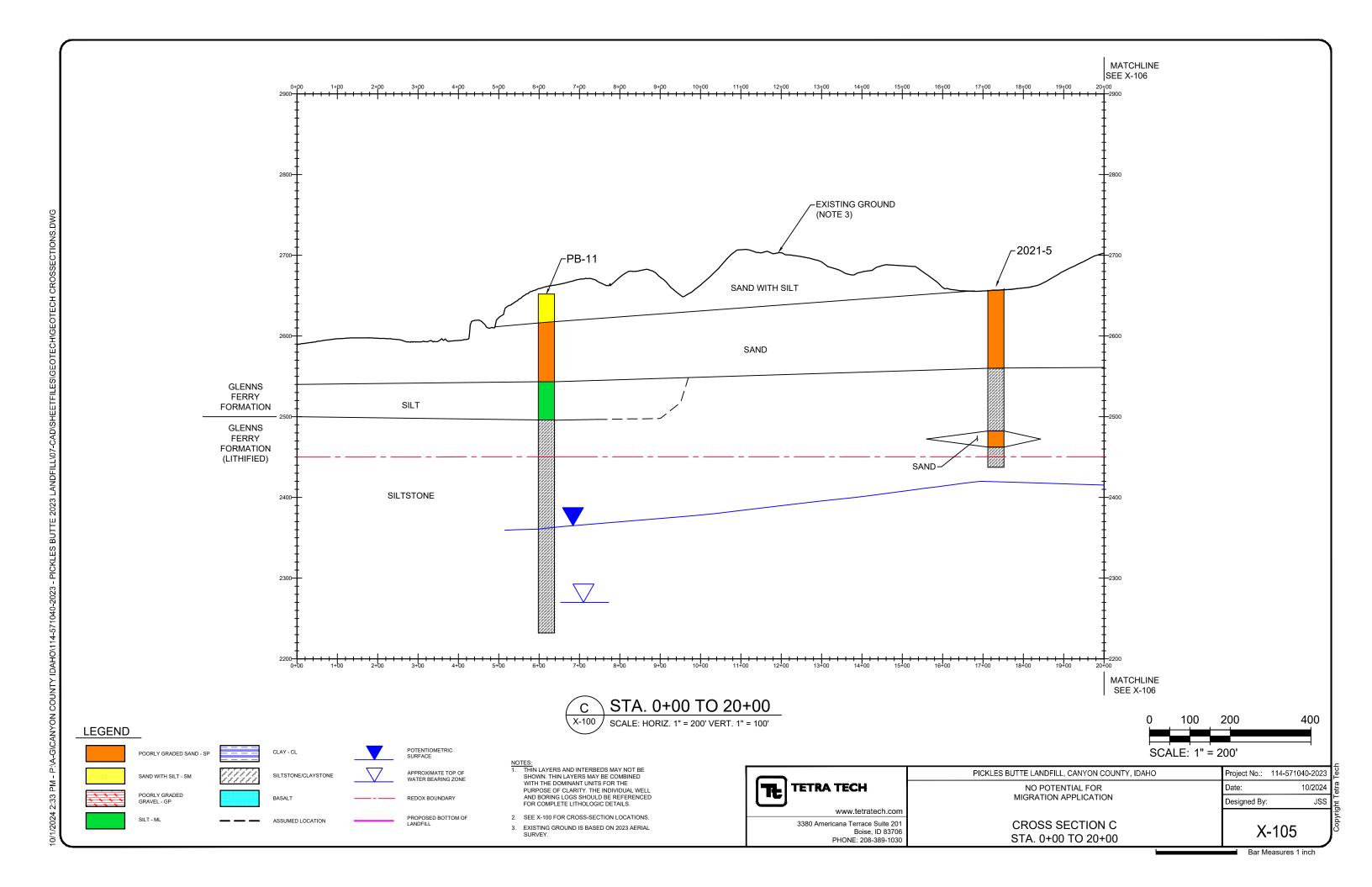

ı ax.									117-	10			Sileet 1 of 1
Projec	t: P	ick	les	bu	tte t	test p	oits		Rig: CAT 312D	Locat	ion linates	Lat: 43.48443481 ft Long: -116.70762806 ft	Station: Offset:
Projec							UPN:		Dimensions:	Syste	m: Deci	mal Degrees	Top of Surface
Pickle				t pi							n: NAD		Elevation:
Date S		ed:					Finished:		Abandonment Meth			on Source:	Elevation Source:
10/11/2 Contra		r.	Clic	nt	1	0/11	122		Backfilled with Cutti Comments:	ngs	Handne	eld GPS, Uncorrected	
Logge					1				Comments.				
- 55									1				
Depth	/#\ 											Down	arks
	¥\ \										(ft)	ar	nd
Elev. (ft)	Material Description (t) V (%)										Elev. (ft)	Other	Tests
(11)											(79		
	SILT (ML), slightly moist, tan.												
_	1												
-													
_ 5 _													
											6.2		
											0.2		
					8	2000	Silty SAND (S	M), m	oist, tan, very fine grained				
-	25/5				8								
-						\$ % & S	Test P	it Dep	th: 9.2 ft, <i>Elevation:</i>		9.1		
												Remarks:	
-												1	

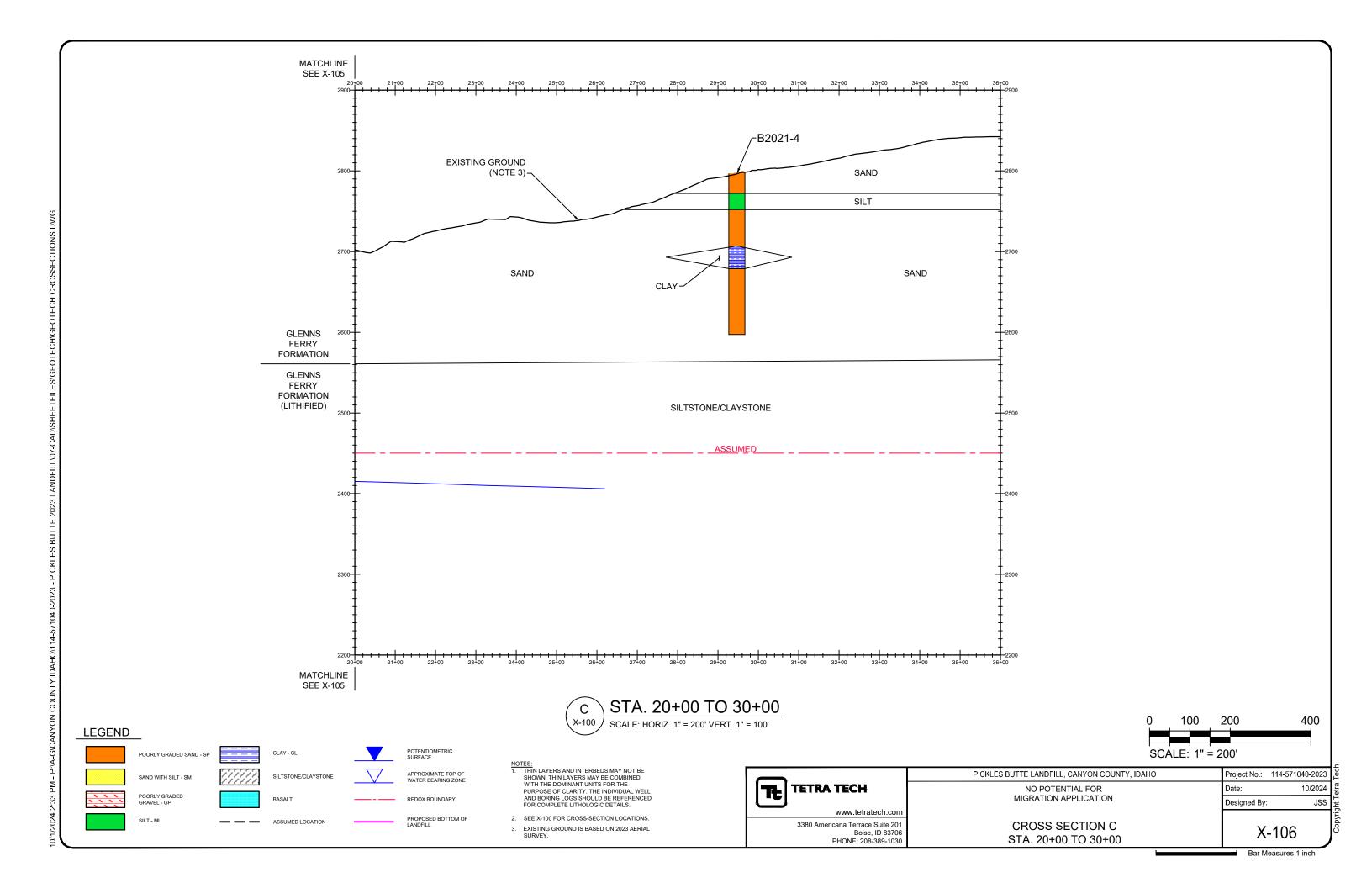


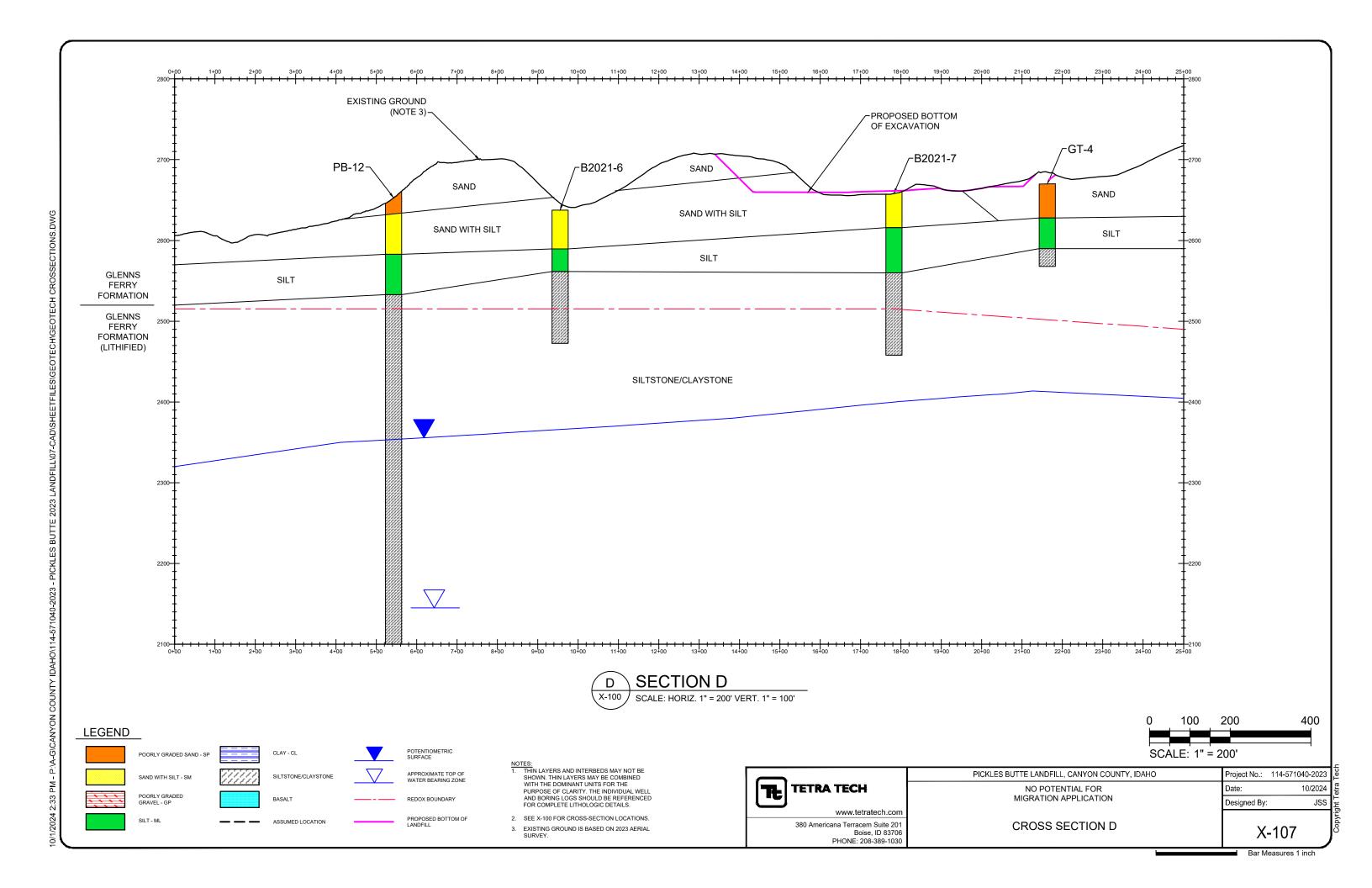

TP-17 Sheet 1 of 1

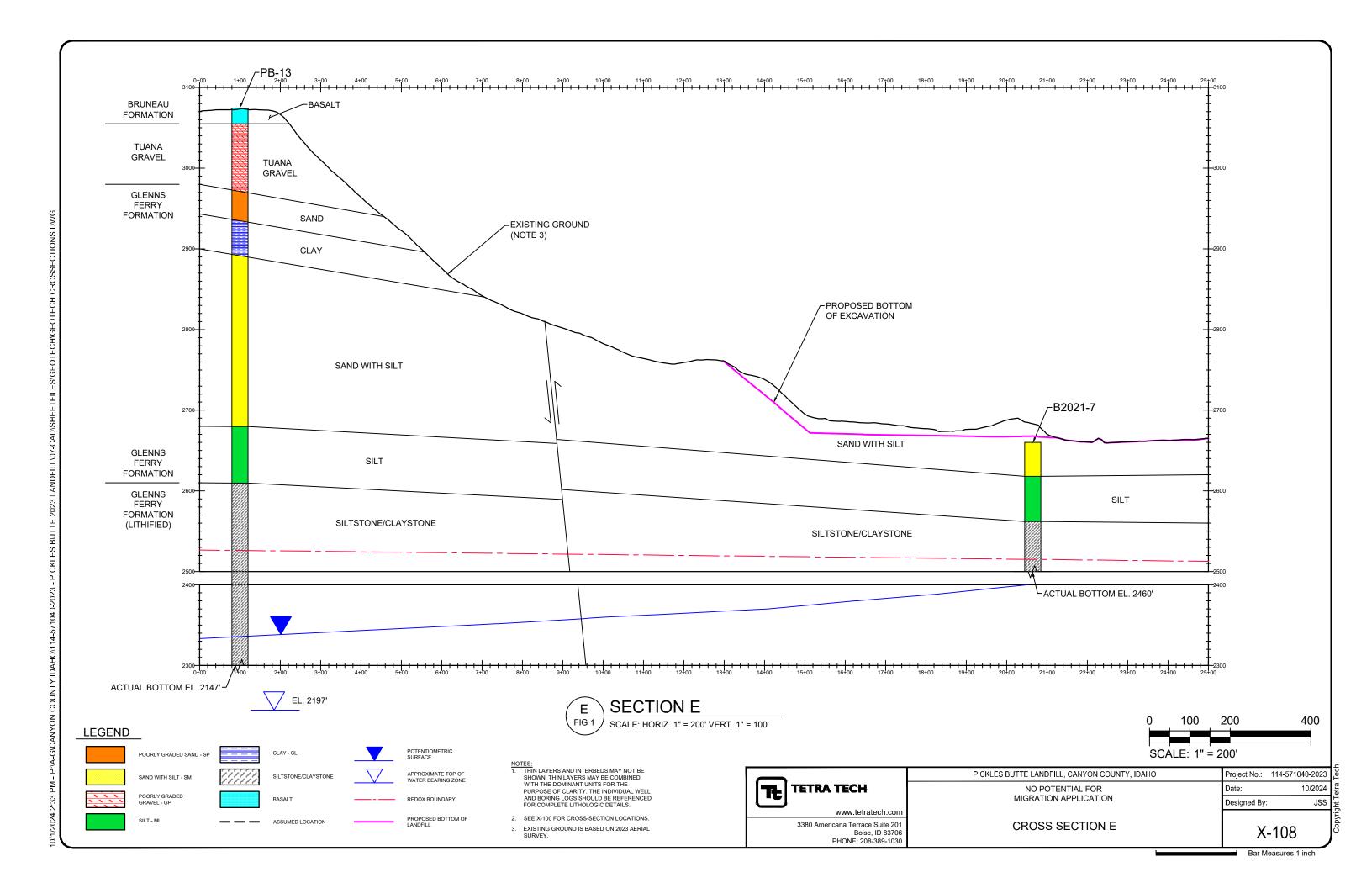

Projec	t: P	ick	les	bu	tte	test pi	ts		Rig: CAT 312D		ocatio		Lat: 43.47849928 ft	Station:
Projec	t Nı	ımk	er:	:			UPN:		Dimensions:				Long: -116.69774994 ft mal Degrees	Offset:
Pickles					ts						-	: NAD	-	Top of Surface Elevation:
Date S		ed:					inished:		Abandonment Mo				on Source:	Elevation Source:
10/11/2 Contra			Clic	nt		10/11/2	22		Backfilled with Cu Comments:	utting	js	Handhe	eld GPS, Uncorrected	
Logge									Comments.					
Danth												Danath		
Depth (ft)	Sample Type				(9	Lithology						Depth (ft)		narks
Elev.	mple	MC (%)			-200 (%)	-itho		Mate	rial Description			Elev.		nd Tests
(ft)	ଞ	Ž	=	4	Ģ							(ft)		
							SILT (ML), sli	ghtly m	noist, tan.					
					ļ		Doorly Crode	1 CVVI	D/CD) majet real to b	lod.		3.9		
_ 5 _							medium to co	arse gi	D (SP), moist, red to b rained.	iack,				
												ر م		
						o. o. o. o. I	Test F	it Dept	th: 6.2 ft, <i>Bevation:</i>			لر_0.2_		
													Pomarke:	
													Remarks:	

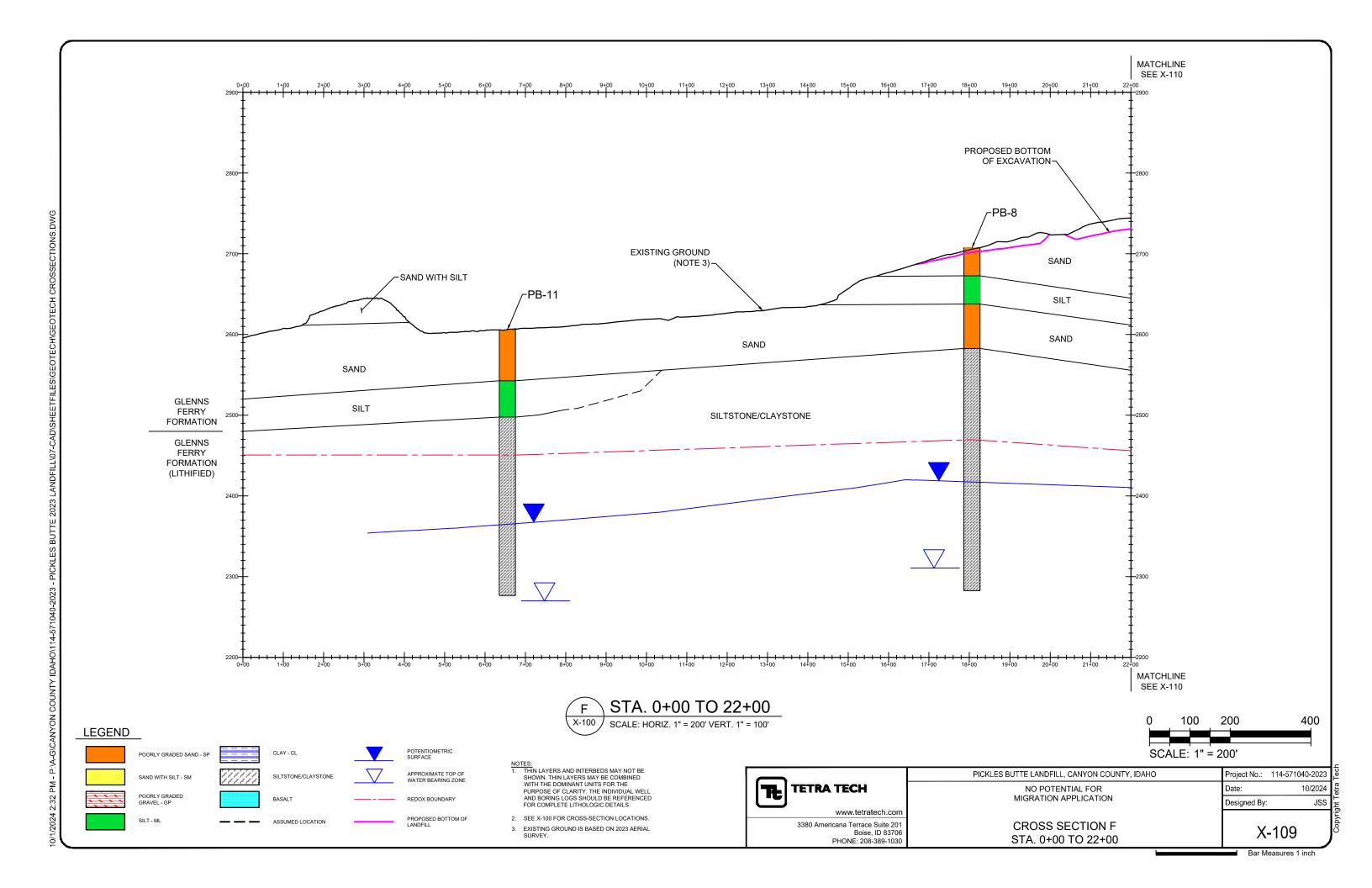

APPENDIX D: GEOLOGIC CROSS SECTIONS

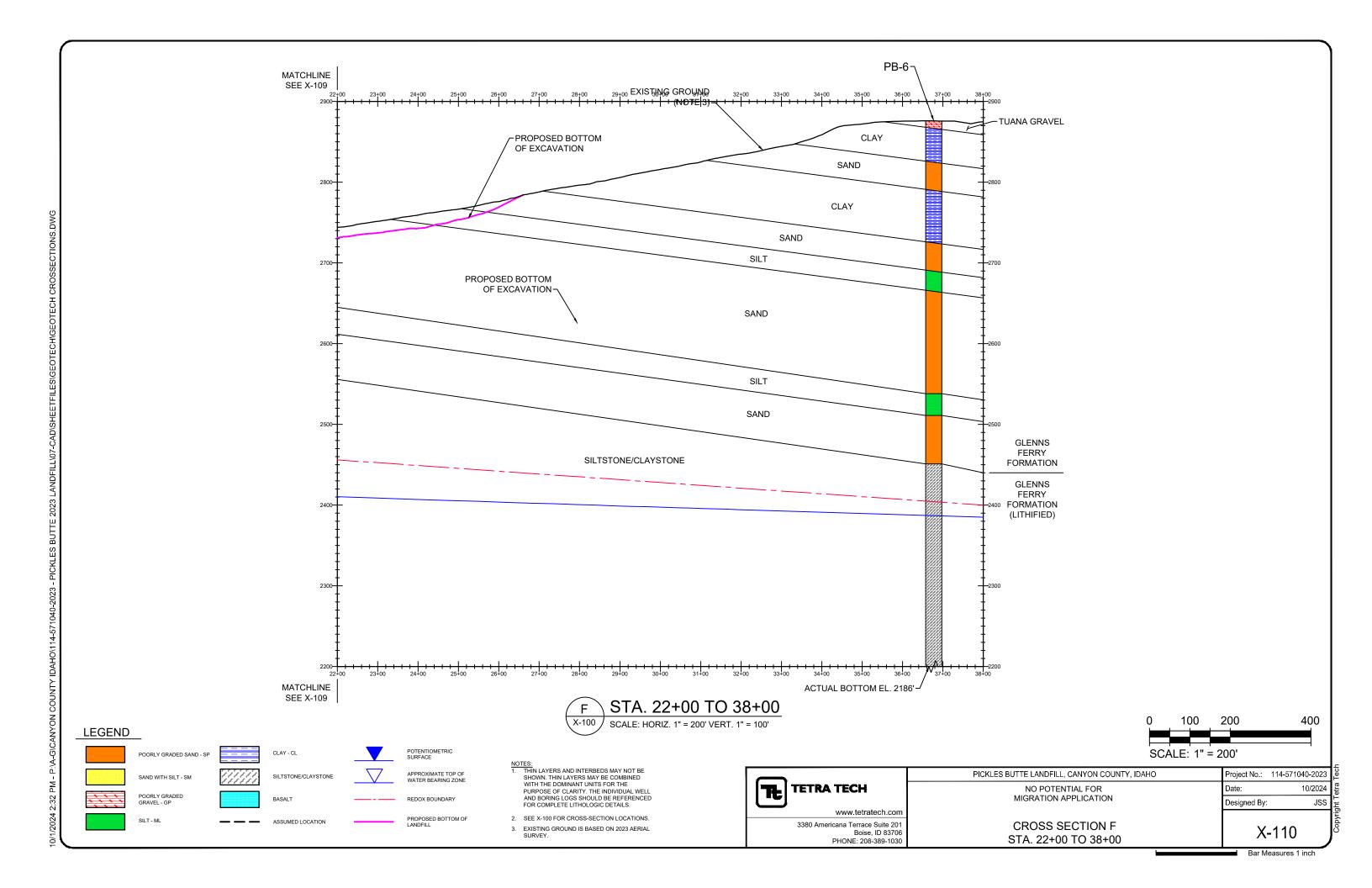












APPENDIX E: WELL AND BORING LOGS

WELL DRILLER'S REPORT

1.	WELL OWNER	7. WATER LEVEL										
	Name CANYON COUNTY	Static water level <u>339</u> feet below land surface Flowing? □ Yes □ No G.P.M. flow										
	Address Caldwell, IdaHo		empera	ture	es □ No G.P.M. Now_ ° F. Quality			_				
		A	rtesian	closed-ir	p.s.i,		·					
	Owner's Permit No.	C	ontrolle	ed by	□ Valve □ Cap □	Plug						
2.	NATURE OF WORK	8. W	ELL T	EST DA	ТА							
	□ New well □ Deepened □ Replacement	Z	Pump		☐ Bailer ☐ Other							
		D	ischarge	G.P.M.	Draw Down	Hours P	umped					
	Abandoned (describe method of abandoning)	<u> </u>	QP.	DN)	1/2/	7						
			<u>5</u>		/4/							
3.	PROPOSED USE											
•	Domestic Irrigation Test Other (specify type)	9. LITHOLOGIC LOG 106783										
נ	Municipal Industrial Stock Waste Disposal or Injection	Hole Diam.		pth To	Material		Wa Yes					
4	METHOD DRILLED	20		_3_	Top Soil							
 		- "	3	48	SAND ZOS		+	 				
	Ø Cable ☐ Rotory ☐ Dug ☐ Other	1	152	205	ye. Low C	144						
5.	WELL CONSTRUCTION	20	205	25] 297	CRAY CLAY	, 575c.	44	 				
	•	20	292	327	RLUE CLAY	0% 54	red	ļ				
	Diameter of hole	20	3.27	520	Blue Clay	S HA-LO						
	Thickness Diameter From To	18		595	Grey SHAL	<u>e</u>						
	375 inches 16 inches + 2 feet 575 feet	16	140	658	SHALE, SANDY	ـــــــــــــــــــــــــــــــــــــ	1					
	$\frac{250}{250}$ inches $\frac{10}{10}$ inches $\frac{537}{6}$ feet $\frac{572}{6}$ feet $\frac{10}{10}$ feet $\frac{10}{10}$ feet $\frac{10}{10}$		-7 -									
	inches inches feet feet	ļ				·	$+$ \dashv					
	inches feetfeetfeet	 -					+					
	Was a packer or seal used?											
	Perforated?											
	How perforated? ☐ Factory ☐ Knife ☐ Torch	<u></u>				·····	+					
	Size of perforation inches by inches Number From To											
	Number From To perforations feet feet	<u> </u>				<u> </u>	-	ļ.——				
	perforations feet feet						+ +					
	perforations feet feet					W.						
	Well screen installed?				िर्देश किये विश्व							
	Manufacturer's name TOHINSON				Department of Water Resou	TICON.	1-1					
ንጉ	Type STAIN / e 55 Model No. Diameter 10 Slot size 25 Set from 577 feet to 637 feet				Western Regional Office	8						
	Diameter Slot size Set from feet to feet											
							+					
	Gravel packed? □ Yes □ No Size of gravel No.16 De.1. M. Placed from 537 feet to 658 feet	>N des										
							├					
	Surface seal depth 20 Material used in seal (2 Cement grout						† †					
	Sealing procedure used Sterry pit Temporary surface cosing											
	Overbore to seel depth	1				-						
		10.										
	Sketch map location must agree with written location. 63	W	ork star	ted/	(<u>b</u> / <u>y</u> / <u>7</u> finished _	1/16/7.	9					
	N N	41 54	BII I 684	CERTI	FICATION							
					FICATION			_				
	Subdivision Name	F	rm Nan	10 <u> </u>	11/2/2 Drilling	∮ _Firm N	<u>.55</u>	-				
-0.00 -0.00	Lot No Block No	Firm Name WITT, DVILLING Firm No.55 Address C.A.J. We J.J., T.d. Date 7./10/78										
TRACES PAREST PUT SE					,	-	•					
, · · • • •	S	Si	gned by		official) Zon well							
") z 10	CountyCANYON			(Occ-	d otor) <u>CLAU de</u>	/) ,, /¬.	P	-				
	SW % NW % Sec. 2/, T. 2 N/ R. 3 K/W	X/W!										
_	LISE ADDITIONAL CUESTO IS NOT THE WAY											

RECEIVED MAR

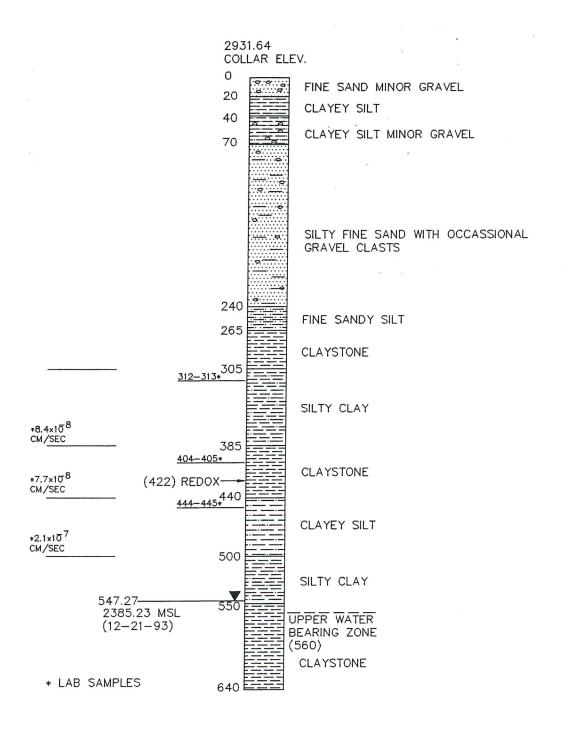
The second secon

2 1993

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

HOLE # PB-2


1.	WELL OWNER FICKLES BUTTE	7. WATER LEVEL Static water level 392.0 feet below land surface.											
	Name CANYON COUNTY LANDFILL												
	Address 1115 ALBANY, CALDWELL, ID \$3605			? 🗆		KN No ressure	G.P.M. flow						
	Drilling Permit No. <u>63-92-W-275-001</u>					Valve 🗷 Cap							
	Water Right Permit No	T-	empera	ature	<u> 0</u> £	°F. Quality <u>Poo</u>	PA3V-AC	<u>Hard</u>					
	water Right Permit No.				Descr	ibe artesian or temperatu	re zones below.						
2.	NATURE OF WORK	8. W	VELL 1	TEST C	ATA	N/	'A						
	■ New well □ Deepened □ Replacement	1				ailer 🗀 Air							
	□ Well diameter increase □ Modification						····						
	☐ Abandoned (describe abandonment or modification procedures	D	ischarge	e G.P.M.		Pumping Level		ours Pumpe	<u>d</u>				
	such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.)	ļ <u>.</u>			-								
3.	PROPOSED USE	<u></u> -											
	□ Domestic □ Irrigation	9. L	ITHOL	.ogi¢	LOG		07	51 06	;				
	☐ Industrial ☐ Stock ☐ Waste Disposal or Injection	Bore	De	pth					ater				
	☐ Other (specify type)			То		Materia		Yes	No				
4.	METHOD DRILLED	1814		100	Tan	<u>V SILTY FINE</u> V SILT	SAND	 	1				
-	⊠ Rotary ⊠ Air □ Auger					N CLAY STIT			† V				
	☐ Cable ☐ Other	121/4	160	185	TA	N STITY CLA	ч		V				
	(backhoe, hydraulic, etc.)					N CLAY STONE			Y				
-	WELL CONCEDUCTION	8				N CLAY STONE AY CLAY STO			 У				
5.	WELL CONSTRUCTION					AY CLAY STO		Ž					
	Casing schedule: Steel Concrete COther STEEL Thickness Diameter From To		440	520	GR	AY CLAY STO	NE		Y				
	5cH 10 inches 4" inches + 0 feet 408 feet					AY CLAY STO		- V					
	SCH 10 inches 4" inches 420 feet 518 feet inches inches feet feet	8	700	200	GKI	en Gray Fine	SHMDA C	TUAL A	+ "				
	Was casing drive shoe used? Yes No												
	Was a packer or seal used? ☐ Yes ■ No			ļ <u> </u>				 -	 				
	Perforated?						· · · · · · · · · · · · · · · · · · ·	-	+				
	How perforated? ☐ Factory ☐ Knife ☐ Torch ☐ Gun Size of perforation? inches by inches												
	Number From To				_								
	perforations feet feet								+				
	perforations feet feet feet	·						-	+				
	Well screen installed? ■ Yes □ No								1				
	Manufacturer HOUSTON SCREEN Type WERE WARD	_							<u> </u>				
	Top Packer or Headpipe			-					+				
	Diameter 411 Slot size 1020 Set from 409 feet to 419 feet												
	Diameter 4" Slot size <u>020</u> Set from 519 feet to 589 feet Gravel packed? A Yes □ No □ Size of gravel 10/90			-					-				
	Placed fromfeet tofeet								†				
	420 407												
	Surface seal depth 107 Material used in seal: Cement grout			 					┼┨				
	Bentonite □ Puddling clay □ Sealing procedure used: ⊠ Slurry pit	aics	OFIL	MED					├				
	☐ Temp. surface casing ☐ Overbore to seal depth	VI: 50 1											
	Method of joining casing:	AUG	48	1937					<u></u> [
	□ Solvent Weld □ Cemented between strata	10.			•								
	Describe access port WELL TOP	,	Work s	tarted.	8·	29-92 fini	ished <u>10</u>	39.9g	J [
6.	LOCATION OF WELL	11. (DRILLI	ER'S C	ERTI	FICATION			- 1				
	Sketch map location must agree with written location.			-		ll minimum well co		andards:	were				
	Subdivision Name NE 14 SW 14		-			e time the rig was			,				
	SECTION 21, TAN, R3W	Firm Name 804LES BROS. Firm No. <u>503</u>											
	Lot No Block No	Address BOX 25068 Date 11-9-92 SALT LAKE CETY, UT 84125 Signed by Drilling Supervisor Facy K Hill											
	County CANYON		SAL	LAH	E C	СТЧ, ОТ 8419	\ \ \ \ \ \ /	1:10					
	Address of Well Site PTCKLES BUTTE LANDFILL (give at least name of road)	·	aignea			ouhervisor	Jary L. T	· ALL					
	T. 2N N D or S D				and				l				
	NE 14 SW 14 Sec. 21 , R. 3W E or W	(Operator) (If different than the Drillipg Supervisor)											
						•	/ / -	-	-				

STATE OF IDAHO DEPARTMENT OF WATER RESOURCESEB

USE TYPEWRITER OR 4 1993 **BALLPOINT PEN**

4. METHOD DRILLED R Rotary Air Auger Reverse rotary (backhoe, hydraulic, etc.) A '' 300' 480' CLAY STONE X Cable Mud Other (backhoe, hydraulic, etc.) CLAY STONE X	1. WELL OWNER PICKLES BUTTE	7. WATER LEVEL										
Address III.5 ALBTHULCALL ALD AS ADD Drilling Permit No. 623-98 - W- 215-002 Water Flight Permit No. 623-98 - W- 215-002 Water Flight Permit No. 623-98 - W- 215-002 I NATURE OF WORK Now well Deepened Replacement Well diameter increase Modification Deepened Replacement Well diameter increase Modification Deepened Replacement Replacement Well diameter increase Modification Deepened Replacement Replace	Name CANYON COUNTY LANDFILL											
Drilling Permit No	Address 11:5 ALBANY, CALDWELL, ID 83605											
Water Right Permit No.	•											
Casing schedule: Size Concrete Other Thickness Casing schedule: Size Inches Casing schedule: Size Inches In	-			10_ °F. Quality POOR								
New well Deepaned Replacement Welfdiameter Increase Modification Modification Decomptoned (describe abandomment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) 3. PROPOSED USE Diameter Irrigation Modification Modification Decomptone New Yellow New Yell	Water Right Permit No	}		Describe artesian or temperature zon	es below.							
New well Deepaned Replacement Welfdiameter Increase Modification Modification Decomptoned (describe abandomment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) 3. PROPOSED USE Diameter Irrigation Modification Modification Decomptone New Yellow New Yell	2. NATURE OF WORK	8 WFLL 1	FST D	DATA N/A								
Well diameter increases Modification Diechange G.P.M. Pumping Level Hours Pumped Section Section Section Section Pumping Level Hours Pumped Hours Pumped Section		Į		/] Other							
such as liners, acreen, materiats, plug depths, etc. in lithologic log, section 8.) 3. PROPOSED USE Domestic Irrigation K. Monitor Industrial Stock Specify type) Dimension Other Stock Specify type) Dimension Stock Specify type Dimension D	•		·		Other							
3. PROPOSED USE Domestic Irrigation & Monitor Industrial Stock Waste Disposal or Injection Conter Stock Stock Waste Disposal or Injection Conter Stock Stock Waste Disposal or Injection Conter Content	· · · · · · · · · · · · · · · · · · ·	Discharge	G.P.M.	Pumping Level	Hours Pumped							
S. PROPOSED USE Domestic Irrigation R. Monitor Guestic Geolify type) Stock Geolify typ	,				ļ							
Domestic Irrigation Stock Waste Disposal or Injection Gher Giochi Stock Geority type Stock Stock Geority type Geority type Stock Geority type	log, section s.)											
Industrial Stock Waste Disposal or Injection D	3. PROPOSED USE											
Industrial Stock Waste Disposal or Injection Stock Specify type Stock St	☐ Domestic ☐ Irrigation ■ Monitor	9. LITHOL	OGIC I	LOG	075107							
Other (specify type) Diam. From To Material Nes No 95.8 O 300.4 ALLUVIUM SAND 9.5TLT X SAND 9.	·	Bore De	pth									
## R Rotary Air Auger Reverse rotary ## 400 CLAY STONE X 400 CLAY STONE X	☐ Other (specify type)	Diam. From	То		Yes No							
Rotary Air Auger Reverse rotary 8" 420 G10 CLAM STONE X Auger Clabe Mud Other (backhoe, hydraulic, etc.) St. G10 CLAM STONE X	4 METHOD DRILLED	93/8 0	300'	ALLUVIUM SAND	f SILT K							
Cable		8 " 13V	480	CLAY STANE	-							
(backhoe, hydraulic, etc.) 5. WELL CONSTRUCTION Casing schedule:		8" 610'	(080)	CLAY STONE	X							
Casing schedule:	(backhoe, hydraulic, etc.)											
Casing schedule: Siteel		 										
Thickness Diameter From To	5.5.											
SCH_ID_inches 4 inches 58.6 feet 604 feet SCH_ID_inches 4 inches 58.6 feet 604 feet Inches	Thickness Diameter From To											
Inches I	SCH ID inches 4" inches + O' feet 560' feet											
Was casing drive shoe used?	SCH 10 inches 4 inches 586 feet 604 feet			<u> </u>								
Was a packer or seal used?												
Perforated? Yes No How perforated? Factory Kniffe Torch Gun Size of perforation? inches by inches Number From To Perforations feet feet	·											
Size of perforation? inches by inches purion to perforations feet feet feet feet feet feet feet fee		ļ										
Number From To perforations feet feet perforations feet feet feet perforations												
perforations feet feet will be perforations feet feet perforations feet feet perforations feet feet will be perforation feet feet perforations feet feet feet perforations feet feet perforations feet feet feet perforation feet feet feet feet feet perforation feet feet feet feet perforation feet feet feet feet feet feet feet fee												
Perforations feet feet												
Well screen installed? Yes No Manufacturer Housman Montrer FID Type STATNLESS Top Packer or Headpipe Bottom of Tailpipe Diameter 4" Slot size .020. Set from 600 feet to 625 feet Diameter 4" Slot size .020. Set from 565 feet to 530 feet Gravel packed? Yes No Size of gravel 10 - 80 Placed from 605 - 645 feet to 560 feet Surface seal depth 560 Material used in seal: Cement grout Bentonite Puddling clay Sealing procedure used: Resurry pit Temp. surface casing Overbore to seal depth Method of joining casing: Threaded Welded Solvent Weld Germented between strata Describe access port Top of Castne 6. Location of Well Sketch map location must agree with written location. Note that all minimum well construction standards were	perforations feet feet	<u> </u>										
Manufacturer Hovernal Montrer Fibrity pe STATNLESS Top Packer or Headpipe	•											
Top Packer or Headpipe Bottom of Tailpipe Diameter 4" Slot size .020. Set from 610 feet to 520 feet Diameter 4" Slot size .020. Set from 545 feet to 520 feet Gravel packed? N Yes No Size of gravel 10-20 Placed from 605 - 645 feet to 560 - 525 feet Surface seal depth 560 Material used in seal: C Cement grout R Bentonite Puddling clay Sealing procedure used: R Slurry pit Temp. surface casing Overbore to seal depth Method of joining casing: Threaded Welded Solvent Weld Generated between strata Describe access port Top of CASTN6 6. LOCATION OF WELL Sketch map location must agree with written location. Sealing procedure used: R Slurry pit Work started SEPT 21, 1992 finished OCT 3(0, 1993) 10. NCSCFILM Seal of the feet to 520 fe												
Diameter 4" Slot size .020 Set from 610 feet to 625 feet Diameter 4" Slot size .020 Set from 565 feet to 530 feet Gravel packed? N Yes No Size of gravel 10 80 Placed from 605 645 feet to 560 - 585 feet Surface seal depth 560 Material used in seal: Cement grout N Bentonite Puddling clay Sealing procedure used: N Slurry pit Temp. surface casing Overbore to seal depth Method of joining casing: Threaded Welded Solvent Weld Cemented between strata Describe access port Top of Castne 6. Location of Well Sketch map location must agree with written location. Diameter 4" Slot size .020 Set from 610 feet to 525 feet to 530 feet to 540 feet to												
Diameter 4" Slot size .020 Set from 565' feet to 580' feet Gravel packed? In Yes No Size of gravel 10 - 20 Placed from .605' - 645' feet to .560' - 585' feet Surface seal depth 560 Material used in seal: Cement grout R Bentonite Puddling clay Sealing procedure used: R Slurry pit Temp. surface casing Overbore to seal depth Method of joining casing: Threaded Welded Solvent Weld Cemented between strata Describe access port Top of Castn6 LOCATION OF WELL Sketch map location must agree with written location. N Diameter 4" Slot size .020 feet to 580' f	Bottom of Tailpipe											
Diameter 4" Slot size .020 Set from 565' feet to 580' feet Gravel packed? In Yes No Size of gravel 10 - 20 Placed from .605' - 645' feet to .560' - 585' feet Surface seal depth 560 Material used in seal: Cement grout R Bentonite Puddling clay Sealing procedure used: R Slurry pit Temp. surface casing Overbore to seal depth Method of joining casing: Threaded Welded Solvent Weld Cemented between strata Describe access port Top of Castn6 LOCATION OF WELL Sketch map location must agree with written location. N Diameter 4" Slot size .020 feet to 580' f	Diameter 4 th Clateira A20 Category (10 ^t foot to £3E ^t foot											
Gravel packed? No Size of gravel 10-20 Placed from 605 - 645 feet to 560 - 585 feet Surface seal depth 560 Material used in seal: Cement grout Sealing procedure used: Surry pit Temp. surface casing Overbore to seal depth Method of joining casing: Threaded Welded Solvent Weld Cemented between strata Describe access port Top of CASTN6 6. LOCATION OF WELL Sketch map location must agree with written location. Size of gravel 10-20 Wemented between strata 10. NO SEPT 21, 1992 finished OCT 26, 1993 11. DRILLER'S CERTIFICATION I/We certify that all minimum well construction standards were	Diameter 4" Slot size 020 Set from 565 feet to 580 feet											
Placed from 605 - 645 feet to 560 - 585 feet Surface seal depth 560 Material used in seal: Cement grout Example Bentonite Puddling clay Sealing procedure used: Resolurry pit Temp. surface casing Overbore to seal depth Method of joining casing: Threaded Welded Solvent Weld Cemented between strata Describe access port Top of Castus 6. Location of Well Sketch map location must agree with written location. Placed from 605 - 645 feet to 560 - 585 feet MCBCFILM MCBCFILM MCBCFILM MCBCFILM MORA Started SEPT 21, 1992 finished OCT 26, 1993 10. MCBCFILM MORA Started SEPT 21, 1992 finished OCT 26, 1993 Mork started SEPT 21, 1992 finished OCT 36, 1993 Mork started SEPT 21, 1993 fin	Gravel packed? IX Yes □ No □ Size of gravel /0 - 20											
Sealing procedure used: Sealing procedure used: Temp. surface casing Overbore to seal depth Method of joining casing: Solvent Weld Cemented between strata Describe access port Top of Castn6 Cemented between strata Now of the procedure used: MCSOFILM MCSOFILM MCSOFILM MCSOFILM MOSOFILM MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 10. MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM MOSOFILM MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM MOSOF	Placed from <u>605 - 645'</u> feet to <u>560' - 585'</u> feet	ļ 										
Sealing procedure used: Sealing procedure used: Temp. surface casing Overbore to seal depth Method of joining casing: Solvent Weld Cemented between strata Describe access port Top of Castn6 Cemented between strata Now of the procedure used: MCSOFILM MCSOFILM MCSOFILM MCSOFILM MOSOFILM MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 10. MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 If the procedure used: MOSOFILM MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1992 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM MOSOFILM MOSOFILM Work started SEPT 21, 1993 finished OCT 26, 1993 MOSOFILM MOSOF	Surface seal donth 540 Material used in seal: M. Coment grout	<u> </u>										
Sealing procedure used: Temp. surface casing	· · · · · · · · · · · · · · · · · · ·			·····								
Method of joining casing: Describe access port Top of Castus No. 10. 1992 Finished OCT 26, 1993 Work started SEPT 21, 1992 Finished OCT 26, 1993 11. DRILLER'S CERTIFICATION No. 1993 Finished OCT 26, 1993 I/We certify that all minimum well construction standards were	Sealing procedure used:	<u> </u>										
Describe access port Top of Castu6 Cemented between strata 10. No. 18 1837 Work started SEPT 21, 1992 finished OCT 26, 1993 6. LOCATION OF WELL Sketch map location must agree with written location. No. 10. No. 10. 1993 Work started SEPT 21, 1993 finished OCT 26, 1993 11. DRILLER'S CERTIFICATION I/We certify that all minimum well construction standards were	☐ Temp. surface casing ☐ Overbore to seal depth	MCBO	FILM	50								
Describe access port Top of Castu6 Work started SEPT 21,1992 finished OCT 26,1993 6. LOCATION OF WELL Sketch map location must agree with written location. N N N N N N N N N N N N N												
6. LOCATION OF WELL Sketch map location must agree with written location. N 11. DRILLER'S CERTIFICATION I/We certify that all minimum well construction standards were		10. AUG (13 13	157								
Sketch map location must agree with written location. I/We certify that all minimum well construction standards were	Describe access port TOP OF CASTNG	Work s	tarted 🖁	SEPT 21, 1992 finished	OCT 26,1992							
Sketch map location must agree with written location. I/We certify that all minimum well construction standards were	6 LOCATION OF WELL	11 DBILL	- P'S A	EDTIFICATION								
N	2				uotion otopdasda							
Cindivision Name I combined with at the time the was removed.	Sketch map location must agree with written location. N Subdivision Name	1	-		1							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Subdivision Name	1		_								
Firm Name BoyLES BROS. Firm No. 503	W = E	i		<u>-</u>	_							
Lot No Block No Address BOX 25068 Date 11-9-92		Address DOX QOUGO Date II - I Q										
Address of Well Site Prox 1 55 Purify Land Fill Signed by Drilling Supervisor		Sianed	う Aし by Dri	T LAKE CITY, UT 341	Hill Hill							
Address of Well Site PICKLES BUTTE LANDFILL (give at least name of road) Signed by Drilling Supervisor	Address of Well Site TICKLES DUTTE LANDFILL (dive at least name of road)	2.9.100			Az							
T. 2N N M or S D	T. <u>2.N.</u> N KL or S □	}			¥							
NE ¼ SW ¼ Sec. al , R.3 W E □ or W M (Operator) (If different the Orilling Supervisor)	NE ¼ SW ¼ Sec. AL , R. 3 W E □ or W M	(Operator) / Z										

1" = 100' VERT. FEET LINER TOP ELEV. 2934.98 1431 HWY. 95, BUS. ALT. GEOLOGIC SCHEMATIC OF BOREHOLE HOLLADAY P. O. BOX 235 ENGINEERING CO PAYETTE, IDAHO 83661 208-642-3304 PB-4ENGINEERS . CONSULTANTS FAX; 208-642-2159 DATE: 4-93 DN SLG CK WBS JOB NO. 120491D TIME:

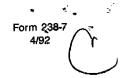

Form 238-7

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

PB-5

	WELL OWNER PICKLES BUTTE SANITARY LANDFILL Address115 Albany, Caldwell, ID 83605	7. WATER LEVEL. Static water level 514 feet below land surface. Flowing? Yes No G.P.M. flow Artesian closed-in pressure											
	Drilling Permit No. <u>63-93-W-0554-001</u>	Ç	ontrolle	ed by:		Valve □ Cap □	Plug						
	Water Right Permit No.	T€	empera	ture	/ / Desci	_ °F. Quality <u>Poor</u> ribe artesian or temperature zone	es below.		[
													
2.	NATURE OF WORK		/ELL T				0.4						
	□ New well □ Deepened □ Replacement □ Well diameter increase □ Modification] Pum	p	□ E	Bailer □ Air □	Other						
	☐ Abandoned (describe abandonment or modification procedures	D	ischarge	G.P.M.		Pumping Level	Hours P	umped					
	such as liners, screen, materials, plug depths, etc. in lithologic								-				
	log, section 9.)												
3.	PROPOSED USE												
	□ Domestic □ Irrigation 呕 Monitor	9. L	ITHOL	OECO	20								
	☐ Industrial ☐ Stock ☐ Waste Disposal or Injection	Bore	Dep	0568	water								
	Other(specify type)		From			Material		Yes	No				
4.	METHOD DRILLED	1234				n fine sandy silt own sandy gravel			-				
	□ Auger 本 Reverse rotary	11	48	140	taı	n silty clay							
	☐ Cable ☐ Mud ☐ Other		140	185	gr	ay silty fine san	<u>d</u> .						
	(backhoe, hydraulic, etc.)		185	225	gra	ay fine to med sa ght gray clayey s	na ilt						
5	WELL CONSTRUCTION	!!	240	250	1i	ght gray clayey s ght gray silty fi	ne sand						
J.	Casing schedule: 🗵 Steel 🗆 Concrete 🗆 Other	11	250	275	tai	n clay							
	Thickness Diameter 2 From 51.2 50	11	275	320	<u>fi</u> mi	ne to med sand xed gray fine san	d and						
		11	320	400	ta	n clayey silts							
	inchesinchesfeetfeet	11	400	435	gr	ay fine sand							
	Was casing drive shoe used? ☐ Yes ☐ No	1274 10''	435	455	no to	sample	stone						
	Was a packer or seal used? ☐ Yes ☐ No Perforated? ☐ Yes ☐ No	10''	485	483 560	gr	n gray silty clay ay brown silty fi	ne sand	х					
	How perforated? ☐ Factory ☐ Knife ☐ Torch ☐ Gun	51411	560	_620	_c1	ayey silt and fir	<u>ne sano</u>	X_					
	Size of perforation? inches by inches	51/11	620	000	ΡŢ	ue gra <u>y clayston</u> e	<u> </u>						
	Number From To perforations feet feet												
	perforations feet feet		 				-						
	perforations feet feet feet Well screen installed? □ Yes □ No												
	Manufacturer Houston Type Pre-pack		ļ						<u> </u>				
	Top Packer or Headpipe		-			RECEIVED		<u> </u>					
	Bottom of Tailpipe												
	Diameter <u>4</u> Slot size $.020$ Set from 512.5 feet to 522.5 feet					NOV 3 0 1993							
	Diameter Slot size Set from feet to feet Gravel packed? ★ Yes □ No □ Size of gravel 10/20					WATER RESOURCE							
	Placed from 496 feet to 535 feet				<u> </u>	WESTERN REGION		1	ļ <u></u>				
	400-496 Surface seal depth Material used in seal: □ Cement grout		- Page 1	£ #		RECE	IVED						
	⊠ Bentonite □ Puddling clay □		i je			110110	_						
	Sealing procedure used:		00		in 6, 7		6 1993						
	☐ Temp. surface casing ☐ Overbore to seal depth Method of joining casing: ☐ Threaded ☐ Welded	1 <u>E. F.</u>	09	1994		Dip inon.	र्गकाका प्रशिक्षकार्वकि	*					
	☐ Solvent Weld ☐ Cemented between strata	10.				;							
	Describe access port Top of casing with locking		Work s	started		7-7-93 finished	<u></u>	3-9	<u>3</u>				
	cap and protective cover	 -				'							
6.	LOCATION OF WELL	11.				TIFICATION							
l	Sketch map location must agree with written location.			•		all minimum well constr the time the rig was rem		ards v	vere				
	Subdivision Name Pickles Butte Landfill	Firm Name <u>Boyles Brothers</u> Firm No. <u>503</u>											
	W Lot No. Block No.												
	County Canyon		Addres	ijt Paritox		Date Light Juste	X 11 01	/ →					
	Address of Well Site Perch Road, Pickles Butte		Signed	by Dr		Supervisor January	Neve						
	(give at least name of road)			/ 0-	and herat	tor)	1//						
	SW 14 NE 14 Sec. 21 , R. 3 E Or W 15				Je i al	(If different than the	e brilling Sup	erviso	<i>r</i>)				



STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

PB-6

	WELL OWNER Name PICKLES BUTTE SANITARY LANDFILL Address 6284 Perch Road, Caldwell	7. WATER LEVEL Static water level 491 feet below land surface. Flowing? Yes X No G.P.M. flow											
	Address 6284 Perch Road, Cardwell Drilling Permit No. 63-93-W-0554-001	С	ontrolle	ed by:	□ '	Valve □ Cap □	Plug						
	Water Right Permit No	Te	empera	ture _	75 Descri	°F. Quality <u>Poor</u> ibe artesian or temperature zon	es below.						
		Q 14	VELL T	FOT	ΔΤΛ	· · · · · · · · · · · · · · · · · · ·							
2.	NATURE OF WORK New well Deepened Replacement		VELL I] Pum			Bailer □ Air □	Other						
	☐ Well diameter increase ☐ Modification		Ischarge			Pumping Level	Hours P						
	☐ Abandoned (describe abandonment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic							.,					
	log, section 9.)							<u>.</u>					
3.	PROPOSED USE												
	 □ Domestic □ Irrigation □ Monitor □ Industrial □ Stock □ Waste Disposal or Injection 		ITHOL		LOG		0567	Water					
			De _l From	То		Water Yes No							
4.	METHOD DRILLED	123/4	0	17 18	sil	ty sand dy gravel							
"	☐ Auger ☐ Reverse rotary	U	18	60	tan	silty clay	<u></u>						
	☐ Cable ☐ Mud ☐ Other(backhoe, hydraulic, etc.)	11	60 95			sand calyey silt							
<u> </u>	(200)	11 3/1	125	160	tan	clay `							
5.	WELL CONSTRUCTION	112 <i>74</i> 17 <i>79</i>	160 195			e sand ty clay							
	Casing schedule: Steel Concrete Other Thickness Diameter From To	tt	220	360	fin	e and med sand							
	$\underline{25}$ inches $\underline{4}$ inches $+\underline{2.5}$ feet 487.5 feet	11	360 380			clayey silt							
	inches inches feet _	!!	435	510	435	-490 tan, 490-51	0 gray si						
	Was casing drive shoe used? Yes X No		510 620			y silty clay		<u>_</u>					
	Was a packer or seal used? ☐ Yes ☐ No Perforated? ☐ Yes ☐ No	7 7/8	'' 620 690 gray clay stone 690 700 gray silty clay										
	How perforated? ☐ Factory ☐ Knife ☐ Torch ☐ Gun	—	<u> </u>				_						
	Size of perforation? inches by inches Number From To												
	perforations feet feet feet	-	 	<u></u>	 								
	perforations feet feet				<u> </u>			<u> </u>					
	Well screen installed? ☐ Yes ☐ No Manufacturer Houston Type Stainless Steel		<u> </u>										
	Top Packer or Headpipe		_			RECEIVED							
	Bottom of Tailpipe		<u></u>			NOV 3 0 1993							
	Diameter 4 Slot size, 020. Set from 487, 5eet to 497, 5eet					WATER PASONACES							
	Diameter Slot size Set from feet to feet Gravel packed? Yes No Size of gravel					WESTERN REGION			<u> </u>				
	Gravel packed? \square Yes \square No \square Size of gravel Placed from feet to feet				-	D C C	-		-				
	Surface seal depth 478 Material used in seal: □ Cement grout						EIVED						
	⊠ Bentonite □ Puddling clay □ Sealing procedure used: □ Slurry pit		1	ļ			6 1993						
	√ Temp. surface casing □ Overbore to seal depth		<u> </u>			Digital distriction	10.00	r.					
	Method of joining casing: ☐ Threaded ☐ Welded ☐ Solvent Weld ☐ Cemented between strata		<u>.l</u>	<u> </u>	L	,		1	1				
	Describe access port Top of casing with locking cap and protective cover.	10.	Work s	started	<u> </u>	<u>31-93</u> finishe	d <u>11-20</u> -	.93					
6.	LOCATION OF WELL	11.	DRILL	ER'S (ERT	IFICATION							
	Sketch map location must agree with written location in the same state of the same s		J/We c	ertify	that a	all minimum well consti	ruction stand	ards v	vere				
	Subdivision Name Pickles Butte		-			he time the rig was rem les Brothers Firm							
1	Lot NoBlock No9	9 1994 Address Date//- Z											
	Address of Well Site 6284 Perch Road (give at least name of road)	1 '			illing	Supervisor Zasa		7	- -				
	SE $\frac{NW}{4}$ Sec. $\frac{21}{R}$, R. $\frac{3}{5}$ E \square or W $\stackrel{\triangle}{\bowtie}$	(Operator) (If different than the Drilling Supervisor)											

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

PB-7

	WELL OWNER Name PICKLES BUTTE SANITARY LANDFILL Address 6284 Perch Road, Caldwell Drilling Permit No. 63-93-w-0554-601 003 Water Right Permit No. NATURE OF WORK New well Deepened Replacement Well diameter increase Modification Abandoned (describe abandonment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.)	8. WELL TEST DATA □ Pump □ Bailer □ Air □ Other Discharge G.P.M. Pumping Level Hours Pumped										
3.	PROPOSED USE ☐ Domestic ☐ Irrigation ☐ Monitor	9. L	5									
	☐ Industrial ☐ Stock ☐ Waste Disposal or Injection ☐ Other (specify type)	Bore Diam.	De _l	oth To	Material	Wa Yes	ter No					
	WITHOU DOULED	1234	0	25	tan clayey sand							
4.	METHOD DRILLED	11	25 35		sandy gravel fine sand							
	□ Cable □ Mud □ Other	11	55	65	tan clayey silt							
	(backhoe, hydraulic, etc.)	11	65. 130		fine and med sand tan clay							
5.	WELL CONSTRUCTION	11	185	210	clayey fine sand							
	Casing schedule: ☐ Steel ☐ Concrete ☐ Other	11	210 250		silty clay fine sand							
	Thickness Diameter From To 2.2 feet 535 feet	II.	260		clayey silt							
	inches inches feet feet	11 11	280	370	fine sand							
	inchesinchesfeetfeet		370 390		clayey silt fine sand							
ŀ	Was casing drive shoe used? ☐ Yes ☐ No Was a packer or seal used? ☐ Yes ☐ No	10"	455	515	silt							
ľ	Perforated?	11	515 525		tan clayey silt gray clayey silt	×						
i	How perforated? ☐ Factory ☐ Knife ☐ Torch ☐ Gun Size of perforation? inches by inches	10"	549	570	gray clay	х						
	Number From To	54"-	570	600	gray silty clay							
l	perforations feet feet	D章	600	030	blue gray clay							
	perforationsfeetfeet											
1	Well screen installed? ☑ Yes ☐ No											
	Manufacturer Houston Type Wire Wrap Top Packer or Headpipe				RECEIVED							
	Bottom of Tailpipe	ļ	-		NOV 3 0 1993							
	Diameter 4" Slot size02 Set from 535 feet to 555 feet											
	Diameter Slot size Set from feet to feet			·	WATER RESOUL WESTERN REGION							
	Gravel packed? \square Yes \square No \square Size of gravel $\underline{10/20}$ Placed from $\phantom{00000000000000000000000000000000000$		 									
	Placed Holli 37.3 leet to 300 leet				()							
	Surface seal depth520Material used in seal: Cement grout				RECEIVED							
	☐ Bentonite ☐ Puddling clay ☐ Sealing procedure used: ☐ Sturry pit				NOV 2 6 1593							
	☐ Temp. surface casing ☐ Overbore to seal depth		ļ. —		Department or water Receives	<u>. </u>						
	Method of joining casing: ☐ Threaded ☐ Welded☐ Solvent Weld☐ Cemented between strata	10.		l <u>-</u>								
<u> </u>	Describe access port <u>Top of casing with protective</u> cover and lock		Work s	tarted	10-01-93 finished 11-20-93	l						
6.	LOCATION OF WELL	11.	DRILL	ER'S C	CERTIFICATION							
	Sketch map location must agree with written location.			-	that all minimum well construction standa	ards v	vere					
	Subdivision Name Pickles Batte	1	·-		n at the time the rig was removed.							
	w Landfill	171	Firm N	lame _	Boyles Brothers Firm No. 503		·					
	Lot No Block No	# # # # # # # # # # # # # # # # # # #	Addres	s	Date 11-23	-*	3_					
	County Canyon FFD 0	190	Signed	by Dr	illing Supervisor	<u>-</u>						
	Address of Well Site 6284 Perch Road (give at least name of road)	'-'34	4	1	and							
	NW 1/4 SE 1/4 Sec. 21 , R. 3 E □ or W 전	(Operator) All different than the forliging Supervisor)										

Form 238-7 4/92

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

PB-8

Address 115 Albany, Caldwell, ID 83605 Drilling Permit No. 63-93-W-0554-001 OO Water Right Permit No. NATURE OF WORK New well Deepened Replacement Well diameter increase Modification Abandoned (describe abandonment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.) PROPOSED USE	Flowing?												
☐ Industrial ☐ Stock ☐ Waste Disposal or Injection	Bore	Material	Water										
	12 3⁄4	0 10	10 25	tan silty sand tan clayey silt	ięs	X X							
 ☒ Rotary ☒ Air ☐ Auger ☒ Reverse rotary ☐ Other	11	35 50	50 70	tan clayey silt tan clay		X X							
WELL CONSTRUCTION	ŢĮ.	100	105	clay		X X							
Thickness Dlameter From To	91 11	115	120	tan clay		X X							
inches feet feet	11	125 145	145 150	tan silty clay sand with cobbles		X X							
Was casing drive shoe used? ☐ Yes ☒ No Was a packer or seal used? ☐ Yes ☒ No	71	240	365	gray clay	x	X							
Perforated?													
Number From To perforations feet feet													
perforations feet feet													
Top Packer or Headpipe Bottom of Tailpipe 10 S.S. Sump				RECEIVED									
Diameter 4 ¹¹ Slot size 020set from 377 feet to 407 feet Diameter Slot size Set from feet to feet													
Gravel packed? \square Yes \square No \square Size of gravel Placed from 299 feet to 424 feet													
Surface seal depth ²⁹⁴ Material used in seal: ☐ Cement grout ☐ Puddling clay ☐													
Sealing procedure used: Slurry pit Temp. surface casing Overbore to seal depth					3								
□ Solvent Weld □ Cemented between strata	10.				l								
Describe access port Top of casing with protective cover and locking cap.	e —	Work s	started.	10-26-93 finished11-20-93									
Sketch map location must agree with written location Subdivision Name Pickles Butte Sanitary Landfill	9 19g	I/We constant	ertify ted with	that all minimum well construction standar at the time the rig was removed. Boyles Brothers Firm No. 503 Date 11-23-4 Filling Supervisor And Hall and Decrator)	<i>93</i>								
	NameCANYON_COUNTY (PICKLES BUTTE_LANDFILL) Address115_Albany, Caldwell, ID_83605 Drilling Permit No	Name CANYON COUNTY (PICKLES BUTTE LANDFILL) Address 115 Albany, Caldwell, ID 83605 Drilling Permit No. 63-93-W-0554-001-00- Water Right Permit No	Name CANYON COUNTY (PICKLES BUTTE LANDFILL) Address 115 Albany, Caldwell, ID 83605 Drilling Permit No. 63-93-W-0554-661-002- Water Right Permit No. NATURE OF WORK New well Deepened Replacement Pum Abendoned (describe abandonment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) PROPOSED USE Domestic Irrigation Monitor Discharge such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) PROPOSED USE Domestic Irrigation Monitor Discharge such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) PROPOSED USE Domestic Irrigation Monitor Discharge such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) PROPOSED USE Domestic Irrigation Monitor Discharge such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) PROPOSED USE Domestic Irrigation Monitor Discharge such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) PROPOSED USE Domestic Irrigation Monitor Discharge such as liners, screen, materials, plug depths, etc. in lithologic log, section 9) PROPOSED USE Domestic Irrigation Monitor Discharge such as liners, screen, materials, plug depths, etc. in lithologic log, section 9, screen, materials, plug depths, etc. in lithologic log, section 9, screen, materials, plug depths, etc. in lithologic log, section 9, screen, materials, plug depths, etc. in lithologic log, section 9, screen, materials, plug depths, etc. in lithologic log, section 9, screen, materials, plug depths, etc. in lithologic log, screen, materials, plug depths, etc. in lithologic log, section 9, screen, materials, plug depths, etc. in lithologic log, section 9, screen, materials, plug depths, etc. in lithologic log, screen, materia	Name CANYON COUNTY (PICKLES BUTTE LANDFILL) Address 115 Albany, Caldwell, ID 83605 Drilling Permit No. 63-93-W-0554-661-00-2 Water Right Permit No. 63-93-W-0554-661-00-2 Damage Controlled by Controlled Department of modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.) PROPOSED USE Domestic Irrigation Monitor Modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.) PROPOSED USE Domestic Irrigation Monitor Modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.) PROPOSED USE Domestic Irrigation Monitor Modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.) Bernometric Pund Depth Monitor Inthologic log, section 9.) WELL CONSTRUCTION WELL CONSTRUCTION Casing schedule: Steel Auger K. Reverse rotary 100 25 35 100 1	NameCANYON COUNTY (PICKLES BUTTEANIOFILL) Address C	Name CANYON COUNTY (PICKLES BUTTE LANDFILL) Address of Well Standard County Cal Abert T. D. 33605 September 15 Al bany, Cal Abert T. D. 33605 Calver T. D. D. Calver T.							

IDAHO DEPARTMENT OF WATER RESOURCES

WELL DRILLER'S REPORT

(Sign once If Firm Official & Operator)

Use Typewriter Ball Point Pen

12000 1201 201	WATER RESUMPTED OF 2
1. DRILLING PERMIT NO. <u>63-95-W-0564-001</u>	11. WELL TESTS:
Other IDWR No.	□ Pump □ Bailer ♣ Air □ Flowing Artesian
2. OWNER: County of Carupon	Yield gal./min. Drawdown Pumping Level Time
Name HOLCADAY ENGINEERING	
Address 1431 Bus ALT Hwy 95	NOV 2 7 1995
City PAYEME State II) Zip 83661	
2 LOCATION OF WELL by local departation.	Water Temp. Bottom hole temp. Water Quality test or comments:
3. LOCATION OF WELL by legal description:	Water Quality test or comments:
Sketch map location must agree with written location.	40 LITUOLOGIC LOC: (Describe see the street and the street
N	12. LITHOLOGIC LOG: (Describe repairs or abandonment) Water
Twp. 2 North ★ or South □	Bore Dia. From To Remarks: Lithology, Water Quality & Temperature Y N
Rge. 3 East □ or West	12 / 10 TOP SOLL : DUST
Sec. 21 , Su) 1/4 NE 1/4 1/4	NO 17 GRAVEL IN HARD PAN
Sec. 21 , 50 1/4 NE 1/4 1/4 1/4 Gov't Lot County Cases	17 28 CARGER GRAVEL + HARD PAN
	/ 28 30 CLAY I SMALL GRAVEL
Address of Well Site PICKLE BUTTE Dump	7 30 32 MORE GRAVEL LODSER
PB#9 City	7 32 40 CLAY-TIGHT IN SMALL GRAVEL
(Give at least name of road + Distance to Road or Landmark)	10 40 90 CLAY-TIGHT IN SMALL GEAVEL
LtBlkSub. Name	2 90 95 COARSE SAND IN CLAY
	7 95 112 SANDY CLAY
4. PROPOSED USE:	7 112 120 CLAY
□ Domestic □ Municipal ★Monitor □ Irrigation	> 120 135 CLAY W/COARSE SAND
☐ Thermal ☐ Injection ☐ Other	(135 180 HARD CLAY
5. TYPE OF WORK	(180 187 SUPER HARD CLAY
New Well ☐ Modify or Repair ☐ Replacement ☐ Abandonment	182 205 C:AY
6. DRILL METHOD	(205 210 COARSE SAND CLAY
☐ Mud Rotary # Air Rotary ☐ Cable ☐ Other	7 210 263 VARY HARD CLAY THRU REG
7. SEALING PROCEDURES	263 265 VERY HARD CLAY
SEAL/FILTER PACK AMOUNT METHOD	1 - 200 30 1 - 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Material From To Sacks or	7 305 315 SAND (315 376 CLAY
Pounds	(315 375 CLAY) 375 400 VERY HARD GLAY (CLAY ROLD)
BENTOWITE 00 381 12000# HOUR	5 400 405 JOHT SANDY CLAY /CLAY
	(405 430 REG CLAY
Was drive shoe used? ✓ Y □ N Shoe Depth(s)	1 430 435 SOFT CLAY OR SANDY CLAY
Was drive shoe seal tested? Y \(\sigma \) How?	
8. CASING/LINER:	7 435 445 CLAY REG TYPE S 445 455 HARD CLAY YDARK PEAGRAVEL/COARSE SALVE
Diameter From To Gauge Material Casing Liner Welded Threaded	1 455 465 Same 1 1 1 1
41 +3 508 Smuless #	7 465 470 JOET CLAY LIKE SANDY CLAY
	5 470 475 CLAY
	9 475 480 CLAYSTONE SANDSTONE LIKE PCS
Length of HeadpipeLength of Tailpipe	8 480 487 11 "
9. PERFORATIONS/SCREENS	1 HOT 510 CHAY BLUE CLAY
☐ Perforations Method	CONTINUES
Screens Screen Type	Completed Depth 544 MAG 0.7 199(Measurable)
	Date: Started Completed
From To Slot Size Number Diameter Material Casing Liner	40 DDU 4 EDIO OCENTICIONE
508 543 -020 4" 55 -	13. DRILLER'S CERTIFICATION
	I/We certify that all minimum well construction standards were complied with at the time the rig was removed.
	A. D.
	Firm Name ADAMSON Pump & DULLING Firm No. 0457 Firm Official Dave Adamson Date //-/7-95 and Supervisor or Operator Dave Adamson Date //-/7-95
10. STATIC WATER LEVEL OR ARTESIAN PRESSURE:	Q 40,
5/3.17 ft. below ground Artesian pressurelb.	Firm Official Java Udamson Date 11-17-95
Depth flow encounteredft. Describe access port or	and D- 11
control devices:	Supervisor or Operator Solds, Helawstru. Date 11-17-95

Form 238-7 7/94

WELL DRILLER'S REPORT 3556

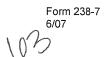
Use Typewriter or Ball Point Pen

1. DRILI	LING PE	ERMIT	NO. <i>[</i> 0	3-9	5 -W-	0564	1-001	11.	WELL	. TES	rs:		PG_2	2042	PB-	
Other IDW							· · · · · · · · · · · · · · · · · · ·		□ Pı		☐ Bailer ☐ Air ☐ Flowing Artesian					
2. OWN Name									Yield gal./	min.	Drawo	down	Pumping Level	Til	ime	
Address							•									
City																
,						•		Wate	er Temp). <u></u>		Bottor	n hole temp			
3. LOCA	ATION C	OF WEI	_L by I	egal c	lescrip	tion:										
Sketch ma	p location	n <u>must</u> a	gree with	written	location.											
1	1							12.	LITH	DLQG	IC LOG:	(Describe i	epairs or aband	lonment)	Water	
]	2		orth 🏻		D41- (7)	Bore Dia.	From	Το	Remarks:	Lithology, W	ater Quality & Ten	nperature	\ _V _I	
		I WP	7	N	onu a⊗_	or i	South 🗆		510	511			BLUE CLA)			
		E Gec	21		a5. ⊔ 1/Δ	561	West 1/4 1/4 1/60 acres	1 7	511	518		ય /				
		Gov't I	ot	Count	acres	40 acres	160 acres	' b		528		- CLAY				
] ""		_ 000,,,	·)	7		- 15					LAY BLUE!	GRAY		
	3	Addres	s of Wel	l Site				\Box	528.6	530	REG	• •	•	,		
								1	530	531	FRAC	/HARD	DRILLINGS	CLAYF	25	
(Give at I	east name of ro	ad + Distance	to Road or L	andmark)	-			14	531	544	REG	CLAY	BLUE/GRA	Y	$oxed{oxed}$	
Lt	Blk.		Sı	ıb. Nam	е			<u> </u>	-	 					$\vdash \vdash$	
								 	1	ļ					$\vdash \vdash$	
4. PRO	POSED	USE:						ļ		1		_				
	mestic	🗌 Muni	•			☐ Irrigatio	n	<u> </u>	+	1						
_	ermal	☐ Injec	tion	□ Othe	∍r				 	 			•			
5. TYPE			_						+	 	 		OCCE!	VED		
□ New			or Hepa	ır ⊔ He	placeme	nt 🗆	Abandonmer	יי 📙	+	 			RECEI	VLD	 	
6. DRIL			lotanı	□ Cat	de [Other		×	† ···				NOV 2 0	1005		
	d Rotary		lotary	□ Cat	ne L	⊒ Other			†	1			=			
7. ŞEAL	ING PF	ROCED	URES										WATER REC	OURCES		
	SEAL/FILT	TER PACK		AMQL	TNU	ME	THOD	1					WESTERN	MECHOIA.		
L	Material	Fre	om To	Sack: Pour] [<u> </u>							
						•] [<u> </u>	ļ					
								↓ 		<u> </u>					\vdash	
				Д	. 1			J		├					\vdash	
Was drive									+	ļ					\vdash	
Was drive			YU N	∐ Hov	v?			-	+	}		RE(BIVED		\vdash	
8. CASI					_				 	 						
Diameter	From	То	3auge	Material	Casing	Liner V	Velded Threade		· · · · · · · · · · · · · · · · · · ·	<u>ब्रुप्त हैं</u>		NOV	2 7 1995			
					┦ ;;					 ` ` ` 						
							-	3.5	1	<u> </u>	<u> </u>	Department	of Water Resource	∍s		
Length of	Headpipe)		Lenath	— of Tailpip	е			AR e	7 19	96	,				
9. PERI									11111	,,,	Ĭ					
	orations	Meth						. L	<u> </u>	<u> </u>	<u> </u>				Ш	
□ Scre	ens	Scre	en Type					_ Co	mplete	d Depti	544	- •	1		surable)	
		T		1				Di	ate: Sta	rtẹd	8-25-	151	_ Completed	9-29-	<u> 15 </u>	
From	То	Slot Size	Number	Diameter	Material	Casing					\ \C====		•			
												ICATION		المستم مده	-اهادد المحا	
ļ		 	<u> </u>	ļ .	 	- -			-		mınımum v s removed.	veli construc	ction standards w	ere compli	iea Mith	
<u></u>		L	1	1	I					-		\mathcal{L}	λ		.	
•								Firn	Name	<u> 1</u> 46	rpm50	WYLLA	DRILLING SOLL Dat MSOLL Dat	_Firm No.	<u>045</u>	
10. STA	TIC WA	ATER L					SSURE:		4	OX	 5 	1			_ ^	
	ft. below (_		-		lb.		Firm	Officia	ة لكرا	un Cl	gam	50 Dat	e <i>//-/</i> ,	7-45	
=		intered _		f	. Desc	ribe acce	ess port or	and			7)	. 11		4 4 · · ·		
control d	evices:							_ Sup	ervisor	or Ope	rato(/////	Va_HEH	MSON Dat	ie // -/	14	

WELL DRILLER'S REPORT

Use Typewriter or Ball Point Pen

WELL DIMEL	63657 _{NOV 2 0 1995} O. C. 2
1. DRILLING PERMIT NO. 63 - 95 - W - 0565 - 001 Other IDWR No.	11. WELL TESTS: WATER RESOURCES Pump Baller Air Flowing Artesian PB-10
	Yield gal./min. Drawdown Pumping Level Time
2. OWNER: County of Caryon Name HOLLADAY EUGINEERING CO	RECEIVED
Address 1431 1345 ALT HWY 95	
City PAYETTE State ID Zip 83661	NOV 2 7 1955
	Water TempBottom hole temp
3. LOCATION OF WELL by legal description:	Water Qualify test or comments: Department of Water Resources
Sketch map location <u>must</u> agree with written location.	12. LITHOLOGIC LOG: (Describe repairs or abandonment) Water
Twp. 2 North or South D	Bore Dia. From To Remarks: Lithology, Water Quality & Temperature Y N
Rge. 3 East □ or West ★	12 1 5 TOP SOIL
	12 5 10 CLAY W/SMALL GRAVEL
Sec. 2 , 50 1/4 NE 1/4 1/4 1/4 Gov't Lot County Calores	? 10 20 GRAVEL : SAND
	10 20 31 GRAVEL & SAND
Address of Well Site 15500 MISSOURI	1 31 45 CLAY W/SOME SMALL GRAVEL
PICKLE BUTE LANDELL CITY	1 45 55 11 " 11 COARSE SAND
(Give at least name of road + Distance to Road or Landmark)	1 55 73 CDARSE SAND W/SOME CLAY (SLOW) PULLY
LtBlkSub. Name PB/O	13 100 CLAY
	1 100 105 SAND
4. PROPOSED USE:	105 115 SAND (COARSE) W/CLAY SOFT : HARD
□ Domestic □ Municipal ■ Monitor □ Irrigation	115 120 COARSE SAND/SMALL GRAVEL WCLAY
☐ Thermal ☐ Injection ☐ Other	120 125 SAND WERNEL SMALL & COMMENT
5. TYPE OF WORK	/ 125 130 SAND WUTTLE CLAY
New Well	(130 135 SAND & MORE CLAY
6. DRILL METHOD) 135 136 VERY HARD CLAY
☐ Mud Rotary ♣ Air Rotary ☐ Cable ☐ Other	136 205 REG CLAY
	8 205 210 SANDY CLAY
7. SEALING PROCEDURES	210 215 SANDY CLAY WHORD FCS CLAY
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or	215 220 SANDY CLAY - VERY HARD DRUMES
Pounds	220275 SANDY CLAY - MORE CLAY
BENTONITE 20 12000 POUR	375 300 SANDY CLAY W/HARD PES OF CLAY FAMILY OF
	300 305 SAUD
	305 339 CLAY
Was drive shoe used? Y \(\Bar{\text{N}} \) N Shoe Depth(s)	339 341 VERY HARD CLAY 341 430 CLAY
Was drive shoe seal tested? Y□ N□ How?	430 455 VERY HARD CLAY (DEILLIE YOWER
	455 467 "SUPER" VERY HARD CLAY
Diameter From To Gauge Material Casing Liner Welded Threaded	457 765 REG. CLAY
8 +2 500 15 STEEL # 0 0	416 470 CLAY / SMALL GRAVEL
4 +2 504 STAINLESS - 0 0 0 0	410 615 CLAY WIROW SPOTS)
Length of Headpipe Length of Tailpipe	\$15 518 TURNIN) GRY
9. PERFORATIONS/SCREENS	518 525 BROWN CLAY
□ Perforations Method Mas 0.7.10	OG 525 540 JAND COARSE W/CLAY
Screens Screen Type Houston	Completed Depth CONTINUED (Measurable) Date: Started 8 25 95 Completed 9 29 95
From To Slot Size Number Diameter Material Casing Liner	
504 534 ,020 41 STAINNES -	13. DRILLER'S CERTIFICATION
	AMe certify that all minimum well construction standards were complied with at
	the time the rig was removed.
10. STATIC WATER LEVEL OR ARTESIAN PRESSURE:	Firm Name HDAMSON Junp \$) RILLING Firm No. 04157 Firm Official Dava adamson Date 11-17-95
ft. below ground Artesian pressure lb.	Firm Official Adem (10ham 100)
Depth flow encounteredft. Describe access port or	and — / / /
control devices:	Supervisor or Operator Java Hamanu Date 11-17-95
	(Sign once if Fiffn Official & Operator)


Form 238-7 7/94

IDAHO DEPARTMENT OF WATER RESOURCES

WELL DRILLER'S REPORT

Use Typewriter Ball Point Pen

	•									()	, –	P62	-C /)	
4 550			/	-2 G	1511	0565-001		_6	365 TES	$58 \ \smile$	-	102	C + Z		
Other IDV		=KMII	NO. <u>(</u> (2.21	<u> </u>	<u>0905-001</u>	11.	WELŁ Pι			∃ Air	□ Flowing	PB-	.10	
								ield gal./i	_ '	Drawdown	-	Pumping Level		ime	
2. OWN	ER:	120	AV.	FAR	IN EFA	ING CO		i ioio gaili	-	9.0		r dinping 2000	<u> </u>		\neg
Address_					114	<u> </u>						<u>-</u>			
		PP	±10		State	Zip									
,		,					Wate	r Temp		E	Bottom I	nole temp			
3. LOC	ATION C	OF WE	LL by	iegal d	descript	ion:				or comments:		, , , , , , , , , , , , , , , , , , , ,			_
Sketch ma	ap location	n <u>must</u> a	gree witl	h writter	location.										
•	N	_					12.	LITHO	DLOG	IC LOG: (Desc	ibe rep	airs or aban	donment)	Wa	ater
		T	.2	N.	orth 🗘	C	Bore Dia.	From	То	Remarks: Litholo	ov. Wate	or Quality & Te	mperature	γ	N
		IWP	7	_ "	onnuz aet ⊡	or South □		550	360	TURNING				 -	╆┈┤
Y		E Sec.	21		1/4	or West KI SW 1/4 NF 1/4 40 acres 1/4 1/60 acres	1	7.0	3,00	COARS	E 3	AND	/	<u> </u>	+
 	 	Gov't	Lot	,10 Coun	ecres tv C	40 acres 160 acres				324/11/32					\Box
]		_ ,	,	- /									
;	S	Addres	ss of We	ll Site						CAVED	N C	TO 544			$oxed{\Box}$
/G	least name of ro	ad + Diar	to Bood '	andres of A	City		<u> </u>		<u> </u>						Ш
				•			<u> </u>		<u> </u>						$\vdash \vdash$
Lt	Blk,_		Sı	ль. Nап	ne		-							<u> </u>	+
							<u> </u>	 		· · · · · · · · · · · · · · · · · · ·					╁╌┤
-	POSED				–	7. · · ·		 -	 i						+
	omestic nermal	□ Muni	•	☐ Mor		Irrigation									+
_	OF WO	•	OII		CI										1
	Well		or Repa	ir □ Re	eplacemen	t					R	ECEL	VED		\Box
	L METH														
	ud Rotary		Rotary	☐ Cal	ble 🗆	Other						VOV 27	1995		
															11
7. SEAI	LING PR		URES	_			ļ	ļ		<u> </u>	Depart	ment of Water	Resources		\vdash
-	SEAL/FILT Material		om To	AMO: Sack		METHOD		ļ .							$\vdash \vdash \mid$
	WIAICHAI	- ``		Pour				ļ							┼┤
				 			-	ł							\vdash
<u> </u>				+	-										
Was drive	ehoo uso	42 🗀 '	<u> </u>	l Shoc	Death(e)										+
	shoe use											RECEIV	FD		\Box
8. CASI	NG/LIN	ER:									٢	IEOF14			
Diameter	From	То С	Gauge	Material	Casing	Liner Welded Threaded					- 44	OV 2 0	1995		1
ļ				•	_										\sqcup
 			 -				7:-					WATER RESO	URCES	<u> </u>	+
	<u></u>						1					MEGIEUR U		_	+
-	Headpipe			-	of Tailpipe	·		, ,							+
	FORATIONS					MAR 0 7 1996		è						ļ	1
© Scre	orations					<u> </u>	Co	ndetec	l Denth	544			(Mea	eurah	<u> </u>
										8-25-95		Completed			
From	To	Siot Size	Number	Diameter	Material	Casing Liner				- W- W			, <u>v~ /</u>		
]. 🖟 🗀				CERTIFICAT					
						A COLUMN TO SERVICE CONTRACTOR OF THE PARTY				minimum well con	structio	n standards v	vere compli	ied w	ith at
			<u> </u>	L			tne ti	me the	rig was	removed.					
							Firm	Name_					Firm No.		
10. STA	TIC WA	TER L	.EVEL	OR A	RTESIA	N PRESSURE:		ä	ラン	CA					
	ft. below g						Firm	Official	分	ve_Cla	am	<i>Son</i> Dar <i>WSON</i> Da	te <i>//-/7</i>	-9:	5
						ibe access port or	and		_	\mathcal{D}_{a}^{j}	1-1				سدير
control d	evices:						Supe	rvisor o	or Opera	ator Jave	49a	₩SOU_ Da	te <i>//-/</i>	1-9	15
						•				(Sign once if F	m Officia	l & Operator)			

Describe control device

IDAHO DEPARTMENT OF WATER RESOURCES WELL DRILLER'S REPORT

1. WELL TAG NO. D 0059190 Drilling Permit No. 912544 - 861196											12. STATIC WATER LEVEL and WELL TESTS:										
Drilling Po	ermit N	lo	910	2 244	<u> </u>	<u>1119</u>	<u>le</u>			= Dopar mot water encountered (it) Otatic water level (it)											
Water righ	nt or inje	ection we	ell #							Water	temp. (⁰ l	=)		Bottom hol Vell Cap / I	e temp. (⁰	_{F)} 70.8	3 F				
2. OWNER									****	Descri	be acces	s port_	Monitor V	Vell Cap / I	ocking	Lid					
Name Ca						epartm	ent			Well to						ethod:					
Address _	15500) Miss	ouri <i>i</i>	Avenue	3					Drawdown (feet) Discharge or Test duration yield (gpm) (minutes) Pump Bailer								Flowing artesian			
City Nan	npa				State ID)	_{Zip} <u>83</u>	686		N/A		1 7.0	ia (gpiii)	(minutes)							
3.WELL L																					
_{Twp.} 2	Nor	th 🗵	or Sc	outh 🗌	Rae.	3 [East 🗆	or '	West ⊠	Water	quality to	est or co	mments:								
Twp. 2 Sec. 20)		NN	V 1/4 S	E	1/4 NE	1/4	4			HOLOG	IC LOG	and/or re	pairs or abar	ndonmen	nt:	·				
						160 a	cres			Bore Dia.	From (ft)	To (ft)	Remarks	, lithology or des		repairs or		Vater			
Gov't Lot _	wa	c	ounty	Canyor	<u> </u>			_		(in) 19"	0'		Sandy C		vater temp.	***	Y	N			
Lat. 43 Long. 116		0 2	29.83	6		(De	g. and D	ecimal m	inutes)	19"	5'		Sand	lay	/			+-			
Long. 116		04	3.013	3		(De	eg. and D	ecimal m	inutes)	19"	10'		Sandy C	lav				+			
Address of	f Well S	Site 155	N OUC	/lissour	ı Aver	nue				19"	24'		Sand	iaj	-,			+			
(Give at least nam				(_{City} Na	mpa				19"	36'		Clay				-	+			
(Give at least nam	ne of road +	Distance to	Road or La	Indmark)						10"	50'		Clay					+			
Lot.	ык		_ Sub	. Name _			······································			10"	52'	55'	Orange 9	Sand				1			
4. USE:	tic 🖂	Municin	al 1 2	Monitor	□ leri	astion F	Thor	mai [T Injustion	10"	55'	93'	Sandy C	lay	***************************************			1			
Other_		wumup	ai <u>r</u>	I MOTILO		yallOll L	_ inen	IIdi _	1 injection	10"	93'		Sand								
5. TYPE C	OF WO	RK:								10"	96'		Yellow C								
➤ New we	ell 🗀	Replac	ement	well [] Modify	existing v	vell			10"	103'		Blue Cla								
☐ Abando	nment	☐ Ot	her							10"	129'		Yellow C								
6. DRILL										10"	133'		Blue Sar								
Air Rota	ary [Mud I	Rotary	☐ Ca	ble [Other _		***************************************		10"	176'	420'	Blue Cla	у			X				
7. SEALIN						- ()															
Seal ma						al Buc			emie				Additions	al Sealing P	rocodur	.00:					
Neat Co									enne					onite Chips				-			
L			30	0 0	yarus	Trer	<u> </u>						95 bags	ornic Ornps	1101110	10 00 -					
8. CASING			Gauge	,									oo bago				_	-			
(nominal)	rom (ft)		Schedu	le "	Material				d Welded									_			
4"	+2	340'	sch 4	IO SS		×			×												
4" 4	400'	405'	sch 4	10 SS		×			×									1			
10"	+2	-3	250	Stee	1	×			×												
							П				F	EC	EIVE	: D							
LL							h-mark	لنبيا													
Was drive					e Depth	(s)						FEB.	1 0 201	2							
9. PERFO	PRATIC	ONS/SC	REEN	NS:																	
Perforation											W/	TERF	ESOUR	CES							
Manufactu	red scr	een 🗵	Y 🗆	N Type	John	son					V V	COLE	RN REGIO	JN							
Method of	installa	ıtion Ο\	/erbo	re																	
From (ft)	To (ft)	Slot size	Numb	or#t Diam		Material		auge or S	chadula		l		Lurable). 40	بــــــــــــــــــــــــــــــــــــ							
<u> </u>	400'	.020	11011110	(nom					criedale		eted Dep		urable).								
340	400	.020	 	4	3	SS	IN/	/A		Date S	tarted: Ju	ın 13, 2	2011	Date Cor	npleted: Ju	1, 201 اد	1				
										14. DF	RILLER	S CER	ΓΙΓΙCAΤΙΟ								
														onstruction sta	andards w	ere comp	lied with	n at			
Length of H	Headpi	ре		L	ength o	Tailpipe	5'				e the rig										
Packer TY X N Type										Compa	any Nam	_{le} Adar	nson Pu	mp & Drillir	ng (Co. No. 4	57				
10.FILTER	R PAC	K:										(D)		$\sim a$				-/ 7			
Filter M		<u> </u>	m (ft)	To (ft)	Quantity	(lbs or ft ³)	Pla	acement r	method	Princi	pal Drille	TI	20) 9_				-8-12				
10-20			30'	420'	84 b		 			*Drille		Va	IT SE	THEA.		Date <u>Z</u>	<u>-3-</u>	12			
10-20	Janu			720	U4 D	ays	116	mie		*∩ners	ator II		/	1		Date		_			

11. FLOWING ARTESIAN: Flowing Artesian? ☐ Y ☒ N Artesian Pressure (PSIG)									Opera	tor I				[Date						
Flowing Ar	tesian?	Υ	×Ν	Artesian	Pressu	e (PSIG)				* Sign	ature of	Princip	al Driller ar	nd rig operato	r are req	uired.					

Form 238-7 6/07

Describe control device _

IDAHO DEPARTMENT OF WATER RESOURCES WELL DRILLER'S REPORT

861197

1. WELI	LTAG	ио. D ^О	05919	1				12 ST	'ATIC V	VATER	<i>U</i> IEVELand	WELL TES	re.			
Drilling	Permit N	No O	125	45-8	101197							500' s		level (ff)	313'	
								\Mater	temn (0	5)	intered (it)	Bottom hal	e temp /0t	=\ 76.8	' 3	
2. OWN	ER:							Descri	he acces	ss nort N	/lonitor W	Bottom hol /ell Cap / L	ocking I	Lid	William	
Name (Canyo	n Cour	nty So	lid Wast	e Departm	ent		Well to		o port_		•	Test me			
Addres	_s 1550	0 Miss	ouri A	venue					down (feet		charge or	Test duration	Pump		Air	Flowing
City Na	ampa			Stat	te ID	Zip 83686		N/A		/ yie	eld (gpm)	(minutes)			\Box	artesian
3.WELL					***************************************				***************************************				$\exists \exists$			Ħ
			or Sou	ıth 🖂 🛚 F	a 8 ans	set V or	Mast V	Water	quality t	est or co	mments:					
Sec 2	20		NIN	1/4 NE	Rge. 3 E	1/4	West		HOLOG	IC LOG	and/or rep	pairs or abar	ndonmen	t:		
								Bore Dia.	From	То		lithology or des		epairs or		Water
Gov't Lo	t	C	ounty C	anyon	(De			(in)	(ft)	(ft)		abandonment, v	water temp.		Y	N
Lat. 43		02	9.666		(De	g. and Decimal m	ninutes)	19" 19"	0' 17'		Sand					
Long. 11	16	04	3.030		(De	g. and Decimal m	inutes)	19"	32'		Sandy Cl Sand	ay				
Address	of Well	Site 15	500 M	lissouri <i>A</i>	Avenue	•	,	19"	38'		Sandy Cl	21/				
				City	Nampa			19"	41'	I	Sand	ay				
						7,000		10"	50'		Sandy Cl	av				
		k	_ Sub. I	Name				10"	79'		Yellow Cl					_
4. USE:		1			. –	·		10"	81'		Brown Sa					
Other	estic _	Municip	ai <u>ixi</u> i	Monitor L	Irrigation] hermal L	J Injection	10"	126'			/ Sandston	e		_	
5. TYPE								10"	180'		Blue Har					_
			ement w	ен Пм	odify existing w	rell		10"	500'	540'	Blue Clay	with Sand	Strips		X	
Aban	donment	☐ Ot	her		,	· · · · · · · · · · · · · · · · · · ·		10"	540'	560'	Blue San	d			X	
6. DRIL																
⊠ Air R	otary [☐ Mud F	Rotary	☐ Cable	Other _											
7. SEAL												l Sealing P				
	material				(ibs or ft ³) Plac							onite from ()' to 97' -	-		
					5 Gal Bucl		emie				91 bags					
Neat	Cemen	it 97	45	0 6.5	yds Tren	nie										
8. CASI			0							_						
Diameter (nominal)	From (ft)	To (ft)	Gauge/ Schedule	Mate	rial Casing	Liner Threade	d Welded			 						
4"	+2	480	sch40	SS	×		\times									_
10"	+2	-3	250	Steel			\times									_
											EIVI				_	
						⊔ ⊔	Ш				7 E I V I		***************************************			
Was driv	e shoe ι	used?	Y 🗵	N Shoe De	epth(s)					beer leer to	1000	en.				
9. PERF	ORATIO	ONS/SC	REENS	3:						rcc	1 0 20	14				
Perforati									v	VATER	RESOUR	ICES				
Manufac	tured sci	reen 🗵	Y 🔲 N	₁ _{Type} <u>Jo</u>	hnson					WEST	RN REG	ION				
Method o	of installa	ation Ov	erbore	е												
F		Slot size	·		T					<u> </u>		• •				
From (ft)	To (ft)	ļ	Number	(nominal)	Material	Gauge or S	chedule	Comple	eted Dep	th (Meas	urable): 545)՝				
480	540	.020	ļ	4"	SS	N/A				ıl 5, 20		Date Cor	npleted: Ju	115, 20	011	
											TIFICATION		p.o.tou.			
								I/We c	ertify tha	ıt all mini	imum well co	onstruction sta	andards we	ere com	olied wi	th at
Length o	f Headpi	pe		Leng	th of Tailpipe	5'		the tim	e the rig	was ren	noved.					
								Compa	any Nam	_{le} Adar	nson Pur	np & Drillir	ng c	o. No. ^Z	157	
10.FILT												-7				
	Material		n (ft)	To (ft) Qu	antity (lbs or ft ³)	Placement	method	-Princi	pal Drille		101 - 6	Effen				
	0 sand							*Driller	$-\mathcal{L}$	MAS	186	THEN.		Date <u>2</u>	<u> </u>	12
10-2	.o sanu	40	0.0	000 00	vays	Tremie		*Oner	ator II	-	1.	7				
								·						Date		
11. FLO								Opera	tor I	***			C)ate	· · · · · · · · · · · · · · · · · · ·	
Flowing A	Artesian'	? 🔲 Y	⊠ N A	rtesian Pre	ssure (PSIG)			* 0:	_ .							

Signature of Principal Driller and rig operator are required.

Form 238-7 6/07

IDAHO DEPARTMENT OF WATER RESOURCES WELL DRILLER'S REPORT

861198

1. WELL TAG NO. D 0059192	12 ST	ATIC W	/ATER	LEVEL and WELL TESTS:	15	
Drilling Permit No. 912544 - 841198				ntered (ft) Static water level (ft) _	732'	
Water right or injection well #	Water i	emn (⁰ F	51 G1100U	Bottom hole temp (°E) 80		
2. OWNER:	Describ	ne acces	s nort N	Bottom hole temp. (°F) 80 Monitor Well Cap / Locking Lid		
Name Canyon County Solid Waste Department	Well to		,o port	Test method:		
Address 15500 Missouri Avenue		lown (feet)		charge or Test duration Pump Railer		lowing
City Nampa State ID Zip 83686	N/A		yie yie	id (gpm) (minutes)	er ar	rtesian
3.WELL LOCATION:						
	Water	quality te	est or co	mments:		
Twp. $\frac{2}{20}$ North \square or South \square Rge. $\frac{3}{20}$ East \square or West \square Sec. $\frac{20}{20}$ North \square or South \square Rge. $\frac{3}{20}$ East \square or West \square North \square North \square Or South \square Rge. $\frac{3}{20}$ East \square Or West \square North \square No		HOLOG	IC LOG	and/or repairs or abandonment:		
	Bore Dia.	From	То	Remarks, lithology or description of repairs or	Wa	ater
Gov't Lot County Canyon	(in)	(ft)	(ft)	•	Y	N
Gov't Lot County Canyon Lat. 43 0 29.425 (Deg. and Decimal minutes) Long. 116 042.949 (Deg. and Decimal minutes)	10" 10"	0'		Frac Basalt		
Long. 116 o42.949 (Deg. and Decimal minutes)	10"	25 85		Gravel mud stone		
Address of Well Site 15500 Missouri Avenue	10"	160'		Fine Sand	-	-
(Give at least name of road + Distance to Road or Landmark) City Nampa	10"	210		Brown Clay	-	
	10"	255		Yellow Clay	+	
Lot Blk Sub. Name	10"	380		Brown Clay	+	
4. USE: ☐ Domestic ☐ Municipal ☒ Monitor ☐ Irrigation ☐ Thermal ☐ Injection	10"	420'		Light Brown Clay		
Other	10"	460'	500'	Gray Clay		
5. TYPE OF WORK:	10"	500'		Silty Gray Clay		
■ New well ■ Replacement well ■ Modify existing well	10"	560'		Gray Clay		
Abandonment Other	10"	800		Silty Clay		
6. DRILL METHOD:	10"	803	920	Gray Clay	X	
☑ Air Rotary ☐ Mud Rotary ☐ Cable ☐ Other						<u> </u>
7. SEALING PROCEDURES:						
Seal material From (ft) To (ft) Quantity (lbs or ft³) Placement method/procedure Coated pellets 820 800 12 - 5 Gal Bucket Tremie					-	
Neat Cement 800 +1 20 yards Tremie/Pump					-	
					-	-
8. CASING/LINER: Diameter (nominal) From (ft) To (ft) Gauge/ Schedule Material Casing Liner Threaded Welded						-

10" +2 440 .250 Steel 🗵 🔲 🗵						
8" +2 558 .250 Steel 🗵 🔲 🗵						
4" +2 840 .258 SS ⊠ □ □ ⊠		anch.				
4" 900 905 .258 SS		$ \mathbf{B}$	EC	EIVED		
Was drive shoe used? Y X N Shoe Depth(s)	-		gen eta en	4.0.000		
9. PERFORATIONS/SCREENS:			FEB.	1 0 2012	_	
		3.6.6.6	70000	F000050E6	-	
Perforations Y N Method		VV/	ESTE	ESOURCES IN REGION		
Manufactured screen Y N Type Johnson						
Method of installation Overbore						
From (ft) To (ft) Slot size Number/ft Diameter (nominal) Material Gauge or Schedule	Comple	tod Dont	th (Meas	905'		
900' 840' .020 4" SS N/A				urable).	\12	
			ov 1, 2	71	/12	
				FIFICATION: imum well construction standards were compli		_4
Length of Headning			was ren		ea with a	at
Length of Headpipe Length of Tailpipe	0		Adar	mson Pump & Drilling Co. No. 45	57	
Packer Y X N Type	Compa	iny ivam				
10.FILTER PACK:	*Princi	oal Drille	r Da	de Champon Date 2	-8-1	12
Filter Material From (ft) To (ft) Quantity (lbs or ft ³) Placement method	*Driller		Ms	Date		
10-20 sand 905' 820' 72 bags Tremie			<u>, , , , , , , , , , , , , , , , , , , </u>	Date		
	*Opera	tor IV_		/ Date	***************************************	
11. FLOWING ARTESIAN:	Operat	or 1_ S	iAm 1	LAVARRO Date 2-	6-12	-
Flowing Artesian? Y X N Artesian Pressure (PSIG)	•		nat - 1			
Describe control device	oigna	ature of	rincip	al Driller and rig operator are required.		

Form 238-7

Describe control device _

IDAHO DEPARTMENT OF WATER RESOURCES

WELL DRILLER'S REPORT

PB	*	14
----	---	----

WELL DRIL	LER'S	KEP	URI	801199	•
1. WELL TAG NO. D 0059193	12. ST	ATIC W	ATER	LEVEL and WELL TESTS:	
Drilling Permit No. 912547 - 841199				intered (ft) 830' Static water level (ft)	716'
Water right or injection well #					***
2. OWNER:	Descri	oe access	s port N	Bottom hole temp. (°F) 84 Monitor Well Cap / Locking Lid	
Name Canyon County Solid Waste Department	Well to		- PO	Test method:	
Address 15500 Missouri Avenue		down (feet)		charge or Test duration Pump Bailer	Air Flowin
City Nampa State ID Zip 83686	N/A		yie	eld (gpm) (minutes) Carry Beller	artesia
3.WELL LOCATION:					
Twp. 2 North ☑ or South ☐ Rge. 3 East ☐ or West [× Water	quality te	st or co	omments:	
Sec. 21 SW 1/4 S	13. LIT	HOLOGI	C LOG	and/or repairs or abandonment:	
	Bore Dia.	From (ft)	To (ft)	Remarks, lithology or description of repairs or abandonment, water temp.	Water
Gov't Lot County Canyon Lat. 43 □ 29.314 (Deg. and Decimal minutes) Long. 116 □ 42.731 (Deg. and Decimal minutes)	(in) 15.25	0		Gravel Cemented	Y
Lat. 43 (Deg. and Decimal minutes)	15.25	31		Sand	
Long. 116 042.731 (Deg. and Decimal minutes)	15.25	43		Clay w/Sand	
Address of Well Site 15500 Missouri Avenue	15.25	51		Fine Sand w/clay streaks	
(Give at least name of road + Distance to Road or Landmark) City Nampa	15.25	104		Gravel and Sand	
Lot Blk Sub. Name	15.25	158		Sand	
4. USE:	15.25	182		Sandy Clay	
□ Domestic □ Municipal ☑ Monitor □ Irrigation □ Thermal □ Inject	15.25	207		Sticky Brown Clay	
Other	10.25	245		Clay w/Sand Streaks	
5. TYPE OF WORK:	15.25 10"	267		Sticky Brown Clay	
New well	10"	481 523		Sticky Blue Clay Sandy Blue Clay	
Abandonment Other	10"	550		Sticky Blue Clay	
6. DRILL METHOD: ☑ Air Rotary ☑ Mud Rotary ☐ Cable ☐ Other	10"	771		Sand Stone Layer	
	10"	774		Sticky Blue Clay	
7. SEALING PROCEDURES: Seal material From (ft) To (ft) Quantity (lbs or ft³) Placement method/procedure	10"	826		Sand Stone Layer	X
Coated pellets 807 834 17 - 5 Gal Bucket Tremie	10"	831		Sticky Blue Clay	X
Neat Cement 0' 807 22 yards Tremie/Pump					
8. CASING/LINER:					
Diameter From (ft) To (ft) Gauge/ Material Cooling Lines Threeded Wold	led				
10" +1 480 .250 Steel ⊠ □ □ ⊠	_ 1				
4" +2 845 .258 SS ⊠ □ □ ⊠					
	-				
4" 905 910 .258 SS 🗵 🗆 🗆			DE	- 1 1 2 ma min	
	J		nr	CEIVED	
Was drive shoe used? Y X N Shoe Depth(s)			Eus faw	D 1 a rain	
9. PERFORATIONS/SCREENS:			I L.	P I U AGA	
Perforations Y N Method		V	VATER	RESOURCES	
Manufactured screen Y N Type Johnson		1	WEST	EAN REGION	
Method of installation Overbore					
				040	
From (ii) To (ii) Stot size Number/iii (nominal) Material Gauge of Schedule	Compl	eted Dept	h (Meas	surable): 910'	
845' 905' .020 4" SS N/A	Date S	_{tarted:} Ju	119, 2	O11 Date Completed: Oct 12, 2	011
				TIFICATION:	
	I/We d	ertify that	t all min	imum well construction standards were comp	olied with at
Length of Headpipe Length of Tailpipe		e the rig			
Packer Y X N Type	Comp	any Name	_e Adaı	mson Pump & Drilling Co. No. 4	57
10.FILTER PACK:				ava Calannon Date 2	
Filter Material From (ft) To (ft) Quantity (lbs or ft ³) Placement method		11	11	1 - 10	
10-20 sand 834' 902' 62 bags Tremie	*Drille		vat	Date 2	-3-12
301 002 02 bags Herrie	*Opera	ator II		Date	
11 ELONING ADTESIANI					
11. FLOWING ARTESIAN:	Opera	tor I		Date	
Flowing Artesian? Y X N Artesian Pressure (PSIG)	* Sian	ature of	Princip	pal Driller and rig operator are required.	

Describe control device _

IDAHO DEPARTMENT OF WATER RESOURCES **WELL DRILLER'S REPORT**

1. WELL TAG NO. D 0059194	12. ST	ATIC W	ATER I	LEVEL and WELL TESTS:		
Drilling Permit No. 912548 - 861 200	Depth f	irst wate	er encou	ntered (ft) 800 Static water level (ft)	365	
Water right or injection well #	Water t	emp. (⁰ F	=)	Bottom hole temp. (°F) 84 Monitor Well Cap / Locking Lid		
2. OWNER:	Describ	e acces	s port N	Ionitor Well Cap / Locking Lid		
Name Canyon County Solid Waste Department	Well te			Test method:		
Address 15500 Missouri Avenue	Drawd	lown (feet)		charge or Test duration Pump Bailer		Flowing artesian
City Nampa State ID Zip 83686	N/A					
3.WELL LOCATION:						
Twp. 2 North ☑ or South ☐ Rge. 3 East ☐ or West ☒				mments:		
Twp. 2 North ☑ or South ☐ Rge. 3 East ☐ or West ☒ Sec. 21	13. LITH Bore		IC LOG	and/or repairs or abandonment:		
	Dia.	From (ft)	To (ft)	Remarks, lithology or description of repairs or abandonment, water temp.	Y	/ater
Gov't Lot	(in) 15.25	0		Coarse Sand / Some Gravel	+	N
Lat. 43 0 29.329 (Deg. and Decimal minutes)	15.25	10		Medium to Coarse Sand		+
Long. 116 042.480 (Deg. and Decimal minutes)	15.25	42		Silty Clay - Brown Yellow		1
Address of Well Site 15500 Missouri Avenue	15.25	74		Yellow Sand		1
(Give at least name of road + Distance to Road or Landmark) City Nampa	15.25	87	102	Brown Sand		1
Lot Blk Sub. Name	15.25	102		Brown Clay		
4. USE:	15.25	106		Brown Clay		
□ Domestic □ Municipal ☑ Monitor □ Irrigation □ Thermal □ Injection	15.25	186		Brown Sand		
Other	15.25	261		Brown Clay		
5. TYPE OF WORK:	15.25	281		Brown Sand		
New well	15.25 15.25	296 307		Brown Fine Sand		
Abandonment Other	15.25	311		Brown Clay Brown Sandy Clay		+
6. DRILL METHOD:	15.25	358		Blue Clay		+
☑ Air Rotary ☑ Mud Rotary ☐ Cable ☐ Other	10"	400'		Blue Clay		+
7. SEALING PROCEDURES: Seal material From (ft) To (ft) Quantity (lbs or ft ³) Placement method/procedure	10"	423		Brown Sandstone		+
Coated pellets 757 777 17 - 5 Gal Bucket Tremie	10"	431		Brown Sand		1
Neat Cement 0' 757 15 yards Tremie/Pump	10"	435	476	Blue Clay		
8. CASING/LINER:	10"	476	785	Blue Sandstone		
Diameter From (ft) To (ft) Gauge/ Material Casing Lines Throughd Wolded	10"	785	855	Blue Sandstone w/cracks	X	
4" 850 855 .258 SS						
10" +3 400' .250 Steel		fand,		Spines S J V Meets Land		
		<u> </u>	EC	EIVED	-	
Was drive shoe used? Y X N Shoe Depth(s)				1 0 0000	_	+
9. PERFORATIONS/SCREENS:			FED-	U ZUIZ		+
Perforations Y X N Method		10/2	TER E	ESOURCES		+
Manufactured screen Y N Type Johnson		W	ESTE	N REGION		1
Manufactured screen X Y I in Type						
Method of installation Overbore						
From (ft) To (ft) Slot size Number/ft Diameter (nominal) Material Gauge or Schedule	Comple	eted Dep	th (Meas	urable): 855		
790 850 .020 4" SS N/A		tarted: A			011	
				TIFICATION: imum well construction standards were comp	lied with	n at
Length of Headpipe Length of Tailpipe		e the rig			ned with	ı at
	Comp	any Nam	. Adaı	mson Pump & Drilling Co. No. 4	57	
Packer Y X N Type			00	Co. No		
10.FILTER PACK:	*Princi	pal Drille		ave adam son Date 2	-6-1	12
Filter Material From (ft) To (ft) Quantity (lbs or ft ³) Placement method	*Driller	. (b	hr	Auto Date		
10-20 sand 777 866 75 bags Tremie				V Z		
	*Opera	ator'll		Date	***************************************	
11. FLOWING ARTESIAN:	Operat	tor I		Date		
Flowing Artesian? Y X N Artesian Pressure (PSIG)	* Sian	ature of	Princin	al Driller and rig operator are required		

^{*} Signature of Principal Driller and rig operator are required.

	MONITORING WELL LITHOLOGIC LOG AND COMPLETION DE	TAILS
Project Na	me: Pickles Butte Landfill Project No: 114-571040	Well No: PB-16
Location o	f Well: Approximately 85 feet southwest of PB-4. N 43°29'27.1279", W 11	6°42'13.5342"
Date Start	ed: Feb 19, 2020 Date Completed: Mar 11, 2020 Tt Geologist: R. F	Phillips
	ompany: Granite (Layne) Driller Name: Charles John	
	ethod: Rotary Boring Diameter: 9.5 to 22", See Diagram Fluids Use	
	led: 597' Depth Cased: 597' Casing Dia. and Type:	
	op of Screen: 572' Screened Section Length: 20 SI	
	Type and Size: Silica sand, 10/20 and 12/20 Depth From: 562	<u> </u>
	ription (Types and Depths): Granular bentonite (560' to 562'), Neat cement gr	
	ompletion and Security: Concrete pad, 10" dia. above-ground casing prot	
Top of Cas	sing Elevation: 2927.30' Relative TOC Relative to GS: 2.75' Dep	oth to GW: 550.67'
Well Deve	elopment Method: Surging and bailing (March 11, 25, & 27) Amount Purg	ged: ~300 gallons
Notes:	Lithology shown below is generalized. Tetra Tech personnel were not pres	ent for the upper 279
feet of drill	ling, and rotary drilling techniques did not allow for detailed observations wi	thin the stratigraphic
units.		
Depth (ft)	Soil or Rock Description; Water Notes	Notes
	SAND, fine grained, with gravel	Feb 19: 0 to 25'
10	SAND, fine grained with silt	Boring Diameter: 22",
20	CLAY	0 to 40 feet.
25	CLAY with sand	Mud and water used,
	SAND	upper 300 feet
		Feb 20: 25' to 40'
40	SAND with silt lenses	Boring Diameter:
40	O TIVE WILL SITE ICHOOS	14.75", 40 to 279 ft.
		Feb 22: 40' to 159'
163	SAND with silt	Feb 24: 159' to 239'
240	SAND, fine grained	Feb 25: 239' to 279'
	•	
262	CLAYSTONE with silt; clay is slightly plastic, trace amount of fine sand,	Boring Diameter:
000	weakly consolidated, estimate 80% clay and 20% silt, brown.	9.5" 279 to 597 ft.
330	CLAY with silt, less consolidated than claystone above and below, brown	Feb. 28: 279' - 427'
0.50	to dark tan.	Drill foam used 300' to
350	Slightly more consolidated, Reddish brown color on some fragments	500'
	below 350 feet.	
370	CLAYSTONE; contains some silt and trace fine sand, clay is slightly plastic	
	weakly to moderately consolidated, estimate 80% clay and 20% silt,	
	brown with occasional red-brown color.	
390	Color changes to green-brown, then more green below 430'	
445	SILTSTONE; trace clay and fine sand, weakly consolidated, green-grey	Feb 29: 427' - 497'
	color indicates the redox boundary.	
465	More brown fragments, moderate consolidation	
475	Fewer brown fragments, overall color grades to darker green	

	209 and 11011 Completion Detaile	
485	SILT with clay, dark green to dark grey; some fine sand, weakly	
	consolidated.	
520	CLAY with silt; slightly plastic, slightly moist, dark green to dark grey	March 5: 497' - 577'
	Possibly a bit more moisture below 535	
	Water check at 557': No water after 90 minutes	
565	CLAYSTONE; less moisture than above material, moderately consolidated	
	dark grey	
	Water check at 577': No water after sitting overnight, but some water	
	returned with air when drilling resumed the morning of March 6.	
	Water check at 597': Water measured at approx. 590' BGS	March 6: 577'-597'
	Overdrill with 9.5" bit from 279' to 597' on March 7; drill foam used.	March 7: Redrill 279
	evolum with old bit from 210 to our off major 17, and four dood.	597' with 9.5 inch b
597	Bottom of Boring	337 WIGH 3.3 IIIOH I
391	Bottom of Boring	

Figure No. 1 LOG OF BORING

Phone: 406-543-3045

Fax:								Boring B	32021-1								Sheet 1 of 1
Project	t: P C	ickle	es E	Butte Cou	e Sanitary Lar Inty, ID	ndfill	-	Rig: TS150 Crawler	Boring Locati	ion N: E:	43.502 -116.6	292 242	7 204				
Projec					,			Boring Diameter:	System: Deci							Top	of Boring
114-57	104	10-2	022					6 in	Datum: NAD								vation: 2740.4 ft
Date S	tart	ed:			Date Finishe	d:		Drilling Fluid:	Abandonmen	t Meth	iod:						
11/15/2					11/15/21			None	Grout								
Driller: Logge					3			Location: Refer to	site map.								
Logge	I . IVI	all /	nua	1115	I							_					Ī
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
	2222	//	400		3-3-4	11	TC	PSOIL, moist, tan/b	orown.		0.3						
-	}}}		100		3-3-4		Po	orly-Graded SAND v	with silt (SP-SN	1),	2740.1						
	}}}							ose, moist, brown to edium grained, subar				9					
-	<i>\$</i> \$\$\$		100		2-3-3			alam gramea, sabai	iguiai.				NV	NP	12	110	
├	} }}}																
5 2735.4	SSS:	X	100		2-3-5						5.3						
	$\langle \langle \rangle \rangle$						Po	orly-Graded SAND (edium dense, moist,	(SP), loose to		2735.1	8					
├ ┤	}}}}	X	100		3-6-9		me	edium grained, subar	ngular to angula	ar.		_ ا					
	}}}																
├	}}}}	X	100		9 - 13 - 13												
_ 10 _	}}}}											_					
2730.4	}}}}		100		8 - 11 - 13		0				44.0	6					
	}}}	\leftarrow				0,00		ty SAND (SM), medi		ist,	11.2 2729.2						
	}}}					***	gra	ay to tan, fine grained	d, medium								
	}}}	1				0,0,0	o pia	sticity, Pockets of cl	ay.								
 15	\\\\ \\						Po	orly-Graded SAND (SP), medium		14.1 2726.3						
5 2735.4 - - - 10 2730.4 - - - - - - - - - - - - - - - - - - -	SSS:		100		10 - 13 - 15		de	nse, slightly moist, g	gray, fine to	or		5					
	$\langle \rangle \langle \rangle$	igtriangleup	100		10 10 10		me	edium grained, subar edium plasticity, Sma	all pockets of gr	rey							
	\$\$\$\$						cla	ıy.									
	}}}	 															
	}}}}						0										
20 2720.4	}}}}				40 40 15												
	}}}}	\mathbb{X}	100		10 - 12 - 13												
├ -																	
├	} }}}																
-											24.1						
_ 25 _	} }}}							orly-Graded SAND v nse to very dense, s		1),	2716.3		NIV /	VID.	6	112	Cc= 0.03
2715.4	\$\$\$\$ <u>.</u>		100					ay, fine to medium gr					IN V	אמן	O	113	0.03
	\\\\							· ·									
	\$\$\$\$		100		13 - 21 - 23												
7	$\langle \rangle \rangle \langle \rangle$	\vdash															
30							:										
2710.4	7777	\bigvee	100		13 - 25 - 34												
-		\triangle	100		10-20-04		:		P 1		31.5						
							В	oring Depth: 31.5 ft,	Elevation: 270	8.9	2708.9						
								n.									
		Wate	er L	.evel	Observations		∑ Du Dri	ring Illing: Not Encountered		Rema	arks:						
After Drilling	n. No	t Rec	orde	Ч			- Af			1							
± Drilling	y. INO	ı rec	JUI UE	u			ı— Dr	IIIII III: INOL Recorded									

2709.0

Figure No. 2 LOG OF BORING

Phone: 406-543-3045

Project: F	Pickle Canyo	s Bu	itte S ount	Sanitary La y, ID	ndfi	l -	Rig: TS150 Crawler	Boring Location N Coordinates	I: 43.501 :: -116.7	65 138	8 329						
Project No 114-5710	umbe	r:		•			Boring Diameter:	System: Decimal I Datum: NAD83	Degrees					Top Eleva	of Boring ation: 2739.0 ft		
Date Start			11	ate Finishe 1/16/21	ed:		Drilling Fluid: None	Abandonment Me Grout	thod:								
Driller: H Logger: M							Location: Refer to	site map.									
Depth (ft) voite of (ft)	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	3	Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	L,	PL	-200 (%)	DD (pcf)	Remarks and Other Tests		
-333		100		2-1-3	000 000 000 000 000	şĕ r	Silty SAND (SM), very noist, brown to tan, fin subangular to angular.		0.0	7							
- - - - - - - - -		100		2-1-1		۱	Poorly-Graded SAND very loose to very dens noist, brown to gray, fi	e, slightly moist to ne to medium	2.3 2736.7	3							
5 2734.0 		100		3-3-4		S	rained, angular to sub	angular.									
		100		2-4-6 7-10-14						3							
10		100		10 - 15 - 20													
15 2724.0		100		7 - 11 - 17						5							
20 2719.0		150		11 - 17 - 21						3							
		100		11 - 16 - 21													

31.5 2707.5

During
Drilling: Not Encountered
After
Drilling: Not Recorded Remarks: Water Level Observations After
Drilling: Not Recorded

Boring Depth: 31.5 ft, *Elevation: 2707.5* ft

15 - 25 - 34

100

Figure No. 3 **LOG OF BORING**

Phone: 406-543-3045

Phone Fax:	. 40	JU-J	45-	004	•			Boring I									Sheet 1 of
Projec					e Sanitary La ınty, ID	andfill -		Rig: TS150 Crawler Hammer: Auto	Boring Location Coordinates	on N:	43.500 -116.7)87 167	4 768				
Projec					·y, -=			Boring Diameter:	System: Deci							Ton	of Boring
114-57	'10 ⁴	10-2	022					6 in	Datum: NAD							Elev	vation: 2737.7 ft
Date S 11/16/2		ed:			Date Finish 11/22/21	ed:		Drilling Fluid: None	Abandonmen Grout	t Met	hod:						
Driller:					3			Location: Refer to	site map.								
Logge	r: M	att <i>i</i>	Ada	ms								_					
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	LL	L	-200 (%)	DD (pcf)	Remarks and Other Tests
	3333	1				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		ghtly moist, tan.			0.7 2737.0	T					
_								_T (ML), stiff, slightly v plasticity.	moist, light tar	١,	2/3/.0						
5								,									
2732. <i>7</i>	}}}	X	100		2-3-7												
_	} }}										8.0						
10						000		ty SAND (SM), loosense, slightly moist to			2729.7						
10 2727.7	 	X	100		7-9-9	\$ \$ \$ \$ \$	lig	nse, slightly moist to ht tan, very fine grair	ned.								
_	}}}					\$ \$ \$ \$ \$ \$ \$ \$		· -									
- -						**************************************											
15 2722.7	}}}}		100		11 - 11 - 12	0 0 0 0 0 0 0 0											
_	} }}		100			0,000											
-						\$ \$ \$ \$											
20 2717.7	}}}}				10 - 12 - 13	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8						3					
·' ' ' ' ' _ _	}}}	X	93		10-12-13							Ĭ					
_		}				\$ \$ \$ \$											
	 					60000 60000 60000							NV	ND	20		
2/12./_	}}}	11/1	80										1 4 V	INF	23		
=	} }}		100		11 - 15 - 15	000											
30 _						% % % % % % % % %											
2707.7	}}}}	X	100		10 - 12 - 14	\$ \$ \$ \$ \$ \$ \$ \$						3					
_	} }}	}				0000											
35						8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8											
702.7	}}}	X	100		11 - 14 - 21	\$2.80 \$2.80											
_	} }}	_				\$ \$ \$ \$											
40						\$ \$ \$ \$											
2697.7	 	X	93		10 - 14 - 16	% % % % % %		- (411)			41.1						
-	}}}					0,000		_T (ML), very stiff, sl v plasticity.	ightly moist, gr	ay,	2696.6 41.9						
/E		}				\$ \$ \$ \$	Sil	ty SAND (SM), medi			2695.8						
45 2692.7	 		100		12 - 12 - 12		de	nse, slightly moist, t ained, subangular to	an to gray, fine								
=	}}}}							_T (ML), very stiff, sl		av	47.0						
	} }}	}				000	lov	v plasticity.		чу ,	2690.7 47.7						
_ 50 2687.7		\triangleright				\$ \$ \$ \$ \$	Sil	ty SAND (SM), medi	ium dense to		2690.0	3					
		147			- Character		— D ı	ring		D.::	orks						
■ After		Wate	er L	.evel	Observations	;	<u> </u>	Illing: Not Encountered ter		Kem	arks:						
- Drillin	g: No	t Red	corde	d				illing: Not Recorded									

Figure No. 3

TETRA TECH 59808 LOG OF BORING Phone: 406-543-3045 **Boring B2021-3** Sheet 2 of 4 Fax: Rig: TS150 Crawler Boring Location N: 43.500874 Project: Pickles Butte Sanitary Landfill -Coordinates E: -116.716768 Canyon County, ID **Hammer:** Auto **Boring Diameter: Project Number:** System: Decimal Degrees Top of Boring 114-571040-2022 Datum: NAD83 Elevation: 2737.7 ft **Abandonment Method:** Date Started: **Date Finished: Drilling Fluid:** Grout 11/16/21 11/22/21 None Location: Refer to site map. **Driller:** Holt Services Logger: Matt Adams Recovery (%) Depth Depth **Blow Count** Sample Type Lithology 8 (ft) Operation (ft) Remarks (pct) હ RQD (**Material Description** and -200 (Elev. Elev. Other Tests ğ Ч ᆸ (ft) (ft) dense, slightly moist, tan to gray, fine 52.0 grained, subangular to angular. 2685.7 SILT (ML), very stiff, slightly moist, gray 55 to tan, low plasticity, Hard consolidated 2682.7 pieces. 56.2 Silty SAND (SM), medium dense to 2681.5 dense, slightly moist, tan to gray, fine grained, subangular to angular. 60 NVNP 19 Friction Angle= 20.21 2677.7 100 NVNP 7 100 degrees Cohesion= 0.282 ksf 65 2667.7 15 - 25 - 50 100 75 2662.7 76.5 Sandy SILT (ML), stiff, dry, gray to red, 2661.2

fine grained, Broken siltstone. 78.5 Silty SAND (SM), medium dense to 2659.2 80 dense, slightly moist, tan to gray, fine NVNP 24 Friction Angle= 32.81 2657.7 75 81.2 degrees grained, subangular to angular. 2656.5 Cohesion= 0.413 ksf 2 Poorly-Graded SAND (SP), very dense, 100 4-11-50 dry, salt & pepper, fine to medium grained, subangular to angular. 85 2652.7 90 2647.7 23 - 40 - 50 100 95 95.0 2642.7 Poorly-Graded SAND with silt (SP-SM), 2642.7 very stiff, dry, tan, fine to medium grained, subangular, Large amounts of broken sandstone. 100 100.0 50/0.2ft 0 Silty SAND (SM), very dense, dry, gray 2637.7 2637.7 to red, fine to coarse grained Level Observations Remarks: Drilling: Not Encountered

After Drilling: Not Recorded Thilling: Not Recorded

Fax:

Figure No. 3 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-3

Sheet 3 of 4

Projec					e Sanitary La	ndfill -	Rig: TS150 Crawler	Boring Location	on N:	43.500)87	4				
Projec				ou	nty, ID		Hammer: Auto Boring Diameter:	Coordinates System: Decir		-116.7 egrees		/68	5		Ta	of Boring
114-57							6 in	Datum: NAD		J					Elev	ation: 2737.7 ft
Date S	tarte	ed:			Date Finishe	ed:	Drilling Fluid:	Abandonment	t Meth	nod:						
11/16/					11/22/21		None	Grout								
Driller					;		Location: Refer to	site map.								
Logge	r: IVI	att <i>F</i>	lda	ms												
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	=	P.	-200 (%)	DD (pcf)	Remarks and Other Tests
1.9	2222	ss	œ		_	0000	subangular Miyed with	large nieces of	f	(1-9)	_	_	<u> </u>	Ľ	_	
- 105 7 107 1 107			143 88		31 - 50/0.2ft 47 - 50/0.3ft 14 - 33 - 50		Silty SAND (SM), very moist, salt & pepper to medium grained, subar Minimal pieces of sand with depth. Poorly-Graded SAND very stiff, dry, tan, fine grained, subangular, Labroken sandstone and Poorly-Graded SAND (dry to moist, salt & pep to medium grained, subangular, Minimal pieces angular, Minimal pieces	dense, dry to gray, fine to ngular to angula stone. Decreas with silt (SP-SM to coarse arge amounts o siltstone. SP), very densoper to gray, fin pangular to	ar, sing l), of e, e	135.0 2622.7 138.6 2599.1	4	NV	'NP	15	104	
- 145 _ 2592.7			100		16-33-50		Silty CLAY (CL-ML), ha gray, high plasticity.	ard, very moist,		146.5 2591.2						
5		M/ata	r I	امرام	Observations	1	7 During		Rem	arke:						
After					CUSEI VALIOI IS	-	Drilling: Not Encountered After		1.611	aino.						
Drillin	g: No	Rec	orde	d			- Drillina: Not Recorded									

Figure No. 3 LOG OF BORING

Phone: 406-543-3045

	rax:	oject: Pickles Butte Sanitary Landfill - Rig: TS150 Crawler Boring Location N: 43.500874												
	Projec					Sanitary Lai	ndfill -	Rig: TS150 Crawler	Boring Location Coordinates	on N: 43.500874	ļ 60			
H	Projec				Jou	III, ID		Hammer: Auto Boring Diameter:	System: Decir	E: -116.7167	08			
	114-57							6 in	Datum: NAD8				To	op of Boring evation: 2737.7 ft
H				<i>3</i> 22		Dete Finishe	_1_		Abandonment					evation. 2737.7 It
	Date S 11/16/2		ea:			Date Finishe 11/22/21	a:	Drilling Fluid: None	Grout					
	Driller:		olt S	ervi				Location: Refer to						
	Logge								site map.					
F								•						
	Depth	ے	<u>a</u>	%	(9)	unt	8			Depth				Remarks
	(ft)	Operation	e Ty	/ery	RQD (%)	ပိ	Lithology	Material Des	(ft) (%)		(6)		and	
	Debtth (#) Recovery (%) RQD (%) RQD (%) Lithology						=			<i>Elev.</i>	ᆲ	ַ ב	00 002-	Other Tests
L	(11)		ΰ	ď						(19) 2		<u>'</u>	' -	1
F	155 -	<u>}}}}</u>												
	155 2582.7	} }}}												
I	_	<u>}</u> }}}												
ŀ	_	} }}}												
\overline{a}	160	$\langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle$												
SS.G	2577.7	}		100		16 - 24 - 36								
ŏ -	_	{}}}												
RING	_	} }}}												
98	_ 165 2572.7	{}}}												
		}												
٩ - ۱	_	$\langle \rangle \langle \rangle$												
∄-	170	} \$\$\$								170.0				
AND	2567.7							Boring Depth: 170.0	ft, Elevation:	170.0 2567.7				
핃								2567.7	π					
BUT														
Z E S														
PIC														
2022														
ORT														
REF														
RTS														
SEPC														
S														
N:\G														
01 -														
2 17.														
/20/2														
)T - 6														
÷.GE														
2005														
SE D														
ZEVI														
님														
<u>-</u>														
TIT LOG OF BORING- MDT_REVISED_2009+.GDT - 6/20/22 17:01 - N:\GEOTECH/REPORTS/REPORT 20:22/PICKLES BUTTE LANDFILL\LAB LOGS/BORNIG LOGS.GPJ														
F BC								N. wiles						
) 			Wate	r L	evel	Observations	<u> </u>	During Drilling: Not Encountered		Remarks:				
ĘĽ	After Drillin	ı q: No	t Rec	orde	d			After Drilling: Not Recorded						

Figure No. 4 LOG OF BORING

Phone: 406-543-3045

Boring B2021-4

Sheet 1 of 4

Fax: Rig: TS150 Crawler Boring Location N: 43.665364 Project: Pickles Butte Sanitary Landfill -Coordinates E: -116.688388 Canyon County, ID **Hammer:** Auto **Boring Diameter: Project Number:** System: Decimal Degrees Top of Boring 114-571040-2022 Datum: NAD83 Elevation: 2797.2 ft **Abandonment Method:** Date Started: **Date Finished: Drilling Fluid:** Grout 12/8/21 12/14/21 None Location: Refer to site map. **Driller:** Holt Services Logger: Matt Adams Depth Depth **Blow Count** Sample Type Lithology 8 (ft) Operation (ft) Remarks Recovery (pct) હ ROD **Material Description** and -200 (Elev. Elev. Other Tests ğ చ ᆸ (ft) (ft) TOPSOIL, moist, dark brown. 0.7 2796.5 Silty SAND (SM), medium dense, moist to slightly moist, tan, fine grained, angular. 6 2792.2 2-9-7 67 10 2787.2 5-9-7 67 15 15.0 2782.2 5-12-14 SILT (ML), very stiff, slightly moist, tan, 2782.2 80 low plasticity. 20 20.0 5 Silty SAND (SM), medium dense, moist 18 - 37 - 48 100 2777.2 to slightly moist, tan, fine grained. 25 25.2 2772.2 16-35-48 Silty CLAY (CL-ML), very stiff, slightly 100 2772.0 moist, tan, medium plasticity 27.7 SILT (ML), very stiff, slightly moist, tan, 2769.5 low plasticity. 30 2767.2 16 - 27 - 33 100 35 8 2762.2 15 - 30 - 34 80 40 40.0 Silty SAND (SM), medium dense, moist 2757.2 100 11 - 23 - 18 2757.2 to slightly moist, tan, fine grained, 41.0 2756.2 angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, tan to black, medium plasticity, 16 2752.2 9-13-13 100 Broken pieces of consolidated clay and sit. 50.0 6 Poorly-Graded SAND with silt (SP-SM) Water Level Observations Remarks: Drilling: Not Recorded Prilling: Not Recorded Drilling: Not Encountered

Figure No. 4 **LOG OF BORING**

Phone: 406-543-3045

Fax:				B2021-4						Sheet 2 of 4				
Project: Pickles Bu Canyon C		dfill -	Rig: TS150 Crawled Hammer: Auto	Boring Location N Coordinates										
Project Number:			Boring Diameter: System: Decimal Degrees							Top of Boring				
114-571040-2022	5.4.5		6 in	Datum: NAD83 Abandonment Met	hod:				Elev	ation: 2797.2 ft				
Date Started: 12/8/21	Date Finished):	Drilling Fluid:	Grout	iiou.									
Driller: Holt Service			None Grout Location: Refer to site map.											
Logger: Matt Adam	ıs		Troidi to	one map.										
Operation Sample Type Recovery (%)	RQD (%) Blow Count	Lithology	Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	=	-200 (%)	DD (pcf)	Remarks and Other Tests				
100 	9-20-41	m	edium dense to very oist, tan to salt & pe edium grained, subal	pper, fine to	2747.2									
2737.2	2-5-18					2								
2732.2 	6 - 13 - 23				- 73.0									
2722.2 2722.2 2722.2 80 2717.2 80 2717.2 80	2-7-23	to 🐫	lty SAND (SM), med slightly moist, tan, f ngular to subangular.	ine grained,	2724.2									
2712.2 	13 - 40 - 50	to iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	porly-Graded SAND of yellow, fine to mediu ngular to subangular. Ity SAND (SM), hard own, fine grained, and ubangular, Broken pic onsolidated clay.	m grained, , moist, tan to	90.0 2707.2		NVN	IP 32						
100	9 - 18 - 20	**************************************				22								
Water Le	vel Observations		uring	Ren	narks:									
rialei Le	. J. J.J.G. VALIONS		rilling: Not Recorded fter	T.C.I										

Fax:

Figure No. 4 LOG OF BORING

Phone: 406-543-3045

TETRA TECH

Sheet 3 of 4

Boring B2021-4

Rig: TS150 Crawler Boring Location N: 43.665364 Project: Pickles Butte Sanitary Landfill -Canyon County, ID Coordinates E: -116.688388 **Hammer:** Auto **Boring Diameter: Project Number:** System: Decimal Degrees **Top of Boring** 114-571040-2022 Datum: NAD83 Elevation: 2797.2 ft **Abandonment Method:** Date Started: **Date Finished: Drilling Fluid:** Grout 12/8/21 12/14/21 None Location: Refer to site map. **Driller:** Holt Services Logger: Matt Adams Depth Depth **Blow Count** Sample Type Lithology 8 (ft) Operation (ft) Remarks Recovery (pct) 8 ROD **Material Description** and -200 (Elev. Elev. Other Tests 3 굽 ᆸ (ft) (ft) 104.0 105 Sandy SILT (ML), very stiff, slightly 2693.2 2692.2 moist, tan, low plasticity. 105.0 2692.2 Silty CLAY (CL-ML), hard, moist, tan to brown, medium plasticity, Broken pieces of consolidated clay. 110 2687.2 6-12-20 100 115 2682.2 117.5 Sandy SILT (ML), very stiff, slightly 2679.7 moist, tan, low plasticity. 120 120.0 31 - 70/0.4ft NVNP 44 Friction Angle= 29.51 100 Silty SAND (SM), medium dense to very 2677.2 2677.2 degrees dense, slightly moist, tan to salt & Cohesion= 0.588 ksf pepper, fine to medium grained, subangular to angular. 125 2672.2 129.0 Poorly-Graded SAND (SP), dense to 130 2668.2 2667.2 9-21-26 very dense, slightly moist, salt & pepper, 100 fine to medium grained, angular to subangular. 135 2662. Ž 140 2 2657.2 30 - 48 - 44 100 145 145.0 2652.2 Sandy SILT (ML), very stiff, slightly 2652.2 moist, tan to brown, low plasticity. 150 31 - 50/0.4ft 2647.2 111 During Water Level Observations Remarks: Drilling: Not Recorded Prilling: Not Recorded Prilling: Not Encountered

Fax:

Figure No. 4 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-4

Sheet 4 of 4

Proje					e Sanitary Lar Inty, ID	ndfill -	Rig: TS	G150 Crawler	Boring Location		13.665 116.6							
Proje 6	t Nu	ımb	er:		····) , ·-			Diameter:	System: Decin Datum: NAD8	mal De 83	grees		,,,,,,	Top of Boring Elevation: 2797.2 ft				
Date \$ 12/8/2		ed:			Date Finishe	d:	1	g Fluid:	Abandonment Grout	t Metho								
Drille	: Н							None Grout Location: Refer to site map.										
Logge	er: M	att A	_	ms														
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	=	P.	-200 (%)	DD (bcf)	Remarks and Other Tests	
L 155			1111		29 - 50/0.4ft 50 - 50/0.3ft		very dense fine to med subangula Sandy SIL moist, tan Poorly-Gra very dense	e, slightly modium grained r. T (ML), very to brown, lo aded SAND (e, slightly modium grained	stiff, slightly w plasticity. (SP), dense to ist, salt & pepp	per,	155.0 2642.2 157.0 2640.2 159.0 2638.2							
2022/PICKLES 2622.2 2622.2	- - - - - - - - - - - - - - - - - - -	EN.					fine graine Poorly-Gra	d, angular to aded SAND (stiff, dry, gray, subangular. (SP), dense to		175.0 2622.2 177.0 2620.2							
		E					fine to med subangula	dium grained r.			183.0							
185 _ 185 _ 2612.2 2612.2 190		8							stiff, dry, gray t ular to subangul	to 2 lar.	190.0							
Z6077.2 2003+ CD 2003 2003+ CD 2003 2002-2 2		J					medium de moist, tan medium gr	ense to very to salt & pe rained, subar	ngular to angula	l), 2 ar.	2607.2							
2597.2 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	2597.2 Boring Depth: 200.0 ft, <i>Elevation:</i> 2597.2 2597.2																	
G OF B		Wate	er L	.evel	Observations		During Drilling: Not F	Pecorded		Remai	rks:							
After Drilli	After Prilling: Not Encountered Drilling: Not Recorded																	

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-5

Г		_																
- [Projec					e Sanitary Lar	ndfill	-	Rig: TS150 Crawler Boring Location N: 43.499133									
ŀ	Canyon County, ID Project Number:								Hammer: Auto Coordinates E: -116.713491									
	•								Boring Diameter: 6 in	System: Decin		of Boring						
H	114-571040-2022										atum: NAD83 Elevation: 26							
	Date Started: Date Finished:								1	Orilling Fluid: Abandonment Method: Grout								
	12/14/21 12/19/21 Driller: Holt Services								None									
	Logger: Matt Adams								Location: Refer to site map.									
F	_0990		u,	iuui			ī											
	Depth (ft)	_	<u>a</u>	Recovery (%)	(0)	unt) A					Depth (ft)						Remarks
		Operation	Sample Type	very	RQD (%)	Blow Count	Lithology		Material Des	cription			(%)			-200 (%)	DD (pcf)	and
	Elev. (ft)	8	amb	eco	8	3 <u>0</u>	主					Elev. (ft)		ᆸ	PL	200	<u> </u>	Other Tests
L	(79	,,,,	Ś	~			1.7.						_	_	ь	7		
ŀ	-	SSS:					7/ /×		PSOIL, moist, brow			0.7 2660.9						
t	_	\\\ \							indy SILT (ML), stiff, n, fine grained, angul		r.	2000.0						
F		<i>}</i> }}							i, iiio grainoa, angai	ar to oabarigala								
ŀ	_ 5 2656.6	\\\\ \	H	100		6-8-5							4					
F	_	<i>}</i> }}	\cap	100														
3S.G	-	>>>>																
- LO	10	}}}	m									10.0						
RINC	2651.6	>>>>	X	100		12 - 21 - 43			orly-Graded SAND (2651.6						
S/BO	-	}}}						de	nse to very dense, m e to medium grained	ioist, tan to red, angular to	,							
LOG	_	>>>> >>>>							bangular.	, angular to								
Ą.	_ 15 2646.6	$\langle \langle \langle \rangle \rangle$				F 7 40							3					
1	2040.0	SSS:	X	100		5-7-16							١					
ND	_	\\\\																
NEPORT 2022 PICKLES BUTTE LANDFILL\LAB_LOGS\BORING LOGS.GPJ	20	SSS:	4002															
BUT	2641.6	\\\ <u>\</u>	M	100		10 - 21 - 26												
LES	_	SSS:																
N Y	_	\\\																
2022	25 _	SSS:																
JRT 2	2636.6	\\\ <u>\</u>										07.0						
REPC	_	SSS:	mz					Sil	ty CLAY (CL-ML), m	edium stiff, sligh	ntly	27.0 2634.6						
ഗ		\\\							oist, whitè to gray, hi			29.0						
POF	_ 30 2631.6	SSS		100		10 - 27 - 40			orly-Graded SAND(nse to very dense, sl		ıl+	2632.6						
HIR	_	\\\ \		100					pepper to red, fine to									
)TEC	-	<i>}</i>							gular to subangular.	· ·	·							
:\GE(35	\\\\ \\																
- L	2626.6	<i>}</i> }}	M	100		10 - 22 - 35							4					
17:0	-	>>>>						SI	LT (ML), hard, slightl	y moist. tan to		37.0 2624.6						
20/22		<i>\$</i> \$\$\$	-Mn						ay, low plasticity.	, , 10		2027.0						
6/2	_ 40 2621.6	>>>>	٧	150		27 - 33 - 45/0.0ft												
9		<i>}</i> }}		.55								42.0						
÷600;	_	>>>>							orly-Graded SAND (2619.6						
	45	<i>}</i> }}							nse to very dense, sl pepper to red, fine to			44.0 2617.6						
EVISI	2616.6	}}}}	X	100		23 - 39 - 42		an	gular to subangular.		,	45.0						
F.	· <u>-</u>	<i>}</i> }}}					\$ 0.00 \$ 0.00 \$ 0.00		LT (ML), hard, slightly	y moist, tan to		2616.6						
- MC	- -	}}}}							ay, low plasticity. ty SAND (SM), medi	um dense to voi	rv							
ZING.	_ 50 2611.6		17				777		nse, slightly moist, g			50.0						
BOF	_011.0	(((l	rx/V	41					· ·	ш				
0G OF			Wate	r L	evel	Observations			ring illing: Not Recorded		Rem	arks:						
100 10 - 27 - 40 100 10 - 27 - 40 100 10 - 27 - 40 100 10 - 22 - 35 100 100 22 - 35 100 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100 23 - 39 - 42 100								- Af										

Figure No. 5 LOG OF BORING

Phone: 406-543-3045

rax:								Boring E	32021-3								Sheet 2 of 5
Projec					e Sanitary La ınty, ID	ındfill -	•	Rig: TS150 Crawler	Boring Location		43.499 -116.7						
Projec								Boring Diameter:	System: Decir							Ton	o of Boring
114-57	7104	0-2	022					6 in	Datum: NAD	83						Elev	vation: 2661.6 ft
Date S	tart	ed:			Date Finishe	ed:		Drilling Fluid:	Abandonment	t Meth	nod:						
12/14/					12/19/21			None	Grout								
Driller					3			Location: Refer to	site map.								
Logge	r: M	att /	Adaı	ms													
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
250 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		Eng.	100		27 - 38 - 50 34 - 50/0.1ft		Sil tan Pc de to su Pc vee Va sil Sil wh of Sil tan	ained, angular to sub ity CLAY (CL-ML), ha n, high plasticity. corly-Graded SAND (inse to very dense, si tan, fine to medium of bangular. ity SAND (SM), medi corly-Graded SAND (inse to very dense, si tan, fine to medium of bangular. corly-Graded SAND very dense, moist, gra arying amounts of silt ty clay. LT with sand (ML), ha inte to gray, non plast consolidated clay. ity SAND (SM), very n, fine grained. LAY with sand (CL), ha	srd, slightly moistrd, slightly moist, grained, angular um stiff, slightly d. SP), medium lightly moist, grained, angular with silt (SP-SM y, fine grained, and y, fine grained, and slightly moist, grained, slightly moist, grained, slightly moist, groken piec stiff, slightly moistiff, slightly moi	ray ar to y ray ar to 1), sist, ses	2611.6 51.0 2610.6 54.0 2607.6 55.0 2606.6 60.0 2601.6 71.5 2596.1	4	27	21	74	112	
2581.6 2581.6 2576.6			100		10 - 18 - 27 49 - 50/0.3ft		Sil	bist, white to gray, no eces of consolidated ity SAND (SM), very bist, tan to red, fine of bangular.	on plastic, Brok clay.		86.0 2575.6		35 NV			104	Friction Angle= 31.18 degrees Cohesion= 0.26 ksf
2581.6 2581.6 85		Water	115		21 - 46 - 50/0.3ft			uring		Rema	arks:	11	INV	INP	129		Friction Angle= 13.53 degrees Cohesion= 0.654 ksf
After Drillin	g: No						₩ Af	illing: Not Recorded iter illing: Not Recorded									

Fax:

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-5

Sheet 3 of 5

Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, and to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay have been pieces	
Date Started: Date Finished: Date Finished: Date Finished: Dating Fluid: None Grout Depth (ft) Date Finished: Date Finished: Drilling Fluid: None Grout Location: Refer to site map. Depth (ft) Dep	
Date Started: Date Finished:	
12/14/21 12/19/21 None Grout	1. 2001.01
Depth (tr) Dep	
Depth (ft) Elev. (ft) S S S S S S S S S S S S S S S S S S S	
Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 30 - 500.1ft Silty SAND (SM), very dense, slightly moist, and to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed.	
moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 30 - 500.1ft Silty SAND (SM), very dense, slightly moist, tan to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to brown, fine grained, low plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth.	Remarks and Other Tests
Silty SAND (SM), very dense, slightly moist, tan to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Very fine sand. Some consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Very fine sand. Some consolidated clay. Silty SAND (SM), regidence, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, bligh plasticity, Broken pieces clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, bligh plasticity, Broken pieces clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, bligh plasticity, Broken pieces clay with depth.	
moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay.	
Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, and, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, and, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, and some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, and some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, and some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, and some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, and some consolidated clay mixed. Less clay with depth.	
moist, tan, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue high placticity. Broken	
2521.6 Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated 2520.6	
silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken	
Meter Level Charactions \(\nabla\) During	
Water Level Observations ☐ Dilling: Not Recorded ☐ After ☐ Drilling: Not Encountered ☐ Prilling: Not Recorded ☐ Drilling: Not Recorded ☐ Drilling: Not Recorded ☐ Drilling: Not Recorded ☐ Drilling: Not Recorded	

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-5

	Fax:								Boring E	32021-5								Sheet 4 of 5
	Projec	t: P	ickle	es B	utte	e Sanitary La	ndfill -		Rig: TS150 Crawler	Boring Location	on N	: 43.499	913	3				
					Cou	ınty, ID			Hammer: Auto	Coordinates	E	: -116.7	134					
	Projec	t Nu	ımb	er:					Boring Diameter:	System: Decin	mal [egrees)					Top	of Boring
	114-57	7104	0-2	022					6 in	Datum: NAD8								vation: 2661.6 ft
	Date S	tart	ed:			Date Finishe	ed:		Drilling Fluid:	Abandonment	t Met	hod:						
	12/14/	21				12/19/21			None	Grout								
	Driller	: Но	olt S	ervi	ces	3			Location: Refer to	site map.								
	Logge	r: M	att /	Adaı	ms					·								
	Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	cription		Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
		2777						pie	eces of consolidated	clay.								
TT LOG OF BORING - MDT_REVISED_2009+.GDT - 6/20/22 17:01 - N:\GEOTECHIREPORTS\REPORT 2022\PICKLES BUTTE LANDFILL\LAB_LOGS\BORING LOGS.GPJ	155			100		46 - 50/0.1ft 9 - 17 - 50		Sa tar silf gra piece co CL blu co Sa tar silf gra silf g	andy SILT (ML), hard, n, low plasticity, Some t. Seams of varying of ty CLAY (CL-ML), has ay to blue, high plastices of consolidated andy SILT (ML), hard, n, low plasticity, Some ty CLAY (CL-ML), has ay to blue, high plastices of consolidated and then than previous. AY (CL), hard, slight ue, high plasticity, Bronsolidated clay. Indy SILT (ML), hard, n, low plasticity, Some now plasticity, Some now plasticity, Some now plasticity, Some now plasticity, Some new plast	, slightly moist, e consolidated lay content. ard, slightly moist, e consolidated lay content. It slightly moist, e consolidated lay content. It slightly moist, erd, slightly moist, gray token pieces of lay moist, tan, fi angular. It slightly moist, tan, fi angular. It slightly moist, tan, fi angular. It moist, tan, fi angular. It moist, tan, fi angular. It moist, tan, fi angular.	st, to to st,	156.0 2505.6 157.0 2504.6 160.0 2501.6 163.5 2498.1 164.5 2497.1 167.0 2494.6 170.0 2491.6						
JRING								cla	ay.									
OF B(ring									
_0G C	√ ■ After		Wate	er L	evel	Observations		<u> </u>	iring illing: Not Recorded ter		Rem	narks:						
Ē	T Arter Drillin	g: No	t Enc	ounte	ered				illing: Not Recorded									

Fax:

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-5

Sheet 5 of 5

ĺ	Projec	t: P	ickle anvo	s B	utte	e Sanitary Lan nty, ID	dfill -	F	Rig: TS150 Crawlei Iammer: Auto	Boring Location	on N: 43 E: -1	3.499 16.7	13:	3				
	Projec	t Nu	mbe	er:		y, 12		E	Boring Diameter:	System: Decir			10-	101			Тор	of Boring
ļ	114-57	7104	0-20)22				- 6	3 in	Datum: NAD8		_					Elev	vation: 2661.6 ft
	Date S		ed:			Date Finished	d:		Orilling Fluid:	Abandonment	Method	d:						
	12/14/					12/19/21			None	Grout								
	Driller								Location: Refer to	site map.								
	Logge	er: IVI	all A	idai	ns													
	Depth (ft) Elev. (ft)	Operation		Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription	E	epth (ft) Elev. (ft)	MC (%)	T,	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
	205								Boring Depth: 225.		. 2	<u>25.0</u> ,						
TLOG OF BORING - MDT_REVISED_2009+.GDT - 6/20/22 17:01 - N:\GEOTECHIREPORTS\REPORT 2022\PICKLES BUTTE LANDFILL\LAB_LOGS\BORING LOGS.GPJ									2436.6									
G OF BORING - MDT_RE			Wate	r L	evel	Observations		∑ Durin ∑ Drillin	ng ng: Not Recorded		Remark	(S:						
T LO	After Drillin	ı g: No	t Enco	ounte	ered			After Drilli	na: Not Recorded									

Figure No. 6 LOG OF BORING Boring B2021-6

Phone: 406-543-3045

Fax:

Sheet 1 of 4

Fax:		Boring	B2021-6						Sheet 1 of 4
Project: Pickles Butte		- Rig: TS150 Crawle	Boring Location N						
Canyon Cou	inty, ID	Hammer: Auto		: -116.7°		18			
Project Number:		Boring Diameter:	System: Decimal	Degrees				To	p of Boring
114-571040-2022	I	6 in	Datum: NAD83	41a a al .				Ele	evation: 2636.7 ft
Date Started:	Date Finished:	Drilling Fluid:	Abandonment Me	tnoa:					
11/22/21	12/2/21	None	Grout						
Driller: Holt Services	8	Location: Refer to	site map.						
Logger: Matt Adams									
Depth g %	# _			Depth					
Operation Sample Type RQD (%)	Blow Count			(ft)				€	Remarks
Operation (‡) ample Typ ecovery (%)	k O	Material Des	cription	Elev.	%)		5	-200 (%) DD (pcf)	and Other Tests
Operation Operation Sample Type Recovery (%) RQD (%)	B I			(ft)	MC (%)	ᆲ	김		
	[N/N]	TOPSOIL, very moist,	hrown	d 0.6		-	+	-	
	8.80	Silty SAND (SM), loose		2636.1					
	0,00	dense, slightly moist,							
- 5	0,000	grained, subangular.							
2631.7	4-5-5								
	\(\displaysize{\displa								
2626.7	7-7-7				6				
	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$								
15\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0000	Doorly Craded SAND	(CD) year dense	15.0					
		Poorly-Graded SAND slightly moist, gray, fir		2621.7					
	0000	grained, subangular.	io to modium						
20 _2616.7	11 - 31 - 42			04.0					
	0 0 0	Silty SAND (SM), loose		21.0 2615.7					
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	dense, slightly moist,	gray, fine grained,						
- 25 -		subangular.							
2611.7	12 - 22 - 42				18				
		Dearly Creded CAND	(CD) warmi damaa	27.0					
		Poorly-Graded SAND slightly moist, gray, fir	(SP), very dense, se to medium	2609.7					
_ 30 _}\\\		grained, subangular.	io to modium						
[2606.7]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
				33.0					
	8,000	Silty SAND (SM), loose	e to medium	2603.7					
35{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.000	dense, slightly moist to	moist, gray, fine						
		grained, Pieces of silts with depth.	tone increasing						
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	dopun							
- 40 - \$\$\$\$\$									
40 2596.7 100	8 - 18 - 37				22				
	0.000								
	\$ \$ \$ \$								
- ₄₅									
2591.7	39 - 42 - 50								
		Sandy SILT (ML), hard	I. slightly moist.	48.0 2588.7					
50 = 50		gray, fine grained.	,	2000.7					
2586.7 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\									
Water Level	Observations	□ During	Por	marks:					
After Level	ODOG VAUOI IS		Tel	iiuino.					
Drilling: Not Encountered		Drilling: Not Recorded							

Fax:

Figure No. 6 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-6

Sheet 2 of 4

Projec	t: P	ickle	es B	utte	e Sanitary La	ındfill -		Boring Location	on N: 43.4	9519	96				
Projec	t Nu	mb	er:		inty, ID		Hammer: Auto Boring Diameter:	Coordinates System: Decir	•		1716	<u> </u>		Тор	of Boring
114-57	7104	0-2	022				6 in	Datum: NAD						Elev	vation: 2636.7 ft
Date S		ed:			Date Finishe	ed:	Drilling Fluid:	Abandonment Grout	t Metnoa:						
11/22/2 Driller		ut S	orvi	000	12/2/21		None								
Logge					•		Location: Refer to	site map.							
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Desc	cription	Dept (ft) Elev (ft)	(%)	11	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
2581.7 2581.7 2581.7 2581.7 2576.7 2576.7 2566.7 266.7 266.7 266.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7 277.7			100		6-13-27 7-20-27					25	5				
2561.7 80 2556.7 2556.7 2556.7 2551.7		<u>x</u>	91		8 - 18 - 50/0.1ft		CLAY (CH), hard, slight dark gray, high plasticit claystone very consolid	y, Almost	76.0 2560		67	' 19	83		
90 2546.7 - 95 2541.7 - 100 2536.7		×	100		9-14-40		Sandy SILT (ML), hard, gray, medium plasticity		100. 2536	0 7	56	3 22	83		
5		Wate	er L	evel	Observations	7	During Dilling Not Becarded		Remarks:						
After					2.20. 144010		Drilling: Not Recorded After								
<u> </u>	g: No	Enc	ounte	ered		-	<u> </u>								

Figure No. 6 **LOG OF BORING**

Phone: 406-543-3045

Material Description	Sheet 3 of	ر									B2021-6	Boring E			15	3 04	43-	16-5	: 40	Phone Fax:
Date Started: Date Started: 1/12/2/21 Date Finished: 1/12/2/21 Date Started: 1/12/2/21 Date Started: 1/12/2/21 Date Started: 1/12/2/21 Date Started: 1/12/2/21 Date Finished: 1/12/2/21 Date Finished: 1/12/2/21 Date Started: 1/12/2/2/21 Date Started: 1/12/2/2/2/2 Date Started: 1/12/2/2/2/2 Date Started: 1/12/2/2/2 Date Started: 1			_			6 '18	190 157	<u>.71</u>	: -116.7	E:	Coordinates	Hammer: Auto	i II -				on (any	С	
Depth (ft) Belev.	2636.7 ft	o of E vatio	Elev					_		3	Datum: NAD8 Abandonment	6 in				2		0-2	104	114-57
Depth (fft)														/2/21	s				Н	Driller
Silty CLAY (CL-ML), hard, slightly moist, very dark gray, high plasticity, Almost claystone very consolidated. 100. 8 2531.7 2531.7 2526.7 2521.7 25	Remarks and ther Tests		OD (pcf)	.200 (%)	٦,	٦.	MC (%)		(ft)		cription	Material Des		Blow Count						Depth (ft) <i>Elev.</i>
145 2491.7							21	8 .9 0 .7 9 .8 8 .9 0 .7	102.8 2533.9 106.0 2530.7 106.9 2529.8 110.8 2525.9 112.0		asticity, Almost dated. nard, slightly lasticity. ard, slightly mois asticity, Almost dated. , slightly moist, ard, slightly moist, ard, slightly moist, high plasticity,	y dark gray, high playstone very consolic AY with sand (CL), hist, gray, medium play CLAY (CL-ML), hay dark gray, high playstone very consolicity SILT (ML), hard y, medium plasticity y CLAY (CL-ML), hay dark gray to blue,	vel cla CL mc Sill vel cla Sa gra Sill vel	0 - 18 - 33 47 - 50/0.3ft	220		100			
2486.7 														19 - 50/0.4ft	1	7	107	X		2486.7
Water Level Observations									arks:	Rem		ing: Not Recorded	<u> </u>	bservations						

Figure No. 6 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-6

	Fax:								Boring B	32021-6								Sheet 4 of 4
	Projec	t: P	ickle	s B	utte	Sanitary Lan	dfill	-	Rig: TS150 Crawler	Boring Location	on N:	43.495	19	6				
					Cou	nty, ID			Hammer: Auto	Coordinates	E:	<u>-116.7</u>	157	′18				
	Projec								Boring Diameter:	System: Decir		egrees					Тор	of Boring
	114-57)22					6 in	Datum: NAD8							Elev	vation: 2636.7 ft
	Date S		ed:			Date Finished	d:		Drilling Fluid:	Abandonment	wetr	100:						
	11/22/					12/2/21			None	Grout								
	Driller								Location: Refer to	site map.								
	Logge	r: IVI	att <i>P</i>	oar	ns									_				
	Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	רר	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
BORING LOGS.GPJ	155		X	115		29 - 50 - 50/0.3ft			Boring Depth: 165.			√165.0 <i>√</i>						
TT LOG OF BORING - MDT_REVISED_2009+.GDT - 6/20/22 17:01 - N:\GEOTECHIREPORTS\REPORT 2022\PICKLES BUTTE LANDFILL\LAB_LOGS\BORING LOGS.GPJ									2471.7									
G OF			Wate	r L	evel	Observations		∑ Du Dri	ring Iling: Not Recorded		Rem	arks:						
	After Drillin	g: No	t Enco	ounte	red			- Af	ter illing: Not Recorded									

Fax:

Figure No. 7 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-7

Sheet 1 of 4

rax:							Boring E	JEUE 1-1								Sheet 1 of 4
Projec	t: P	ickle	es E	Butte	e Sanitary La	ndfill -			on N:	43.495	528					
_				Cou	inty, ID		Hammer: Auto	Coordinates		-116.7		92	<u> </u>			
Projec							Boring Diameter:	System: Decir		egrees					Тор	of Boring
114-57	7104	0-2)22		T		6 in	Datum: NAD							Elev	vation: 2659.5 ft
Date S	tart	ed:			Date Finishe	d:	Drilling Fluid:	Abandonment	t Meti	nod:						
12/2/2	1				12/7/21		None	Grout								
Driller	: Н	olt S	ervi	ices	3		Location: Refer to	site map.								
Logge	r: M	att /	Ada	ms				•								
			$\overline{}$													
Depth	_	8	Recovery (%)	ء ا	<u> </u>	≥				Depth						
(ft)	atio	Ţ	ery	RQD (%)	ပိ) olo	Material Des	cription		(ft)	ြွ			8	Ę,	Remarks and
Elev.	Operation	Sample Type	S	g	Blow Count	Lithology				Elev.	MC (%)	١.	١.	-200 (%)	DD (pcf)	Other Tests
(ft)		ଞ	Re		m	-				(ft)	Ž	=	귑	Ÿ		
	2222					11/ _{1/} · · ·	Slightly moist, dark bro	wn.		0.6						
	$\langle \langle \langle \rangle \rangle \rangle$					8086	Silty SAND (SM), loose		,	2658.9						
	\$\$\$\$					× × × ×	moist, tan, fine grained	l, angular to								
- ₅ -	} }}					0,0,0,0	subangular.									
2654.5	<u>}</u> }}}		60		2-2-3	0000					4					
<u> </u>	\$\$\$\$	\vdash	J J			0000										
<u> </u>	{\\\					\$ 0 0 0										
2649.5 2649.5 2644.5 2644.5 2639.5 2634.5	<u> </u>					\$ \$ \$ \$										
2649.5	\$ \$\$\$	\bigvee	67		10-8-5	\$ \$ \$ \$										
	<i>}</i> }}	\vdash				0000										
	K															
15	\$\$\$\$															
2644.5	$\langle \rangle \rangle \langle \rangle$	∇	80		8 - 18 - 18					40.4						
	<u> </u>	\cap					Poorly-Graded SAND (SP), dense,		16.4 2643.1						
-	\$\$\$\$						moist, tan, fine to medi									
20	$\langle \rangle \rangle \langle \rangle$	m					angular to subangular.									
2639.5	KKK															
	} }}}															
	$\langle \langle \rangle \rangle$															
_ 25 _	\$\$\$\$									25.0						
2634.5	$\langle \rangle \rangle \langle \rangle$	X	100		13 - 40 - 50		Silty SAND (SM), loose		/	2634.5						
	╎╎					000	moist, tan, fine grained subangular.	i, angular to								
	5555						Suburigular.									
	<u>}</u>		0		26 - 50/0.1ft	<u> </u>				30.3						
2629.5	<u></u>		0		20 00/0.110		Poorly-Graded SAND (2629.2						
-	} }}}					0000	moist, gray, fine to med angular to subangular.	dium grained,	lr	31.3 2628.2						
<u> </u>	<u>}</u> }}}					3333	Silty SAND (SM), loose	to dense you	,	32.3						
35 2624.5	KSSS		0		35 - 50/0.3ft	8,000	moist, tan, fine grained			2627.2						
2024.3	} }}}		J		33 3301	0,000	subangular.			33.8 2625.7						
<u> </u>	$\langle \langle \langle \rangle \rangle$					0000	Poorly-Graded SAND (SP), dense,								
- <u>-</u>	\$\$\$\$	w				% % % % % % % % % % % % % % % % % % %	moist, gray, fine to me	dıum grained,		20.0		NIV.	/NIC	21	112	
40 2619.5	{\\\	ر کتا	407		16 - 28 - 50/0.4ft		angular to subangular. Silty SAND (SM), loose	to dense yen	,—/	39.6 2619.9		1	און	4	' '	
20,3.5	<u> </u>	riangle	107		10 - 20 - 30/0.41l		moist, tan, fine grained		' r	41.4	-					
	 }}}						subangular.	,		2618.1						
<u>.</u> -	<i>}</i> }}					(V)	Poorly-Graded SAND (43.6 2615.9						
45 2614.5	KSSS	H	100		19 - 37 - 48		moist, gray, fine to me	dium grained,								
<u> </u>	} }}}	\triangle	100		10 01 40		angular to subangular. Silty CLAY (CL-ML), ve	any stiff maist		46.1 2613.4						
_ 	<u> </u>						tan, high plasticity, Brol			23.3.7						
50	KSSS	m ₂					consolidated clay.	5.0000 01								
2609.5	} }}}	٧				XXX	Silty SAND (SM), very	dense, slightly		50.0						
í																
30		Wate	r L	.evel	Observations				Rem	arks:	_		_			
After Drillin	a. No	t Rec	orde	d		,	After Drilling: Not Recorded									
	y. NO	LINEC	uud	u		-	- Dilling, Not Recorded									

Figure No. 7 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-7

Fax:

Sheet 2 of 4

		Boring I	52021-7						Sheet 2 of
Project: Pickles Butt	e Sanitary Landfill -	Rig: TS150 Crawler	Boring Location N:	43.4952	28				
Canyon Cou	inty, ID	Hammer: Auto		-116.71	259	2			
Project Number: 114-571040-2022		Boring Diameter: 6 in	System: Decimal D	egrees				Top	of Boring
			Datum: NAD83 Abandonment Meth	and:				Flev	vation: 2659.5 ft
Date Started:	Date Finished:	Drilling Fluid:	Grout	iou.					
12/2/21	12/7/21	None							
Driller: Holt Services	S	Location: Refer to	site map.						
Logger: Matt Adams					_				
Operation Sample Type Recovery (%) RQD (%)	Blow Count	Material Des	cription	Depth (ft)	MC (%)	김교	-200 (%)	DD (pcf)	Remarks and Other Tests
)))))≥ 100	29 - 49 - 37	moist tan fino graino	d angular to	2609.5	_	+	ļ ·	_	
2604.5_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		moist, tan, fine grained subangular, Broken pie and sandstone. Silty CLAY (CL-ML), ha high plasticity, Broken consolidated clay. Silty SAND (SM), very	eces of siltstone ard, moist, tan, pieces of dense, slightly	54.0 2605.5 55.6 2603.9 58.5					
60 (%) (%) (%) (107) (107) (65) (2594.5) (8)	21 - 41 - 50/0.4ft	moist, tan, fine grained subangular, Broken pie and sandstone. Silty CLAY (CL-ML), ha high plasticity, Broken consolidated clay Silty SAND (SM), very	ard, moist, tan, pieces of		2	VNF	82	104	
70 2589.5	9-23-35	moist, tan, fine grained subangular, Broken pie and sandstone. SAND with sand (ML), high plasticity, Broken consolidated clay CLAY (CL), hard, mois	d, angular to eces of siltstone hard, moist, tan, pieces of	66.0 2593.5					
80 2579.5	78 - 70/0.2ft	Silty SAND (SM), very moist, tan, fine grained	d, angular to	80.0 2579.5					
85 2574.5		subangular, Broken pie and sandstone. Silty CLAY (CL-ML), ha high plasticity, Broken consolidated clay	ard, moist, tan,	85.0 2574.5					
95	70/0.3ft								
100 705	28 - 28 - 28	CLAY (CL-ML), hard, n plasticity.	noist, tan, high	97.7 2561.8	20				
		→ During							
144.	/ Observed 15								
<i>Water Leve</i> ■ After	I Observations	→ Drilling: Not Encountered → After	Rema	arks:					

Phone: 406-543-3045

Figure No. 7

LOG OF BORING

Boring B2021-7

Sheet 3 of 4

Rig: TS150 Crawler Boring Location N: 43.49528 Project: Pickles Butte Sanitary Landfill -Canyon County, ID **Coordinates** E: -116.712592 Hammer: Auto Project Number: **Boring Diameter:** System: Decimal Degrees **Top of Boring** 114-571040-2022 Datum: NAD83 Elevation: 2659.5 ft Data Startadi Drilling Eluide Abandonment Method:

Date Starte 12/2/21	d:			Date Finished	d:	Drilling Fluid: None	Abandonment Grout	t ivietr	10a:						
Driller: Ho	lt S	ervi	ces			Location: Refer to									
Logger: Ma	att A	dar	ns				•								
Depth (ft) Let (ft) Constitution (ft) Constituti	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
		100		6 - 12 - 22.											
	×	77	:	22 - 41 - 50/0.3ft		SILT (ML), hard, dry, t Broken pieces. Silty CLAY (CL-ML), ha high plasticity, Broken consolidated clay	ard, moist, gray	.	121.5 2538.0 122.2 2537.3						
130 2529.5 2529.5 2524.	PM	100		12 - 33 - 48		Sandy SILT (ML), hard plasticity, Broken piece Silty CLAY (CL-ML), ha high plasticity, Broken consolidated clay	es. ard, moist, gray	/,	128.5 2531.0 129.1 2530.4	119					
		100		9 - 18 - 50		CLAY (CL), hard, mois	t, gray to blue,		145.0 2514.5	24					
	·	100		9-18-31		high plasticity.									
	Vate	r L	evel	Observations	-	During Drilling: Not Encountered		Rem	arks:						
After Drilling: Not	Dage	ordo	4		,	After Drilling: Not Recorded									

Fax:

Figure No. 7 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-7

2021-7 Sheet 4 of 4

Rig: TS150 Crawler Boring Location N: 43.49528 Project: Pickles Butte Sanitary Landfill -Canyon County, ID **Coordinates** E: -116.712592 Hammer: Auto **Project Number: Boring Diameter:** System: Decimal Degrees **Top of Boring** 114-571040-2022 Datum: NAD83 Elevation: 2659.5 ft **Abandonment Method:** Date Started: **Date Finished: Drilling Fluid:** Grout 12/2/21 12/7/21 None **Driller:** Holt Services Location: Refer to site map. Logger: Matt Adams Recovery (%) Depth Depth **Blow Count** Sample Type Lithology 8 (ft) Operation (ft) Remarks -200 (%) (bct) RQD (**Material Description** and Elev. Elev. Other Tests MC |귀|곱 (ft) (ft) 155 2504.5 160 2499.5 21 - 48 - 50/0.4ft 107 165 170 2489.5 14 - 18 - 28 100 175 2484.5 180 X 2479.5 2474.5 190 2469.5 195 2464.5 200 200.0 Boring Depth: 200.0 ft, Elevation: 2459.5 2459.5 2459.5 ft During
Drilling: Not Encountered Water Level Observations Remarks: Prilling: Not Recorded Drilling: Not Recorded

Figure No. 8 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021

Project Nu 114-57104	ımbe	er:	ou	inty, ID			Hammer: Auto Boring Diameter: 6 in	System: Decimal Datum: NAD83			14/			Top o	of Boring ation: 2956.6 f
Date Start 1/15/21 Driller: Ho Logger: M	olt S			Date Finishe 11/15/21	ed:		None Location: Refer to	Abandonment Me Grout site map.	etnod:						
Depth (ft) Logitation (ft) Control (ft) Cont	Sample Type	(%)	RQD (%)	Blow Count	Lithology		Material Desc	cription	Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
-		100		5-5-12 10-16-13	<u> </u>	SII	DPSOIL, moist, brow LT with sand (ML), ve pist to moist, tan.		0.6 2956.0	11	NV	'NP	84	97	
5 951.6		100		8-8-10						11					
10 946.6		100 100		7-9-11		mo	ty SAND (SM), medi bist, tan to gray, fine bangular, scattered ç	grained,	10.1 2946.5	12 6					
15 941.6		87		6-7-9	لودي د لودي د د د د د د د د د د د د د د د د د د					5					
20		87		9-13-15		de to an	oorly-Graded SAND (nse, slightly moist, to medium grained, sub gular. oring Depth: 21.5 ft,	an ṫo yellow, fine pangular to	20.0 2936.6 21.5 2935.1	5					

Water Level Observations

□ During
Drilling: Not Encountered
□ After
Drilling: Not Recorded

Partial Puring
After
Drilling: Not Recorded

*N: N. 170

Where 0 = .05 T/12 per bt dot

HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY

| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOLLADAY ENGINEERING COMPANY
| HOL INDURATION & GRAIN SIZE **HYDRAULIC** DATE **GEOPHYSICS** INTERVAL (FT) COLOR GRAIN ROUNDING STRUCTURE COMMENTS LITHOLOGY WATER REL PERCENT PROPERTIES LOG FXS. VOIDS. ETC. ROCK TYPE GRAPHIC SLT SANDGRAV ANG MK MOD WELL GRAPHIC MEAS. BLOW COURTS NOTES 11:50 Tan SAMAGE 4-51/2 actives a silver 1" clast rouse to Island whiteg it 10-11/ 10015+ the time the field home mine with. vesto weakly lassolandes hooks up ongilu 15-16/2 hocks 15-161-T WAREF collibra Live soul 17:10 /16 hry - Cand 1. 20-21/2 130.31/1 12.25 116 how live sand N=3, U, L 21.00 35-36/ 12. 16 Tit 200 En to med sant some FORESS Train + quavel 110-UZ SHELDY THRE 245/2 10" " Ly 700 rds (lock bender on completed) 145-46" horse than fun counte but not inso sont wi puch 21/2 @ INT the war standed tan kan to De constité drier weakly want 13 .23 .37 5 11

(1)

HOLE NUMBER GT-1 JOB NUMBER 030496 HOLLADAY ENGINEERING COMPANY PAGE 2 OF 4 PROJECT Dirkles Fillo Gentech OWNER ___ PROJECT DIE FAILO CONTRET OWNER LOCATION: CO SEC 1/4 OF 1/4 T N R W

LOGGED BY STUDIOD DATE START // U/G/G DATE FINISHED ///6/9 6 HOLE DEPTH 201 //2 ANGLE - 7/2 DRILL METHOD 3/T MATHEMATICAL DIAMETER 5"/ALCERL DRILL MODEL BK-81 INDURATION & GRAIN SIZE REL PERCENT DATE GEOPHYSICS HYDRAULIC COLOR GRAIN ROUNDING STRUCTURE INTERVAL (FT) LITHOLOGY WATER COMMENTS PROPERTIES LOG FXS, VOIDS, ETC. DRILL ROCK TYPE GRAPHIC CLY SLT SAND GRAV ANG WK MOD WELL BLOW COUNTS N GRAPHIC EST. MEAS. ory-ton Live 50-51/2 11/4 1:20 wed loose 18.32 41 driev weekly Sund moist my-ten fine to 55.86/2 1:40 **HIMINA** melor fen? ned 60 701/2 1:55 Im-gry fine to med 18 30 37 N=37 Sh. + Almin had lunch 1/2 70 mod loose dry 65-66'2 2:20 Han / some line send 76-714 2:40 Hankone Line mus 23 40 44 mod loose PHILOY bresta un TIGITHUNE N= 45 75.7642:55 Han Ina sand mod. lock 25 37 شاريان سرو اهدير Lery five Small 111,1110 ditto SITTO 26 36 50 15-11:123171 160 1/251 miz 15 47 rues - or r يانجاز لاين CITA لماليس ماءياعها 1:47 90-91/2 2:45 trun tin, self sound ! 111 1111 40 ricity 118, 31 1,750.11 N = 42 FOS (4a°) 95-9612 11:00 IIIs soulitation SILT to GL Ultro Strokely 19 Play @96' 4200

١Đ

	ρ	ROJECT	Di ces	Bulle	Geoleck o	WNER C	H			LO	CATION	N: CO	•			_SEC	1/	'4OF	1/4	T	PAGE_3_OF_4_ N RW
	LOGGE	87	TROW	DATE	START_11-4-	94 DATE 1	INISHED	н	OLE D	EPTH_		ANGL	<u> </u>	2 0	RILL I	METHO	Hollow S.	(a_ /8/ DI	AMETER_	FALCE/L DRI	LL MODEL 13K-31
	INTERVA	_ (FT)	DATE TIME	COLOR	ЦТНОС	OGY	GEOPHYSICS LOG	R	GRAIN EL PI	SIZE RCEN	т	GR/	AIN R	OUNDI	NG		DRAULIC PERTIES	INDURA STRUC FXS, VOID	TURE	WATER	COMMENTS
$\left[\right]$		DRILL NOTES			ROCK TYPE					SAND	GRAV	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC	I	stiff
	00-101/2	Brass Rings	11:40	Lote ten	clay		3 Balans	UUN!VIIM												damo	
1	_ ^	1/4" ID"				İ	No Full			·											Le 3 praces priver cours
	05-105/2	टल	12:00	ht for	1ft-clay			i jiri inde													12 32 34 N=29
1	106%	NO ZINGS			10 fin oran 9					40.510											Beneficial or inconficio
	, 1				,																ring 4.0 T/C+2-
1	110-111/2	BRASS RINGS	12:25	In	Clay 8" his sandy 3,44		1 Binns No Fall	AMILIAN	r4 wiru	14										weakly must	13 32 50 0 ("N=35)
	`	LINGS			10"		Nº Par													pengrow (#1 brazz ring somple Clay 1.5 for five said (7/1/1) 4.0 Tist for clayer 3.14
		UZ VIV.	do lute	1 1 4	``tr.LC`																11 41 50 N = 38 (40)
1	}	NO PA04	12.45	Jan sen	inderthed my Line															111111111	confined ring rendrameter in
				gent line	nlav(bdevis")															(+ 100 2 - JOA)	May 24.5 Tous/LE
}	,		1:10	Jan	silty May		-	PULLUA	NO.											weakly	12 30 48.
		NO CINCS																		Moist	$2-4$ Tord Ω^2 $N = 32$ Very stiff
ł	125-126/2	first	2:00		cly contact way fin sily and to 126	====			摦	iska: Jr										addustor	ada Live gallons water
		H, D Addoi			and to 126	737 (27)														Shirt Its	20 115 20 25.
		NO RING	25																	lan 1	N = 37 hard
<u> </u>		130 - 13114	2:25		Alay		وسنده والماران		-	/ .								Moderat		Slightly to	300 32 50@5"
		RENGS			clayersitul very fine soud				Mer	twin't								Const.		Moderativ demo	# 4 brass ring. 1 = 32
	ļ				silty clay			acyaba	,									use - mod.		VETT B	Verystiff
	135-1864	NO Rinas	3:00	grayish	Clay of trace			LUMB										CONSL.		add nater	add five gallons water 11 21 37 N = 22
		NO A MAR		CWes	5017	_															purtonites 1.75-7.75
-	12/6 22:12		3.70		. /- # ::	=		UH											_		/9 27 38 N = 25
	140-141/2	* KTNIS	2.75	gray	clay & silty clay introdu		ا ميروره ا ميروره ا ميرور	1414										Moderatoly Cort St.			se 4 rings (sest both
	}						2.7													MODERATELY MOIST (38%	7) Very Slift
. ,	45-1464	No Rinas	4:30	ari-ary	log 6" alay lower 12" a. Itu			PULLUM PULLUM										WK-HOD			23 23 28
		<u>-05</u>	5:00	* ' '	Clery			Thirts .	_											11/16 TUILE	N = 19
																					Very stiff

DORILL ROCK TYPE GRAPHIC CLY S.T. SAND BRAV AND WK MOD WELL EST. MEAS. GRAPHIC	LOGGE		 		 		7	T			T				T		INDUIDA	TION &	T	
NOTES NOTES 11/15	INTERVA	L (FT)	DATE	COLOR	цтнос	OGY		R	GRAIN EL P	SIZE ERCENT	GR	AIN R	OUND	NG			STRUC	TURE	WATER	COMMEN
		NOTES			1				1	SAND GRA	/ ANG	WK	MOD	WELL	EST.	MEAS.		GRAPHIC		
155-154 NO 10:30 gra-qri olary 100 gra-qr	150-151/2	STORT	9:115	grn-gry	Clay wit introde	4	1,000		. 444.00	2,,,	1							4		
155-156 1 10 10 30 gra. qry 00 y 10 set 16 y 1 10 10 10 10 10 10 10 10 10 10 10 10 1	#	mare	9:45	<u> </u>	Silt/Sin Secuel	4	No-File		-	┼	+	 	-	-	 			4	Silt a Imost do	X 2017 - 4-4.57
155 - 156 NO 10 30 Gran - Grant Obey Ob	4-	RING		 		┥		-		┼╌╌┼╌╌	+	 	 					7	ADD V Tal	
DIMSS			 	 	 					 	1	1					7 77 77 7	1		
PHOS	155-156/	NO	10:30	arn-904	Clay		I	THE STATE OF									WKCONSL]	POCH 5 61	
160-161 11:00 11:0				, ,,	d: Ho	T=	1				1						PLASTIC	4	FUSER RUNI	15 22 25 p
165-164/2 MO 11:15 dealery metalinum 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						4	1	<u> </u>	<u> </u>				<u> </u>				 	4	MOD. DAMP	
165-166/NO 11: 115 Gravey median and 17: 161 / 1		L	<u> </u>			4	ł		-		+	+			 		 	1		
11.5-166/NO 11:165 an ery our sieu with the form of th	11 11 11	DINAG	11:00	aru - aru	Duca Alas		3.13 Januar -	ATTITICAL)		 	+	 	 				WK CONSOLL	- -	AND 5 00/5	18 72 24
115-164/ 100 11:145 Ana ary mendan und 15 15 15 15 15 15 15 1	160.101.5W	K11003	71.270	17 / - 7 /	17078 23247	====				 	_	 						1	LICO BAND	* 3 rocket sound
115-166/NO 11:16-5 April 12:16						J						Ĺ]	N 28-429	C'Clay 1
170-17142 NO 12:30 an syx Persin of 1 31 33 3 1 1 100 Cars sub) 170-17142 NO 12:30 an syx Persin of 1 31 33 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1				L		4							ļ				ļ	4		ΝΞ
170-17142 NO 12:30 am syx Persin art 170-17142 NO 12:30 am syx Persin art 175-1764 NO 1:45 am syx Clayersit 175-1764 NO 1:45 am syx Clayersit 176-18142 Blass 7:25 am syx Silv Clay 176-18142 Blass 7:25 am syx Silv Clay 185-18642 NO 3:05 am syx Clayersit 185-18642 NO 3:05 am syx Clayersit 186-18142 Blass 7:25 am syx Clayer				<u> </u>	 		1	→ U.13:28:02	ļ	 	+	 	 					Ⅎ	100 5 (110	101 1111 5000 00
170-1711/2 NO 12:30 Gra-gry Pare day word 173 1 33 33 1	165-16642	PULCE	11:45	Bur-ech	THE CHAPTER			1,250	1	"	+	 						-	AUD S GALLE	1x 46 20 3
170-1711/2 NO		12111175	 	 	Give Sand	T		<u> </u>	_	 -	+	 	 -		-			1	~ 422	<i>N</i> =
175-1761/2 NO 12:30 an gry Review ord PINTS 175-1761/2 NO 1:45 an ery clayers: 11 176-1811/2 Brass 2:25 an ery sign clay 177-1811/2 Brass 2:25 an ery sign clay 1			<u> </u>			1												1		Ver
175-1761 100 1-45 100						<u> </u>					T							L _		
175-176 NO 7 45 OTH-SEY Clayer 5.77	170-171/2	NO	12:30	arn-gry	Purcelay word			1100					<u> </u>				CICIO CONSI	4		17 31 331
175-1764 NO 1:45 graces site in the second of the second o		PINGS		<u> </u>	1º sit hed		1			 	 	├ ──	 				_	4		N = 2 Very
140 - 161 1/2 BRASS 7:25 arm.ary Shru CLAY 141 142 23 150 Chal				 	 	+	ŀ			 	+	1	-				 	†	3661	Very
140 - 161 1/2 BRASS 2:25 arm.ary SHOW CLAY 141 142 23 150 Chal				 	 	1	ľ	-			+	 	 							
140 - 161 1/2 BRASS 7:25 arm.ary Shru CLAY 141 142 23 150 Chal	175-176%	1/0	1:45	arn.cry	clayer sitt			1	It:A			1	T				WE remove		25 % March	13 22 32
140-181/2 BRASS 2:25 Grady SILTY CLAY 150-181/2 BRASS 2:25 Grady SILTY CLAY 150-1	• •	RINGS		0 / /]	1]	500 C 22	> T/CF Donathin
190-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm				ļ	<u> </u>	4	1	<u> </u>		 -								4	•	7/- 12
190-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm			 		 	-{		 		 	+	 		-			 	1		
# RINGS	140 -1617	BRACS	2:25	am.acv	SULV CLAY	-	2 15 4-	9:4	J. 2	 	+	i					WK-MOD		~3507	14 12 18 N
195-186/2 NO 3:05 arm. Gray CLITY (LAY = 1.5 T/L+2	*	RINGS		9 //] <i>-</i>	NO POLCE.											1	1195 Con	* 2 BRASS RINGS
190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 100-1914 PINGS 3.40 ora-gray sta]							!					4	v	1.5-20 T/C+
190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 100-1914 PINGS 3.40 ora-gray sta				ļ	ļ	4	ļ.	ļ			+	<u> </u>	<u> </u>		 		 	4		
190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 100-1914 PINGS 3.40 ora-gray sta	m- 10.11	W0 -	3.05		CITY ALDY	<u> </u>	ł	raymaya:	100	 	+		-				M. (M.)	1	255	12 77 44 N
190-1914 PINKS 3. 40 gra-gravisher clay == 118 miles MK-mg0 75.35% 15 ZE 3/2 # 3.0 T/ce mm/f he long de M = 1	2,081-58	ZINICS	1 · · · · · ·	77-7704	A 11. 116.		1	SWIFF.	-	 	 	 						1		15 TISH = VA
1910 - 1914 19					1	1	i				1]		
1910 - 1914 19]	l													
190 - 1914 - 1916 - 191	.e	0	3 770	<u> </u>	(1.1.58 6 2.11	L :	1132	All total					-				01/14: 12	├ ┥	ا (ن ما د خرور م	
Specific long to	/40 -1911/ _~	[5/V)V.2	1.40	der- dear	SILT CLAY		No Field	PI 1583	NA	 	+-	 			 		かにっからり		~ 15 · 11 %	
	7	F		 	 	†	1	 	 	 	+	 	\vdash				 	†		11)- If he low dous -
					<u> </u>	1	i]		1/5/19
	10					I i	ł]		5
195-1961/2 4:20 Mayer 514 17 23	145-196/2		4:20		playey silt		I	XX	海 ()			L					h)ls		~ 30-359 ₁	14 17 23
11/Tay ABADAM 11018 1-11	11/7144	BEATT !	UE CHIN	7	 	†	l		 	 	+	 -	 				 	†		
	11 7 94 - ••• 1/	BENTO (1	1700	13mm	sitte Clan	<u> </u>	2 13 hours				+									12 17 20/4,5

HOLE NUMBER GT- Z JOB NUMBER 0304910 HOLLADAY ENGINEERING COMPANY PAGE___OF___ PROJECT Pickles Butte Geolech OWNER Courage Courage LOCATION: CO. 1/4 DEC. 1/4 OF 1/4 T N R W

LOGGED BY STOUND DATE START 11-7-91 DATE FINISHED 11-7-910 HOLE DEPTH 25 1/2 ANGLE 90 DRILL METHOD THE DIAMETER OF DIAMETER OF 1/4 OF 1/4 T N R W INDURATION & GRAIN SIZE **HYDRAULIC** DATE GEOPHYSICS GRAIN ROUNDING STRUCTURE WATER COMMENTS INTERVAL (FT) COLOR LITHOLOGY REL PERCENT PROPERTIES LOG FXS, VOIDS, ETC. GRAPHIC CLY SLT SANDIGRAV ANG WK MOD WELL EST. MEAS. ROCK TYPE GRAPHIC NOTES 5-72-7 11-7-96 12:25 Sand cover dame check for methow. I have agrinage -aucle 5-61/2 2 BRASS RING soil + trash Dirt + trash 10-11/2 NO RINGS 7.7.12 SAMPA-SOIL DAMP NO METHANE BAMPB - Trash DUTSIDE SPLITS ADDAY 17 14 10 15-161/2 RINGS 1:05 all garhage 5% LEL in ALTER Sten guildy drops to 100 LEL TWO RINGS FINARD TUZETHU dinner wood Hel U Dri por otc. MODERATELY 8 8 14 20-21/2 NO 1:20 50% Trash DAMP 2090 501-19 13 12 100% LEL NETHANE 24-2512 BRASS 1:35 MOSTLY GRASS SHUT RIG DOWN FLOOD HOLLOW STEN WY WILTER BACK OUT OF HOLE

HOLE NUMBER GT-3 JOB NUMBER 030496 HOLLADAY ENGINEERING COMPANY 437 67 LOGGED BY STREAM DATE START 1/8/76 DATE FINISHED 11/8/76 HOLE DEPTH 1011/2 ANGLE - 90 DRILL METHOD SPT/AUGER DIAMETER 8/2" DRILL MODEL 3K-8 INDURATION & DATE TIME GRAIN SIZE HYDRAULIC **GEOPHYSICS** COLOR GRAIN ROUNDING STRUCTURE WATER INTERVAL (FT) COMMENTS LITHOLOGY REL PERCENT PROPERTIES LOG FXS. VOIDS, ETC. DRILL ROCK TYPE GRAPHIC CLY SLT SANDGRAV ANG WK MOD WELL GRAPHIC EST. MEAS. NOTES 11-8-96 8:30 sightly demp Fire sun, 2 2 3 2 100se 10-12: SHELTH 8:50 tan fire saud W// WI 200 lbs (set 6" MeA Loose 15-161/2 NO 9:00 tun Frue gard loose medeum minor sill 20-21/ 18845 9: 10 13e ben the good : 33 13k 455 Mand. loose 13 21 23 DEMA ا الماسم وال 25-261, No 9.20 1/16 13 19 29 loose DAMP 36-311/2 RAGE 9:30 116 To de All 14 21 33 3 BKN55 mod loos No-Full draines # 3 rings 10:00 Fito 301- fire to in A. Troke wire Almost Lay to De Enversed Veins" 40-411/2 ROPE 11): In the got his sand PINICS brice Some med. 10, 4 dams 110 25 3-3-455 The state of soul boss Co-Fall Prince Fo De Mar inest Musel 45-46/1-00 10:70 tota gir- his fahal WK COMISE 1954 demo 12 30 35

به ځوی^ک

رچ.

						H												_		PAGE	2 OF_2
LOGGE	D BY	Breau	DATE	START 11/2/9	L DATE	FINISHED 1/8	96 H	OLE D	LO EPTH	CA 110	n: Co Langi	<u> :</u>		RILL, I	VETHO	ارامين ا	/4OI 5Ca_ Auso 7OI	AMETER &	T	N R	DE FI
INTERVA	L (FT)	DATE	COLOR	ЦТНОС	.0GY	GEOPHYSICS LOG		GRAIN EL PE		T	GR.	AIN R	OUND	ING		DRAULIC PERTIES	INDURA STRUC FXS,VOIL		WATER		COMMENTS
	DRILL			ROCK TYPE			CLY				ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC			
30-51/2	11-8-96	10:25	and ton	July Gue		3 3 KA33		W.	v 11/13								WK-MOI)		moterally	18 31	37
*	RINGS			July gues		2 - NO Full						<u> </u>	 				CONSOL	1	dann	+3 R	145
]	ļ												1			
55-56/	110	10.40	any-ten	very fin		İ		Ø):	пша			 					(UK MAD)	1	MOD - STIL	16 2.9	40
-	RIVES		1 '	E. Hu Sam. O] · . · · · · . ·												CONTROL	1	drup		
					1							 					<u> </u>	1		 	
10 (11/	8.166	14 17			<u>l</u>				ZaHUA									<u> </u>			
60-6172	K/AH25	70.50	gry-ton	sour Line	<u> </u>	3-BILASS. No-FULL		114	(1) M (1) P				<u> </u>		-		CONSI.	+	dans	20 30	5 44
				2.14	[700											33737	i	,,,		
65-6101/2_	শ্ব ০	11:00	ary	top 3" 2.14 Time									1				SAND WE	1			
	RINGS			sand Intho				12.0	15,000								MAD - STT.	1	MOD DONO	110 2	34
			324-2004	19" 0124	1		10000										Son Clan				
																	2012 (10 9	1			
70 - 71%	PINGS	11:15	CAY	Too 2" 0 124		2-13 1455	index (alien						<u> </u>				MOD CLY		WK + ALOD	76 30	2 7
10 - 71.0	U ., U .		Jan Eru	Top 2" clay		NO FULL			n - C								ADD SAAN	į			3- FOTH OF SAND
				Lie San D	1																
													<u>' </u>				 	}			
75-76%	2014	111.20		141 6			Wast 2	Zar zwiii			!									14 21	
	KIN/33	11.30	364-364	ally elections				4.13									WIK- MONISON	}	WK DAMP		into hear to at
				(1124Vac)																-33.733	111-7771
80-811/2	RINGS	11:45	aril. hu	interpold fine		ქანემპავ —	1/4	49	-								MON-5-72	├ ┤	20 5 11	15 6/11	50@5"
J			• /	forg-sit-	7.7.2	2 - 164ASS No - FILM		2	_							-			19 mars	7 RING	CLAY / 5,11, sons
			ļi	يروام راجاري							!					***		}			
												<u>'</u>						į			
62.86.5	RINGS	12:00	4.L. 707	Here his gitter			<u> </u>	(83.)	120								non-and	}	1 77	71 48	50
																	1137		Acres 10	WI FO D	clar resat 3"hd
	lunter																	[
90-91/2	TRIAXSS	17:45	Jene-CIV-1	frie c. 1 to so i		7.134545	9 4		fairif								100-5-17-	- +	stalitie	16 40	
•				2-11-1104	T (1)	Un-Fill													10.0		
						}									+			<u> </u>			
5-90%	110 2105	1:00		10" - 11 1				430 43										Ţ			
J 1012	.02.00	, ,,,,,	1211.94.1	10'5.11 1-11 10 51t, class			rigina r	部 新									MOD PANSE	· }	Statuta	rs 30	40
				<u> </u>	1							:,							7		
10-101/2	रीक्र	1:20	Jun ayeu	The Sus	1,414, 1143	- 1241622			411/11/19		7	· · · · · · · · · · · · · · · · · · ·					ALOO CONICOU	<u> </u>	you sing	14 37	SO END HOLE

+<u>c</u>/,

HOLE NUMBER 67-4 JOB NUMBER D3049(HOLLADAY ENGINEERING COMPANY lot PROJECT Pickles Butte Goodch OWNER Causen County LOCATION: CO. June SEC. _DATE START 11-11-91 DATE FINISHED 11-11-91 HOLE DEPTH 101 angle -90 DRILL METHOD Hollow glam have a DIAMETER 2"/2" INDURATION & STRUCTURE GRAIN SIZE REL PERCENT HYDRAULIC PROPERTIES DATE GEOPHYSICS COMMENTS WATER GRAIN ROUNDING COLOR LITHOLOGY INTERVAL (FT) LOG FXS, VOIDS, ETC. ORILL NOTES GRAPHIC CLY SLT SAND GRAV ANG WK MOD WELL EST. MEAS. ROCK TYPE GRAPHIC 11-11-96 vort lose 5-61/2 Rings 10:00 tam but with moleculity gand in 2 rings Partes minar clavesult 16-111/2 1/0 VI 1000 321 11:07 Im clanes 5. 4 varion Tax Upper Stag Song 15-164- Shaller 10:15 (= 15-17) 20-211/2 No. KING 10: 25 + CUI 1000 Charge -ing as audit fell caret most 100%. 25-26/2 100 QIOY-S 11111 15 24 77 30-31/2 RINGS 10:40 DY- From MITE LIL 100 nick NO- Full MANSON 35-76 1/2 ND 10:50 ary-lan time sand : NK-MAD gr film 12 21 32 CONCOL 1/145-South Title 8" F INTE 40-40.73 Theoline 11:05 Dry ten Citie Sand " B" sample let son conc of 4 - 6" -1.10 moret INIC- ALT TO PONICA. 20 27 32 Gry- ton who which him 45-46/2 11:15

٠Q

HOLE	NUMBER PROJECT D BY	ST-U Didro	f	OB NUMBER !	DANGAG DWNER <u>(1</u> 24 DATE	H Lugger Grow FINISHED 11/11	OLL <u>(</u> 2, н	OLE D	ENGIN LOCATIO	EERI On: CO Langi	ING D	CO!	MPAI ORILL I	SEC_	رة منابعة على المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة المنابعة	/40 g4c	F 1/4		PAGE_Z N RW ILL MODEL_B	-0F_2
INTERVA		DATE	COLOR	T		GEOPHYSICS LOG		GRAIN		1	-	CUND		нүг	DRAULIC OPERTIES	INDURA STRUC FXS.VOII	TION &	WATER	T T	OMMENTS
	DRILL	11-11-96		ROCK TYPE	GRAPHIC		CLY	SLT	SAND GRAY	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC			,
50-31/2	30055 P1065	11:25		4.14.01 -1" cley whether,		L- BLASS Almost.		(<u> </u>				MEDISTR CONSTR		millio dame	16-30 www. Li	50 v su .e
					1												1			
55.56/2	ALO RIANG	11:40	gry-ton	11+ - 4"		_	AY	9								WK-MOD AONISCL	}	wk damp	11 18 3	I
			silt Clay ten-	100	‡		<u> </u>	 			<u> </u>						-			
60-61/2	RINGS	17:55	ary-trum	his sunder filt		2-BRASS THE			i.							MOD CONS	_	alius - dry	21 37 5	O Riaiss
												<u> </u>					1			
65-1061	NO 121135	12:10	por tem	in lather wil				129 140	山 政			!				MAN PANS		11 : 10 x	19 34 4	5
				chie sand, sill		†						-					1			
70-71/2	ZINGS	12:25	ten- 411	fun sanle		2-132145 = No Full			(W)							MAN A-1150	-	MODELECT MOIST	21 42	<i>So</i>
					-					<u> </u>							1		<u> </u>	
75-76%	1/5 24)<5	12:40	Lun - Civum	Six comp o		:			10			1				ALACCI	1	HARRIST	29 37	ሆ
	LLINCU TARA				-							<u> </u>					1			
80-8172	NO Dyjsk	7:73	iris cord	1/2017 1 01 1.00			到事(此列。	3 6								MOR FILL		clicum b Neise	22 32	*:)
				1 B. up	‡							1								
75. idi	RIVICE	7:30	Ary-sire	May Ved claus				/ <u>#</u>								1111151		11.56/ 2. 11.74	1. 35 (14
					1	, Ka 166 -														
90-91/2	PINKS	7:45	ig V-legto	sitta staa	===	2-18RASS - Almest	JEST P.					1				pur Fr Ara	Ţ 1	7:114.	7 rings	(*)
					1 .				_			! !					†			
95-96%	Kley,s	240	Popular Sarrie	varie Art in			PANYA L	ź	19							un; tir.			16 72 3 7-11+ USO	Sean Ce tor
100 - 1014	PIAIGS	7:30	Ovy. gra	Pring sand intend		3,13,40-11		4	arga -	-	<u> </u>	i I				STD TAIC		Somethit month		Aill weeker!

HOLE	NUMBER PROJECT	GT- Pickle	5 <u> </u>	DB NUMBER C e (Scalection)	MINER CA	2 H	0LLA میکور ا	DAY	EN LO	GINE	EERI n: co	NG	CON	APAN af La	NY . LEC_ METHOR	1/ 1/ 1/0w \$4	4OF	F 1/4 AMETER 2	T	PAGEOFZ N RW IL MODEL_BL-21
INTERVA		DATE TIME	COLOR	цтнос		GEOPHYSICS LOG	,	GRAIN				AIN R			нч	DRAULIC OPERTIES	INDURA STRUC FXS,VOID	TION &	WATER	COMMENTS
	DRILL			ROCK TYPE	GRAPHIC		CLY	SLT	SAND	GRAV	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC		
0-12	NOTES	10:46	 	MOVED !							-		<u> </u>	 	├─			 	MOIST	SHELBY TUBE THRU INTERIOR
0-12	11 11 2 19 1 SUFI AY	10.65	 	TILASH	1	l										Fx LEL]	70	COVER PLAY SILT & TRACH
	3411171				1								<u> </u>				Tun toll	4	1224	1/2 1+ @ 500 16.
											<u> </u>	<u> </u>	<u> </u>	ļ		hole in	ollew slam	4		Mashed and of tube
			<u> </u>		ļ	1	<u> </u>					ļ				9 EL DUTS	de collar	1	MOIST	15 5 4
5-61/2	1/0	10:15	ļ	MUER 1	-		<u> </u>					 		\vdash		EX LEL	0%	†		MIST OF SAMPLE NAT
ľ	12/1/75	ļ	 	TARGU	1	i	\vdash	-			 			 		ditto per	recdures	†	<u></u>	RECOVERED (SHE BUCKEDE)
!			 		1	l								İΞ.				1		
		· · · · · · ·	†		1_	_														
10-11/2	100	10:30		TRASU	Γ	1						<u> </u>	!	L		FY (EL	00%	-	sliality	27 /0 8
	RINGS]	1					 	 		ļ				-	down	Prop PERCELY (~3.4"BALLA
					4					 	⊢—	 		├	 	 	}	1		
	ļ			-	4	1	⊢			 	 		 		 	 		1		
15-16/2	616	12:40		TRASIL	1	t				 		 	i i	 		FX LEL	092	1	alust dry	70 @ 4 inclus
13-1612	DINIGG	79.45	 	7,4.7.	1	i							!]		wood, physic, paper
ì	KINGS	 	†		1			[]		
		 			1												ļ	4 !		
						-	↓	<u> </u>			└	ļ <u> </u>	<u> </u>	ļ		T- 151	0%	-	. I I is	12 9. 19
20-21/2		11:15	<u> </u>	4124513	4		<u> </u>			 		 -	!	├	 	Ex (EL	0.40		AUGH ACV	GIB DECNERY ~ 20"
[RING		 		-		ļ				├	 	1	-	 	 	 	1		NEWS MAPER CONDER (45 D)
			 		┪ .				'		 		ļ	i			· · · · · · ·	i		74,0
		 			†				-	i]		
25-26%	110	11:10	 	Trash	1	-							1			FY (EL	ردون ا] .		50 @ 4%"
، ده د	2.1/05	T]								<u> </u>	ļ			L	. 1		SHUT DOWN WANTIAL ON
		ECS			1								<u> </u>	ļ			ļ	-		DELLURAY OF BRESS PLATS
		111 111 111			4		⊢—				 	 	<u> </u>				 	1		
	164.55	11-13-96	 	Trash	+	-	 				 	 	<u>'</u>	 		FX /FI.	52/2	┿ ┪		16 7 12 Kita nevit.
30-31/2	UNATE	11:25	 	110310	1			-				 		<u> </u>				1		2 brass rives
	NATION D	 	† <u></u> -		1]		
		İ]	1						ļ								
//]						!	<u> </u>				Fy IEI	160000	-		NO LUDRE BLOW POWER
72-36"2	they	 	 	Lrash	4	1	 			 	├	 	<u> </u>	 		ILA IEC	halmoster	1		er hazard
	NO SO	n. 01+	├ ──		┪						├──						n @ O altoy	1		
	1/0 30	1011	 	 	1															
<u> </u>		<u> </u>			<u>l</u>	i -												Ļ ⊣		
40-41		2.20		-rash	_							ļ		1		EX LEL	100m	4 !		1 Israe brass ring
	BRASS				1	1	<u> </u>			<u> </u>	⊢—	 	-	-	 	 	 	1		
	PINO				-							 	 	-				† 1		
45	Grah Su		 	trush	1	1	\vdash				 	 	<u>'</u>	 		EIFL	1007	† 1		~ 8" sample
12	1100	2.12	 	71750	1		 				\vdash	T]		
			<u> </u>		1	1]		
]	i						ļ	!			ļ		ļ		
Ì		4:05	i	ł	i	1	1	1	1	L	1	Į .			l	L	l	1 1		

				·																		
HOLE	NUMBER	GT-9	S JO	OB NUMBER (030470 WNER	Pausin H	OLLA	DAY	′ EN LO	IGINI CATION	EERI n: co	NG 	CON	APAI	NY _SEC_ METHO	1, Heller	/4OF	1/4		PAGE_ N R	2 of 2 w BE-81	
INTERVA		DATE	COLOR	цтноц		GEOPHYSICS LOG		GRAIN EL. PI	SIZE		$\overline{}$	AIN R			НҮ	DRAULIC PERTIES	INDURA STRUC FXS, VOID	TION &	WATER		COMMENTS	
	DRILL			ROCK TYPE	GRAPHIC		CLY	SLT	SAND	GRAV	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC				
		11-13-11,															1					
					1																	
55	aya la	U: 30		407 66	225													1		colled	58 on ho	a •
56 3 5%3	حمدامي		56	The server of			<u> </u>															
587																		İ				
			<u> </u>		_	_								-							P	
60	lang &	4:55	Jan arme	Sand (Med)	F : •-	-														1 MILLE	+ 3" in /	20.7
	710.0	11-14-91															<u> </u>			37.42	1 700	2
65→	1540 6	9:30	arry	Fand (wet)	55 1 12	1													Civile days	-		
45 - 65.5	401/: 4	2.02	1 000		}												20ml foll			1	و المورود المورود	1"
65.5-67	and a	1 7"	- /y n D			1											10-20-20	ļ		11 19	7/2 - 3PT	
	, ,					_											106-1400		and nine			
70-7112	< PT	10:20	trunging	Silty Sies Smil	T-: -:	_											CONSOL.	7		13 34	42	
			<u>, , , , , , , , , , , , , , , , , , , </u>			·.																
. //			77																			
75-761/2	و آج	10:40	In 1400	neurd ?								!					sty, a		nto-depoins	13 3c	141	
			4411-177	7.142													wood well	ļ	7.74(11)		200 100 200	
		<u> </u>		l													commercia.	ر ا				
ED- 1: 5	EET	11.00	town your	ailt, Lie Gral	Filipini.												12 a innue	Ţ	MARKE	<i>50</i> 3	5 46	
																		Ł				
85-861/2	501	11:15	tan-gray	Ling In wel and	4753						$\overline{}$						MOD WALL	F	Mai-	२० . ३	7 50	
																		ļ				
90-91/2	SOT	11.35	1110.00	companied Siens]											MOD PONSE	Ŧ	Trule	16 12	27_	
																				ين يو شمان	mt)	
-الديم حجو																		E				
10-40 12	5 PT	111.50	ton 9.7	med son l						-1							1000 C	F	Marina + M	13 32	<i>3</i> 2	
	Service Control											ij						ļ				
100 - 101%	1200 1271	 	Vi ti tina. I	Jun 1 11 1 50 1													 	H	Acres 14 to 15	15 21	712	

APPENDIX F: GEOTECHNICAL INVESTIGATION REPORT

Report of Geotechnical Investigation and Analysis

Slope Stability Evaluation Pickles Butte Sanitary Landfill Expansion Canyon County, Idaho

Tetra Tech Project No. 114-571040-2022

August 16, 2022

PRESENTED TO

David M. Loper, REHS/RS Canyon County Solid Waste Director 15500 Missouri Avenue Nampa, Idaho 83686

PRESENTED BY

Tetra Tech
2525 Palmer Street, P +
Suite 2 F +
Missoula, Idaho 59808 tetra

P +1-406-543-3045 F +1-406-543-3088 tetratech.com

19512

8/16/2022

Prepared by:

Sarah Garland, P.E. Geotechnical Engineer

Reviewed by:

Marco Fellin, P.E. Senior Geotechnical Engineer Kristen Daniel, P.E. Principal Civil Engineer

TABLE OF CONTENTS

1.	INTRO	DUCTION AND BACKGROUND	1
2.	PURP	OSE AND SCOPE OF STUDY	1
3.	PROP	OSED EXPANSION	2
4.	FIELD	EXPLORATION	2
5.		RATORY TESTING	
6.		JRFACE CONDITIONS	
0.		Sand	
		Silt	
		ean Clay	
		silty Clay	
		at Clay	
	6.6 G	Groundwater	7
7.	ENGIN	EERING ANALYSIS AND RECOMMENDATIONS	7
	7.1 S	Seismic Impact Zone Characterization	7
	7.2 N	Material Strength Properties	8
	7.3 S	Slope Stability Analyses	9
	7.4 P	Pseudo-static	10
	7.5 C	Comprehensive Seismic Survey for Fault identification	10
	7.6 C	Conclusions and Recommendations	11
8.	CONTI	NUING SERVICES	12
9.	LIMITA	ATIONS	12
10.	REFEF	RENCES	14
LIS	ST OF	TABLES	
Tab	le 1. La	boratory Testing Completed by Tetra Tech	4
Tab	le 2. Ma	terial Strength Properties - Soil	8
Tab	le 3. Ma	terial Strength Properties - Rock	8
Tab	le 4. Fa	ctors of Safety for Slope Stability Analyses	9
		ection F Stability Analysis Results for Displacement	
		, , , , , , , , , , , , , , , , , , , ,	
AP	PENI	DICES	
App	endix A	: Miscellaneous Figures and Details	

Appendix B: Logs of Exploratory Borings

Appendix C: Laboratory Testing

Appendix D: Slope Analysis

Appendix E: Deformation Analysis

Appendix F: Previous Boring Logs

ACRONYMS/ABBREVIATIONS

Acronyms/ Abbreviations	Definition
AASHTO	American Association of State Highway and Transportation Officials
ASTM	ASTM International (formerly known as American Society for Testing and Materials)
bgs	Below ground surface
CFR	Code of Federal Regulations
IDEQ	Idaho Department of Environmental Quality
EPA	U.S. Environmental Protection Agency
FS	factors of safety
ksf	kips per square foot
MCE	Maximum Credible Earthquake
mm	millimeter
MSWLF	Municipal Solid Waste Landfills
PBSL	Pickles Butte Sanitary Landfill
PGA	Peak Ground Acceleration
PSHA	Peak spectral horizontal acceleration
SPT	Standard Penetration Testing
USGS	United States Geological Survey

EXECUTIVE SUMMARY

The Pickles Butte Sanitary Landfill is developing a plan for the expansion of the landfill to include an additional four phases, (Phase 5 through Phase 8). The proposed expansion consists of approximately 231 acres of unlined cells pending the approval of an arid exemption. Proposed permanent excavation slopes are planned to be on the order of 3H:1V to 4H:1V, with maximum cut depths on the order of 150 to 165 feet.

Tetra Tech previously completed a slope stability evaluation that included static and seismic stability evaluations for Phases 2 through 4 of the Canyon County Landfill (October 7, 2015). Tetra Tech also reviewed the previous evaluations conducted by Holladay Engineering Company for the Pickles Butte Sanitary Landfill, dated 1998, and conducted a seismic survey that was dated February 21, 2022 titled, 'Pickles Butte Sanitary Landfill 3D Seismic Survey Report'. The survey was designed to image and delineate a suspected fault in support of the proposed expansion program at the PBSL.

For this stability evaluation, Tetra Tech incorporated the following information: 1) the soils strength data available from previous analysis, 2) materials strength properties assigned based on the laboratory testing of the geotechnical samples collected in 2021 and also correlated from the Standard Penetration Testing (SPT) N-value (blow count) data collected during the geotechnical drilling and previous well installation reports.

Based on findings from former and 2021 site investigations, the subsurface conditions beneath the areas of proposed landfill expansion are assumed to generally consist of silty and clayey sand, clay, and gravel overlying the Glenns Ferry Formation (300 to 950 feet thick), which includes younger lacustrine and fluvial sediments. The surrounding local geology includes an igneous basalt group of the Hat Butte-McElroy Butte type¹ that was not encountered in area of the proposed expansion.

Slope stability and pseudo-static analyses were performed using the computer program Slide2 (2020), developed by Rocscience, Inc., to determine the factors of safety (FS) of critical slip surfaces using both circular (rotational) and block failure analyses and vertical slice limit equilibrium methods. Circular failures can be viewed as a soil 'slump' with a remnant head 'scarp' or drop in elevation where the slide started, and a resultant 'hump' or bulge at the slide terminus. A block failure represents a large mass or 'chunk' of soil failing outwardly as a larger intact mass. Where the pseudo-static analysis indicated a factor of safety of equal to or less than 1.3 (industry standard for pseudo-static factor of safety for landfills), the internal slope of the landfill cell prior to waste emplacement was evaluated using the Newmark displacement analysis method to determine a range of potential seismic-induced deformations of the refuse mass.

Results of the slope stability evaluations indicate that the preliminary design for the expansion phases will meet the requirements of the Idaho Administrative Rules IDAPA 58.01.06 for the Idaho DEQ's administration of municipal solid waste landfills (MSWLF). The analyses indicate static FS values on the order of 1.38 to 2.43, and 1.83 to 3.11 for circular and block failure respectively, while the pseudo-static FS values were on the order of 0.99 to 1.88, and 1.45 to 2.16 for circular and block failure, respectively. Subsequent seismic deformation analyses indicate maximum probable displacements on the order of 0.25 to 3.19 inches (0.5 to 8 cm) for the anticipated peak ground acceleration of 0.12g generated during the design seismic event at the project site. In general, the seismic displacement analyses indicate permanent seismic-induced displacements within the tolerances 6 to 12 inches (15 to 30 cm) that are typically considered acceptable for design of landfill systems with no liner.

Multiple slope angles were considered for Tetra Tech's slope analyses, ranging from 2.5:1 to 4:1 depending on the soil and bedrock types at each location. Based on Tetra Tech's analysis and the required FS's, the following two slope angles are recommended for the preliminary landfill site grading plans:

3H:1V: for the majority of the site slopes

4H:1V: where silt is encountered (Section F discussed below)

The 4:1 slope was analyzed and recommended for Section F because silt was interbedded between poorly-graded sand and fine sand and created a weakened soil profile. In areas where a high concentration of silt is predominant during construction, a slope of 4H:1V is recommended for cut areas. The soil profile within Section F was identified as having a high concentration of silt in the upper 135 feet of the proposed slope cut, thus decreasing the factor of safety. There are other areas where the silt was present; however, based on the analysis the proposed cut slope of 3H:1V was allowable for the silts as they were interbedded into stronger soil deposits. As the stratification is exposed during excavation of future cells, it is recommended that the soil conditions be reviewed to verify they match the design criteria.

The slope with compacted refuse were modeled to confirm the slope angles that were allowable during the backfilling process. Slopes of 3H:1V are recommended as a maximum angle for the backfill process. A steeper slope of 2.75H:1V was modeled as an iteration to confirm the recommendations, and in this situation the pseudo static conditions produced a factor of safety below 1.3 and is not recommended.

Portions of the soil profile were defined as claystone, and have unconfined compression strengths higher than the site soils; however, the claystone had interbedded layers of softer soils, and for this reason Tetra tech has treated these areas as a soil rather than a rock and also recommends a slope cut of 3H:1V for the claystone zones.

This executive summary has been prepared solely to provide a general overview and should not be relied upon for any purpose except for that for which it was prepared. The full geotechnical report must be referenced for information about findings, recommendations, and other concerns.

1. INTRODUCTION AND BACKGROUND

The following report is the geotechnical evaluation of the slope stability that provides recommendations for the planned lateral expansion of the landfill. The Pickles Butte Sanitary Landfill (PBSL) is located at 15500 Missouri Ave. in Nampa, Idaho. The landfill is located approximately 6-miles south of Nampa, north of Missouri Avenue, south of Deer Flat Road, and ¼- mile west of Farner Road. Canyon County (County) owns approximately 1,180 acres of land in the area, which includes the active area of the PBSL. The County has operated the landfill since it began accepting waste in April 1983. PBSL currently services the residents of Canyon and Owyhee Counties.

The Idaho Department of Environmental Quality (DEQ) approved the original design and operating plan for the PBSL in June 1973, and reconfirmed approval in May 1975 (Holladay, 1994). The Southwest District Health Department approved the landfill in December 1979. Then when Subtitle D was implemented, the County obtained a site certification for the landfill from the DEQ in August 1993 for 116.7 acre. The County applied to modify the site certification boundary in 2020 and received approval from DEQ in February 2021 for approximately 600 acres. The current waste disposal area occupies the original footprint of approximately 116.7 acres, which has a natural soil liner. The Site Certification for the planned lateral expansion was approved on February 26, 2021.

The DEQ Site Certification approval included a request that engineering design considerations be evaluated for resisting peak ground accelerations, prior to the design and construction of containment structures. This report addresses that request and discusses the seismic considerations and slope stability. After the approval was received, a data gaps analysis was conducted in 2021 to identify missing or additional data required for the design focusing on geotechnical and seismic considerations. The evaluation identified locations where additional data would be beneficial and proposed a geotechnical drilling program that was initiated in November 2021 to collect additional data for the analysis.

This report is organized as follows: **Section 1** presents the introduction and background; **Section 2** presents the purpose and the scope; **Section 3** provides information on the proposed expansion; **Section 4** provides highlights of the field exploration; **Section 5** provides information on the geotechnical laboratory testing; **Section 7** discusses the engineering analysis and recommendations; **Section 8 Section 9** provides limitations of the study; and **Section 10** provides references. **Appendix A** provides miscellaneous figures and details, **Appendix B** provides exploratory boring logs, **Appendix C** provides the laboratory testing, **Appendix D** provides slope analysis, **Appendix E** provides deformation analysis, and **Appendix F** provides previous boring logs.

2. PURPOSE AND SCOPE OF STUDY

Tetra Tech performed stability analyses and seismic evaluations of the proposed expansion cell geometries to verify adequate stability or to indicate if flatter slopes are required to achieve stability. The analyses were performed in accordance with Tetra Tech's proposal and contract with Canyon County Solid Waste.

The regulatory requirements for the stability analysis are discussed in the administrative rules for the Idaho Solid Waste Facilities Act (Idaho Statutes, Title 39 – Health and Safety, Chapter 74, Section 39-7407) for the Idaho Department of Environmental Quality's (IDEQ) administration of municipal solid waste landfills (MSWLF) and are discussed further in **Section 7.1**.

The purpose of this study is to demonstrate that slope stability requirements are met for the conceptual design of the following containment structures:

- Phase 5-1, 5-2, 5-3 Temporary Cut Slope, Maximum Section (Section E)
- Phase 6-1, 6-2, 6-3 Temporary Cut Slope, Maximum Sections (Sections C and F)
- Phase 7-1, 7-2, 7-3 Temporary Cut Slope, Maximum Section (Sections B, C, D, F, G)
- Phase 8-1, 8-2, 8-3 Temporary Cut Slope, Maximum Section (Sections B, C, D, F, G)

Final Slope with Waste Backfilled (Section A was used to represent final slope criteria).

This report details and summarizes the analyses, the material properties selected for the analyses, the seismic design criteria, and presents conclusions based on the existing subsurface conditions and proposed landfill design and construction.

3. PROPOSED EXPANSION

The proposed area for the expansion has been sectioned into smaller units and labeled as the phases listed in Figure 1040-1, Data Gap Areas & Proposed Boring Plan (**Appendix A**). The proposed conceptual expansion of Phases 5 through Phase 8 will consist of approximately 231.4 acres of unlined cells. Proposed fill slopes are planned to be on the order of 5.3H:1V (horizontal to vertical) to 4H:1V, with maximum waste fill depths on the order of 254 feet. Proposed excavation slopes are planned to be on the order of 3H:1V to 4H:1V, with maximum cut depths on the order of 150 to 165 feet. The finished fill slopes will consist of a sequence of slopes with 20-foot-wide storm water/erosion-control benches for every 40 to 60 feet of elevation gain. The purpose for selecting flatter slopes includes more effective erosion and stormwater control on the final slopes.

If the design, locations, or conditions are significantly different from those described above, Tetra Tech should be notified to reevaluate the recommendations contained in this report.

4. FIELD EXPLORATION

Tetra Tech conducted a field investigation for Phases 5 through 8 between the dates of November 15 and December 19, 2021. The field investigation consisted of drilling eight boreholes to explore subsurface conditions at the locations shown on Figure 1040-1 (Data Gap Areas & Proposed boring Plan, **Appendix A**). Figure 1040-1 includes the conceptual expansion cells for the landfill, the locations of the exploration borings, and the location of borings drilled in previous phases. Prior to mobilization, Tetra Tech contacted Idaho One Call to request the location and clearance of public underground utilities before performing drilling. Well logs from the previous well installations are included in **Appendix F**, and they include extracted pages from the Geotechnical Evaluation by Holiday Engineering Company (Holiday), Borehole Logs GT-1 through GT-5, and the combination of Well Driller's Reports and Well Logs PB logs 5 through 15 by Holiday and Daniel B. Stephens & Associates, Inc. The logs provide general descriptions and depths of the site soils at each location.

Canyon County's drilling subcontracted with Holt Drilling to advance the borings through overburden soils with a track-mounted TS150 Crawler drilling rig equipped with auger, 6-inch diameter outer casing and core barrel. The TS150 Crawler provides very accurate and detailed soil profiles when compared to other drilling methods like auger. Tetra Tech's field engineer provided technical oversight during the field investigation, logged the borings, and obtained samples. The borings were backfilled with grout.

Sampling of the borings included determination of the N values, collection of split spoon samples, and bulk samples. Split-spoon samplers were driven into the various strata using a 140-pound hammer falling 30 inches. Sampling was done every 2 feet in the first 10 feet to obtain accurate soil strengths in the depths most critical to the evaluation of the dust control system and landfill gas flare pad. After 10 feet sampling was done every 5 feet to the final depth. For the expansion design sampling was done every 5 feet done to a depth of 50 feet and every 10 feet to 170 feet to collect information about the relative densities of the soil stratum.

The number of blows required to advance the sampler each of three successive 6-inch increments was recorded. When using the split-spoon sampler, the total number of blows required to advance the sampler the second and third 6-inch increments is the penetration resistance (N value), as described by ASTM International (ASTM) Method D1586. Penetration resistance values generally indicate the relative density or consistency of the subsurface soils.

Samples of the subsurface materials were obtained with both 2-inch and 2.5-inch outside- diameter split-spoon samplers. Bulk, Shelby tube and modified California samples were collected at various layers by the field engineer under the direction of a senior geotechnical engineer. More specific drilling and subsurface information regarding individual borings is listed below. Bulk samples of soil were obtained from cuttings based on visual observations in the field.

B2021-1/B2021-2

- Geotechnical borings for dust control system drilled to 30 ft
- · Deep layer of poorly graded sand

B2021-3

- Geotechnical boring for landfill expansion
- Winch line snapped imbedding sampling rod deep into a clay layer at 170 feet.

B2021-4

- Geotechnical boring for landfill expansion
- Thick layers of loose sand extended to 90 feet, which created an issue with keeping the hole open. The hole collapse was especially problematic between 50 90 feet.
- The deep clay layers were not encountered as in all other deep borings.

B2021-5

- This boring was sited after geophysical seismic testing
- Samples were collected for analysis in the zone geophysics indicated the fault splay was located
- No visual evidence was found during drilling to confirm the existence of a fault plane

B2021-6

- Geotechnical boring for landfill expansion
- Altering layers silt and sand were encountered till 75 feet
- Dense clay to 200 feet with occasional silt seams between 100 110 feet

B2021-7

- Geotechnical boring for landfill expansion
- Altering layers of dense sand and silt were encountered till approximately 65 feet followed by dense clay with varying amounts of silt to 145 feet.
- Dense blue-gray clay continued to 200 feet.

B2021-8

- Geotechnical boring for Landfill Gas Flare Station
- Type II cement should be used for concrete in contact with silt soils

Boring logs were prepared noting the borehole location, equipment and drill methods used, subsurface profile and descriptions per ASTM D2487. Groundwater was not encountered in any of the borings. Boring depths are referenced to the existing ground surface elevation. Depths at which the samples were obtained along with the penetration resistance values are shown on the logs of exploratory borings, presented in **Appendix B** (Figures 1-B through 8-B).

5. LABORATORY TESTING

Samples obtained during the field exploration were taken to Tetra Tech's accredited laboratory, where they were observed and visually classified in accordance with ASTM Method D2488, which is based on the Unified Soil Classification System.

Following the field exploration, a senior Tetra Tech geotechnical engineer reviewed all the boring logs and samples obtained and created an inventory of samples available for testing. The senior engineer reviewed the potential depths of cut, and locations of fill, and selected samples along the depths of each boring for testing. The tests assigned in each boring were intended primarily to identify the precise type of soil at each depth, as well as the associated strength properties of each soil type, with the ultimate goal of incorporating all of the strength testing directly into the slope stability models in each cross section analyzed. The laboratory testing data was directly utilized in the slope stability models to determine the resultant factor of safety at each cross-section location.

The laboratory testing was performed in general accordance with the Idaho Materials Manual of Test Procedures, American Association of State Highway and Transportation Officials (AASHTO), ASTM, or other approved procedures. Tetra Tech's laboratory is an AASHTO Materials Reference Laboratory (AMRL) and Concrete and Cement Reference Laboratory (CCRL) accredited facility conforming to ASTM E 329 - Standard Specification for Agencies Engaged in Construction Inspection, Testing, or Special Inspection.

Table 1 describes laboratory testing performed for this investigation, and their purpose:

Test Conducted: To Determine: **Test Procedure:** Natural Moisture Moisture content representative of field conditions at the time ATM D2216 Content samples were taken. Size and distribution of soil particles (i.e., clay, silt, sand, and Grain-size Distribution **ASTM D6913** gravel). Natural Moisture Moisture content representative of field conditions at the time ATM D2216 Content samples were collected. The effect of varying water content on the consistency of fine-**ASTM D4318** Atterberg Limits grained soils. Moisture-Density The optimum moisture content for compacting soil and the MT 210-16 Relationship maximum dry unit weight (density) for a given compactive effort. MT 230-16 Unconfined **ASTM D2166** Unconfined compressive strength of soil and rock. **ASTM D7012** Compression Standard Test Method for Direct Shear Test of Soils Under Direct Shear ASTM D3080 **Consolidated Drained Conditions** Triaxial Shear Consolidated-Undrained soil strength properties. ASTM D4767 ASTM G187/D4972 The combination of these characteristics determines the Resistivity and pH MT 232-16 potential of soil to corrode metal. The amount a soil sample compresses with loading and the influence of wetting on its behavior. For use in settlement Consolidation ASTM D2435 analysis, determining expansive potential and foundation

Table 1. Laboratory Testing Completed by Tetra Tech

Field and laboratory test results are presented graphically and summarized in **Appendix C**. This data, along with the field information, were used to prepare the exploration boring logs in **Appendix B**.

6. SUBSURFACE CONDITIONS

Subsurface soil conditions are variable throughout the boring depths; elevations ranged between 2956.6 to 2436.6 feet. The borings contained interbedded layers of poorly graded sand, poorly graded sand with silt, silty sand, silty with sand, silt, lean clay with sand, and silty clay. One layer of fat clay was observed in boring B2021-6 as described below. Given the variability of the site soils, other variations in the soil classifications are entirely possible. The top elevation of the individual borings varied, so the boring descriptions were broken into sections based on elevation for a more defined classification throughout the proposed cells.

Subsurface soils were classified in accordance with standards set by AASHTO. Descriptive terms were obtained using the ASTM Soil Classification System. Both the AASHTO and ASTM classifications are noted on the logs and laboratory data presented in **Appendix C** for each soil sample. **Appendix C** includes a summary of all the soil types and properties obtained in the borings drilled along the project length. Each soil type encountered is briefly described below.

6.1 Sand

Sand was encountered in all borings, B2021-1 through B2021-7, at depths ranging in elevations on the order of 2799 to 2470 feet. The sand gradations included poorly-graded sand, poorly-graded sand with silt, and silty sand. The poorly-graded sand generally consisted of a fine to medium-grained matrix, while the silty sand was fine-grained. In Boring B2021-8, the sand included 10 feet of fine-grained, silty sand, and 2.5 feet of a poorly-graded fine to medium grained sand.

Penetration resistance values in the sand ranged from 2 to greater than 50 blows per foot which indicates a potentially very loose to very dense soil stratum. The looser densities were encountered near the surface, with an increase in density at depths of approximately 10 feet and deeper. The natural moisture contents in the sand ranged from 2 to 22 percent at the time of drilling.

Laboratory testing performed on bulk and split spoon samples of the sands indicated a range of maximum dry density between 100.2 and 111.7 pcf, and an optimum moisture content between 11 and 16 percent. (**Appendix C**). Results of the Unconfined Compression Test for boring B2021-3 between 61 and 65 feet indicates an unconfined compression strength on the order of 0.143 kips per square foot (ksf). Direct shear testing of the sand in Boring B2021-3 between 60 to 62 feet indicates a cohesion of 0.282 ksf and a friction angle of 20.2 degrees, and between 80 and 82 feet a cohesion of 0.413 ksf, and a friction angle of 32.81 degrees. Consolidation testing indicated an under-consolidated soil in with preconsolidation pressure 3.0 ksf and a swell pressure of 2.6 percent. (**Appendix C**).

In Boring B2021-4 between 90 and 91 feet, the direct shear testing indicated a cohesion of 0.198 ksf, and a friction angle of 22.83 degrees, and between 120 and 120.9 feet, the cohesion was on the order of 0.588 ksf, with a friction angle on the order of 29.51 degrees. Direct shear testing in Boring B2021-5 between 90 and 91.5 feet indicated a cohesion of 0.260 ksf, and a friction angle of 31.18 degrees.

In Boring B2021-3 between 25 and 27 feet, the triaxial shear testing indicated a cohesion of 0 ksf, and a friction angle of 25.86 degrees. Triaxial shear testing of the soil in Boring B2021-5 between 50 and 51.5 feet indicated a cohesion of 0.123 ksf, and a friction angle of 27.04 degrees.

6.2 Silt

Silt was encountered in Borings B2021-3 through B2021-7 at depths ranging in elevations from 2,784 to 2,490 feet. The silt classifications varied between silt and silt with sand. The silt and silt with sand layers varied in thickness between 1 and 28 feet.

Generally the silt was tan to gray and had low plasticity. Penetration resistance values in the silt ranged from 10 to greater than 50 blows per foot which indicates a potentially stiff to hard matrix soil stratum.

Laboratory testing performed on bulk and split spoon samples of the silt soils indicated natural moisture content of samples ranged from 4 to 29 percent at the time of drilling. Boring B2021-5 was sited to attempt to intersect the suspected fault in the area. In Boring B2021-5 at 70 feet, the liquid limits were on the order of 27 with a plastic index of 21 and a dry density of 112 pounds per cubic feet (pcf). The soils and soil matrix in this boring did not differ substantially from the other borings, and therefore there was not conclusive evidence to indicate the presence of a fault. In Boring 2021-8 at 100 feet the liquid limits were non plastic, and the dry density was 97 pcf.

In Boring the B2021-5 between 69 and 70 feet, the triaxial shear testing indicated a cohesion of 0.037 ksf, and a friction angle of 19.09 degrees (**Appendix C**).

6.3 Lean Clay

Lean Clay and lean clay with sand was encountered in Borings B2021-5 through B2021-7, at depths ranging in elevations on the order of 2,615 to 2,456 feet. The clay layers varied between 1 foot and 54 feet thick. Penetration resistance values in the lean clay ranged from 45 to greater than 50 blows per foot which indicates a potentially hard to very hard soil stratum. The clay color was gray to tan to blue and had high plasticity.

Laboratory testing performed on bulk and split spoon samples of the clay soils indicated natural moisture content of samples ranged from 20 to 21 percent at the time of drilling. In Boring B2021-5 between 80 and 81.5 feet, the liquid limits were on the order of 35 with a plastic index of 14. In Boring 2021-6 at 106 feet the liquid limit was 47 with a plastic Index of 25, with a maximum dry density of 100.0 pcf and an optimum water content of 20.5 percent.

In Boring the B2021-7 between 120 and 121.3 feet, the triaxial shear testing indicated a cohesion of 0.053 ksf, and a friction angle of 18.02 degrees (**Appendix C**).

6.4 Silty Clay

Silty clay was encountered in Borings B2021-4 through B2021-7, at elevations on the order of 2,774 to 2,510 feet. The layers of silty clay were not as prevalent as the other soil types and averaged in thicknesses between 2 and 15 feet.

Generally, the silt clay was tan to gray and has higher plasticity. Penetration resistance values in the silt ranged from 26 to greater than 50 blows per foot which indicates a potentially hard to very hard soil stratum.

Laboratory testing performed on Shelby, bulk and split spoon samples of the silt soils indicated natural moisture content of samples ranged from 16 to 24 percent at the time of drilling. In Boring B2021-5 at 50 feet, and in Boring B2021-7 at 120 feet, the consolidation testing indicated an under-consolidated soil in with pre-consolidation pressures of 4.8 and 1.5 ksf. Boring B2021-5 had a swell pressure of 2.8 percent.

In Boring B2021-5 between 50 and 51.5 feet the triaxial shear testing indicated a cohesion of 0.489 ksf, and a friction angle of 14.95 degrees (**Appendix C**).

Boring B2021-5 was sited to attempt to intersect the suspected fault in the area. The soils and soil matrix in this boring did not differ substantially from the other borings, and therefore there was not conclusive evidence to indicate the presence of a fault.

6.5 Fat Clay

Silty clay was encountered in Boring B2021-6 from elevations 2,555 to 2,531 feet. The fat clay was very dark gray, had a high plasticity, and consolidated similar to claystone. It was identified in this single boring; however, may exist in surrounding areas. Penetration resistance values were greater than 50 blows per foot which indicates a potentially very hard soil stratum.

Laboratory testing performed on split spoon samples of the fat clay indicated liquid limits were on the order of 56 to 67 with a plastic index of 19 to 22. (**Appendix C**).

6.6 Groundwater

Groundwater was not encountered in any of the previous or more current borings drilled at this site. Based on the well data presented in previous reports, the natural groundwater elevation is assumed to be below the proposed excavation depths of up to 200 to 250 feet for the proposed landfill expansion. Numerous factors contribute to groundwater fluctuations, and evaluation of such factors is beyond the scope of this report.

7. ENGINEERING ANALYSIS AND RECOMMENDATIONS

7.1 Seismic Impact Zone Characterization

The seismic evaluation of the landfill was completed to comply with the Idaho Department of Environmental Quality's administration of municipal solid waste landfills. The Canyon County Landfill is located within a "seismic impact zone" as defined by the Administrative Rules for the Idaho Solid Waste Facilities Act (Idaho Statutes, Title 39 – Health and Safety, Chapter 74, Section 39-7407) that states:

"A MSWLF unit shall not be located: ...(ii)within seismic impact zones except as provided in 40 CFR §258.14;".

The United States Environmental Protection Agency (EPA) 40 CFR §258.14 defines a seismic impact zone as;

"...an area with a ten percent or greater probability that the maximum horizontal acceleration...will exceed 0.10g in 250 years."

The EPA requires that MSWLF units located within a seismic impact zone shall demonstrate that all landfill containment structures are designed to resist the maximum horizontal acceleration in lithified earth material for the site. Based on the United States Geological Survey (USGS) National Seismic Hazard Mapping application, the peak horizontal ground acceleration at the project site having a 10 percent probability of exceedance in any 250-year period is 0.12g, which exceeds the criteria above and therefore classifies or designates the site by rule definition to be within a seismic impact zone.

The results for the USGS National Seismic Hazard Mapping application were based on a risk category II, with the landfill as a moderate risk to human life determined based on the normal-day operations with human operators processing and covering the trash. The soil conditions were considered Site Class D for stiff soils with Standard penetration Resistance, N values, between 15 and 50.

Tetra Tech reviewed the most recent published USGS probabilistic earthquake hazard information for seismic events with a 10 percent probability of exceedance in a 250-year period (USGS 2008 NSHMP PSHA Interactive Deaggregation Web Application), as current state of practice warrants, to select a peak spectral horizontal acceleration (PSHA). Based on our review of the USGS probabilistic earthquake hazard information, including site specific deaggregation characteristics of the Maximum Credible Earthquake (MCE), including magnitude, distance, and probability, a PSHA of 0.23g was selected to represent the extreme seismic case.

Based on recommendations in the EPA's Seismic Design Guidance for Municipal Solid Waste Landfill Facilities (1995), the maximum horizontal acceleration was reduced by 50 percent to represent the average horizontal acceleration for the given slope. In this case, 50 percent of the maximum horizontal acceleration (0.23g) yields an average horizontal acceleration of 0.115g. An adjusted horizontal acceleration of 0.12g was applied for pseudo-static analysis of the modeled slope configurations. The above acceleration values were applied for pseudo-static analysis of the modeled slope configurations.

To model the proposed slope cuts an initial angle between 2.25H:1V to 2.75:H:1V was removed to the proposed base elevation and the factor of safety for slope stability was calculated. The slope angle was adjusted using iterations of the same process until a resulting factor of safety was established that was above the criteria of 1.5 for static, and 1.3 for pseudo-static. The proposed fill was then added into the cut section and iterations were used with varied slopes between 2.75H:1V and 3H:1V to achieve a long-term factor of safety as described.

7.2 Material Strength Properties

Tetra Tech previously completed a slope stability evaluation that included static and seismic stability evaluations for Phases 2 through 4 of the Canyon County Landfill (October 7, 2015). Additionally, Tetra Tech reviewed the previous evaluations from Holladay Engineering Company for the Pickles Butte Sanitary Landfill, dated 1998.

For this stability evaluation, Tetra Tech incorporated the following information: 1) the soils strength data available from the previous analysis, 2) materials strength properties assigned based on the laboratory testing of the geotechnical samples collected in 2021 and correlated data from the SPT N-value (blow count) data collected during the geotechnical drilling and well installation.

As discussed in the laboratory testing section, Tetra Tech's senior geotechnical engineer specifically selected samples for testing in each boring to directly incorporate into the slope stability models at each cross-section location. An attempt was also made to provide duplicate or crossover testing to identify variations in strength parameters for similar soil types. Several different tests were also performed to obtain a range of soil strength properties for each soil type. **Tables 2** and **3** presents a detailed breakdown of some of the data utilized to analyze the cross sections.

Conservative (lower bound) shear strength values were used to evaluate slope stability for static and seismic conditions. The following **Tables 2** and **3** present the material values that were assumed for this analysis.

Material	ASTM Classification	Unit Weight (pcf)	Friction Angle (deg)	Cohesion (psf)
Waste Fill		75	28	300
Poorly-Graded Silty Sand	SP-SM	110	20	280
Poorly-Graded Silty Sand	SP-SM	110	27	123
Silt (B,C)	ML	110	19	37
Silt (D,E)	ML	110	0	908
Lean Clay	CL	130	14	2000
Lean Clay-Silty Clay	CL-ML	109	15	489
Clay (Hard)	CL	125	0	6211
Clay (Hard)	CL	125	10	7831
Silty Sand - B3	SP-SM	115	32	400
Silty SandB4	SP-SM	115	30	580
Sand B3	SP	110	36.2	0
Sand/Gravel Interbedded	GW	135	37	0
Clayey Gravel	GW	138	36	1

Table 2. Material Strength Properties - Soil

Table 3. Material Strength Properties - Rock

Generalized Hoek-Brown Material	UCS (ksf)	GSI	mi	Unit Weight (pcf)
Basalt	3,500	30	25	146
Claystone	7,000	10	4	135

7.3 Slope Stability Analyses

Slope stability and pseudo-static analyses were performed using the computer program Slide2 v.9.023, developed by Rocscience, Inc., to determine the factors of safety of critical slip surfaces using both circular and block failure searches and vertical slice limit equilibrium methods. Because the proposed expansion of the landfill would be unlined, the potential of a critical interface between the waste fill and the natural subgrade soil is low. Therefore, circular failure analyses were performed at the critical sections. A screening analysis for block failure was performed to verify the potential for failure along the waste-soil interface is low compared to circular failure through the waste fill.

The EPA recommends a minimum FS of 1.5 for static slope stability analysis and a FS of 1.3 for pseudo-static slope stability analysis, based on Table 2-4 of the EPA's Solid Waste Disposal Facility Criteria Technical Manual (1998). For temporary cut slopes, a minimum FS of 1.2 is typically considered acceptable. Tetra Tech did not analyze temporary slopes given that it is anticipated that most all of the cut slopes will be open for a minimum of 6 months to 1 year, which per geotechnical standard of practice, are considered permanent slopes for purposes of slope analyses. Higher values for the FS indicate that the design is less likely to fail.

The cross-sections were created in the areas with the highest proposed cut and fill slopes where the critical soil slope conditions were identified, and in the areas incorporating the existing landfill with the proposed additional cells. There are seven section profile views, A through G, shown on Figures 2D to 5D, and included in **Appendix D**. A summary of the slope stability analysis results are presented in **Table 4** below and the corresponding output plots are Figures 6D through 37D in **Appendix D**.

		Factor of Safety					
Section	Analyzed Slope Long term	Static Analysis, Circular Failure	Pseudo-Static Analysis, Circular Failure	Static Analysis, Block Failure	Pseudo-Static Analysis, Block Failure		
Α	3H:1V	2.3	1.53	2.85	2.02		
A – Final Slope Configuration	2.75H:1V 3H:1V	1.73 1.94	1.28 1.40	- 2.21	- 1.68		
В	2.27H:1V	2.43	1.88	2.52	2.00		
С	2.85H:1V	1.85	1.35	2.16	1.63		
D	2.87H:1V	1.93	1.37	3.11	2.33		
E	2.27H:1V	1.96	1.51	-	-		
E	1.87H:1V	1.66	1.34	1.77	1.45		
F	3H:1V	1.38	0.99	-	-		
F- 2 Tier	3H:1V on lower, and 4H:1V on upper	1.81	1.19	2.14	1.53		
F	4H:1V	2.06	1.35	1.83	1.69		
G	2.6H:1V	2.22	1.68	2.65	2.16		

Table 4. Factors of Safety for Slope Stability Analyses

The analysis as represented above indicates FS values for the static determinate loading on the order of 1.38 to 2.43, and 1.83 to 3.11 for circular and block failure, respectively. The seismic FS values were on the order of 0.99 to 1.88, and 1.45 to 2.16 for circular and block failure, respectively. The silty soils within the proposed cut in Section F produced a FS below 1 for the seismic loading condition. The slope was modeled with 4H:1V slope cut and a FS of 1.35 was obtained which met the minimum requirements of 1.3. Various degrees of slope cuts were modeled in an iterative manner to define the most effective slope cut for the soil conditions. The final slope

configuration was modeled on Section A and was representative of the backfill method and slope for the remaining project area. An iterative process was used to define which slope complied with the required factor of safety criteria of 1.5 for static stability and 1.3 for pseudo-static stability.

7.4 Pseudo-static

When the pseudo-static analysis indicates a factor of safety of equal to or less than 1.3, the containment structure is required to be evaluated utilizing at least two independent methods to estimate permanent seismic induced displacement of the refuse mass. The displacement analysis methods are typically used as a screening method to evaluate if the structure or slope under analysis is within the range of critical displacement. For design of municipal solid waste landfill facilities, a maximum displacement less than 0.5 to 1.2 inches (1 to 3 cm) is typically acceptable for design. Where the pseudo-static analysis indicated a factor of safety of equal to or less than 1.3, the containment structure was evaluated using the Newmark displacement analysis method to determine a range of seismic-induced deformation. There was one cross-section, Section F, where the pseudo-static analyses indicated a factor of safety below 1.3. Yield accelerations were performed using Slide2 and are provided in the **Table 5** below.

The Slide2 program calculates the Newmark displacement based on the program SLAMMER (2013), developed by the USGS. The Slide2 program allows the user to enter a seismic record directly (time and acceleration data) or choose from a database of available historical seismic records. For the seismic analysis, a historical earthquake record was selected based on comparison to the design seismic event stated above. The earthquake record selected was the Mammoth Lakes – 1 1980, CVK-090 record, with a magnitude of 6.1 and Peak Ground Acceleration (PGA) of 0.416g, and represents an average high magnitude earthquake in similar soil conditions.

The performance of landfills subjected to strong earthquake ground motions is an extremely complicated process for which all of the variables affecting the behavior are not yet fully understood or capable of being analyzed. The historical performance of landfills subjected to seismic events similar to the design earthquake generally indicates satisfactory performance for the landfills studied.

For Section F, a conceptual slope was evaluated based on the methods above. Two different slope angles were analyzed, 3H:1V (20.8- degrees) and 4H:1V (14-degrees) with the 0.12g peak ground acceleration and the section F geometry. A summary of the analyses results is presented in **Table 5** and the corresponding output plots (Figures 1E through 12E) are included in **Appendix E**.

	Static Ar	nalysis	Pseudo-stati	c Analysis
Slope 3H:1V	Circular Failure	Block Failure	Circular Failure	Block Failure
Factor of Safety	1.38	1.90	0.99	1.41
Yield Acceleration (%g)	-	-	-	0.12
Estimated Displacement (in)	-	-	-	3.19
Slope 4H:1V				
Factor of Safety	2.06	2.49	1.35	1.69
Yield Acceleration (%g)	-	-	-	0.23
Estimated Displacement (in)	-	-	-	0.25

Table 5. Section F Stability Analysis Results for Displacement

7.5 Comprehensive Seismic Survey for Fault identification

Tetra Tech prepared a 3D Seismic Survey report dated February 21, 2022. The project site is located within the Western Snake River Plain (WSRP) fault system and a portion of an undifferentiated Quaternary aged northeast-dipping WSRP normal fault is mapped within the project boundaries, extending northwest through the proposed expansion area. The mapped fault is labeled as a normal fault with an approximate slip rate of less than 0.2

mm/year. Proposed excavations within the fault areas are expected to extend up to 150 feet below ground surface, potentially intercepting this fault.

The report prepared by Tetra Tech presented the results from an active-source 3D seismic survey. The seismic survey was designed to image and delineate the suspected fault. Seismic imaging over the suspected fault area was attained by using 3D seismic velocity tomography and reflection processing. Seismic reflection is a reliable method for imaging faults when present and can help to orient the faults and subsurface structure. The 3D seismic tomography provides the information needed to accurately convert seismic reflection data in time to depth and elevation. The information gained from this survey was used to site the location of Boring B5 to aid in the evaluation of the fault.

The summary of the seismic investigation and report were as follows:

- 1) The USGS NW-striking NE-dipping WSRP normal fault that is mapped as extending into the project site from the northwest does not appear to displace ~100ka age sedimentary units.
- 2) From a probabilistic perspective there seems to be little possibility of significant shallow (< 200 feet) faulting within the project site southeast of the west edges of the mapped tip splay faults.
- 3) To best characterize the potential movement and absolute location of faulting would require geologic mapping during excavation of the future landfill cell. This area of the proposed landfill expansion would be constructed in >50 years in the future. When the area is excavated for cover material in the future before waste is placed in this area it is recommended that geologic mapping of the fault is conducted, with particular attention to identifying narrow fault zones with evidence of recent activity and areas of potential materials suitable to date the most recent age of fault activity to determine if any detected fault activity is recent (unlikely) or > 100 ka in age (most likely).

Tetra Tech's slope evaluation recommendations presented in **Section 7.3** are not affected or altered by the results of the February Seismic Survey Report. We suggest that a geotechnical engineer observe the slope cuts in the future to determine the potential presence of a faulted area. Should a faulted area be identified, the geotechnical engineer should determine at that time whether further investigation or analysis is required for the specific cells in the suspect fault area.

7.6 Conclusions and Recommendations

The material strength properties incorporated in the geotechnical analyses were based on lower bound shear strength values and are considered conservative estimates. The stability analyses performed are considered to be the worst-case slope configurations with conservative material strengths and resulted in the factors of safety and displacements indicated above.

Results of the geotechnical investigation and analyses indicate that the proposed excavation and design as shown on Figure 1D in **Appendix D** will meet the Factor of Safety requirements of the Idaho Administrative Rules for the Idaho Solid Waste Facilities Act for the Idaho DEQ's administration of MSWLF.

Multiple slope angles were considered for Tetra Tech's slope analyses, ranging from 2.5:1 to 4:1 depending on the soil and bedrock types at each location. Based on Tetra Tech's analysis and the required FS's, the following two slope angles are recommended for the preliminary landfill site grading plans:

3H:1V: for the majority of the site slopes

4H:1V: where silt is encountered (Section F)

The 4:1 slope was analyzed and recommended for Section F because silt was interbedded between poorly-graded sand and fine sand and created a weakened soil profile. In areas where a high concentration of silt is predominant during construction, a slope of 4H:1V is recommended for cut areas. For now, Section F is the only area identified as having a high concentration of silt.

If it can be confirmed that bedrock exists for the entire depth of cut during construction, a 2:1 slope may be utilized. However, if there are any soft silt or clay seams interbedded withing the bedrock layer at any location along the

cut, a 3:1 slope must be used. If slope angles are proposed to be steepened to a 2:1 slope during construction, a licensed geotechnical engineer from Tetra Tech must observe and evaluate the slope prior to make the determination if the slopes can be steepened, otherwise the slope must remain at 3:1.

In general, the seismic displacement analyses indicate permanent seismic-induced displacements are within the tolerances of 6 to 12 inches (15 to 30 cm) that are typically considered acceptable for landfill design. The preliminary seismic evaluation presented above was performed in accordance with generally accepted standards of the geotechnical engineering profession.

Because it is anticipated that most all of the cut slopes will be exposed for a minimum of 6 months to 1 year, Tetra Tech analyzed all slopes as permanent, and did not consider reducing the factor of safety for temporary slopes.

Some states specify the maximum allowable steepness of landfill cut or fill slopes, sometimes also based on the height of the slopes. In Pennsylvania for example, the maximum allowable slope steepness is 3:1. Other states have varying specifications or slope steepness limits for short term or longer-term slope exposures. The requirements are based both on historical slope failure data and slope analysis data, along with added factors of safety. Therefore, states have somewhat calibrated requirements based on the soil types and rainfall. The 3:1 maximum slope steepness for Pennsylvania landfills matches that determined for this investigation.

8. CONTINUING SERVICES

Two additional elements of geotechnical engineering service are important to the successful completion of this project.

- 1) Design Phase. During the design phase, it is essential to ensure that the intent of the recommendations is incorporated in design decisions related to the project and that changes in the design concept consider geotechnical aspects. If issues arise, Tetra Tech's geotechnical engineers should be consulted for clarification and additional analysis on an as needed basis.
- 2) Observation and monitoring during construction. PBSL Operations should be trained to observe the types of materials encountered during the earthwork phases of the project, including the site grading and landfill cell excavations, to determine that the subsurface conditions are compatible with those used in the analysis and design. If conditions change, a geotechnical engineer should be consulted to evaluate the stability or potential impact on the design. During site grading, placement of fill should be observed and tested to confirm that the proper compaction has been achieved. PBSL should continue the annual aerial evaluation of the site and performance analysis to verify that the compaction remains consistent.

9. LIMITATIONS

The subsurface conditions and recommendations presented in this document are based on conditions encountered at the boring locations and based on the laboratory analysis. Due to the complexity and variability of natural earth and rock formations and materials, significant variations may occur between and around these locations or with time. Because these data represent a very small statistical sampling of subsurface conditions, it is possible that conditions may be encountered that are substantially different from those indicated. In these instances, modification and adjustment to the recommendations presented may be warranted.

This study has been conducted in accordance with generally accepted geotechnical engineering practices in the region where the work was conducted. The conclusions and recommendations submitted in this report are based upon project information collected and provided to Tetra Tech. The nature and extent of subsurface variations across the site may not become evident until construction. Tetra Tech should be on site during construction, to verify that actual subsurface conditions are consistent with those described herein.

This report has been prepared exclusively for the client. This report and the data included herein shall not be used by any third party without the express written consent of both the client and Tetra Tech. Tetra Tech is not responsible for technical interpretations by others. As the project evolves, Tetra Tech or another qualified geotechnical engineer should provide continued consultation and field services during construction to review and monitor the implementation of the recommendations and verify that the recommendations have been appropriately interpreted. Significant design changes may require additional analysis or modifications of the recommendations presented herein. On-site observation of excavations and foundation bearing strata and testing of fill should be performed by a representative of the geotechnical engineer.

10. REFERENCES

- Ambraseys N.N., Menu J.M. (1988). Earthquake-Induced Ground Displacements. Journal of Earthquake Engineering and Structural Dynamics 16: 985-1006.
- Bray, J.D., Zekkos, D., Kavazanjian, E., Jr., Athanasopoulos, G.A., Riemer, M.F. (2009). "Shear Strength of Municipal Solid Waste." Journal of Geotechnical and Geoenvironmental Engineering, June.
- Bray J.D., Rathje E.M. (1998). Earthquake-induced displacements of solid-waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 124(3): 242-253.
- Holladay Engineering Company, February 1998. "Geotechnical Evaluation Pickles Butte Sanitary Landfill, Canyon County, Idaho."
- Koerner, R.N. and Soong, T.-Y. (1998). "Analysis and Design of Veneer Cover Soils", 6th International Conference on Geosynthetics.
- Makdisi F.J., Seed H.B., (1978). Simplified Procedure for Estimating Dam and Embankment Earthquake-Induced Deformations. Journal of Geotechnical Engineering 104(7): 849-867.
- Petersen, Mark D., et al, 2008, Documentation for the 2008 Update of the United States National Seismic Hazard Maps: U.S. Geological Survey Open-File Report 2008–1128, 61 p.
- Tetra Tech, September 2015. Technical Memorandum. "Pickles Butte Sanitary Landfill, Canyon County, Idaho.

 Draft Conceptual Fill Plan Report & Capacity Estimate."
- US Environmental Protection Agency, 1995. "RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities". EPA/600/R-95/051.
- US Environmental Protection Agency, 1998. "Solid Waste Disposal Facility Criteria Technical Manual". EPA530-R-93-017.
- USGS, 2008. National Seismic Hazard Mapping Project (NSHMP) PSHA Interactive Deaggregation Web Application. https://earthquake.usgs.gov/hazards/interactive/

Pickles Butte Sanitary Landfill Expansion Seismic and Stability Evaluation
APPENDIX A: MISCELLANEOUS FIGURES AND DETAILS
Important Information About Your Geotechnical Engineering Report (Published by ASFE)
Tetra Tech Boring Log Descriptive Terminology Key to Soil and Rock Symbols and Descriptive
Terms
Classification of Soils for Engineering Purposes
Tetra Tech Exploratory Boring Locatsions – Figure 1040-1

Pickles Butte	Sanitary	Landfill	Evnansion	Spismic	and	Stahility	Evaluation
FICKIES DULLE	: Salillal V	Lallullli	EXDALISIOL	SCISITIL	allu	SLADIIILV	⊏vaiuali0ii

APPENDIX C: LABORATORY TESTING

Summary of Laboratory Results - Table 1-C

Sieve Analysis Results

Moisture Density Relationship Results

Consolidation Tests

Unconfined Compressive Strength Results

Triaxial Tests

ickles Butte Sanitary Landfill Expansion Seismic and Stability Evaluation					

APPENDIX E: DEFORMATION ANALYSIS

Figures 1E through 12E

Static and Pseudo-Static Slope Stability Stability Analyses with Associated Circular and Block Failure Factor of Safety, Newmark Displacement, and Critical Acceleration for Slope 3H:1V Figures 1E through 6E

Static and Pseudo-Static Slope Stability Stability Analyses with Associated Circular and Block Failure Factor of Safety, Newmark Displacement, and Critical Acceleration for Slope 4H:1V Figures 7E through 12E

APPENDIX A: Miscellaneous Figures and Details

Important Information about Your Geotechnical Engineering Report (Published by ASFE/GBA)

Tetra Tech Boring Log Descriptive Terminology Key to Soil and Rock Symbols and Terms

Classification of Soils for Engineering Purposes

Figure No. 2001-1 – Location of Exploratory Borings

IMPORTANT INFORMATION

ABOUT YOUR

GEOTECHNICAL ENGINEERING REPORT

More construction problems are caused by site subsurface conditions than any other factor. As troublesome as subsurface problems can be, their frequency and extent have been lessened considerably in recent years, due in large measure to programs and publications of ASFE/The Association of Engineering Firms Practicing in the Geosciences.

The following suggestions and observations are offered to help you reduce the Geotechnical-related delays, cost-overruns and other costly headaches that can occur during a construction project.

A GEOTECHNICAL ENGINEERING REPORT IS BASED ON A UNIQUE SET OF PROJECT-SPECIFIC FACTORS

A Geotechnical engineering report is based on a subsurface exploration plan designed to incorporate a unique set of project-specific factors. These typically include: the general nature of the structure involved, its size and configuration; the location of the structure on the site and its orientation; physical concomitants such as access roads, parking lots, and underground utilities, and the level of additional risk which the client assumed by virtue of limitations imposed upon the exploratory program. To help avoid costly problems, consult the geotechnical engineer to determine how any factors which change subsequent to the date of the report may affect its recommendations.

Unless your consulting Geotechnical engineer indicates otherwise, your Geotechnical engineer report should not be used:

- When the nature of the proposed structure is changed, for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one:
- when the size or configuration of the proposed structure is altered;
- when the location or orientation of the proposed structure is modified:
- when there is a change of ownership, or
- for application to an adjacent site.

Geotechnical engineers cannot accept responsibility for problems which may develop if they are not consulted after factors considered in their reports' development have changed.

MOST GEOTECHNICAL "FINDINGS" ARE PROFESSIONAL ESTIMATES

Site exploration identifies actual subsurface conditions only at those points where samples are taken, when they are taken.

Data derived through sampling and subsequent laboratory testing are extrapolated by Geotechnical engineers who then render an opinion about overall subsurface conditions, their likely reaction to proposed conditions, their likely reaction to proposed construction activity, and appropriate foundation design. Even under optimal circumstances actual conditions may differ from those inferred to exist, because no Geotechnical engineer, no matter how qualified, and not exploration program, no matter subsurface comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be fare more gradual or abrupt than a report indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimize their impact. For this reason, most experienced owners retain their Geotechnical consultants through the construction stage, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

SUBSURFACE CONDITIONS CAN CHANGE

Subsurface conditions may be modified by constantly-changing natural forces. Because a Geotechnical engineering report is based on conditions which existed at the time of subsurface exploration, construction decisions should not be based on a Geotechnical engineering report whose adequacy may have been affected by time. Speak with the Geotechnical consultant to learn if additional tests are advisable before construction starts.

Construction operations at or adjacent to the site and natural events such as flood, earthquakes or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical report. The geotechnical engineer should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

GEOTECHNICAL SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND PERSONS

Geotechnical engineers' reports are prepared to meet the specific needs of specific individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor, or even some other consulting civil engineer. Unless indicated otherwise, this report was prepared expressly for the client involved and expressly for purposes indicated by the client. Use by any other persons for any purpose, or by the client for a different purpose, may result in problems. No individual other than the client should apply this report for its intended purpose without first conferring with the

geotechnical engineer. No person should apply this report for any purpose other than that originally contemplated without first conferring with the geotechnical engineer.

A GEOTECHNICAL ENGINEERING REPORT IS SUBJECT TO MISINTERPRETATION

Costly problems can occur when other design professionals develop their plants based on misinterpretations of a geotechnical engineering report. To help avoid these problems, the geotechnical engineer should be retained to work with other appropriate design professionals to explain relevant geotechnical findings and to review the adequacy of their plans and specifications relative to geotechnical issues.

BORING LOGS SHOULD NOT BE SEPARATED FROM THE ENGINEERING REPORT

Final boring logs are developed by geotechnical engineers based upon their interpretation of field logs (assembled by site personnel) and laboratory evalution of field samples. Only final boring logs customarily are included in geotechnical engineering reports. These logs should not under any circumstances be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process. Although photographic reproduction eliminates this problem, it does nothing to minimize the possibility of contractors misinterpreting the logs during bid preparation. When this occurs, delays, disputes and unanticipated costs are the all-too-frequent result.

To minimize the likelihood of boring log misinterpretation, give contractors ready access to the complete geotechnical engineering report prepared or authorized for their use. Those

who do not provide such access may proceed under the *mistaken* impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes which aggravate them to disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY

Because geotechnical engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against geotechnical consultants. To help prevent this problem, geotechnical engineers have developed model clauses for use in written transmittals. These are not exculpatory clauses designed to foist geotechnical engineers' liabilities onto someone else. Rather, they are definitive clauses which identify where geotechnical engineers' responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your geotechnical engineering report, and you are encouraged to read them closely. your geotechnical engineer will be pleased to give full and frank answers to your questions.

OTHER STEPS YOU CAN TAKE TO REDUCE RISK

Your consulting geotechnical engineer will be pleased to discuss other techniques which can be employed to mitigate risk. In addition, ASFE as developed a variety of materials which may be beneficial. Contact ASFE for a complimentary copy of its publications directory.

8811 Colesville Road/Suite G106/Silver Spring, Maryland 20910/(301)565-2733

Tetra Tech Boring Log Descriptive Terminology Key to Soil Symbols and Terms

SOIL CLASSIFICATION CHART

M	V IOD DIVICIO	ONC	SYM	BOLS	TYPICAL
IVI.	AJOR DIVISION	ONIC	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL	CLEAN GRAVELS		GW	Well-graded gravels, gravel sand mix- tures, little or no fines.
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		I GP	Poorly graded gravels, gravel-sand mixtures, little or no fines.
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		I GM	Sity gravels, gravel-sand-sit mixtures.
SOILS	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	Clayey gravels, gravel-sand-clay mixtures.
	SAND	CLEAN SANDS		SW	Well-graded sands, gravelly sands, little or no fines.
MORE THAN 50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	AND	(LITTLE OR NO FINES)		SP	Poorly graded sands, gravelly sands, little or no fines.
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	Sity sands, sand-sit mixtures.
	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	Clayey sands, sand-clay mixures.
				ML	Inorganic silts and very fine sands, rock flour, silty or dayey fine sands or clayey silts with slight plasticity.
FINE GRAINED	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
SOILS	CLATS			OL	Organic silts and organic silty clays of low plasticity.
MORE THAN 50% OF MATERIAL IS				МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
SMALLER THAN NO. 200 SIEVE SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	Inorganic clays of high plasticity, fat clays.
	55,110			ОН	Organic clays of medium to high plasticity, organic silts.
HIGHLY ORGANIC SOILS			77 77 77 77 7 77 77 77 77 77 77 77 77	PT	Peat and other highly organic soils.

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS

Notes

See Soil Boring Information Special Provision.

SPT (Standard Penetration Test-ASTM D1586): The number of blows of a 140 lb (63.6 kg) hammer

falling 2.5 ft (750 mm) used to drive a 2 in (50 mm) O.D. Split Spoon sampler for a total of 1.5 ft (0.45 m) of penetration.

Written as follows:

first 0.5 ft (0.15 m) - second 0.5 ft (0.15 m) - third 0.5 ft (0.15 m) (ex: 1-3-9)

Note: if the number of blows exceeds 50 before 0.5 ft (0.15 m) of penetration is achieved, the actual penetration rounded to the nearest 0.1 ft (0.03 m) follows the number of

blows in parentheses (ex: 12-24-50 (0.09 m), 34-50 (0.4 ft), or 100 (0.3 ft)).WR denotes a zero blow count

with the weight of the rods only.

WH denotes a zero blow count with the weight of the rods plus the weight of the hammer.

MC=Moisture Content, LL=Liquid limit, PL=Plastic Limit -200%=percent soil passing 200 sieve, DD=Dry Density

Soil Classifications are Based on the Unified Soil Classification System, ASTM D2487 and D2488.
Also included are the AASHTO group classifications (M145). Descriptions are based on visual observation, except where they have been modified to reflect results of laboratory tests as deemed appropriate.

Order of Descriptors

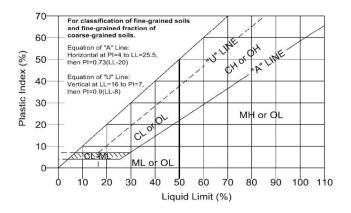
- Group Name
- Consistency or Relative Density
- Moisture Condition Color
- Particle size descriptor(s) (coarse grained soils only)
- Angularity of coarse grained soils
- Other relevant notes

Criteria For Descriptors Consistency of Fine Grained Soils

Consistency	N-Value (uncorrected)
Very Soft	< 2
Soft	2 - 4
Medium Stiff	5 - 8
Stiff	9 - 15
Very Stiff	16 - 30
Hard	> 30

Apparent Density of Coarse Grained Soils

Relative Density	N-Value (uncorrected)
Very Loose	< 4
Loose	4 - 10
Medium Dense	11 - 30
Dense	31 - 50
Very Dense	> 50


Moisture Condition

Dry Moist -Absence of moisture, dusty, dry to the touch. Damp, but no visible water. Visible free water.

Definition of Particle Size Ranges

Soil Component Size Range	
Boulder > 12 in (300 mm)	
Cobble 3 in (75 mm) - 12 in (300 mm)	
Gravel No. 4 Sieve (4.75 mm) to 3 in (75 mm	1)
Sand No. 200 (0.075 mm) to No. 4 Sieves (4.75	mm)
Silt No. 200 Sieve (0.075 mm)*	•
Clay < No. 200 Sieve (0.075 mm)*	

^{*}Atterberg limits and chart below to differentiate between silt and clay.

Angularity of Coarse-Grained Particles

Angular -Particles have sharp edges and relative plane sides with unpolished surfaces. Subangular -Particles are similar to angular description,

but have rounded edges.

Subrounded-Particles have nearly plane sides, but have

no edges.
-Particles have smoothly curved sides and Rounded well-rounded corners and edges.

Example soil description: Sandy FAT CLAY (CH), soft, wet, brown. (A-7)

Tetra Tech Boring Log Descriptive Terminology Key to Rock Symbols and Terms

Rock Type	Symbol	Rock Type	Symbol	Rock Type	Symbol
Argillite		Dolomite		Quartzite	
Basalt		Gneiss		Rhyolite	
Bedrock (other)		Granitic	, , ,	Sandstone	
Breccia		Limestone		Schist	
Claystone		Siltstone	* * * * * * * * * * * * * * * * * * * *	Shale	
		Conglomerate	0.00		

Order of Descriptors

- Rock Type
- Color
- Grain size (if applicable)
- Stratification/Foliation (as applicable)
- Field Hardness
- Other relevant notes

Criteria For Descriptors Grain Size

Description Characteristic Coarse Grained

-Individual grains can be easily

distinguished by eye

Fine Grained

-Individual grains can be distinguished with difficulty

Stratum Thickness

3-10 ft (1-3 m) Thickly Bedded 1-3 ft (300 mm - 1 m) Medium Bedded 2-12 in (50-300 mm) Thinly Bedded < 2 in (50 mm) Very Thinly Bedded

Rock Field Hardness

Very Soft -Can be carved with knife. Can be excavated readily with point of rock hammer. Can be scratched readily by fingernail. Soft

-Can be grooved or gouged readily by knife or point of rock hammer. Can be excavated in fragments from chips to several inches in size by moderate blows of the point of a rock hammer.

-Can be grooved or gouged 0.05 in (2 mm) deep by firm pressure of knife or rock hammer point. Can be

excavated in small chips to pieces about 1 in (25 mm) maximum size by hard blows of the point of a rock hammer. -Can be scratched with knife or pick. Gouges or grooves to 0.25 in (6 mm) can be excavated by hard blow of rock Moderately hard

hammer. Hand specimen can be detached by moderate blows.

-Can be scratched with knife or pick only with difficulty. Hard hammer blows required to detach hand specimen. Hard Very Hard -Cannot be scratched with knife or sharp rock hammer point. Breaking of hand specimens requires several hard

> Notes: UCS = Unconfined Compressive Strength obtained from laboratory testing at the given depth. See Soil Boring Information Special Provision.

Miscellaneous Soil/Rock Symbols and Terms

Medium

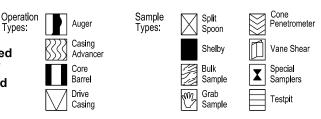
Concrete

Asphalt

Explanation of Text Fields in Boring Logs: Material Description: Lithologic Description of soil or rock encountered.

Remarks: Comments on drilling, including method, bit type, and problems encountered. Unless stated on logs as being surveyed by district survey, all locations are considered approximate.

Boulders and Cobbles

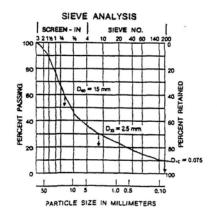

Millings

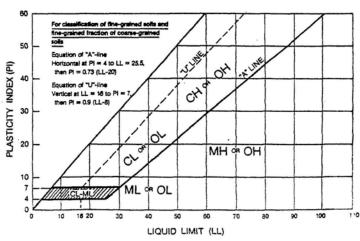
opsoil-

-Soil and Rock descriptions are based on visual observation, except where they have been modified to reflect results of laboratory tests as deemed approprlate.

General Notes

- Descriptions on these boring logs apply only at the specific boring, and at the time the time the borings were made. These logs are not warranted to be representative of subsurface conditions at other locations or times.
- Water level observations apply only at the specific boring, and at the time the borings were made. Due to the variability of groundwater measurements given the type of drilling used, and the stratification of the soil in the boring, these logs are not warranted to be representative of groundwater conditions at other locations or times.
- Other terms may be used as descriptors, as defined by the profession.


Example Rock Log SANDSTONE, gray, fine grained, thickly bedded, hard field hardness.


CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

ASTM Designation: D 2487 – 83 (Based on Unified Soil Classification System)

	MAJ	OR DIVISIONS		GROUP SYMBOL	GROUP NAME
	Gravels	Clean Gravels	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well graded gravel ^F
	More than 50% coarse	Less than 5% fines	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel ^F
	fraction retained on	Gravels with	Fines classify as ML or MH	GM	Silty gravel FGH
Coarse-Grained Soils More than 50% retained on No. 200	No. 4 sieve	Fines More than 12% fines	Fines classify as CL or CH	GC	Clayey gravel FGH
sieve	Sands	Clean Sands	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand ^I
	50% or more of coarse	Less than 5% fines	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand ¹
	faction passes No. 4	Sands with Fines	Fines classify as ML or MH	SM	Silty Sand GHI
	sieve	More than 12% fines	Fines classify as CL or CH	SC	Clayey sand GHI
		Inorganic	PI > 7 and plots on or above "A" line	CL	Lean clay KLM
	Silts and Clays Liquid limit less	morganic	PI < 4 or plots below "A" line	ML	Silt KLM
Fine-Grained Soils 50% or more passes	than 50	Organic	Liquid limit – oven dried Liquid limit – not dried < 0.75	OL	Organic clay ^{KLMN} Organic silt ^{KLMO}
the No. 200 sieve		Inorganic	PI plots on or above "A" line	CH	Fat clay KLM
	Silts and Clays Liquid limit 50 or	morgamo	PI plots below "A" line	МН	Elastic silt KLM
	more	Organic	Liquid limit – oven dried Liquid limit – not dried < 0.75	ОН	Organic clay KLMO Organic silt KLMO
Highly organic soils	Primarily organic	matter, dark in co	lor, and organic odor	PT	Peat

^A Based on the material passing the 3-in. (75-mm) sieve.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^C Gravels with 5 to 12% require dual symbols:

GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay

D Sands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt SW-SC well-graded sand with clay SP-SM poorly graded sand with silt SP-SC poorly graded sand with clay

^E Cu = D_{60}/D_{10} Cc= $(D_{30})^2$ / $(D_{10}$ x $D_{90})$ F If soil contains ≥15% sand, add "with

sand" to group name.

G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

H If fines are organic, add "with organic fines" to group name.

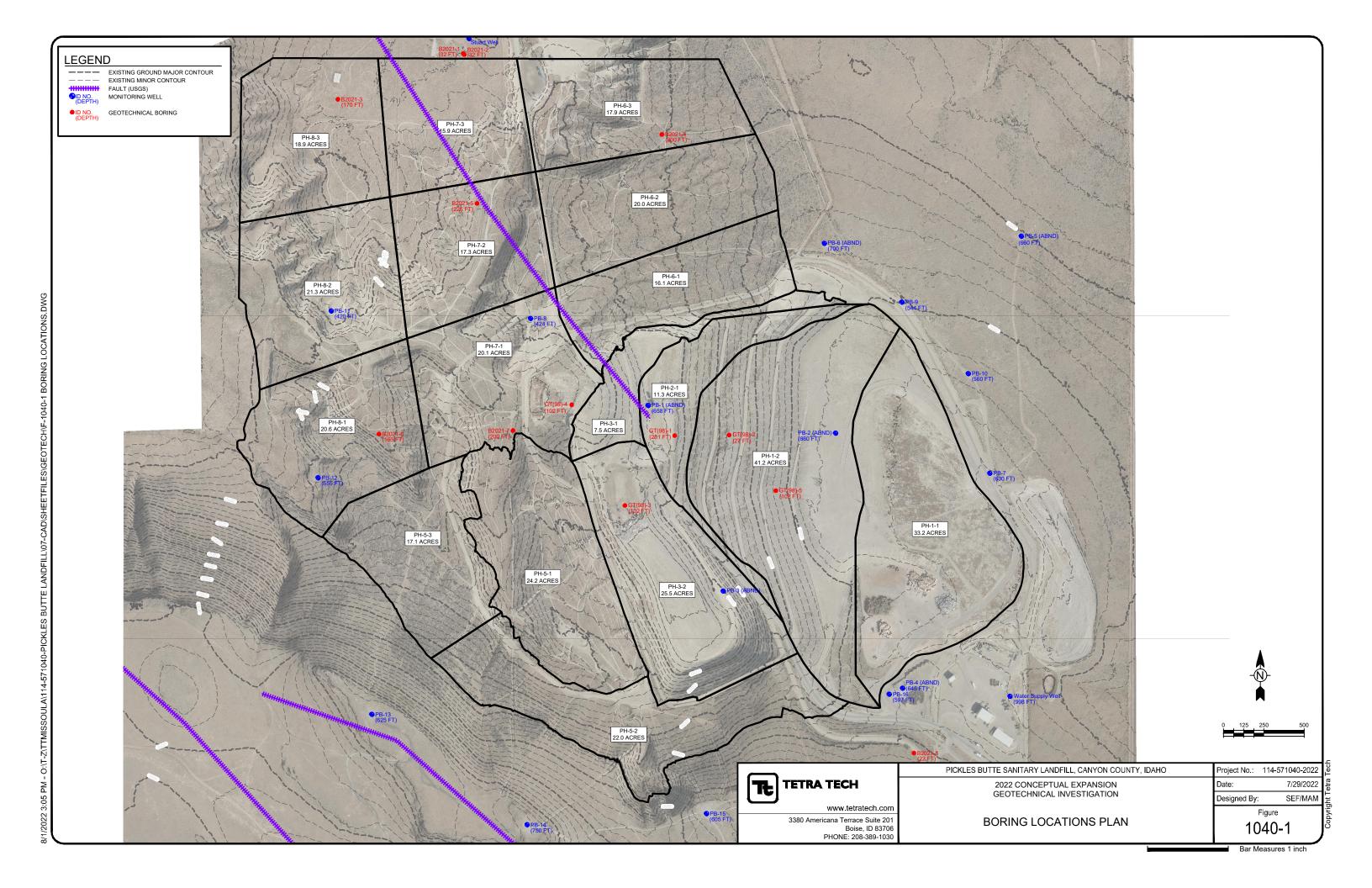
If soil contains ≥15% gravel, add "with gravel" to group name.

If soil contains ≥ 15% gravel, add "with gravel" to group name.

J If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.

K. If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel", whichever is predominant.

L If solid contains ≥ 30% plus No. 200, predominantly sand, add "sandy" to group name


^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^N Pl ≥ 4 and plots on or above "A" line.

O PI < 4 or plots below "A: line.

P PI plots on or above "A: line.

Q PI plots below "A: line.

APPENDIX B: Logs of Exploratory Borings

Figures 1 through 8

Figure No. 1 LOG OF BORING

Phone: 406-543-3045

Fax:							Boring I	B2021-1								Sheet 1 of 1
Projec	t: P	ickle	es B	utte	e Sanitary Lar	ndfill -		Boring Location	on N:	43.502	92	7				
Projec		_		Jou	nty, ID		Hammer: Auto Boring Diameter:	Coordinates System: Decir		-116.6		204				
114-57							6 in	Datum: NAD8		egrees					Top	o of Boring vation: 2740.4 ft
			022		Date Finishe	d.		Abandonment		od:					LIE	vation. 2740.4 It
Date S		ea:			11/15/21	a:	Drilling Fluid:	Grout	• • • • • • • • • • • • • • • • • • • •							
11/15/2 Driller		olt S	ervi	ices			None Location: Refer to									
Logge					,		Loodiioiii Kelel (0	зпе тар.								
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	TT	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
	<i>\\\\</i>	\bigvee	100		3-3-4	N/	TOPSOIL, moist, tan/l			0.3 2740.1						
			100		2-3-3		Poorly-Graded SAND loose, moist, brown to medium grained, suba	gray, fine to	l),	2140.1	9	NV	NP	12	110	
5 5 2735.4	\$\$\$\$ \$\$\$\$		100		2-3-5	0000	Doorly Craded SAND	(SD) Jacob to		5.3		140		12	110	
		X	100		3-6-9		Poorly-Graded SAND medium dense, moist, medium grained, subar	gray to tan,	ar.	2735.1	8					
2901 		X	100		9-13-13											
2730.4		X	100		8 - 11 - 13		Silty SAND (SM), med		st,	11.2 2729.2	6					
							gray to tan, fine graine plasticity, Pockets of cl	ay.		14.1						
5 735.4 10 10 10 10 10 10 10 1		X	100		10 - 13 - 15	\$	Poorly-Graded SAND dense, slightly moist, medium grained, subar medium plasticity, Smaclay.	gray, fine to ngular to angula	ar, ey	2726.3	5					
20 _ 2720.4		X	100		10 - 12 - 13	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\										
25 _ 2715.4			100			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Poorly-Graded SAND dense to very dense, s gray, fine to medium gr	lightly moist,	1),	24.1 2716.3		NV	NP	6	113	Cc= 0.03
30		X	100		13 - 21 - 23											
² 2710.4 ⊇		X	100		13 - 25 - 34											
		<u>/ \</u>			<u> </u>	<u></u>	Boring Depth: 31.5 ft, ft	Elevation: 2708	8.9	31.5 2708.9	<u> </u>		_			
ă							During									
5		Wate	er L	evel	Observations		During Drilling: Not Encountered		Rema	arks:						
After Drillin	g: No	t Rec	orde	d			After Drilling: Not Recorded									

Fax:

Figure No. 2 LOG OF BORING

Phone: 406-543-3045

Boring B2021-2

Sheet 1 of 1

Project: Pickles	Butte Sanitary Landfill -	Rig: TS150 Crawle	Boring Location N: 43.501658	
Canyon	County, ID	Hammer: Auto	Coordinates E: -116.713829	
Project Number:		Boring Diameter:	System: Decimal Degrees	Top of Boring
114-571040-202	2	6 in	Datum: NAD83	Elevation: 2739.0 ft
Date Started:	Date Finished:	Drilling Fluid:	Abandonment Method:	
11/16/21	11/16/21	None	Grout	
Driller: Holt Ser	vices	Location: Refer to	site map.	
Logger: Matt Ada	ams		•	

Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	MC (%)	 Ъ	-200 (%)	DD (pcf)	Remarks and Other Tests
	- - - - - - - - - - - - - - - - - - -	X	100		2-1-3	0000 0000 0000 0000	Silty SAND (SM), very loose, slightly moist, brown to tan, fine grained, subangular to angular.	2.2	7				
 	} } } }		100		2-1-1		Poorly-Graded SAND with silt (SP-SM), very loose to very dense, slightly moist to moist, brown to gray, fine to medium	2.3 2736.7	3				
5 2734.0 	}}}} }		100		3-3-4		grained, angular to subangular.		3				
- 	 -	X	100		2-4-6				3				
- 10 - 3720 0	\$\$\$\$ \$\$\$\$		100		7 - 10 - 14								
2729.0 	 	X	100		10 - 15 - 20								
15 2724.0 	- - - - - - - - - - - - - - - - - - -	X	100		7-11-17				5				
5 _ 2734.0		X	150		11 - 17 - 21				3				
			100		11 - 16 - 21								
30 2709.0 	<u>}</u>		100		15 - 25 - 34			31.5 2707.5					
							Boring Depth: 31.5 ft, Elevation: 2707.5 ft	2707.5					
		Wate	er L	evel	Observations		∑ During	narks:					
After Drillin	a. No	nt Rec	orde	٠			After Drilling: Not Recorded						

Figure No. 3 **LOG OF BORING**

Phone: 406-543-3045 Fax:

Boring B2021-3

Sheet 1 of 4

Ī	Project					e Sanitary La	ndfill	-	Rig: TS150 Crawler	Boring Location	on N:	43.500)87	4				
F	Project				الان	inty, ID			Hammer: Auto Boring Diameter:	Coordinates System: Deci		-116.7 egrees		708)		Tor	o of Boring
Ľ	14-57	104	0-2	022					6 in	Datum: NAD								vation: 2737.7 ft
1	Date St	tarte	ed:			Date Finishe	ed:		Drilling Fluid:	Abandonmen	t Meti	nod:						
	1/16/2					11/22/21			None	Grout								
	Driller: ₋ogge					3			Location: Refer to	site map.								
Ė			,															
	Depth (ft)	E	/pe	Recovery (%)	(%	Blow Count	g					Depth (ft)				_	_	Remarks
	Elev.	Operation	Sample Type	over	RQD (%)	ŏ ≽	Lithology		Material Des	cription		Elev.	8			-200 (%)	DD (pcf)	and Other Tests
	(ft)	ဗ	Sam	Rec	Ř	89	5					(ft)	MC	Ⅎ	귑	-20(8	Other rests
t	_	????					7/ 1/4.		ghtly moist, tan.			0.7						
ŀ	-	}}}}						SII	LT (ML), stiff, slightly	moist, light tan	٦,	2737.0						
t	_	}}}}						IOV	v plasticity.									
2	5 2732.7	>>>		100		2-3-7												
г	4		\triangle	100		,												
<u> </u>	4	}}}}						Sil	ty SAND (SM), loose	to medium		8.0 2729.7						
ָבֶּרְ בַּרְבָּר	10	}}}}				7.00		de	nse, slightly moist to	slightly moist,		2.29.7						
	727.7	}}}}	\angle	100		7-9-9	\$ \$ \$ \$	IIg	ht tan, very fine grain	iea.								
- N	-	\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					<u> </u>											
	15						% % % % % %											
12	722.7	}}}}	\boxtimes	100		11 - 11 - 12												
		>>>>																
<u>-</u>	20	SSS					888											
	717.7	}}}}	\forall	93		10 - 12 - 13							3					
- LES	-	\$\$\$\$																
2 -		}}}}																
202	25 2712.7	} }}					8.000 8.000 8.000							ΝV	NP	29		Friction Angle= 25.86
Z –				80			800											degrees Cohesion= 0 ksf
- -	-	}}}}		100		11 - 15 - 15	8.0.0											Cc= 0.04
	30 _	>>>>											3					
	707.7	\$\$\$\$	Д	100		10 - 12 - 14	80000											
	7	}}}}					8000											
- F	35 _	\\\\					888 888	1										
1	702.7		X	100		11 - 14 - 21	\$78.00	1										
Z 08.7		}}}}					000											
7717	40	>>>>					\$ \$ \$ \$ \$	1										
<u> </u>	93 10-14-16											41.1						
- E	-	}}}}					0000		LT (ML), very stiff, sli v plasticity.	ightly moist, gr	ay,	2696.6 41.9						
	45	\$\$\$\$						Sil	ty SAND (SM), medi			2695.8						
120	45 2692.7	}}}}		100		12 - 12 - 12	0,0,0	de	nse, slightly moist, to	an to gray, fine								
뷡		} }}}	$\stackrel{\frown}{}$	100		<u>_</u>			ained, subangular to		·0\ ′	47.0						
- -	-	\$\$\$\$							LT (ML), very stiff, sli v plasticity.	ignily moist, gr	ay,	2690.7 47.7						
	50 _ 2687.7	}}}}					\$ \$ \$ \$		ty SAND (SM), medi	um dense to		2690.0	3					
						1	اه`ه`ه`						<u> </u>					
			Wate	er L	evel	Observations		⊥ Dr	ring illing: Not Encountered		Rem	arks:						
Ż	After Drilling	ı: No	t Rec	orde	d				ter illing: Not Recorded									

Figure No. 3 **LOG OF BORING**

Phone: 406-543-3045

Phone Fax:	. 40	JO-3	43-	5 04;	•			Boring I	B2021-3								Sheet 2 of 4
Projec					e Sanitary La ınty, ID	andfill -		Rig: TS150 Crawler Hammer: Auto	Boring Location Coordinates	on N:	43.500	087	4 768	!			
Projec				000	inty, iD			Boring Diameter:	System: Deci				700)		Tor	o of Boring
114-57	7104	10-2	022					6 in	Datum: NAD	83						Ele	vation: 2737.7 ft
Date S 11/16/2		ed:			Date Finish 11/22/21	ed:		Drilling Fluid: None	Abandonment Grout	t Metl	hod:						
Driller					5			Location: Refer to	site map.								
Logge	r: M	att /	∖da	ms													
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)		PL	-200 (%)	DD (pcf)	Remarks and Other Tests
			100		4- 18- 19	0000		nse, slightly moist, t			52.0	Γ					
								ained, subangular to LT (ML), very stiff, sl		av	2685.7						
55 2682.7							to	tan, low plasticity, H									
		}						eces. orly-Graded SAND v	with silt (SP).		56.2 2681.5						
	} }}						me	edium dense to dens	e, slightly moist								
60 2677.7								n to gray, fine graine gular.	u, subangular to	ט			NV	NP	19		Friction Angle= 20.2
	}}}	11/2	100					-					ΝV	ΝP	8	100	degrees Cohesion= 0.282 ks
	} }}																UCS= 0.143 ksf
_ 65 _	}																
2672.7																	
	} }}	}															
_ 70 _	}																
2667.7		\boxtimes	100		15 - 25 - 50												
		}															
- 75	} }}																
2662.7	}										76.5						
							Sa	indy SILT (ML), stiff, e grained, Broken si	dry, gray to red	d,	2661.2						
- 80 -	} }}					0,000		ty SAND (SM), medi			78.5 2659.2						
2657.7	}		75			<u> </u>		nse, slightly moist, t					NV	ΝP	24		Friction Angle= 32.8
	<u> </u>		100		4-11-50			ained, subangular to orly-Graded SAND (e.	82.0 2655.7	2					degrees Cohesion= 0.413 ks
- ₋ -	} }}}	high angle	100				dry	/, salt & pepper, fine	to medium	.,	2000.7						
85 _2652.7_							gra	ained, subangular to	anguiar.								
	} }}}																
	}}}																
90 _2647.7		H	100		23 - 40 - 50	0000											
- ··-	 	\bowtie	100														
	} }}}					%%% %%%% %%%%											
95 2642.7							Da	orly Graded SAND :	with cilt (CD CM	1)	95.0						
	 						ve	orly-Graded SAND v ry stiff, dry, tan, fine	to medium		2642.7						
	<u>}}}</u>	$\mid \mid$						ained, subangular, L oken sandstone.	arge amounts o	f							
100	} }}		0		50/0.2ft						100.0						
2637.7						0000		ty SAND (SM), very red, fine to coarse q		ay 	2637.7						
								ring		_							
√ ■ After		Wate	er L	.evel	Observations		<u> </u>	illing: Not Encountered ter		Rem	arks:						
Drillin	g: No	t Rec	orde	d				illing: Not Recorded									

Figure No. 3 LOG OF BORING

Phone: 406-543-3045

Fax:							Boring I	B2021-3							Sheet 3 of
Projec	t: P C	ickle anv	es E	Butte Cou	e Sanitary La nty, ID	andfill -	Rig: TS150 Crawle	Boring Location	on N: 43.50 E: -116.7	087 '16	4 76ዶ				
Projec					,,		Boring Diameter:	System: Decir						Tan	of Boring
114-57							6 in	Datum: NAD8	-					Elev	ation: 2737.7 ft
Date S					Date Finish	eq.	Drilling Fluid:	Abandonment							
11/16/2		<i>-</i> u.			11/22/21	cu.	None	Grout							
Driller:		olt S	erv	ices			Location: Refer to	site man							
Logge					,		Loodion, Kelel 10	зне тар.							
										ī					
Depth	_	8	Recovery (%)	9	i i	8			Depth						Damanira
(ft)	Operation	Sample Type	/ery	RQD (%)	Blow Count	Lithology	Material Des	cription	(ft)	1			-200 (%)	DD (pcf)	Remarks and
Elev.	Оре	ᇤ	900	R _O	<u>8</u>	별		•	Elev.	MC (%)	۰	_	00	<u> </u>	Other Tests
(ft)		ß	R						(ft)	Σ	占	PL	7	۵	
_	$\langle \langle $					0,000	subangular, Mixed with	n large pieces of							
105	SSS					\$ \$ \$ \$ \$	siltstone.								
2632.7	<i>}</i> }}}					0000									
-]	SSSS					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$									
	}}}}					0,000									
_ 110 _	<i>}}}}}</i>				24 50/0.05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$									
2627.7	}}}}	\preceq	143		31 - 50/0.2ft	0000									
	<i>}}}}</i>					0,000									
	\$\$\$\$ <u>\$</u>					\$ \$ \$ \$ \$ \$ \$ \$ \$									
_ 115 2622.7	$\langle \rangle \rangle \langle \langle \rangle \rangle$	<i>#</i>				888	Cilty CAND (CM) you	donos dnyto	115.0						
2022.7	SSSS					o. o. o.	Silty SAND (SM), very moist, salt & pepper to	grav, fine to	2622.7		NV	NP	16	104	
	>>>>					% % % %	medium grained, suba	ngular to angula	ır,						
- 420	<i>}</i> }}}					0000	Minimal pieces of sand	dstone. Decreasi	ing						
_ 120 _ 2617.7	>>> <u>}</u>	7/					with depth.								
	$\langle \langle $	\times	88		47 - 50/0.3ft	80000 80000				4					
	SSS					0000									
125	<i>}</i> }}}					% % % %									
2612.7	SSSS					0,000									
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					0,000									
	<i>}</i>					00000									
130	>>>>					\$ \$ \$ \$									
2607.7	}}}}					0,000									
	>>> <u>}</u>					******									
- 405	$\langle \langle \langle \rangle \rangle \langle \langle \langle \langle \rangle \rangle \rangle$					0000									
_ 135 _ 2602.7	\$\$\$\$ <u>\$</u>	_					Poorly-Graded SAND	with silt (SP-SM), 135.0 2602.7						
	<i>{</i> }}}}	Wy.					very stiff, dry, tan, fine	to coarse	,						
	\$\$\$\$ <u>\$</u>	_					grained, subangular, L	arge amounts of	f 138.6						
140	<i>}</i> }}}	000					broken sandstone and Poorly-Graded SAND		// 2500 4						
2597.7	<i>}</i>		100		14-33-50		dry to moist, salt & pe	pper to gray, fine	e						
	>>>>						to medium grained, su	bangular to							
	<i>}}}}</i>						angular, Minimal piece	s of sandstone	.						
145	\$\$\$\$ <u>\$</u>														
2592.7	<i></i> }}}}								146.5						
	\$\$\$\$ <u>\$</u>	<i>9</i>					Silty CLAY (CL-ML), ha	ard, very moist,	2591.2						
]	}}}}						gray, high plasticity.								
_ 150 2587.7	<i>}</i> }}}		400		16-33-50										
	>>>>		100		10-33-30										
	$\langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle$														
		147			Observed	I,	– During	Т	Donesiles						
After		vvate	er L	.evel	Observations		Drilling: Not Encountered After		Remarks:						
V Drilling	g: No	Rec	orde	d			- Drilling: Not Recorded								

Figure No. 3 **LOG OF BORING**

Phone: 406-543-3045 Fax:

Boring B2021-3

	Boring	B2021-3					Sheet 4 of 4
Project: Pickles Butte Sanitary L	andfill - Rig: TS150 Craw	er Boring Location N	1: 43.5008	374			
Canyon County, ID	Hammer: Auto	Coordinates E	: -116.71	6768	}		
Project Number:	Boring Diameter:	System: Decimal I	Degrees				Top of Boring
114-571040-2022	6 in	Datum: NAD83				ı	Elevation: 2737.7 ft
Date Started: Date Finish	ned: Drilling Fluid:	Abandonment Met	thod:				
11/16/21 11/22/21	None	Grout					
Driller: Holt Services							
	Location: Refer	o site map.					
Logger: Matt Adams							
Depth g (%)			Depth				
Operation Operation Sample Type Recovery (%) RQD (%)	Material D		(ft)				Remarks
Cheration Operation (##) Ample Type RQD (%) Blow Cour	ਨੂੰ Material D	escription		MC (%)		-200 (%)	and Other Tests
Elev. od club oo oo oo oo oo oo oo	=		Elev. (ft)	براق	占	8	Other Tests
"" " " " " " "			(11)	≥ ┙	-	``	
{\\\\							
155 (
2582.7							
├ <i>-</i> {}}}}}							
160							
2577.7							
L _\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
├ <i>-</i> {``}`}							
├ ₁₆₅ -{\\\\							
165							
F=0.=\\$\$\$\$\\							
[]>>>							
L{\\\							
_ 170 <u> {/{/</u> 2567.7	Paring Danth 47	0.0 ft Flavoriani	ــل <u>ـ170.0</u> ـــــــــــــــــــــــــــــــــــ				
2307.7	Boring Depth: 17 2567	0.0 II, <i>⊑ievali011.</i> 7.7 #	2567.7				

Figure No. 4 LOG OF BORING

Phone: 406-543-3045

Phone Fax:		<i>,</i> 0	4 0-()U4;	•			Boring B	B2021-4							Sheet 1 of 4
Projec					e Sanitary La ınty, ID	andfill -		Rig: TS150 Crawler Hammer: Auto	Boring Location	on N:	43.665 -116.6	36 883	4 888			
Projec				000	iiiy, ib			Boring Diameter:	System: Deci				000		T	op of Boring
114-57	′10 [∠]	10-2	022		T			6 in	Datum: NAD						Ε	levation: 2797.2 ft
Date S 12/8/21	1				Date Finish 12/14/21	ed:		Drilling Fluid: None	Abandonment Grout	t Meti	hod:					
Driller: Logge					3			Location: Refer to	site map.							
Depth					ıt						Depth			T	T	
(ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		(ft)	(%)		(6)	9	है Remarks and
Elev. (ft)	ö	Samp	Reco	R	Blov	=					Elev. (ft)	MC		PL 200 (%)	<u> </u>	and Other Tests
 5 _ 2792.2 			67		2-9-7		Silt	PSOIL, moist, dark by SAND (SM), medi slightly moist, tan, fi gular.	um dense, moi	st	0.7 2796.5	6				
10 _2787.2 		X	67		5-9-7											
15 _2782.2 			80		5-12-14	\$\frac{\phi}{2} \phi \phi \phi \phi \phi \phi \phi \phi		T (ML), very stiff, sl v plasticity.	ightly moist, ta	n,	15.0 2782.2					
20 _2777.2 			100		18 - 37 - 48	00000000000000000000000000000000000000	Silf to s	ry SAND (SM), medi slightly moist, tan, fi	um dense, moi ne grained.	st	20.0 2777.2	5				
25 _2772.2 			100		16 - 35 - 48		mo	ry CLAY (CL-ML), ve ist, tan, medium pla T (ML), very stiff, sl	asticity.		25.2 2772.0 27.7 2769.5					
30 _2767.2 			100		16 - 27 - 33			plasticity.		Í	2700.0					
35 2762.2 			80		15 - 30 - 34							8				
40 _2757.2_ 			100		11 - 23 - 18		to s	ty SAND (SM), medi slightly moist, tan, fi gular to (Cland)	ne grained,		40.0 2757.2 41.0 2756.2					
45 _2752.2 _		N.	100		9-13-13		mo	ty CLAY (CL-ML), ve ist, tan to black, me oken pieces of conso	edium plasticity,			16				
50 2747.2							_Po	orly-Graded SAND v	<u>with si</u> lt (SP-SM	l) <u>.</u>	50.0		NVN	NP 6	3	Friction Angle= 27.0
AD		Wate	er L	.evel	Observations	,	∑ Dui ∑ Drii	ring Iling: Not Recorded			arks:					
After Drilling	g: No	t Enc	ounte	ered			▼ Aft Dri	er Iling: Not Recorded								

Figure No. 4 LOG OF BORING

Phone: 406-543-3045

Boring B2021-4

Fax:		Boring	B2021-4	Sheet 2 of 4
	Butte Sanitary Landfill - County, ID	Rig: TS150 Crawle	Boring Location N: 43.665364 Coordinates E: -116.688388	
Project Number:		Boring Diameter:	System: Decimal Degrees	Top of Boring
114-571040-2022	2	6 in	Datum: NAD83	Elevation: 2797.2 ft
Date Started:	Date Finished:	Drilling Fluid:	Abandonment Method:	
12/8/21	12/14/21	None	Grout	
Driller: Holt Serv	vices	Location: Refer to	site map.	
Logger: Matt Ada	ams		•	

						1			i					
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	MC (%)	-1-	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
 _ 55 _ _2742.2			100		9-26-41		medium dense to very dense, slightly moist, tan to salt & pepper, fine to medium grained, subangular to angular.	2747.2						degrees Cohesion= 0.123 ksf
 60 2737.2 			80		2-5-18				2					
65 _2732.2 _ _ _ _ 70														
2727.2 - 75 2722.2			67		6-13-23	0000 B 0000 0000 B 0000 0000 B 0000 0000 B 0000	Silty SAND (SM), medium dense, moist to slightly moist, tan, fine grained, angular to subangular.	- 73.0 2724.2						
 80 2717.2 			80		2-7-23									
85 _2712.2 _		E3	100		13 - 40 - 50	0 4 6 7 6 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Poorly-Graded SAND (SP), stiff, dry, tan to yellow, fine to medium grained, angular to subangular. Silty SAND (SM), hard, moist, tan to brown, fine grained, angular to subangular, Broken pieces of	90.0 2707.2 90.0 2707.2		NV	NP	38		Friction Angle= 22.83 degrees Cohesion= 0.198 ksf
2702.2 1 100 2697.2		£5	100		9-18-20	00000000000000000000000000000000000000	consolidated clay.		22					
2037.2	((()	W/ətr	ar I	.evel	Observations	0,000	√7 During Rem	arks:	<u> </u>					
√ After					Jusci valiui iš		✓ Drilling: Not Recorded ✓ After	iui No.						
Drillin	g: No	t Enc	ounte	ered			Drilling: Not Recorded							

Prilling: Not Encountered

Figure No. 4 LOG OF BORING

Phone: 406-543-3045

Boring B2021-4 Sheet 3 of 4 Fax: Rig: TS150 Crawler Boring Location N: 43.665364 Project: Pickles Butte Sanitary Landfill -Canyon County, ID Coordinates E: -116.688388 **Hammer:** Auto **Boring Diameter: Project Number:** System: Decimal Degrees **Top of Boring** 114-571040-2022 Datum: NAD83 Elevation: 2797.2 ft **Abandonment Method:** Date Started: **Date Finished: Drilling Fluid:** Grout 12/8/21 12/14/21 None Location: Refer to site map. **Driller:** Holt Services Logger: Matt Adams Depth Depth **Blow Count** Sample Type Lithology 8 (ft) Operation (ft) Remarks Recovery (pct) 8 ROD **Material Description** and -200 (Elev. Elev. Other Tests 3 굽 ᆸ (ft) (ft) 104.0 105 Sandy SILT (ML), very stiff, slightly 2693.2 2692.2 moist, tan, low plasticity. 105.0 2692.2 Silty CLAY (CL-ML), hard, moist, tan to brown, medium plasticity, Broken pieces of consolidated clay. 110 2687.2 6-12-20 100 115 2682.2 117.5 Sandy SILT (ML), very stiff, slightly 2679.7 moist, tan, low plasticity. 120 120.0 31 - 70/0.4ft NVNP 49 Friction Angle= 29.51 100 Silty SAND (SM), medium dense to very 2677.2 2677.2 degrees dense, slightly moist, tan to salt & Cohesion= 0.588 ksf pepper, fine to medium grained, subangular to angular. 125 2672.2 129.0 Poorly-Graded SAND (SP), dense to 130 2668.2 2667.2 9-21-26 very dense, slightly moist, salt & pepper, 100 fine to medium grained, angular to subangular. 135 2662. Ž 140 2 2657.2 30 - 48 - 44 100 145 145.0 2652.2 Sandy SILT (ML), very stiff, slightly 2652.2 moist, tan to brown, low plasticity. 150 31 - 50/0.4ft 2647.2 111 During Water Level Observations Remarks: Drilling: Not Recorded

Prilling: Not Recorded

Fax:

Figure No. 4 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-4

Sheet 4 of 4

	Projec					e Sanitary Lar nty, ID	ndfill -		Rig: TS150 Crawler Hammer: Auto	Boring Location Coordinates		43.665 -116.68						
	Projec	t Nu	mb	er:		y,			Boring Diameter:	System: Decin	mal De		<i>300</i>	,00				of Boring
	114-57			022	<u> </u>				6 in	Datum: NAD8 Abandonment		ad:					Elev	ation: 2797.2 ft
	Date S		ed:			Date Finishe	d:		Drilling Fluid:	Grout	ı wetii	ou.						
	12/8/2 Driller	-	olt S	erv	ices	12/14/21			None Location: Refer to									
	Logge								Zodation: Relei to	ые шар.								
	Donth			(%		+						Donth						
	Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Desc	cription		Depth (ft) Elev. (ft)	MC (%)	=	Ъ	-200 (%)	DD (bcf)	Remarks and Other Tests
T LOG OF BORING - MDT_REVISED_2009+.GDT - 7/27/22 09:44 - N:\GEOTECHIREPORTS\REPORT 2022\PICKLES BUTTE LANDFILL\LAB_LOGS\BORING LOGS\GPJ	155			1111		29 - 50/0.4ft 50 - 50/0.3ft		Sai mo Po- ver fine	orly-Graded SAND (ry dense, slightly mo e to medium grained bangular. ndy SILT (ML), very bist, tan to brown, lov orly-Graded SAND (ry dense, slightly mo e to medium grained bangular.	ist, salt & pepp , angular to stiff, slightly w plasticity. SP), dense to ist, salt & pepp	er,	155.0 2642.2 157.0 2640.2 159.0 2638.2						
22\PICKLES E	175 2622.2		m					fine	ty SAND (SM), very see grained, angular to	subangular.		175.0 2622.2 177.0						
RTS\REPORT 202	 _ 180 _ _2617.2 		w.					ver fine	orly-Graded SAND (ry dense, slightly mo e to medium grained pangular.	ist, salt & pepp		2620.2						
.4 - N:\GEOTECH\REPC	- 185 _ _ 185 _ _2612.2 		400						ty SAND (SM), very a y, fine grained, angu			183.0 2614.2						
EVISED_2009+.GDT - 7/27/22 09:4	190 _2607.2_ - - - 195 _2602.2_ - - -		7					me mo	orly-Graded SAND vedium dense to very object, tan to salt & per dium grained, subar	dense, slightly oper, fine to		190.0 2607.2						
JT_RI	_ 200 <u>_</u> 2597.2	<u> </u>					<u> ESHM</u>		Boring Depth: 200.0) ft, Elevation:	Ļ	ر 200.0 2597.2		Ш				
3ORING - ME									2597.2			2031.2						
OF B			M/ata	ar I	ופעם	Observations	<u>\</u>		ring	T	Rema	arke.						
r Log	After					GUGGI VALIUI IS	<u>\</u>	Aft			' (01116							
디	Drillin	g: No	Enc	ounte	ered		-₹	- Dri	Iling: Not Recorded									

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045 Fax:

Boring B2021-5

Sheet 1 of 5

Projec					e Sanitary Lai nty, ID	ndfill -		Rig: TS150 Crawler	Boring Location	on N: 43 E: -11	.499 6.7	13: 134	3 191				
Project Number: 114-571040-2022 Date Started: Date Finished:								Boring Diameter: 6 in Drilling Fluid:	Datum: NAD8	tem: Decimal Degrees							of Boring vation: 2661.6 ft
12/14/2	21				12/19/21	u. 		None	Grout								
Driller Logge					i			Location: Refer to	site map.								
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription	EI (1	pth ft) ev. ft)	MC (%)	LL	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
 5 <u>-</u> 2656.6	- - - - - - - - - - - - - - - - - - -		100		6-8-5	Z4 1X. 7	Sa	DPSOIL, moist, brow indy SILT (ML), stiff, n, fine grained, angul	slightly moist,	260	.7 60.9	4					
10 _ 2651.6_ 15	- - - - - - - - - - - - - - - - - - -		100		12 - 21 - 43		de fin	oorly-Graded SAND (nse to very dense, m e to medium grained bangular.	noist, tan to red	26).0 51.6						
2646.6 	 		100		5 - 7 - 16 10 - 21 - 26	`\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0\$0						3					
25		Eng.					mo	ty CLAY (CL-ML), m pist, white to gray, hi porly-Graded SAND (gh plasticity.	htly 26:	7.0 34.6 9.0 32.6						
2631.6_ - - - - - - 2626.6_		X	100		10 - 27 - 40 10 - 22 - 35	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	de & p	nse to very dense, s pepper to red, fine to gular to subangular.	lightly moist, sa	alt ed,		4					
- - 40 <u>-</u> 2621.6	- - - - - - - - - - - - - - - - - - -		150		27 - 33 - 45/0.0ft		gra	LT (ML), hard, slightl ay, low plasticity.		262	7.0 24.6 2.0						
45 <u> </u>		X	100		23 - 39 - 42		de & r an SII gra	orly-Graded SAND (nse to very dense, s pepper to red, fine to gular to subangular. LT (ML), hard, slightl ay, low plasticity.	lightly moist, sa medium graine y moist, tan to	26 44 26 49 26	19.6 1.0 17.6 5.0 16.6						
_ 50 _ 2611.6	 	€ES						ty SAND (SM), medi nse, slightly moist, (0.0		54	24			Friction Angle= 14
2611.6 After Drillin			er L		Observations		∑ Du ∑ Dri	ring illing: Not Recorded	gray to brown, II	Remarks			54	24			Friction Angle= 1

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-5

Fax:

Sheet 2 of 5

Project: Pickles Butt Canyon Cor Project Number:		II -	Rig: TS150 Crawler Hammer: Auto Boring Diameter:		E: -116.7	'13 ₄					of Boring		
114-571040-2022 Date Started: 12/14/21 Driller: Holt Service			6 in Drilling Fluid: None Location: Refer to	ethod:	Elevation: 2661.6 ft								
Depth (ft) Below. (%) (Market Market	+	660	Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	1	P.	-200 (%)	DD (pcf)	Remarks and Other Tests		
100 - 55 - 2606.6 	27 - 38 - 30 34 - 50/0.1ft	Sil state of the sum o	ained, angular to sub lity CLAY (CL-ML), ha n, high plasticity. Porly-Graded SAND (Inse to very dense, sl tan, fine to medium of bangular. Ity SAND (SM), medi porly-Graded SAND (Inse to very dense, sl tan, fine to medium of bangular. Porly-Graded SAND (Inse to very dense, sl tan, fine to medium of bangular. Porly-Graded SAND very dense, moist, gra arying amounts of silt ty clay. LT with sand (ML), ha hite to gray, non plast consolidated clay. Ity SAND (SM), very n, fine grained. LAY with sand (CL), hoist, white to gray, no ecces of consolidated	srd, slightly moist, SP), medium ightly moist, gray grained, angular to um stiff, slightly l. SP), medium ightly moist, gray grained, angular to vith silt (SP-SM), y, fine grained, . Thin viens of ard, slightly moist, ic, Broken pieces stiff, slightly moist, ard, slightly moist, ard, slightly por plastic, Broken	60.0 2601.6	29		'NP	77	112	degrees Cohesion= 0.489 ks Cc= 0.06 Friction Angle= 19.0 degrees Cohesion= 0.037 ks		
2581.6 2581.6 2581.6 2576.6 2576.6	10 - 18 - 27	👺 mo	ity SAND (SM), very bist, tan to red, fine g		— 86.0 2575.6		35	21	83	104	Friction Angle= 31. degrees Cohesion= 0.26 ksf		
2571.6 100 2571.6 100 2566.6 100 2561.6 115	49 - 50/0.3ft	ি ৫৫৫৩ টা ঠাকতে তুলি কৈ অবিত্র তিরিকতে আধি এটা হৈছে <u>।</u> S	bangular.			11	NV	'NP	34		Friction Angle= 13. degrees Cohesion= 0.654 k		
	d Observations	— V Dr	uring illing: Not Recorded fter	Re	emarks:			<u> </u>		I			

Fax:

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-5

Sheet 3 of 5

Project: Pickles Butte Santlary Landfill - Hammer: Auto Coordinates E: 1:116:71391 Project Number: Boring Diameter: System: Decimal Degrees Top of Boring Diameter: System: Decimal Degrees Developed Boring Diameter: Decimal Degrees Developed Boring Diameter: Decimal Degrees Decimal Deg	Fax:							Boring E	32021-3								Sheet 3 of 5
Project Number: Sort Diameter: System: Decimal Degrees Top of Boring Elevation: 2861.6 ft Datum: NAD93 Elevation: 2861.6 ft Datum: NAD93 Elevation: 2861.6 ft Datum: NAD93 Elevation: 2861.6 ft Datum: NAD93 Elevation: 2861.6 ft Datum: NAD94 Elevation: 2861.6 ft Datum: NaD94 Elevation: 2861.6 ft Elevation: 2861.	Projec						ndfill -			on N:	43.499	13	3				
141-57 1040-2022 5 in	D				Jou	inty, ID							91				
Date Start Date Finished: Date Finished: Date Part Date Dat								"	-		egrees						
Mone Continue Co	114-57	7104	0-2	022				6 in								Ele	vation: 2661.6 ft
Display	Date S	tarte	ed:			Date Finishe	d:	Drilling Fluid:	Abandonment	t Meti	nod:						
Depth Flew	12/14/2	21				12/19/21		None	Grout								
Depth Flew	Driller	: Но	lt S	ervi	ices	 S		Location: Refer to	site map								
Depth thin Dep	Logge	r: Ma	att /	Adaı	ms			T tolol to	one map.								
Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 100 2591.6 2596.6																	
Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 100 2591.6 2596.6		_	یو	(%)		±	>										
Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 100 2591.6 2596.6	(ft)	ţi	ן≾ַ	эг	8	Cor	go	Matarial Dag	orintion		(ft)	چا			િ્ર	£	
Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 100 2591.6 2596.6	Elev.	Ser	윤	ò	ğ	×	ith	iviaterial Desi	cription		Elev.	<u>%</u>			0	ق	
100 30 - 500 - 1th 2551.6		σ	ଞ୍ଚ	Rec	"	ă	-					ĭ	Ⅎ	귑	유		
100 30 - 500 - 1th 2551.6		2277	-					Silty CLAY (CL-ML) ve	ery stiff slightly		102.0	┢					
100 2851.6		[{\\\$									2559.6						
100 2851.6 2851		R															
moist, tan to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, 2546.1 115.	2556.6	5555															
moist, tan to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, 2546.1 115.	-	} }}}															
moist, tan to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, 2546.1 115.	-	{{}}}}															
moist, tan to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, 2546.1 115.	_ 110 _	<u> </u>	m			00 50/5 :5					110.0						
moist, tan to red, fine grained, angular to subangular. Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of conso	2551.6	 }}}	\times	100		30 - 50/0.1ft	0000	Silty SAND (SM), very	dense, slightly		2551.6						
Silty CLAY (CL-ML), very stiff, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to brown, fine grained, low plasticity, broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 140. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 2521.6 Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 140. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 2521.6 Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 2521.6 143.0 2516.6 145.0 2516.6 147.0 2514.6 Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 2516.6 147.0 2516.6 2516.6 147.0 2516.6 2516.6 2516.6 2516.6 2516.6 2517.6 2518.6	-	{\\\\ <u>}</u>							grained, angulai	r to	111.0						
moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty SAND (SM), medium dense to very dense, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Broken pleces of consolidated clay. Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pleces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gra	-	<i>{</i> {}}}							1:££ _1: 1 ()		2550.6						
Broken pieces of consolidated clay. Sity SAND (SM), medium dense to very dense, slightly moist, gray to brown, fine grained, angular to subangular. Sity CLAY (CL-ML), hard, slightly moist, red to brown, fine grained, law pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, law pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated gray. Sity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated gray.	115	<u> </u>															
Silty SAND (SM), medium dense to very draines, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), were dense to very drained, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly m	2546.6	55551								Г							
dense, slightly moist, gray to brown, fine grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to brown, fine grained, low plasticity, broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, red to brown, fine grained, low plasticity, broken pieces of consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high pieces	110	} }}}								rv							
grained, angular to subangular. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, tan, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, and, low plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay.		<i>\</i> {{{}}															
Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces piece	- 400 -	KSSS(400								20 70.7						
gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy Silt (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated cl	120 2541 6	55551		400		0 17 26				st,							
Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Prof fine sand. Some consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue,	2011.0_	{{\\}	$\stackrel{\sim}{\to}$	100		9-17-30		gray to blue, high plasti	city, Broken	,							
Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. 26-50-500.4ft Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, g		<u> </u>						pieces of consolidated	clay.								
Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. 26-50-500.4ft Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, g		KSSS															
Sandy SILT (ML), hard, slightly moist, red to brown, fine grained, low plasticity, bry fine sand. Some consolidated clay mixed. 107	125	\$\$\$\$ <u>\$</u>															
red to brown, fine grained, low plasticity, Very fine sand. Some consolidated clay mixed. 2531.6 2531.6 2531.6 2532.1 31.5 2532.1 31.5 2530.1 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.1 34.5 2527.6 341.0 2520.6 341.0 2516.6 147.	2530.0	{}}}}	Sus.					Sandy SILT (ML) hard	eliahtly moiet								
Very fine sand. Some consolidated clay mixed. 26-50-500.4ft 26-5		<u> </u>															
2531.6 26-50-50/0.4ft 26-50-50/0.4ft Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, tan, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken		[}}}]									2534.6						
Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty SAND (SM), very dense, slightly moist, tan, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations Suring During Not Recorded	_ 130 _	<i>{</i> >>>}								اللست							
gray to blue, high plasticity, Broken pieces of consolidated clay. 3ity SAND (SM), very dense, slightly moist, tan, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. 3ity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 3andy SILT (ML), hard, slightly moist, tan, low plasticity, Broken pieces of varying clay content. 3ity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 3andy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. 3andy SILT (ML), hard, slightly moist, tan, low plasticity, Broken pieces of varying clay content. 3ity CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. 3ity CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Broken 3ity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken 3ity CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken 4514.0 2516.6 145.0 2516.6 147.0 2514.6 186.0 187.0 2516.6 187.0 2514.6 188.0 2516.6 197.0 2516.6		{{}}	\boxtimes	107	:	26 - 50 - 50/0.4ft	% % %	Silty CLAY (CL-ML), ha	rd, slightly mois	st,							
Silty SAND (SM), very dense, slightly moist, tan, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Puring Drilling: Not Recorded Remarks:	-	KSSS1						gray to blue, high plasti	city, Broken		2530.1						
moist, tan, very fine grained, Very fine sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During During During: Not Recorded Remarks:		 }}}															
sand. Some consolidated clay mixed. Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken During Not Recorded	135	{\\\								<u> </u>							
Less clay with depth. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations Puring Drilling: Not Recorded	2526.6	<u> </u>					$\ \ \ \ $,	2527.1						
Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Some consolidated silt. Seams of varying clay content. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations Puring Drilling: Not Recorded Remarks:	-	 							,								
gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Broken pieces of varying clay content. 145	-	{\\\\						Silty CLAY (CL-ML), ha		st,							
2521.6 Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, gray to blue, high plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations Puring During During Not Recorded Remarks:	_ 140 _	<u> </u>	m					gray to blue, high plasti	city, Broken		140.0						
tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During During During During Not Recorded Remarks:	2521.6	}}}	${} \boxtimes$	111		42 - 50/0.4ft					2521.6						
silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During During During During During During During During Not Recorded	-	} }}}															
Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Puring Drilling: Not Recorded Remarks:	-	{{\{\}								ŀ							
2516.6 Silty CLAY (CL-ML), Hard, Silghtly Holst, gray to blue, high plasticity, Broken pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During Drilling: Not Recorded Remarks:	- ₁₄₅ -	<u> </u>								et	2518.6						
pieces of consolidated clay. Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During During Duriling: Not Recorded Pieces of consolidated clay. 147.0 2514.6 Physical Processing Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken	2516.6	[\$\$\$\$								οι,							
Sandy SILT (ML), hard, slightly moist, tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During During Poilling: Not Recorded Remarks:	<u> </u>	 }}}								Į.							
tan, low plasticity, Some consolidated silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During During During During Philling: Not Recorded Remarks:	-	<i>{</i> {}}}															
Silt. Seams of varying clay content. Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken During Drilling: Not Recorded Remarks:	150	KSSS{	m2					tan, low plasticity, Som	e consolidated								
Silty CLAY (CL-ML), hard, slightly moist, gray to blue, high plasticity, Broken Water Level Observations During Drilling: Not Recorded Remarks:	2511.6	 }}}	\checkmark	107		8 - 17 - 50/0.4ft											
Water Level Observations □ During Puriling: Not Recorded Remarks:		<u> </u>	\hookrightarrow	.07						st,							
water Level Observations Drilling: Not Recorded Terrial No.		$\langle \langle \rangle \langle \langle \rangle \rangle$						gray to blue, high plasti	city, Broken								
water Level Observations Drilling: Not Recorded Terrial No.	135 - 2526.6 140 - 2521.6 145 - 2516.6 			-			1_	→ Durina			d.						
▼ Drilling: Not Encountered ▼ Drilling: Not Recorded ▼ Drilling: Not Recorded	A4									Rem	arks:						
	T Arter Drillin	g: Not	Enc	ounte	ered		1				_						

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Fax:				304	-		Boring l	B2021-5							Sheet 4 of 5
Projec					e Sanitary La	andfill -	Rig: TS150 Crawle Hammer: Auto	Boring Location Coordinates	N: 43.499 E: -116.7						
Canyon County, ID Project Number:							Boring Diameter:	System: Decima			Ton	of Boring			
114-571040-2022							6 in	Datum: NAD83							vation: 2661.6 ft
Date Started: Date Finished: 12/14/21 12/19/21						ed:	Drilling Fluid: None	Abandonment M Grout	ethod:						
Driller		olt S	erv	ices	•		Location: Refer to	site map.							
Logge	r: M	att /	∖da	ms				·							
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription	Depth (ft)	MC (%)		PL	-200 (%)	DD (pcf)	Remarks and Other Tests
155			83		46 - 50/0.1ft		pieces of consolidated Sandy SILT (ML), hard tan, low plasticity, Som silt. Seams of varying of Silty CLAY (CL-ML), hard pieces of consolidated Sandy SILT (ML), hard tan, low plasticity, Som silt. Seams of varying of Silty CLAY (CL-ML), hard tan, low plasticity, Som silt. Seams of varying of Silty CLAY (CL-ML), hard tan, low plasticity, Bronsolidated content than previous. CLAY (CL), hard, sligh blue, high plasticity, Bronsolidated clay. Sandy SILT (ML), hard tan, low plasticity, Som silt CLAY (CL), hard, sligh blue, high plasticity, Bronsolidated clay. Silty SAND (SM), sligh grained, angular to sub Silty CLAY (CL-ML), hard to sub Silty CLAY (CL-ML), hard to sub silty CLAY (CL-ML), hard to sub silty SAND (SM), sligh grained, angular to sub silty SAND (SM), sligh	I, slightly moist, ne consolidated clay content. ard, slightly moist, ne consolidated clay. I, slightly moist, ne consolidated clay content. ard, slightly moist, ne consolidated clay content. ard, slightly moist, ne consolidated clay. Higher silt ard, slightly moist, ne consolidated Ity moist, gray to oken pieces of Ity moist, gray to oken pieces of ard, slightly moist, ne consolidated tly moist, tan, fine congular. ard, slightly moist, icity, Varying tly moist, tan, fine congular.	180.0 2481.6						
- 							gray to blue, high plast clay.								
		Wate	er L	.evel	Observations	: \[\sum_{\sum}	During Drilling: Not Recorded	R	emarks:						
After	g: No	t Enc	OLIDE	arad		1	After Drilling: Not Recorded								

Fax:

Figure No. 5 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-5

Sheet 5 of 5

гах.							boring i								Sileet 5 0i 5
Projec	t: Pi	ckle	s B	utte	Sanitary Lar	ıdfill -	Rig: TS150 Crawler	Boring Location	on N: 43.499	13	3				
				Cou	nty, ID		Hammer: Auto	Coordinates	E: -116.7	134	191				
Projec							Boring Diameter:	System: Decir						Top	of Boring
114-57			22				6 in	Datum: NAD8						Elev	vation: 2661.6 ft
Date S		ed:			Date Finishe	d:	Drilling Fluid:	Abandonment	t Metnoa:						
12/14/2					12/19/21		None	Grout							
Driller							Location: Refer to	site map.							
Logge	r: Ma	att A	dar	ns											
Depth (ft) Elev. (ft)			Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	4	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
205							Boring Depth: 225.0 2436.6	0 ft, Elevation:	225.0 ₇ 2436.6						
		_													
3					Observations	∇	During Drilling: Not Recorded		Remarks:						
After Drillin	a: Not	Enco	unte	red		V									
				- J											

Figure No. 6 **LOG OF BORING**

Phone: 406-543-3045

Fax:				304			Boring I	B2021-6							Sheet 1 of 4
Projec					e Sanitary La ınty, ID	andfill -	Rig: TS150 Crawler Hammer: Auto	Boring Location Coordinates	N: 43.495 E: -116.7	15	6 718				
Projec				000	inty, iD		Boring Diameter:	System: Decima			10			Ton	of Boring
114-57	104	10-2	022				6 in	Datum: NAD83						Elev	ation: 2636.7 ft
Date S 11/22/2		ed:			Date Finish 12/2/21	ed:	Drilling Fluid: None	Abandonment N Grout	lethod:						
Driller		olt S	Serv	ices			Location: Refer to	site map.							
Logge	r: M	att /	٩da	ms				•							
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	LL	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
()	2222	0)	14			Z/ /×. /	TOPSOIL, very moist,	brown	0.6	_	F	_	-	_	
 - 5 <u>-</u> 2631.7_			67		4-5-5		Silty SAND (SM), loose dense, slightly moist, t grained, subangular.	e to medium	2636.1						
10 2626.7_ 		M	73		7-7-7					6					
15 _2621.7_ 							Poorly-Graded SAND (slightly moist, gray, fin grained, subangular.	(SP), very dense, le to medium	15.0 2621.7						
20 2616.7			400		11 - 31 - 42										
 			100		11-31-42	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Silty SAND (SM), loose dense, slightly moist, q subangular.		21.0 2615.7						
25 _2611.7_			100		12 - 22 - 42	0000				18					
						00000000000000000000000000000000000000	Poorly-Graded SAND (slightly moist, gray, fin grained, subangular.	(SP), very dense, e to medium	27.0 2609.7						
 - 35 <u>-</u> 2601.7_ 							Silty SAND (SM), loose dense, slightly moist to grained, Pieces of silts with depth.	moist, gray, fine	33.0 2603.7						
40 <u> </u>		m	100		8 - 18 - 37					22					
45 _ 2591.7_ 		X	100		39 - 42 - 50		Conduction TAN		48.0						
50 _							Sandy SILT (ML), hard gray, fine grained.	i, siigiiliy moist,	2588.7						
2586.7	<i>(</i>	X					· -								
		Wate	er I	.evel	Observations	;	7 During	R	emarks:						
- After						1	✓ Drilling: Not Recorded ■ After								

Fax:

Figure No. 6 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-6

Sheet 2 of 4

гах.								boring E									Sileet 2 0i 4
Projec					e Sanitary La	ndfill	-	Rig: TS150 Crawler	Boring Location	on N:	43.495	519	6				
D				Cou	ınty, ID			Hammer: Auto	Coordinates		-116.7		′18				
Projec								Boring Diameter:	System: Deci		egrees					Top	of Boring
114-57			022					6 in	Datum: NAD		d					Ele	vation: 2636.7 ft
Date S		ed:			Date Finishe	ed:		Drilling Fluid:	Grout	t ivietr	100:						
11/22/2					12/2/21			None									
Driller					5			Location: Refer to	site map.								
Logge	r: M	att /	∖daı	ms													
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology		Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	1	P	-200 (%)	DD (pcf)	Remarks and Other Tests
			100		6-13-27 7-20-27							25					UCS= 7.246 ksf
75		x X	91		8 - 18 - 50/0.1ft		da	_AY (CH), hard, sligh ırk gray, high plasticit aystone very consolid	y, Almost		76.0 2560.7		67	19	91		
90 = 2546.7 = 95 = 2541.7 = 100 = 2536.7 =			100		9-14-40								56	22	90		UCS= 15.661 ksf
																	·
2556.7 - 85 - 2551.7 - 90 - 2546.7 - 95 - 2541.7 100 - 2536.7		Wate	er L	.evel	Observations			uring illing: Not Recorded	<u>-</u>	Rem	arks:	_			_		
After Drillin	a. Na	Enc	OUD+	ored			- A	fter		1							
	M-INO	LIIC	Juille	i CU			U	rilling: Not Recorded									

Fax:

Figure No. 6 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-6

Sheet 3 of 4

Dusias	4. D	: -1-1	D	44 .	. 0:41	-IE:II	Die TO150 Crowle	D2U21-0		10 10	- 4 0	_				
Projec					e Sanitary Lar nty, ID	natili -	Rig: TS150 Crawle	Coordinates	n N∶₄ F∙-	43.495 -116.7	19 157	ნ 718				
Projec				u	·,, ·=		Boring Diameter:	System: Decim							Ton	of Boring
114-57							6 in	Datum: NAD83		5					Eleva	ition: 2636.7 ft
Date S					Date Finishe	ų.	Drilling Fluid:	Abandonment I		od:						2000.1 10
11/22/2		cu.		- 1	12/2/21	u.	None	Grout								
Driller		olt S	ervi				Location: Refer to	site map.								
Logge	r: M	att A	Adaı	ms												
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material De	scription		Depth (ft) Elev. (ft)	MC (%)	=	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
105			100		9 - 19 - 28		Sandy SILT (ML), hard gray, medium plasticity Silty CLAY (CL-ML), howevery dark gray, high plot claystone very consolic CLAY with sand (CL), moist, gray, medium points, gray, medium points, gray, high plot daystone very consolic Sandy SILT (ML), hard	y. ard, slightly moist asticity, Almost dated. hard, slightly blasticity. ard, slightly moist asticity, Almost dated. d, slightly moist,	t,	102.0 2534.7 102.8 2533.9 106.0 2530.7 106.9 2529.8 110.8 2525.9 112.0 2524.7		47	22	91	100	
115			100		10 - 18 - 33		gray, medium plasticit Silty CLAY (CL-ML), h very dark gray to blue, Almost claystone very	ard, slightly moist high plasticity,	t,		22					
130 _ 2506.7_ - - - 135 _ 2501.7_			115	:	28 - 47 - 50/0.3ft											
140 _ 2496.7_ 145 _ 2491.7_			100		6-16-31											
150 _ 2486.7_		X	107		11 - 19 - 50/0.4ft											
		Wate	er L	evel	Observations	Z	During Drilling: Not Recorded	[]	Rema	rks:						
■ After							After									

Figure No. 6 **LOG OF BORING**

Phone: 406-543-3045 **Boring B2021-6** Sheet 4 of 4 Project: Pickles Butte Sanitary Landfill -Rig: TS150 Crawler Boring Location N: 43.495196 Canyon County, ID Hammer: Auto **Coordinates** E: -116.715718 **Project Number: Boring Diameter:** System: Decimal Degrees **Top of Boring** 114-571040-2022 Datum: NAD83 Elevation: 2636.7 ft **Abandonment Method:** Date Finished: Date Started: **Drilling Fluid:** Grout 11/22/21 12/2/21 None **Driller:** Holt Services Location: Refer to site map. Logger: Matt Adams

	Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%	RQD (%)	Blow Count	Lithology	Material Description	Depth (ft) Elev. (ft)	MC (%)	רד	PL	-200 (%)	DD (bcf)	Remarks and Other Tests
	155		X	115	2	29 - 50 - 50/0.3ft		Desires Develo 405 0 ft. Elevetions	_165.0						
SS	24/1./							Boring Depth: 165.0 ft, Elevation:	2471.7						

2471.7 ft

Figure No. 7 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-7

Sheet 1 of 4

Fax:

Project				e Sanitary La Inty, ID	ndfill -	Rig: TS150 Crawler Hammer: Auto	Boring Location Coordinates	า N: 43.495 E: -116.7						
Project				•		Boring Diameter:	System: Decim					-	Ton	of Boring
114-57	<u> 104</u> 0-	2022				6 in	Datum: NAD83	3				I	Ele\	vation: 2659.5
Date St	arted	:		Date Finishe	d:	Drilling Fluid:	Abandonment I	Method:						
12/2/21			_	12/7/21		None	Grout					_		
Driller:	Holt	Serv	ices	3		Location: Refer to	site map.							
Logger	:Matt	Ada	ms				•							
Depth (ft) Elev. (ft)	Operation Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription	Depth (ft) Elev. (ft)	MC (%)	1	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
5		60		2-2-3		Slightly moist, dark bro Silty SAND (SM), loose moist, tan, fine grained subangular.	e to dense, very	0.6 2658.9	4					
10 _ 2649.5 		67		10-8-5	00000000000000000000000000000000000000									
15		80		8 - 18 - 18	%%%% %%%% %%%% %%%%	Poorly-Graded SAND (moist, tan, fine to med	SP), dense,	16.4 2643.1						
20	**************************************	<u>b</u>				angular to subangular.	•							
25 _ 2634.5		100		13 - 40 - 50	\$ \$ \$ \$ \$ \$ \$ \$	Silty SAND (SM), loose moist, tan, fine grained subangular.		25.0 2634.5						
30 2629.5_ 		0		26 - 50/0.1ft		Poorly-Graded SAND (moist, gray, fine to me angular to subangular. Silty SAND (SM), loose	dium grained,	30.3 2629.2 31.3 2628.2 32.3						
35 _ 2624.5 		0		35 - 50/0.3ft	\$\frac{5}{5}\frac{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac{5}{5}\frac	moist, tan, fine grained subangular. Poorly-Graded SAND (moist, gray, fine to me	d, angular to SP), dense,	2627.2 33.8 2625.7						
40 <u>2</u> 2619.5		107		16 - 28 - 50/0.4ft		angular to subangular. Silty SAND (SM), loose moist, tan, fine grained subangular. Poorly-Graded SAND (d, angular to	39.6 2619.9 41.4 2618.1 43.6			NP :	23	112	UCS= 0.511 ksf
45 _ 2614.5 - - -		100		19 - 37 - 48		moist, gray, fine to me angular to subangular. Silty CLAY (CL-ML), ve tan, high plasticity, Bro consolidated clay.	dium grained, ery stiff, moist,	2615.9 46.1 2613.4						
_ 50 _ 2609.5	\\\\\ <u>\</u>	á				Silty SAND (SM), very	dense, slightly	50.0						
			_		(*. *\ */1						_			
	Wa	ater L	.evel	Observations	∇	During Drilling: Not Encountered	[1	Remarks:						
■ After						After Drilling: Not Recorded								

Fax:

Figure No. 7 **LOG OF BORING**

Phone: 406-543-3045

Boring B2021-7

Sheet 2 of 4

гах.							Boring E									31leet 2 01 4
Projec					e Sanitary La	ndfill -			on N:	43.495	528					
Deci-		_		ا0ر	ınty, ID		Hammer: Auto	Coordinates		-116.7		92				
Projec							Boring Diameter:	System: Decir		egrees						of Boring
114-57			022				6 in	Datum: NAD		d					Ele	vation: 2659.5 ft
Date S		ed:			Date Finishe	ed:	Drilling Fluid:	Abandonment	ı ivieti	ioa:						
12/2/2					12/7/21		None	Grout								
Driller:					3		Location: Refer to	site map.								
Logge	r: M	att /	∖daı	ms												
Depth (ft) Elev. (ft)	Operation	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Des	cription		Depth (ft) Elev. (ft)	MC (%)	-	PL	-200 (%)	DD (pcf)	Remarks and Other Tests
		\times	100		29 - 49 - 37	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	moist, tan, fine grained subangular, Broken pie		;	2609.5						
- 55	\$\$\$\$ <u>\$</u>						and sandstone.			54.0 2605.5						
2604.5	<u>}</u> }}}}						Silty CLAY (CL-ML), ha		-	55.6						
-	}					% % % % & & &	consolidated clay.	•		2603.9						
<u> </u>	<u>}</u> }}}}						Silty SAND (SM), very			58.5						
60	[\$\$\$\$]	M					moist, tan, fine grained subangular, Broken pie		,	2601.0	12	NV	ΝP	84	104	UCS= 1.817 ksf
2599.5	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	\boxtimes	107		21 - 41 - 50/0.4ft		and sandstone.				'2					
60	SSSS						Silty CLAY (CL-ML), ha	ard, moist, tan,	-1							
- ~ -	<i>}</i> }}}						high plasticity, Broken places	pieces of								
65 	\$\$\$\$ <u>\$</u>						Silty SAND (SM), very	dense. sliahtly		66.0						
_	} >>>}						moist, tan, fine grained	d, angular to	ſ	2593.5						
-	ßß						subangular, Broken pie	eces of siltstone	•							
- ₇₀ -	} }}}	m					and sandstone. Sandy SILT (ML), hard	moist tan bid	dr							
2589.5	}}}}	X	100		9-23-35		plasticity, Broken piece	, กางเรเ, เลก, กฤ es of consolidate	ed							
	} }}}						clay									
_	$\langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle $						CLAY (CL), hard, moist	t, tan, high								
75 2584.5	} \$\$\$\$						plasticity.									
2004.0	<u>}</u> }}}}															
	} }}}															
- 80	$\langle \langle \langle \langle \rangle \rangle \rangle$	m,								00.0						
2579.5	} }}}	×	0		78 - 70/0.2ft	\$ \$ \$ \$ \$	Silty SAND (SM), very			80.0 2579.5						
_	$\langle \langle \langle \langle \rangle \rangle \rangle \langle \langle \langle \langle \rangle \rangle \rangle$					% % % % % %	moist, tan, fine grained subangular, Broken pie	d, angular to								
<u> </u>	[\$\$\$\$]					\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	and sandstone.	ces of SillStone	;							
_ 85 _	$\langle \langle \langle \langle \rangle \rangle \rangle \langle \langle \langle \langle \rangle \rangle \rangle$					27777				85.0						
2574.5	} }}}						Silty CLAY (CL-ML), ha high plasticity, Broken p	ara, moist, tan, pieces of		2574.5						
_	$\langle \langle $						consolidated clay	r								
- 90 -	[\$\$\$\$]	m2														
90 _2569.5	$\langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle$	Ϋ́	0		70/0.3ft											
	[\$\$\$\$]															
-	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>															
95	[\$\$\$															
2564.5	<i>{</i> }}}}															
<u> </u>	 						01.437./013.1			97.7						
-	<u> </u>	en e					CLAY (CL), hard, moist plasticity.	t, tan, high		2561.8						
100 2559.5	\$\$\$\$ <u>\$</u>	٧	100		28 - 28 - 28		ριασιισιτу.				20					
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\triangle	100		20 20 20											
						1	During									
√ ■ After					Observations				Rem	arks:						
2579.5 	g: No	Rec	orde	d			After Drilling: Not Recorded									

Fax:

Phone: 406-543-3045

Figure No. 7 LOG OF BORING

Boring B2021-7

Sheet 3 of 4

Project: Pickles	Butte Sanitary Landfill -	Rig: TS150 Crawle	Boring Location N: 43.49528	_
Canyon	County, ID	Hammer: Auto	Coordinates E: -116.712592	
Project Number:		Boring Diameter:	System: Decimal Degrees	Top of Boring
114-571040-2022	2	6 in	Datum: NAD83	Elevation: 2659.5 ft
Date Started:	Date Finished:	Drilling Fluid:	Abandonment Method:	
12/2/21	12/7/21	None	Grout	
Driller: Holt Serv	/ices	Location: Refer to	site map	

Driller: H				5		Location: Refer to site map.							
Depth (ft) Depth (ft)	Sample Type	Recovery (%)	RQD (%)	Blow Count	Lithology	Material Description	Dep (ft) Ele (ft)		(%)	i a	-200 (%)	DD (pcf)	Remarks and Other Tests
1105	8 ■ ■ ■	100		6 - 12 - 22. 22 - 41 - 50/0.3ft 12 - 33 - 48		SILT (ML), hard, dry, tan, low plasticity, Broken pieces. Silty CLAY (CL-ML), hard, moist, gray, high plasticity, Broken pieces of consolidated clay Sandy SILT (ML), hard, dry, tan, low plasticity, Broken pieces. Silty CLAY (CL-ML), hard, moist, gray, high plasticity, Broken pieces of consolidated clay	121	5.0 2.3 5.0 1.1	3:	3 2			Friction Angle= 18.02 degrees Cohesion= 0.053 ksf Cc= 0.38
140 2519.5 2519.5 2509.		100		9-18-50 9-18-31		CLAY (CL), hard, moist, gray to blue, high plasticity.	145 2514	0 2.5	4				
	Wa	ter	Leve	Observations	7	During F	Remarks:				<u> </u>		1
After						Drilling: Not Encountered After							

Water Level Observations

Drilling: Not Recorded

Prilling: Not Recorded

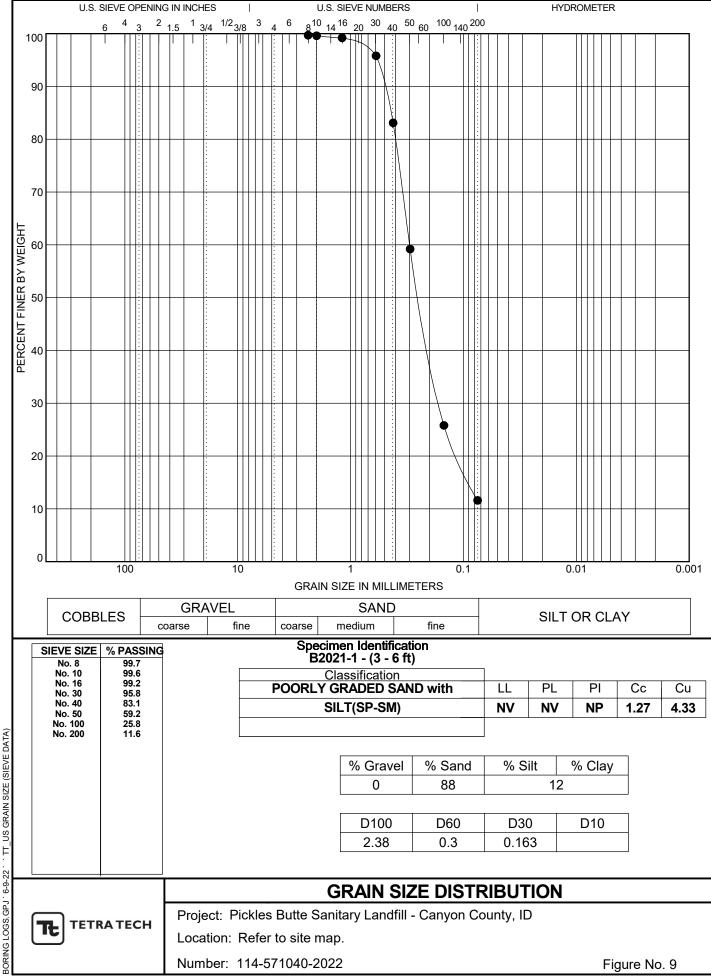
Figure No. 7 **LOG OF BORING**

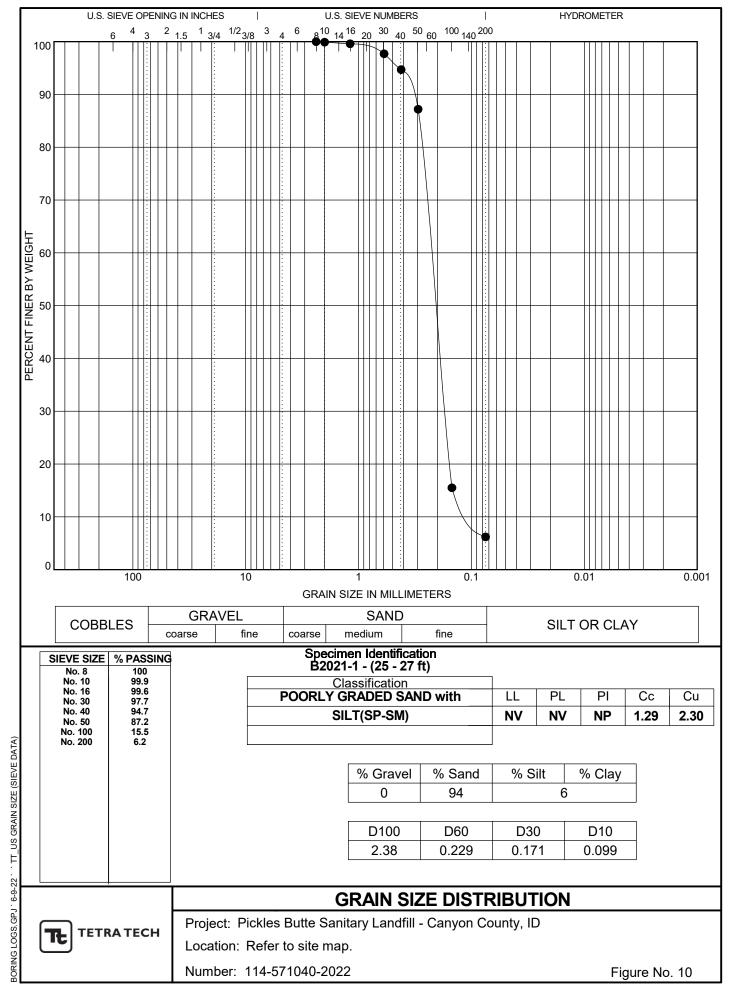
TETRA TECH

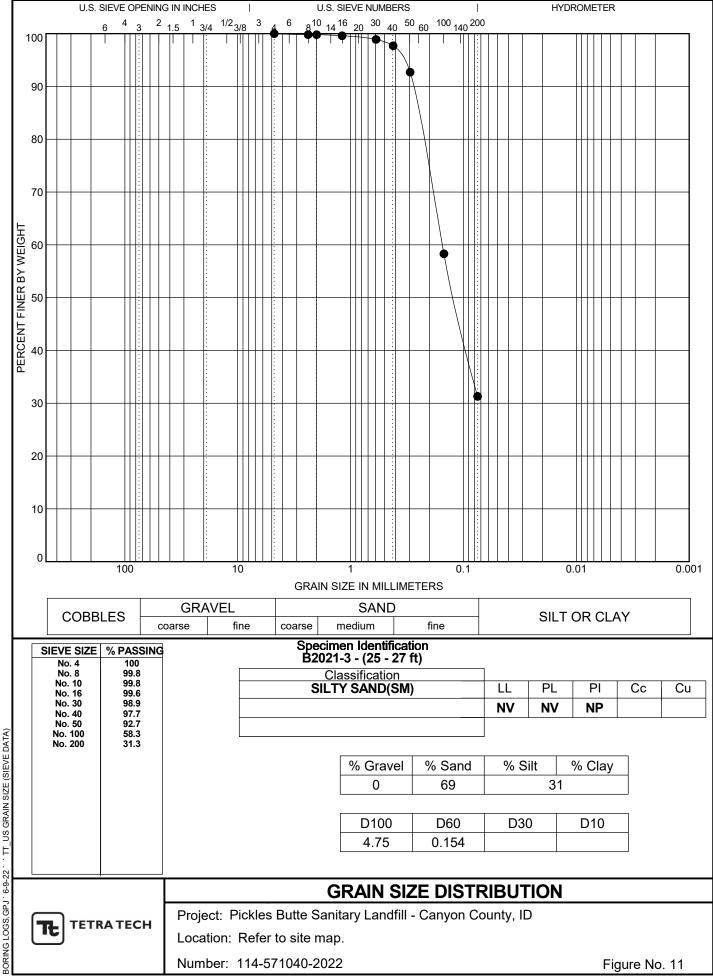
Phone: 406-543-3045 **Boring B2021-7** Fax: Sheet 4 of 4 Rig: TS150 Crawler Boring Location N: 43.49528 Project: Pickles Butte Sanitary Landfill -Canyon County, ID **Coordinates** E: -116.712592 Hammer: Auto **Project Number: Boring Diameter:** System: Decimal Degrees **Top of Boring** 114-571040-2022 Datum: NAD83 Elevation: 2659.5 ft **Abandonment Method:** Date Started: **Date Finished: Drilling Fluid:** Grout 12/2/21 12/7/21 None **Driller:** Holt Services Location: Refer to site map. Logger: Matt Adams Recovery (%) Depth Depth **Blow Count** Sample Type Lithology 8 (ft) Operation (ft) Remarks -200 (%) (bct) RQD (**Material Description** and Elev. Elev. Other Tests MC |귀|곱 (ft) (ft) 155 2504.5 160 2499.5 21 - 48 - 50/0.4ft 107 165 170 2489.5 14 - 18 - 28 100 175 2484.5 180 X 2479.5 2474.5 2469.5 195 2464.5 200 200.0 Boring Depth: 200.0 ft, Elevation: 2459.5 2459.5 2459.5 ft During
Drilling: Not Encountered

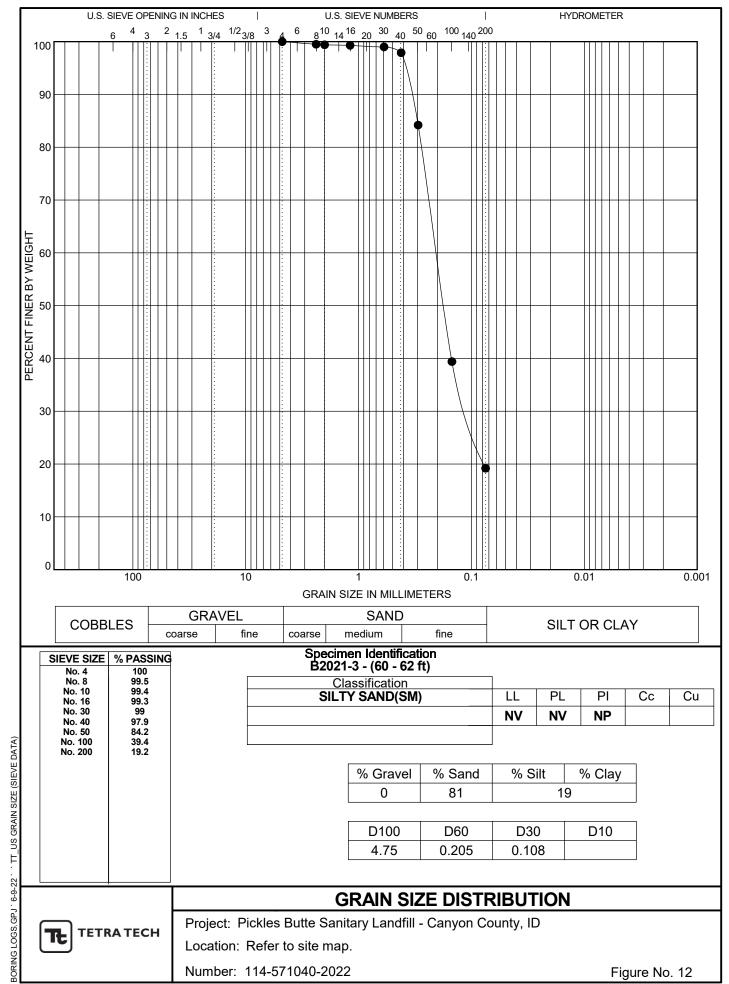
Remarks:

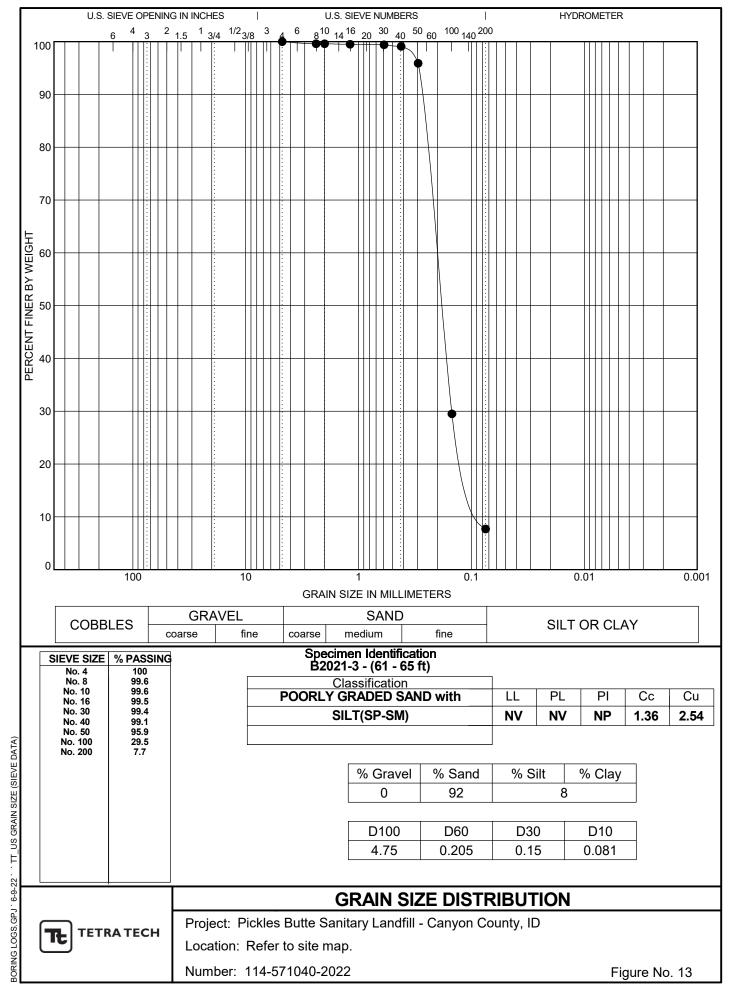
Figure No. 8 **LOG OF BORING**

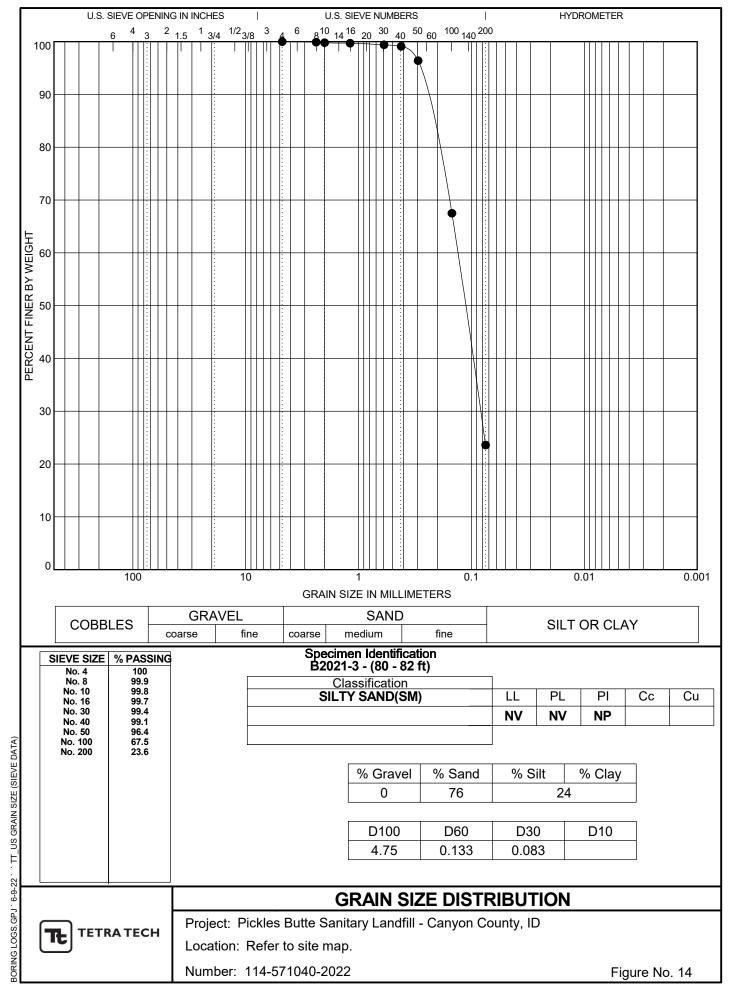

Phone: 406-543-3045

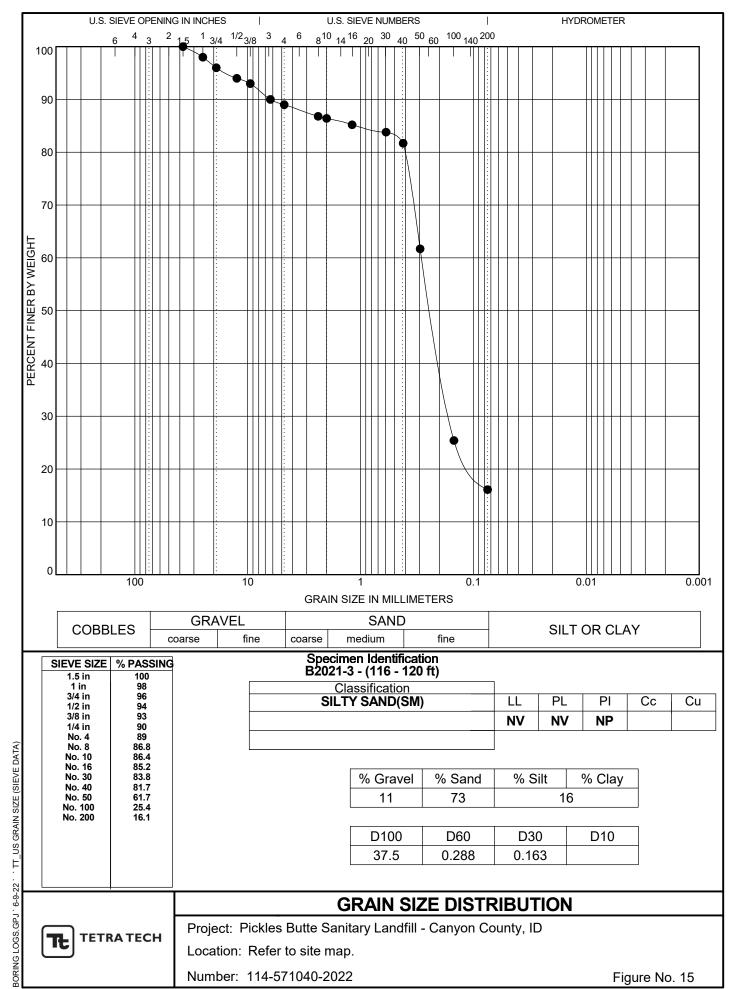


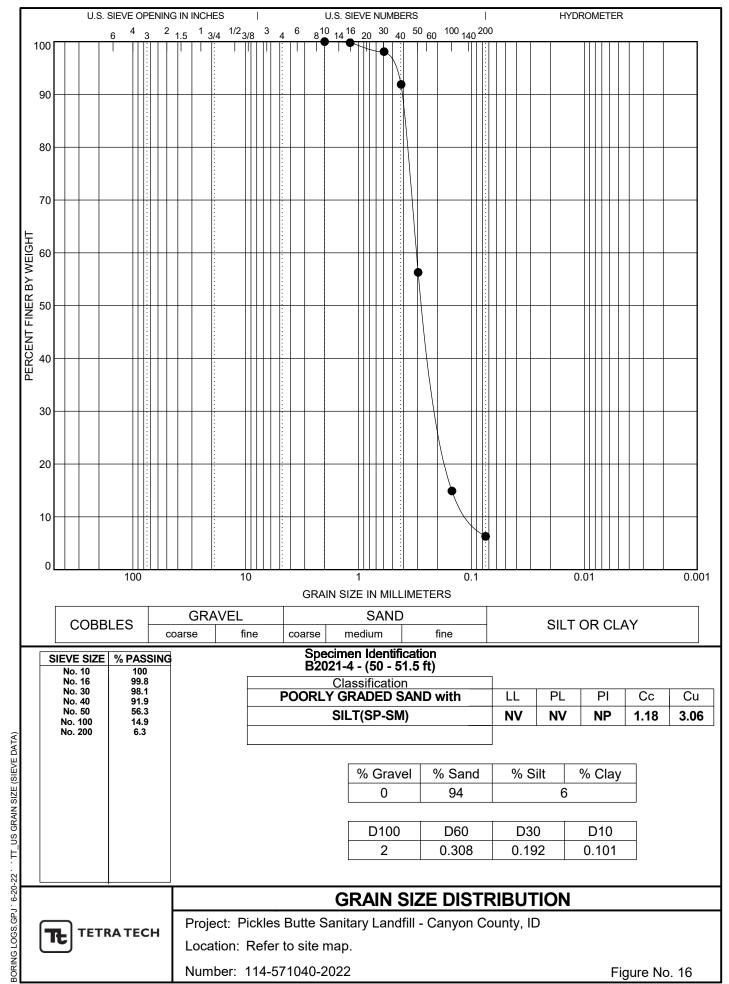

D: 1		<u> </u>	0 11 1	IC.II	Boring E								Sheet 1
Can	ies yon	Cor	e Sanitary Lar ınty, ID	iatili -	Rig: TS150 Crawler Hammer: Auto								
Numb	er:				Boring Diameter:	System: Decima				-		Тор	of Boring
		2			6 in	Datum: NAD83	a4b a d -					Elev	vation: 2956.6
arted:				d:	Drilling Fluid:		etnoa:						
1 Holt (Serv	/ices											
						<u></u>							
e B	(%)	(9)	nnt	УG			Depth						Downsels
eratio	very	6) Q	° C	jolod	Material Des	cription		8			(%)	pcf)	Remarks and
S S S	Reco	8	Blov	=			(ft)	MC	ᆸ	Ы	-200	00	Other Tests
}	100		5-5-12	<u> </u>			0.6	1					
					moist to moist, tan.	ery suir, slightly	2930.0		NV	NP	84	97	
}}}	100		10 - 16 - 13										
								11					
}}}]X	100	O	8-8-10										
}}}													
}}}													
								12					
	100												
	100		7-9-11	0000	Silty SAND (SM), medi	um dense, slightly	10.1 2946.5	6					
	. 50			\$ \$ \$ \$ \$	moist, tan to gray, fine subangular, scattered of	grained, gravel.							
				0000									
				0000									
				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$									
	87		6-7-9	% % % & & & & & & & & & & & & & & & & &				5					
{{{ 				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$									
}}}													
}}}				\$ \$ \$ \$									
???}				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Poorly-Graded SAND (SP), medium	20.0	5					
X	87		9-13-15		dense, slightly moist, t	an to yellow, fine		L					
					angular.		_2935.1						
				_	Boring Depth: 21.5 ft	Elevation: 2935.1	_						
1	Numk 040-2 irted: Holt \$	Number: 040-2022 Inted: Holt Serv Matt Ada 100 100 100 87	Number: 040-2022 Inted: Holt Services Matt Adams	Date Finishe 11/15/21	Number: 040-2022 Inted: Date Finished: 11/15/21 Holt Services Matt Adams 100 100 10-16-13 100 100 100 100 7-9-11	Number: 040-2022 6 in control in the	Number: 040-2022 Inted: Date Finished: 11/15/21 Holt Services Matt Adams Abandonment M Grout Abandonment Abandonment M Grout Abandonment Abandonment M Grout Abandonment Abandonment	Number: 6 in System: Decimal Degrees Datum: NAD83 Path NAD83 Date Finished: 11/15/21 None Path National Path Natio	Number:	Number:	Number: 040-2022 Boring Diameter: 6 in System: Decimal Degrees Datum: NAD83 Abandonment Method: Grout	Number: 040-2022 Material Description System: Decimal Degrees	Number: 040-2022 Inted: Date Finished: 11/15/21 Holt Services Matt Adams Date Finished: 11/15/21 Holt Services Matt Adams Date Finished: 11/15/21 Holt Services Matt Adams Location: Refer to site map. Material Description Depth (ft) Elev. (ft) Fig. (ft)

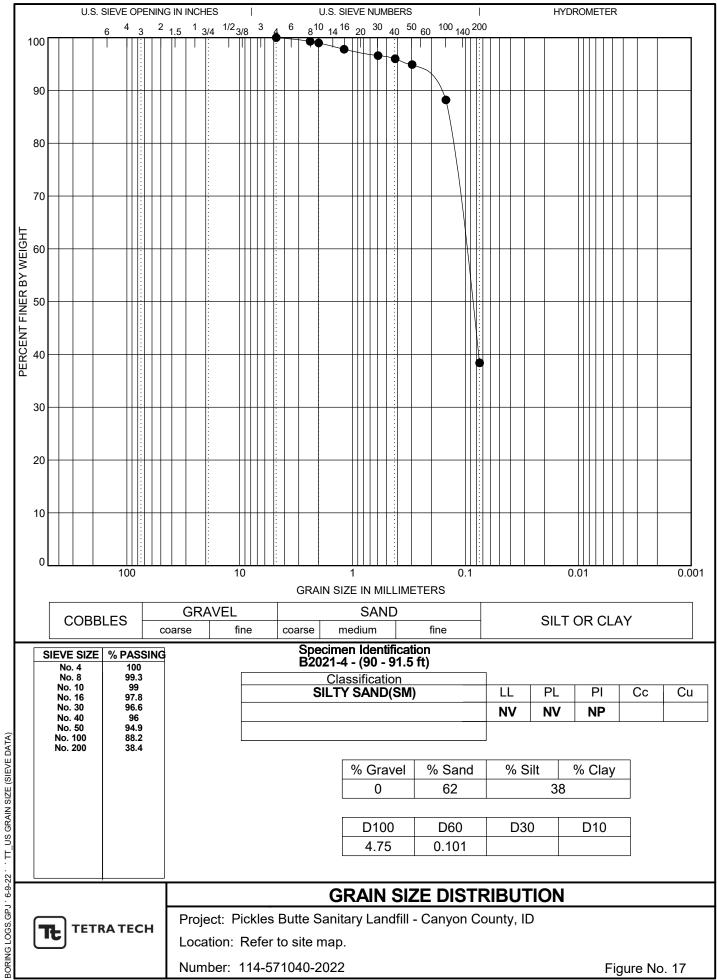

APPENDIX C: Laboratory Testing

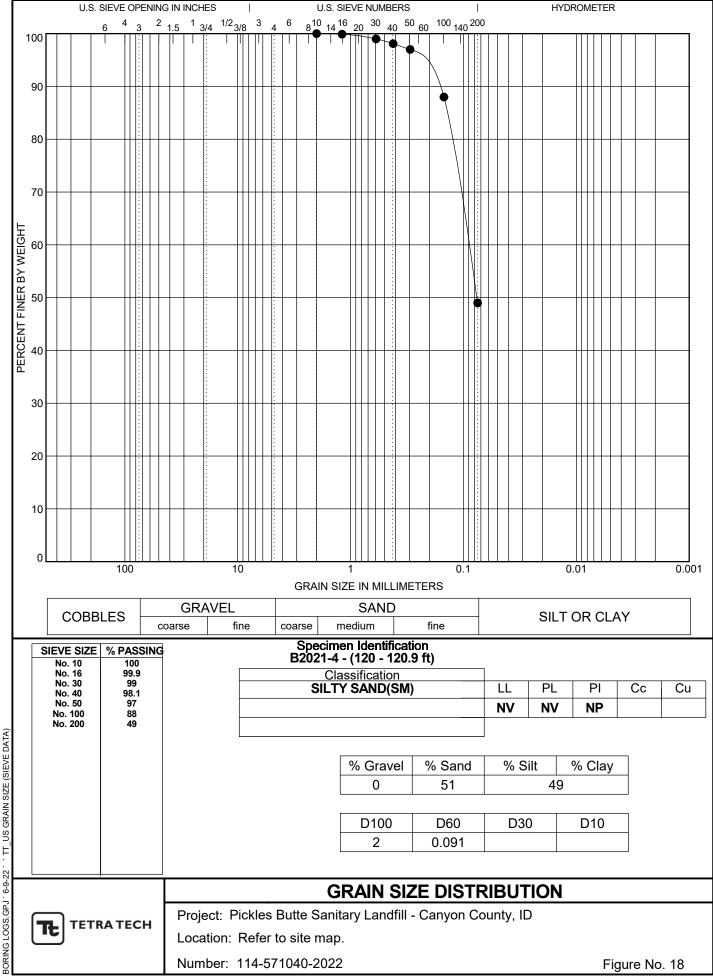

Figures 9 through 56

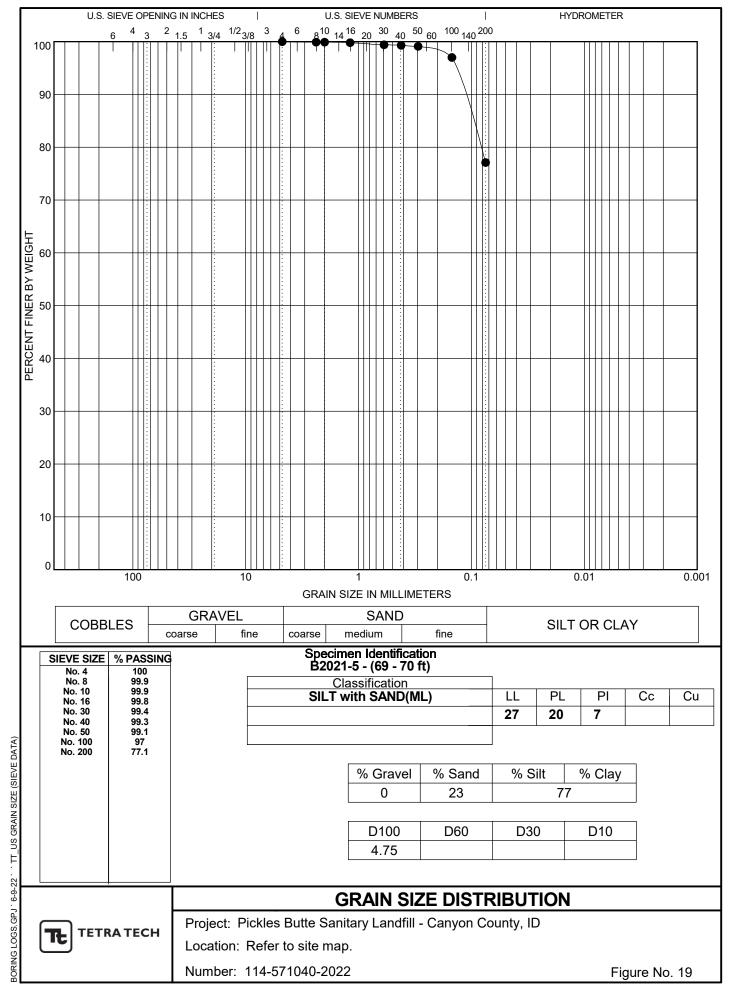


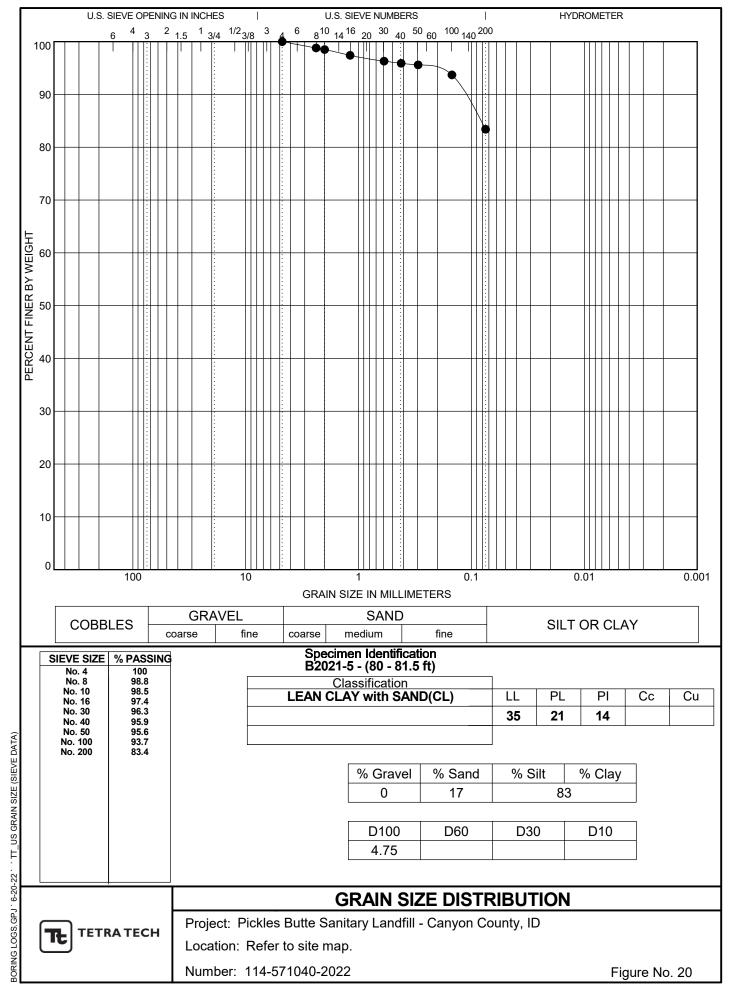


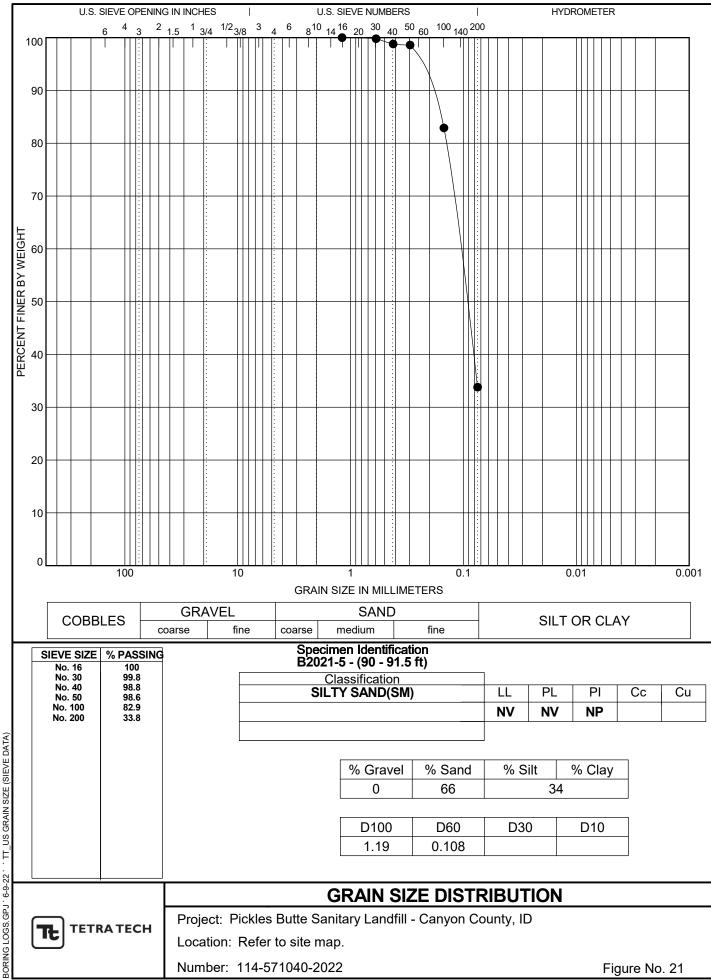


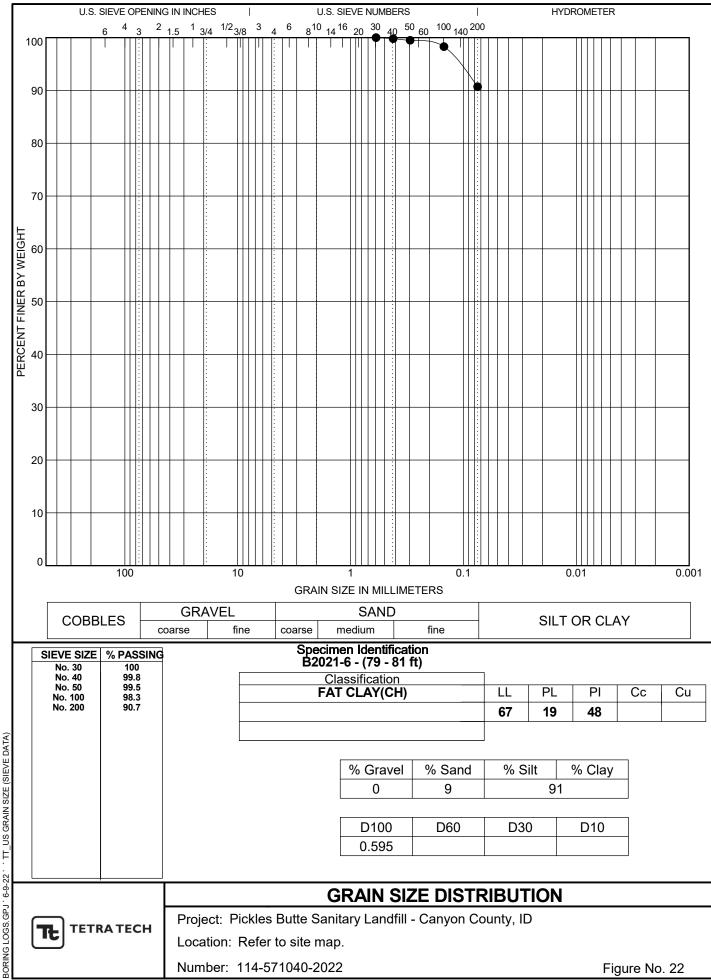


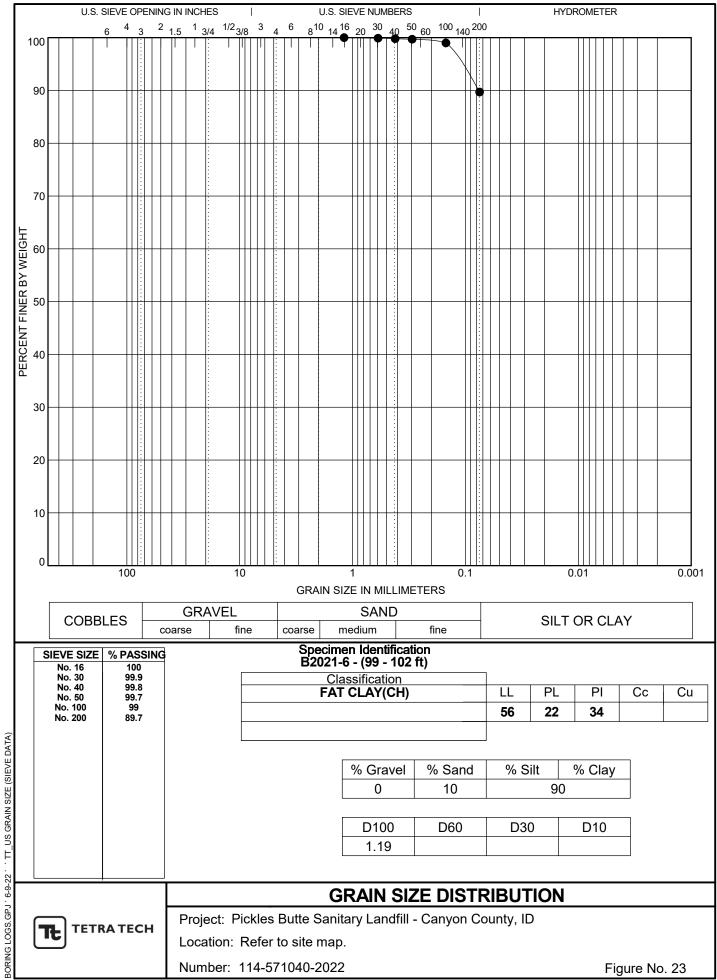


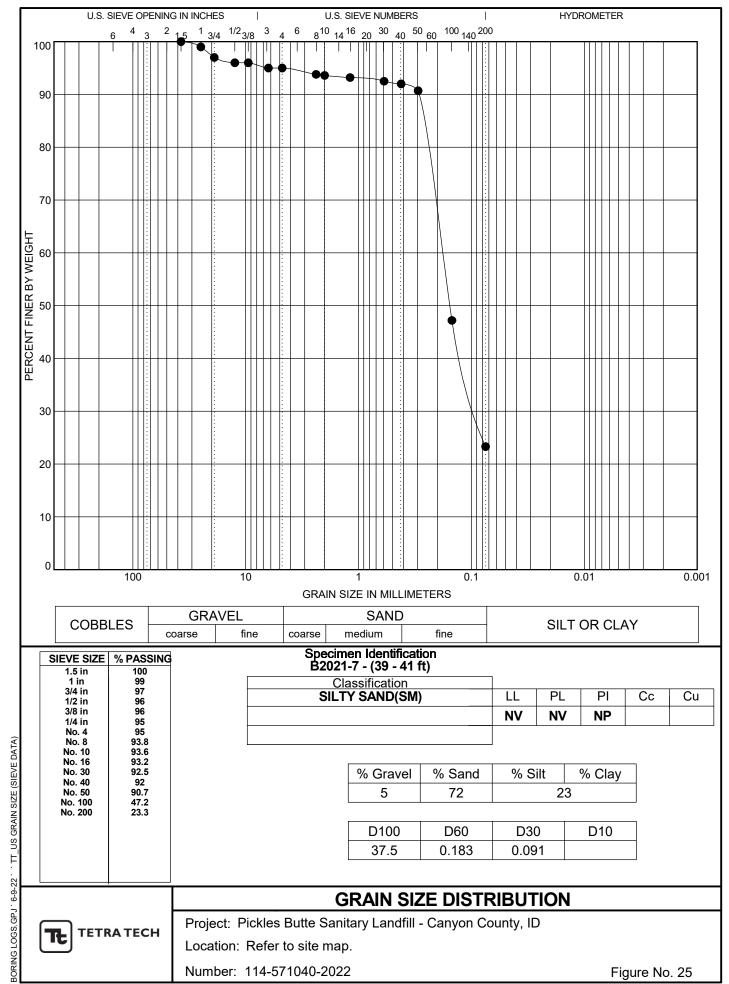


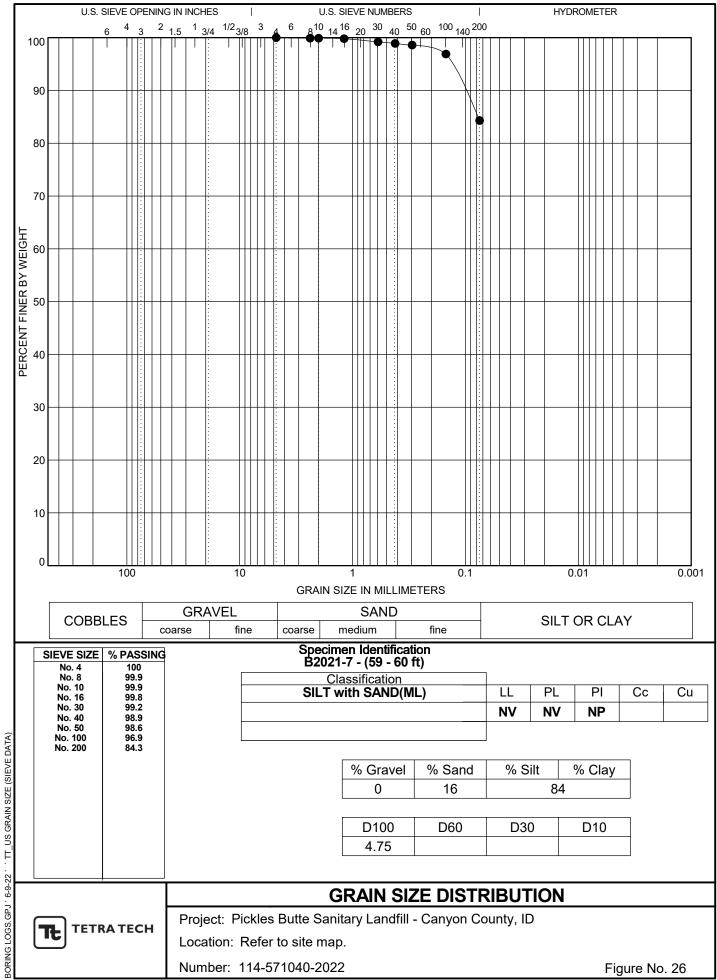


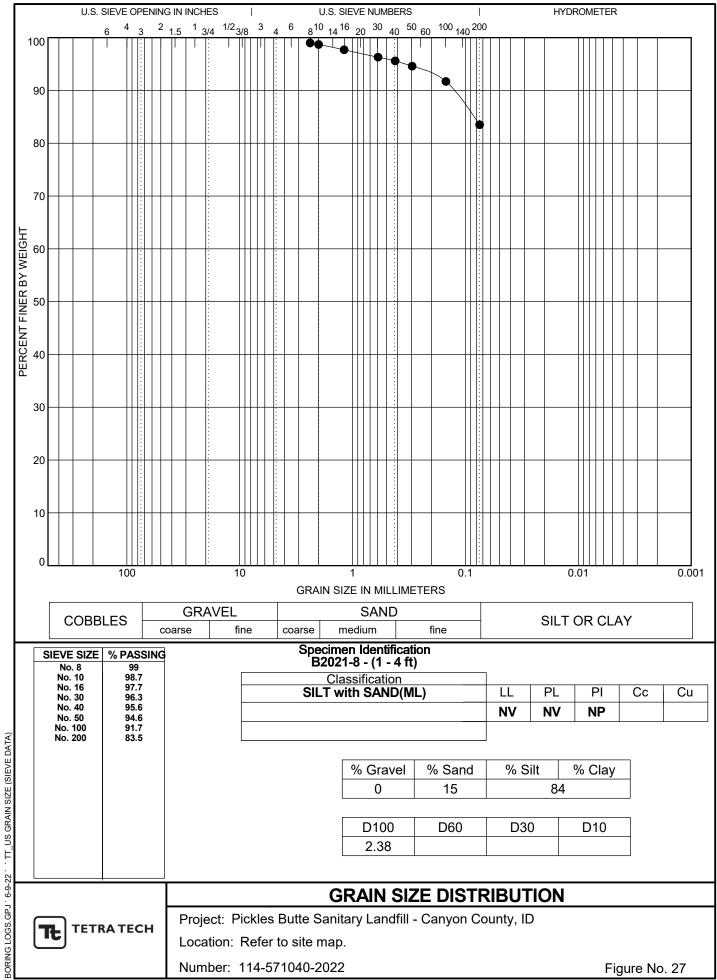


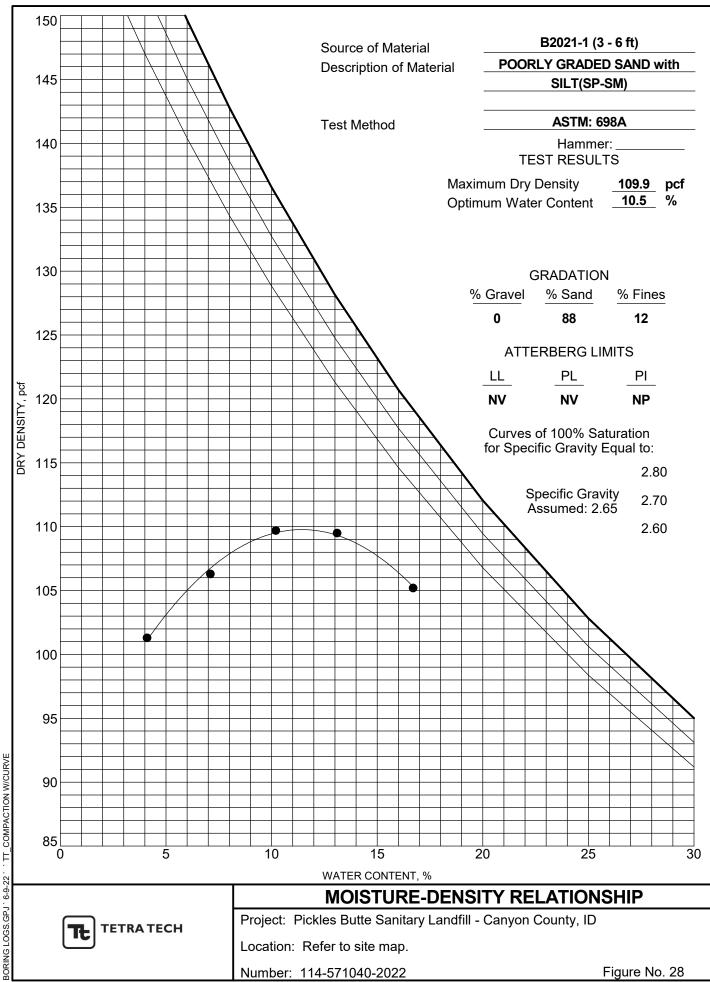


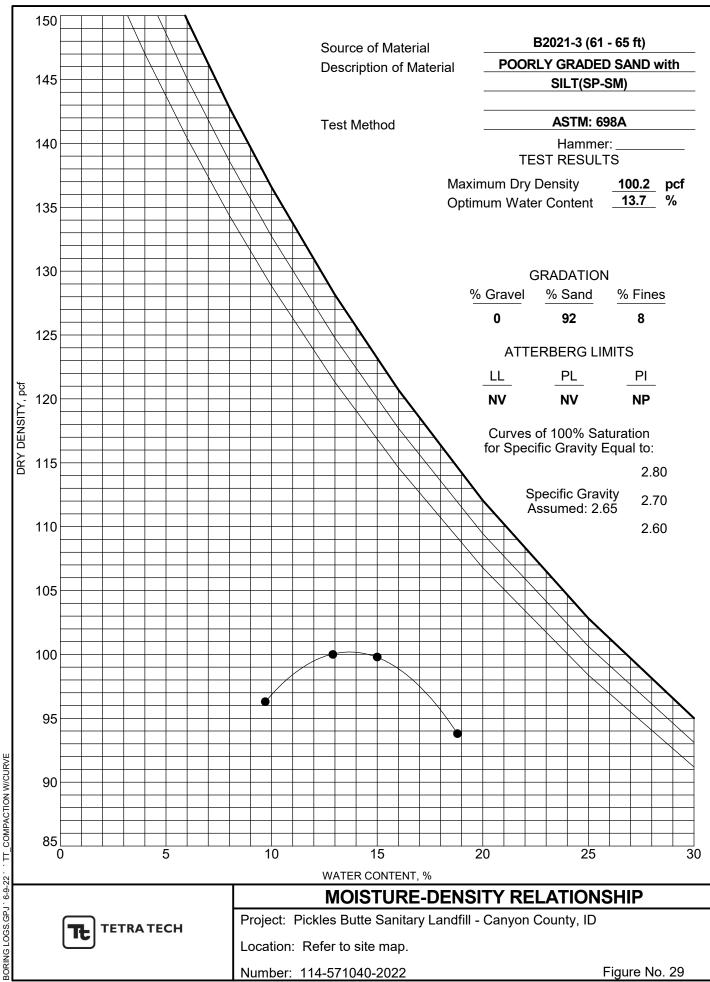


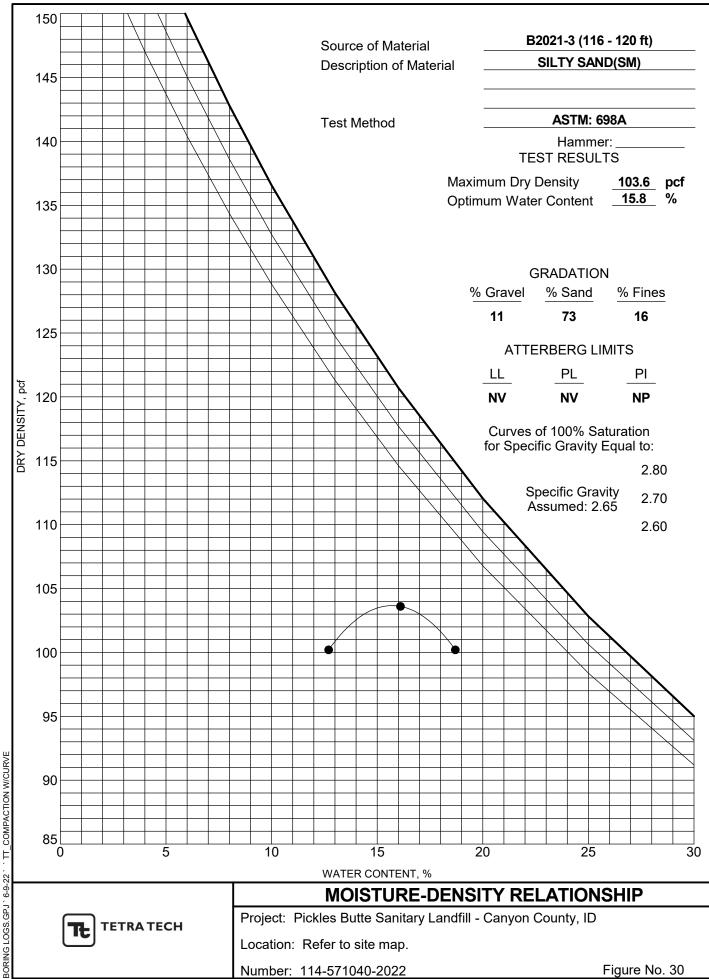


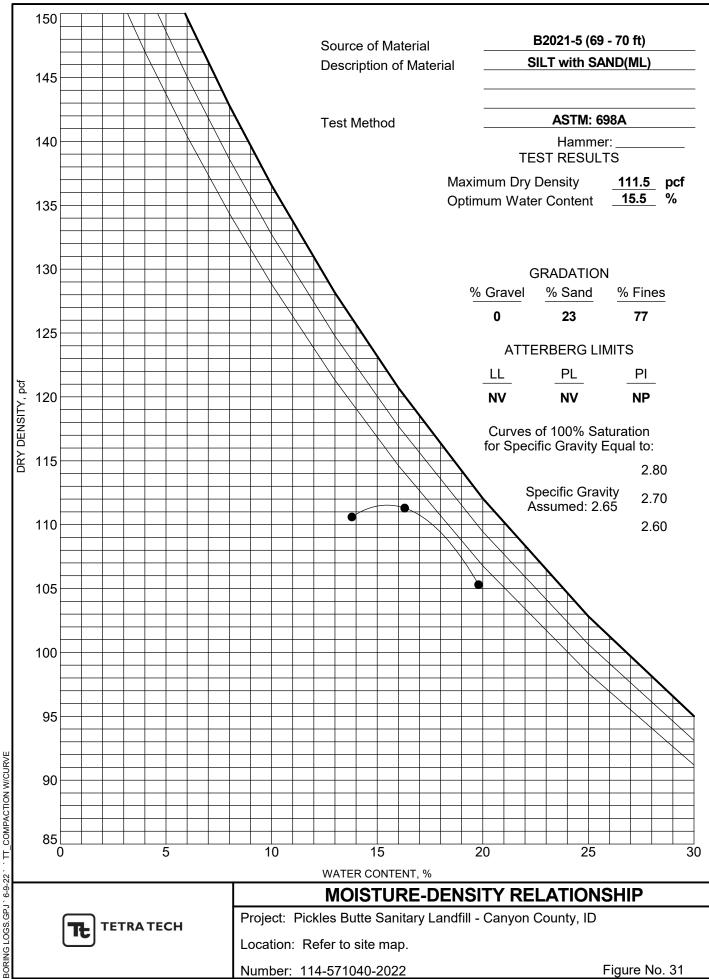


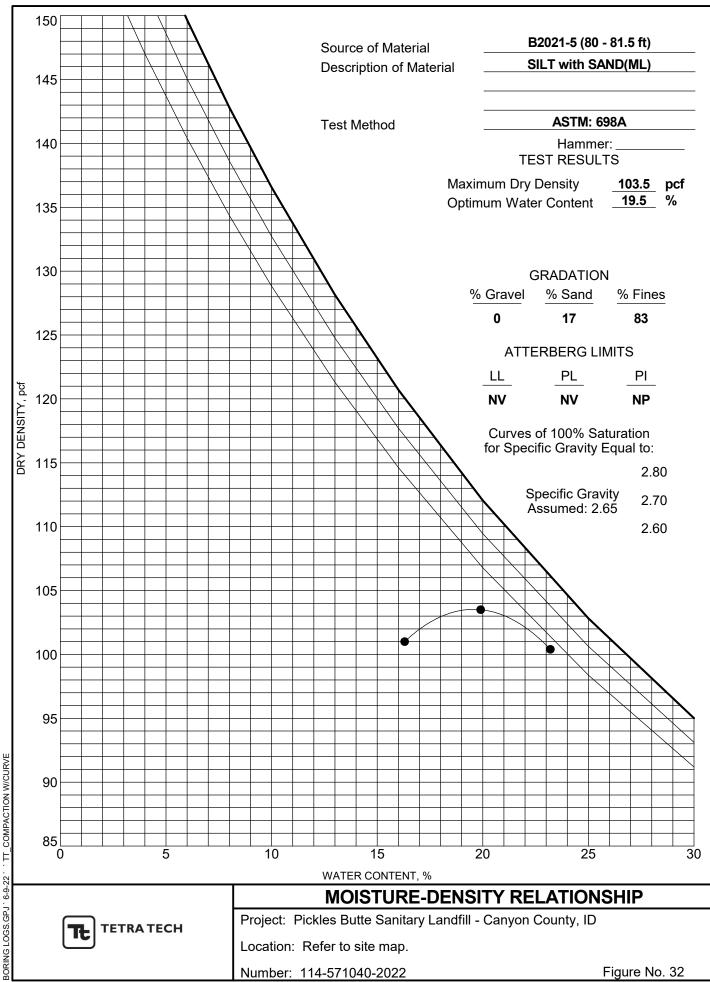


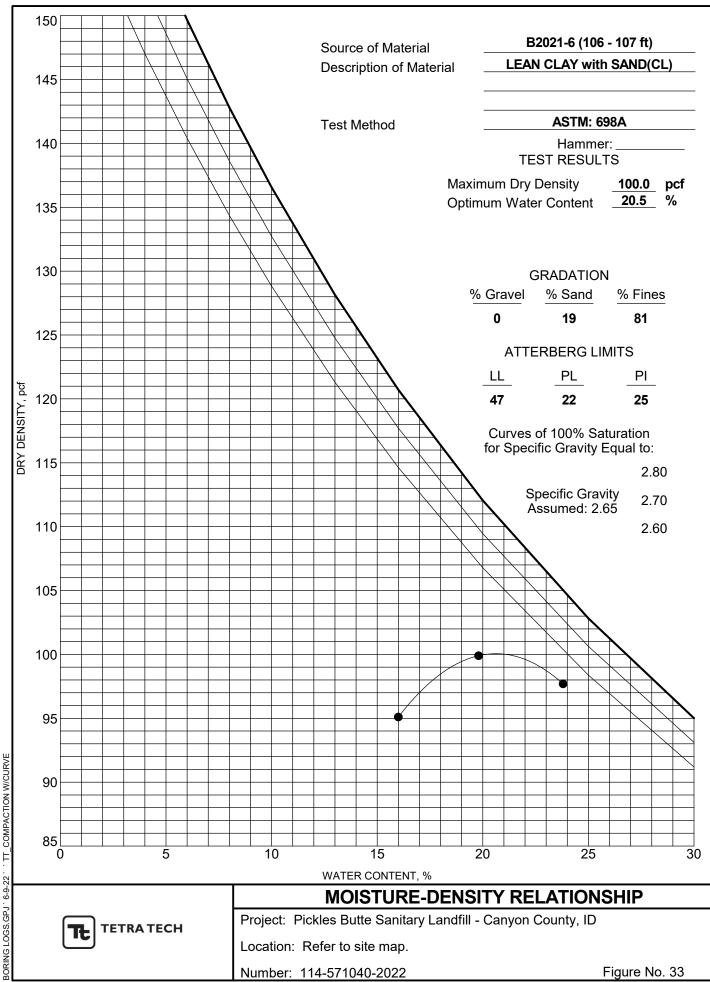


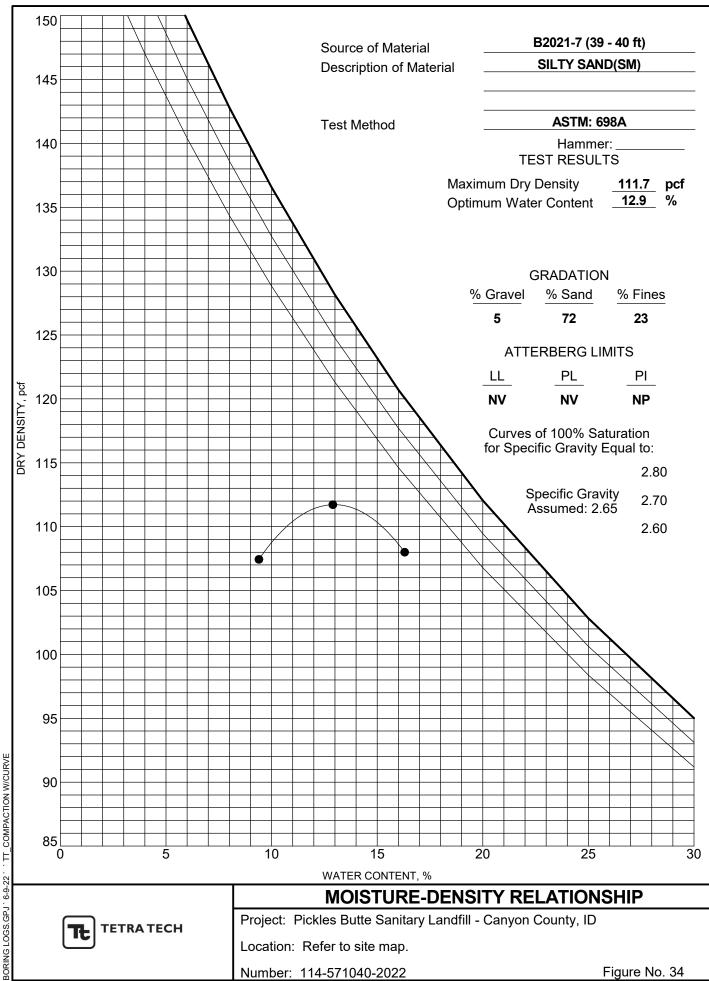


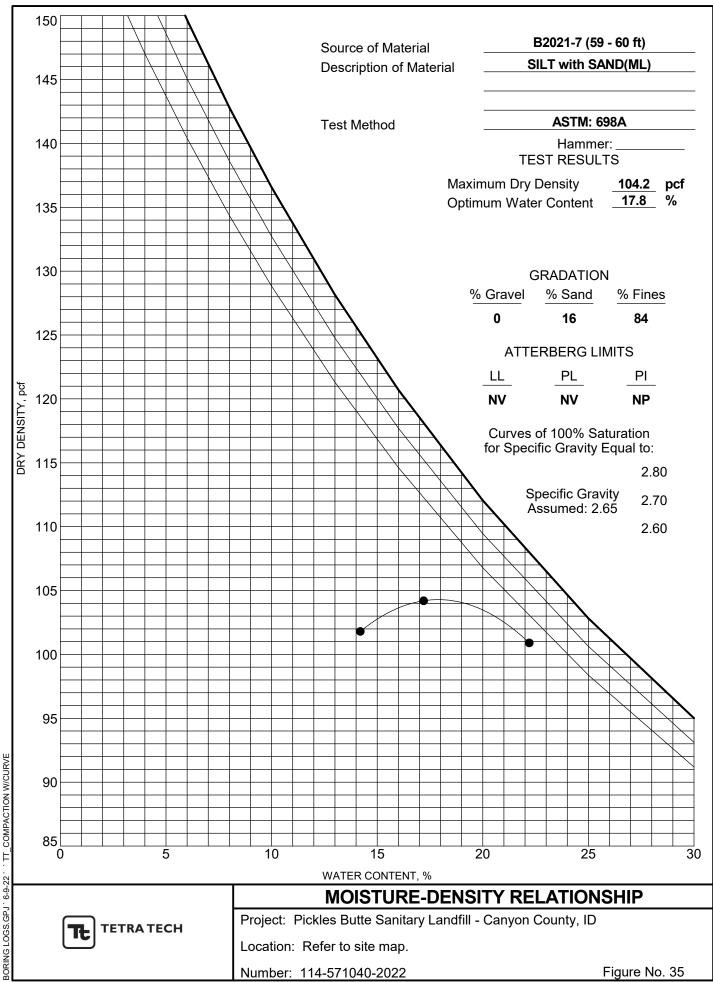


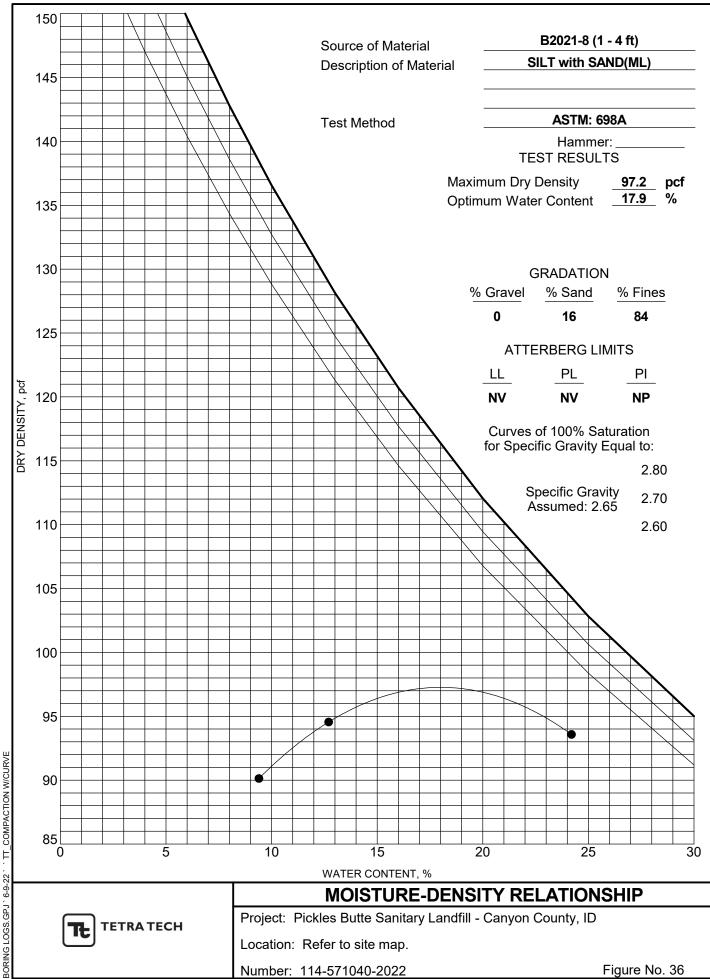


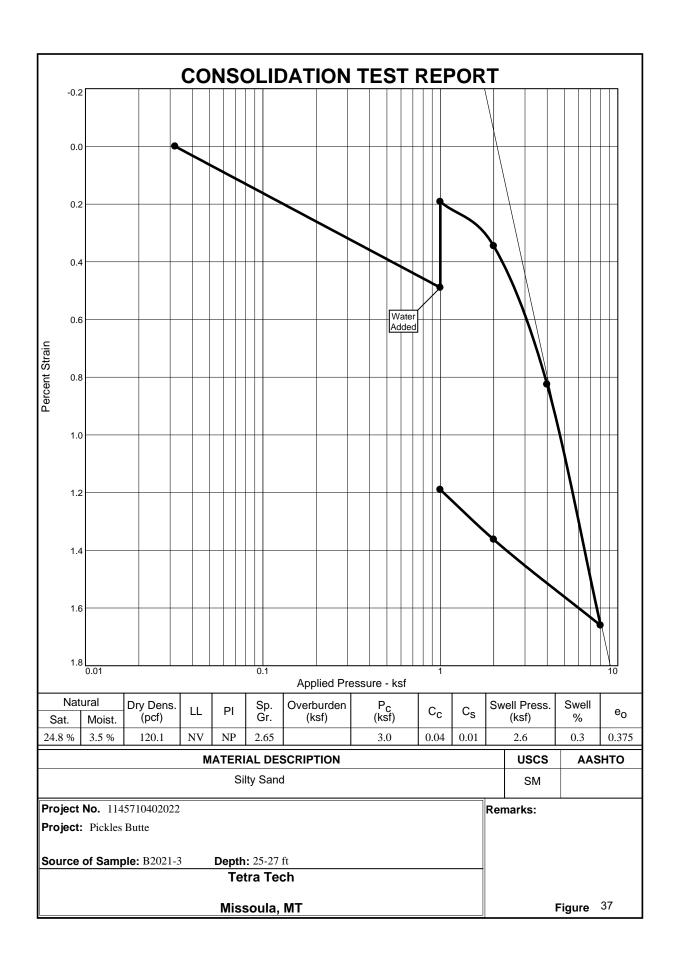


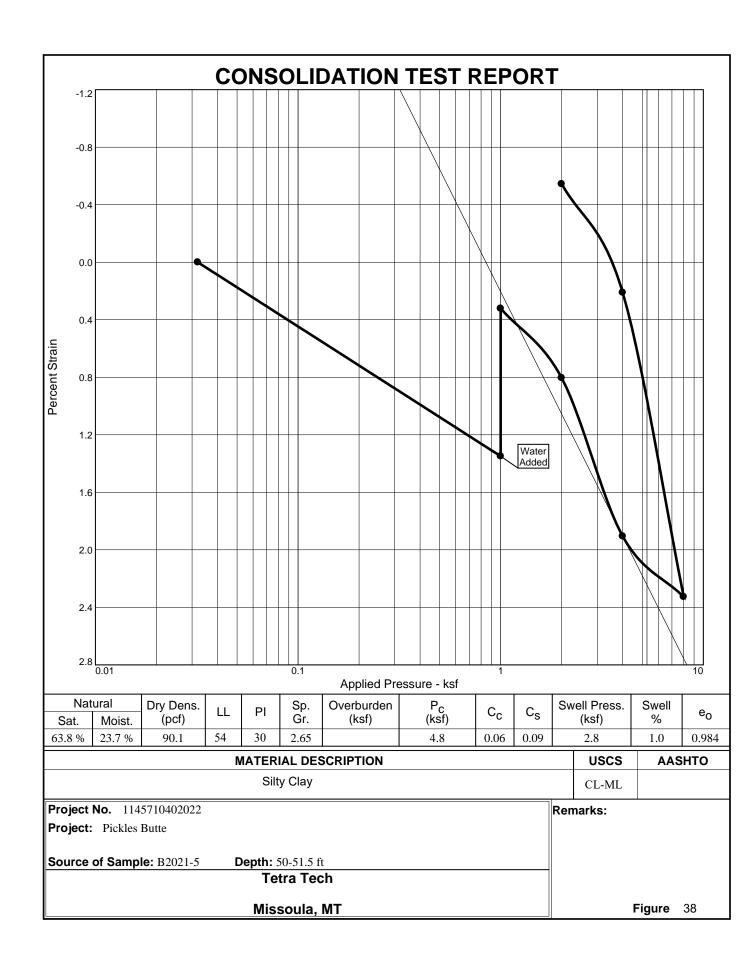


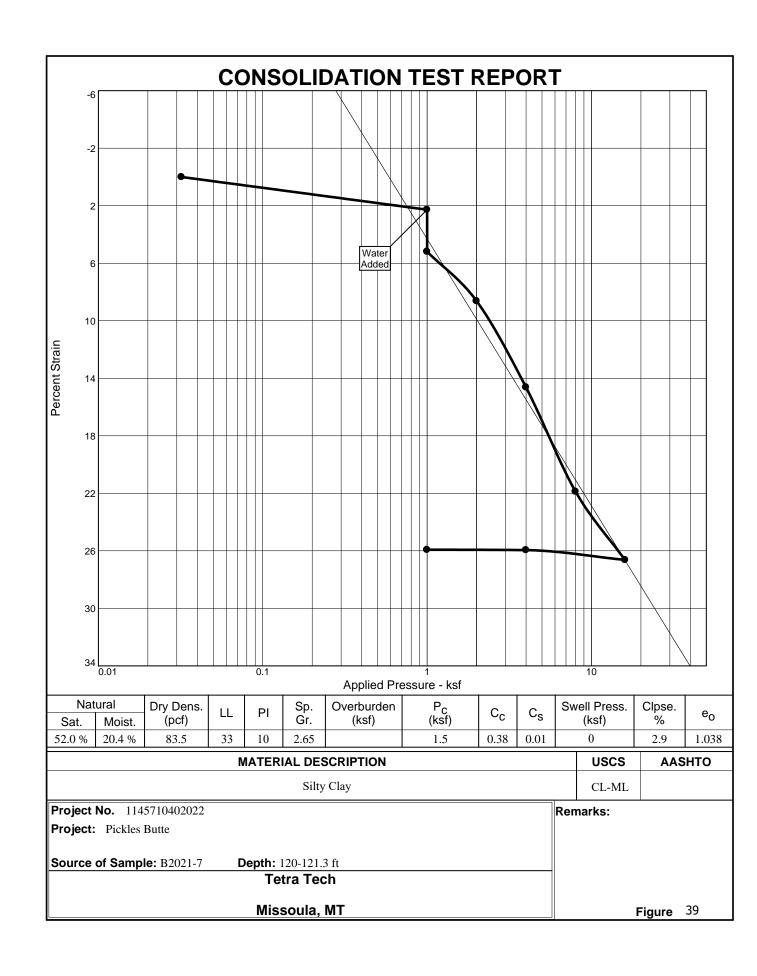


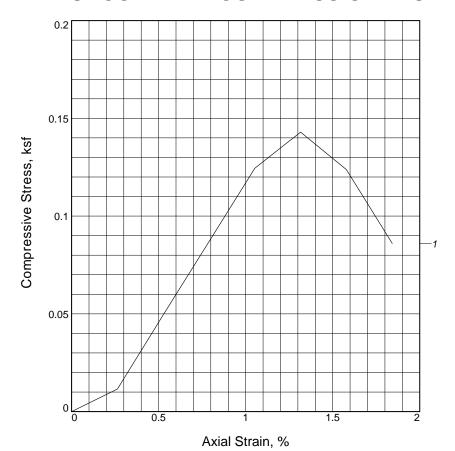





Revised 1-23-08 (MAT)




Revised 1-23-08 (MAT)



Revised 1-23-08 (MAT)

Sample No.	1	
Unconfined strength, ksf	0.143	
Undrained shear strength, ksf	0.071	
Failure strain, %	1.3	
Strain rate, in./min.	0.030	
Water content, %	8.3	
Wet density, pcf	103.1	
Dry density, pcf	95.2	
Saturation, %	29.7	
Void ratio	0.7369	
Specimen diameter, in.	2.790	
Specimen height, in.	5.700	
Height/diameter ratio	2.04	

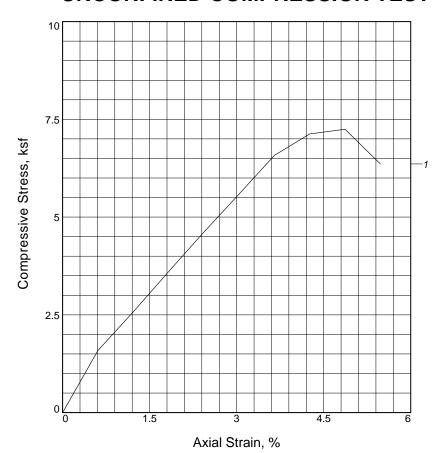
Description: bulk

LL = NV PL = NV PI = NV Assumed GS = 2.65 Type: SP

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte

Source of Sample: B2021-3

Depth: 61-65 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Sample No.	1	
Unconfined strength, ksf	7.246	
Undrained shear strength, ksf	3.623	
Failure strain, %	4.9	
Strain rate, in./min.	0.060	
Water content, %	24.0	
Wet density, pcf	119.4	
Dry density, pcf	96.3	
Saturation, %	88.5	
Void ratio	0.7184	
Specimen diameter, in.	2.450	
Specimen height, in.	4.930	
Height/diameter ratio	2.01	

Description: Special

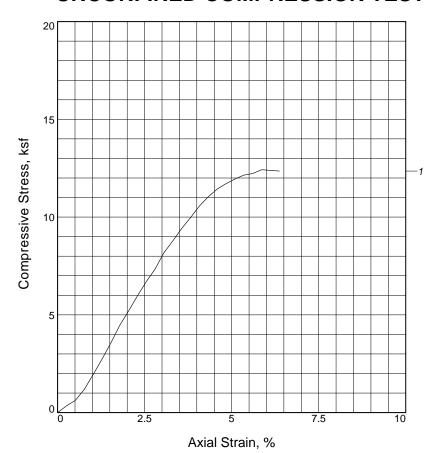
LL = N/A PL = N/A PI = N/A Assumed GS= 2.65 Type: ML

Project No.: 1145710402022

Date Sampled:

Remarks:

Project: Pickles Butte


Source of Sample: B2021-6

Depth: 57-58 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Figure __41

Sample No.	1		
Unconfined strength, ksf	12.421		
Undrained shear strength, ksf	6.211		
Failure strain, %	5.9		
Strain rate, in./min.	0.020		
Water content, %	24.6		
Wet density, pcf	124.9		
Dry density, pcf	100.2		
Saturation, %	100.3		
Void ratio	0.6508		
Specimen diameter, in.	1.918		
Specimen height, in.	3.925		
Height/diameter ratio	2.05		

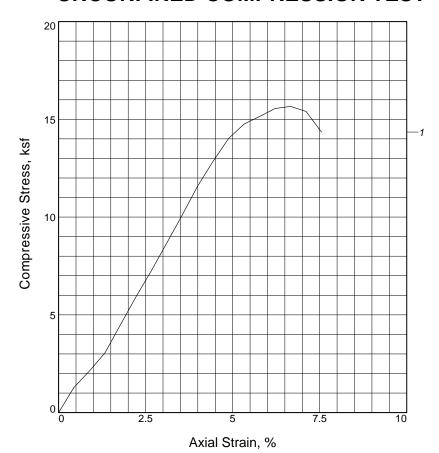
Description: Special

LL = 67 PL = 19 PI = 48 Assumed GS = 2.65 Type: CH

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte

Source of Sample: B2021-6

Depth: 79-81 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Sample No.	1		
Unconfined strength, ksf	15.661		
Undrained shear strength, ksf	7.831		
Failure strain, %	6.7		
Strain rate, in./min.	0.050		
Water content, %	22.8		
Wet density, pcf	122.8		
Dry density, pcf	100.0		
Saturation, %	92.4		
Void ratio	0.6550		
Specimen diameter, in.	2.473		
Specimen height, in.	5.629		
Height/diameter ratio	2.28		

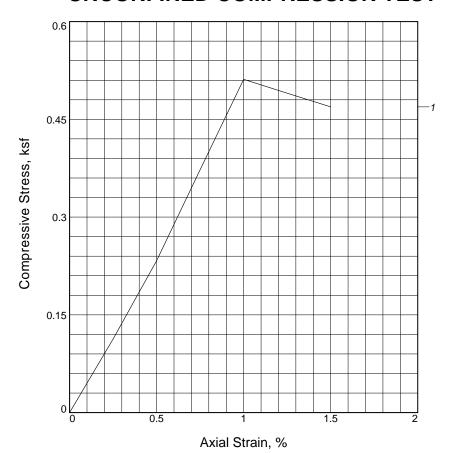
Description: Special

Project No.: 1145710402022

Date Sampled:

Remarks:

Project: Pickles Butte


Source of Sample: B2021-6

Depth: 99-102 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Figure ____43

Sample No.	1		
Unconfined strength, ksf	0.511		
Undrained shear strength, ksf	0.256		
Failure strain, %	1.0		
Strain rate, in./min.	0.030		
Water content, %	4.5		
Wet density, pcf	109.9		
Dry density, pcf	105.2		
Saturation, %	20.8		
Void ratio	0.5722		
Specimen diameter, in.	2.710		
Specimen height, in.	6.000		
Height/diameter ratio	2.21		

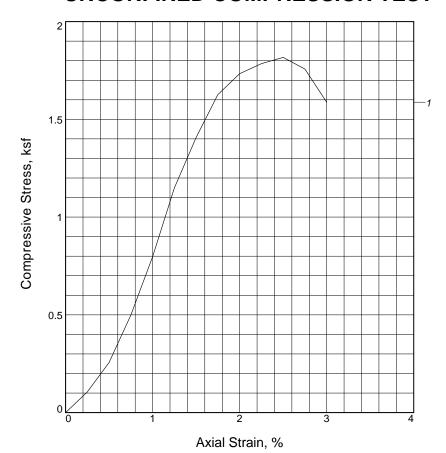
Description: grab

LL = NV PL = NV PI = NV Assumed GS = 2.65 Type: SP

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte"

Source of Sample: B2021-7

Depth: 39-40 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

Sample No.	1	
Unconfined strength, ksf	1.817	
Undrained shear strength, ksf	0.908	
Failure strain, %	2.5	
Strain rate, in./min.	0.030	
Water content, %	19.9	
Wet density, pcf	112.4	
Dry density, pcf	93.8	
Saturation, %	68.9	
Void ratio	0.7646	
Specimen diameter, in.	2.800	
Specimen height, in.	6.000	
Height/diameter ratio	2.14	

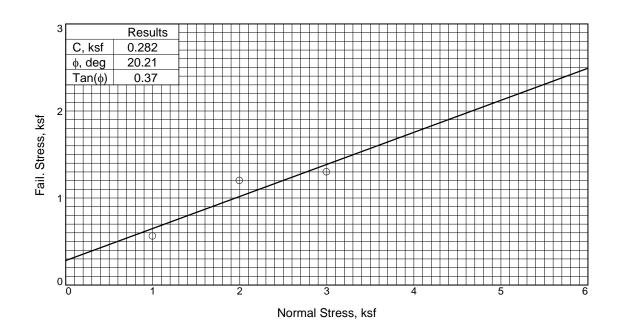
Description: grab

LL = NV PL = NV PI = NV Assumed GS = 2.65 Type: ML

Project No.: 1145710402022

Date Sampled:

Remarks:


Project: Pickles Butte

Source of Sample: B2021-7

Depth: 59-60 ft

UNCONFINED COMPRESSION TEST

Tetra Tech Missoula, MT

1.25
1.25
2
1.25
0.75
0.5
0.25

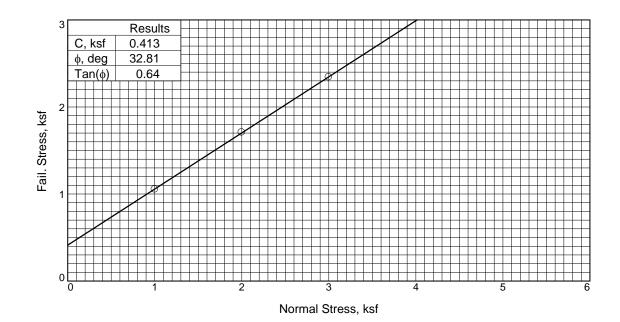
Strain, %

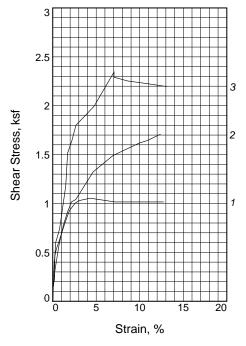
Sa	mple No.	1	2	3	
	Water Content, %	12.2	11.6	12.3	
	Dry Density, pcf	104.5	106.4	101.5	
Initial	Saturation, %	55.7	55.5	51.6	
<u>=</u>	Void Ratio	0.5829	0.5554	0.6306	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.210	1.200	1.259	
	Water Content, %	16.4	17.4	18.2	
	Dry Density, pcf	104.6	106.6	104.8	
At Test	Saturation, %	74.7	83.4	83.5	
¥	Void Ratio	0.5816	0.5524	0.5787	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.209	1.198	1.219	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fa	il. Stress, ksf	0.560	1.197	1.297	
s	train, %	2.8	2.7	7.0	
Ult	. Stress, ksf				
s	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

Sample Type: Shelby Description: Silty Sand

Assumed Specific Gravity= 2.65

Remarks: Remolded


Project: Pickles Butte


Source of Sample: B2021-3

Date Sampled:

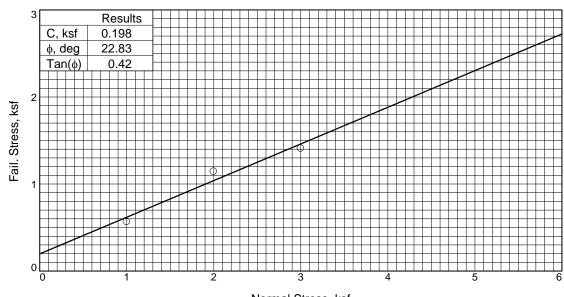
DIRECT SHEAR TEST REPORT

Tetra Tech Missoula, MT

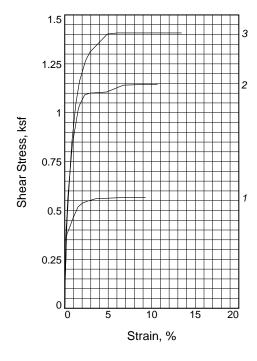
Sa	mple No.	1	2	3	
	Water Content, %	13.7	12.8	13.0	
	Dry Density, pcf	104.1	92.2	84.3	
Initial	Saturation, %	61.7	42.7	35.9	
<u>≔</u>	Void Ratio	0.5892	0.7944	0.9626	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	0.934	1.068	1.240	
	Water Content, %	21.2	22.3	20.2	
l	Dry Density, pcf	105.2	96.7	84.8	
At Test	Saturation, %	98.1	83.1	56.4	
¥	Void Ratio	0.5722	0.7104	0.9499	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	0.924	1.018	1.232	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fa	il. Stress, ksf	1.054	1.708	2.343	
s	train, %	4.3	12.4	7.0	
Ult	. Stress, ksf				
s	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

Sample Type: Shelby Description: Silty Sand

Assumed Specific Gravity= 2.65


Remarks: Remolded

Project: Pickles Butte


Source of Sample: B2021-3

Date Sampled:

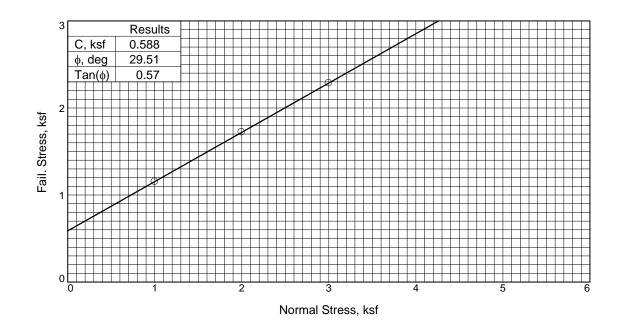
DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

Sa	ample No.	1	2	3	
	Water Content, %	15.0	15.0	15.0	
	Dry Density, pcf	97.7	89.6	96.1	
Initial	Saturation, %	57.4	47.0	55.1	
'Ξ	Void Ratio	0.6932	0.8458	0.7217	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.210	1.310	1.210	
	Water Content, %	29.0	29.5	28.0	
١	Dry Density, pcf	97.8	89.9	96.3	
At Test	Saturation, %	111.2	93.0	103.2	
'₹	Void Ratio	0.6910	0.8400	0.7180	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.208	1.306	1.207	
No	ormal Stress, ksf	1.000	2.000	3.000	
Fa	nil. Stress, ksf	0.566	1.144	1.408	
5	Strain, %	6.8	9.2	6.0	
UI	t. Stress, ksf				
5	Strain, %				
St	rain rate, in./min.	0.001	0.001	0.001	

Sample Type: MC **Description:** Silty Sand

LL= NV PI= NP Assumed Specific Gravity= 2.65


Remarks:

Project: Pickles Butte

Source of Sample: B2021-4

Date Sampled:

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

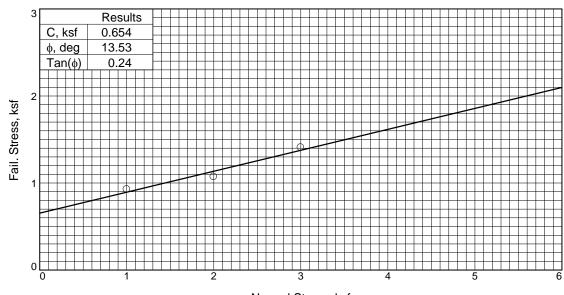
Strain, %

Sa	mple No.	1	2	3	
	Water Content, %	6.9	6.2	6.2	
	Dry Density, pcf	89.6	94.1	95.0	
Initial	Saturation, %	21.8	21.8	22.3	
<u>=</u>	Void Ratio	0.8457	0.7582	0.7415	
	Diameter, in.	2.400	2.400	2.410	
	Height, in.	1.150	1.138	1.122	
	Water Content, %	28.7	27.7	25.8	
	Dry Density, pcf	90.0	96.2	100.9	
Test	Saturation, %	90.8	101.9	107.0	
ΑŦ	Void Ratio	0.8377	0.7195	0.6390	
	Diameter, in.	2.400	2.400	2.410	
	Height, in.	1.145	1.113	1.056	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fai	il. Stress, ksf	1.153	1.723	2.285	
S	train, %	2.6	12.8	9.9	
Ult	. Stress, ksf				
S	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

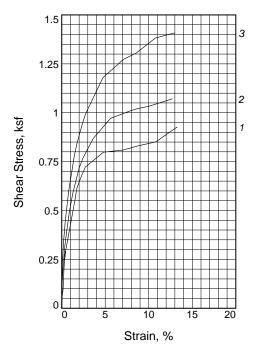
Sample Type: MC
Description: Silty Sand

Assumed Specific Gravity= 2.65

Remarks: Remolded


Project: Pickles Butte

Source of Sample: B2021-4


Date Sampled:

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

Figure ____49

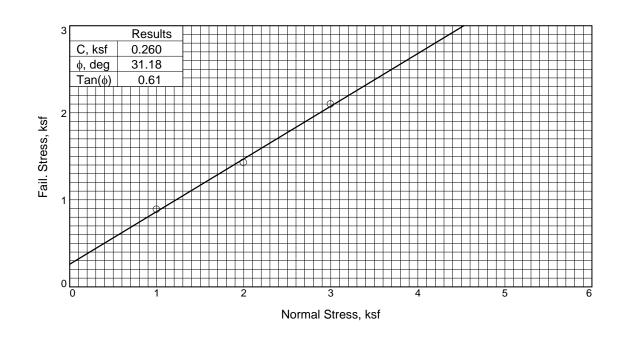
Normal Stress, ksf

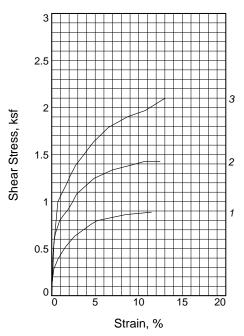
S	ample No.	1	2	3	
	Water Content, %	11.3	11.3	11.2	
	Dry Density, pcf	99.2	98.3	98.8	
ļ.	Saturation, %	44.6	43.7	43.8	
2	Void Ratio	0.6682	0.6829	0.6750	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.200	1.190	1.206	
	Water Content, %	27.5	25.7	27.1	
١.	Dry Density, pcf	101.9	102.9	102.0	
	Saturation, %	117.0	112.1	115.6	
;	₹ Void Ratio	0.6233	0.6075	0.6217	
	Diameter, in.	2.500	2.500	2.500	
	Height, in.	1.168	1.137	1.168	
N	lormal Stress, ksf	1.000	2.000	3.000	
F	ail. Stress, ksf	0.927	1.071	1.408	
	Strain, %	13.3	12.7	13.0	
Įι	llt. Stress, ksf				
	Strain, %				
S	train rate, in./min.	0.001	0.001	0.001	

Sample Type: MC

Description: Lean Clay With Sand

Assumed Specific Gravity= 2.65


Remarks: Remolded


Project: Pickles Butte

Source of Sample: B2021-5

Date Sampled:

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

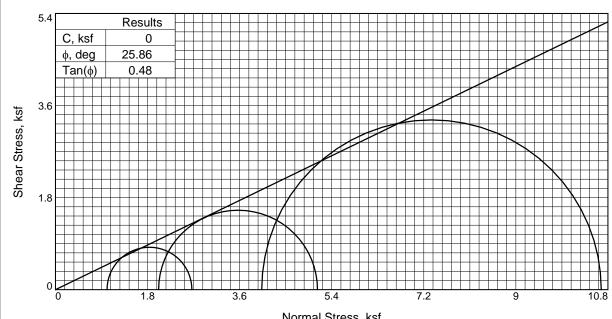
Sa	mple No.	1	2	3	
	Water Content, %	18.0	18.2	18.3	
	Dry Density, pcf	80.6	84.6	78.3	
Initial	Saturation, %	45.3	50.4	43.7	
<u>=</u>	Void Ratio	1.0522	0.9546	1.1118	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	1.240	1.190	1.250	
	Water Content, %	25.0	24.1	24.1	
١	Dry Density, pcf	82.7	87.5	82.3	
At Test	Saturation, %	66.2	71.7	63.1	
¥	Void Ratio	1.0009	0.8905	1.0104	
	Diameter, in.	2.410	2.410	2.400	
	Height, in.	1.209	1.151	1.190	
No	rmal Stress, ksf	1.000	2.000	3.000	
Fa	il. Stress, ksf	0.887	1.426	2.098	
S	train, %	11.5	10.6	13.0	
Ult	. Stress, ksf				
S	train, %				
Str	ain rate, in./min.	0.001	0.001	0.001	

Sample Type: MC
Description: Silty Sand

Assumed Specific Gravity= 2.65

Remarks: Remolded

Project: Pickles Butte


Source of Sample: B2021-5

Date Sampled:

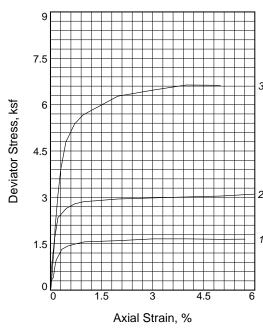

DIRECT SHEAR TEST REPORT Tetra Tech Missoula, MT

Figure ___51

Tested By: DB Checked By: LP

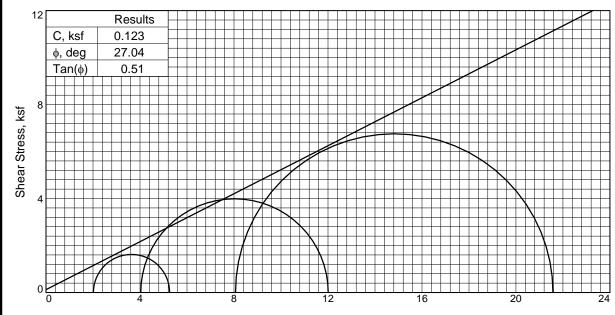
Normal Stress, ksf

	Sa	mple No.	1	2	3	
		Water Content, % Dry Density, pcf	5.0 100.9	5.0 100.9	5.0 100.9	
	ial	Saturation, %	20.7	20.7	20.7	
3	Initial	Void Ratio	0.6394	0.6394	0.6394	
		Diameter, in.	2.803	2.803	2.803	
		Height, in.	6.001	6.001	6.001	
		Water Content, %	22.7	21.8	20.9	
	پد	Dry Density, pcf	101.4	102.9	104.6	
	At Test	Saturation, %	95.4	95.2	95.0	
	Ι.Τ.	Void Ratio	0.6312	0.6074	0.5820	
2	_	Diameter, in.	2.803	2.869	2.945	
		Height, in.	5.972	5.616	5.247	
1	Str	ain rate, in./min.	0.001	0.001	0.001	
	Ва	ck Pressure, psi	85.000	85.000	85.000	
	Се	Il Pressure, psi	92.000	99.000	113.000	
	Fai	il. Stress, ksf	1.66	3.11	6.64	
	Ult	. Stress, ksf				
	σ ₁	Failure, ksf	2.67	5.12	10.67	
	σ_3	Failure, ksf	1.01	2.02	4.03	

Consolidated Undrained **Description:** Silty Sand

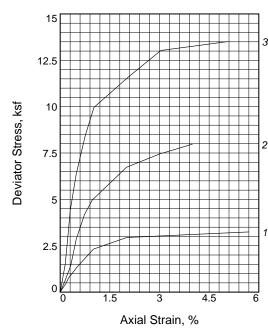
Assumed Specific Gravity=

2.65 **Remarks**:


Project: Pickles Butte

Source of Sample: B2021-3

Proj. No.: 1145710402022 **Depth:** 25-27 ft


Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

Sample No.

۱		Water Content, %	5.0	5.0	5.0	
		Dry Density, pcf	100.4	100.4	100.4	
	Initial	Saturation, %	20.5	20.5	20.5	
	<u>=</u>	Void Ratio	0.6481	0.6481	0.6481	
		Diameter, in.	2.801	2.801	2.801	
		Height, in.	6.001	6.001	6.001	
2		Water Content, %	23.2	22.3	20.9	
	پ.	Dry Density, pcf	100.7	102.2	104.5	
	At Test	Saturation, %	95.5	95.3	95.0	
	7	Void Ratio	0.6431	0.6195	0.5836	
	_	Diameter, in.	2.800	2.865	2.895	
		Height, in.	5.986	5.638	5.397	
1	Str	ain rate, in./min.	0.001	0.001	0.001	
	Ba	ck Pressure, psi	103.000	103.000	103.000	
	Се	Il Pressure, psi	117.000	131.000	159.000	
	Fai	I. Stress, ksf	3.24	7.98	13.51	
	Ult.	. Stress, ksf				
4	σ ₁	Failure, ksf	5.26	12.01	21.57	
	σ_3	Failure, ksf	2.02	4.03	8.06	
- 1						

1

2

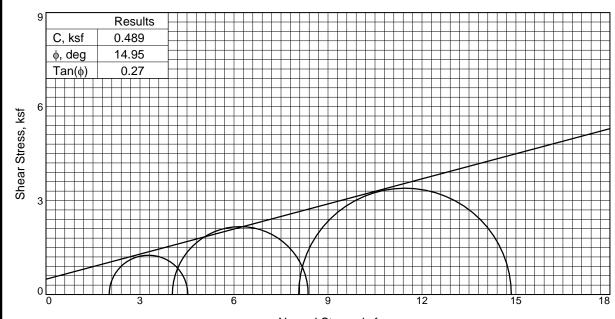
3

Type of Test:

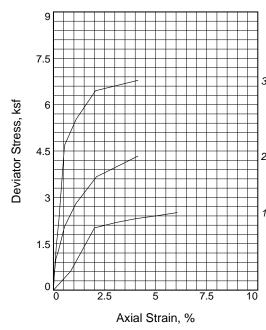
Consolidated Undrained

Description: Poorly Graded Sand with Silt

Assumed Specific Gravity= 2.65


Remarks:

Project: Pickles Butte


Source of Sample: B2021-4

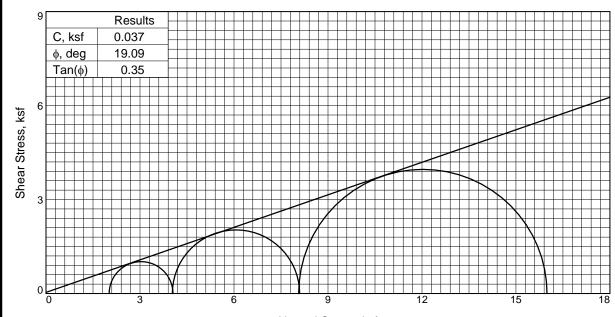
Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

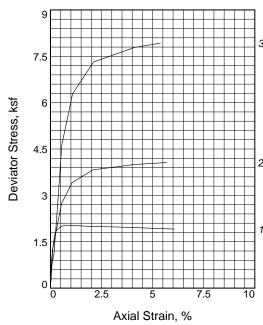
Normal Stress, ksf

	Sa	mple No.	1	2	3	
3	Initial	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	23.0 90.1 73.0 0.8354 2.800 6.030	2.800	73.0 0.8354 2.800	
2	At Test	Water Content, % Dry Density, pcf Saturation, % Void Ratio Diameter, in. Height, in.	27.4 95.2 98.4 0.7372 2.747 5.930	23.7 100.9 98.2 0.6404 2.776	21.3 104.9 98.0 0.5770 2.793	
	Str	ain rate, in./min.	0.001	0.001	0.001	
	Ba	ck Pressure, psi	63.000	63.000	63.000	
	Се	Il Pressure, psi	77.000	91.000	119.000	
	Fai	il. Stress, ksf	2.51	4.34	6.79	
	Ult	. Stress, ksf				
	σ ₁	Failure, ksf	4.52	8.37	14.85	
	σ_3	Failure, ksf	2.02	4.03	8.06	

Consolidated Undrained **Description:** Silty Clay


Assumed Specific Gravity= 2.65 **Remarks:**

Project: Pickles Butte


Source of Sample: B2021-5

Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

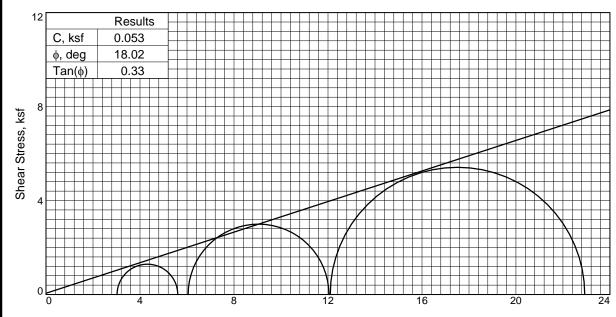
Normal Stress, ksf

	Sa	mple No.	1	2	3	
3		Water Content, % Dry Density, pcf	16.2 101.9			
	Initial	Saturation, %	69.1	69.1		
	드	Void Ratio	0.6231			
		Diameter, in.	2.790			
		Height, in.	6.000	6.000	6.000	
		Water Content, %	22.2	21.2	19.2	
	٠,	Dry Density, pcf	102.4	104.1	107.8	
2	At Test	Saturation, %	95.7	95.5	95.0	
	۲-	Void Ratio	0.6160	0.5892	0.5344	
	`	Diameter, in.	2.800	2.873	2.924	
		Height, in.	5.930	5.541	5.164	
1	Str	ain rate, in./min.	0.001	0.001	0.001	
	Ва	ck Pressure, psi	53.000	53.000	53.000	
	Се	Il Pressure, psi	67.000	81.000	109.000	
	Fai	I. Stress, ksf	2.03	4.06	7.93	
	Ult	. Stress, ksf				
	σ ₁	Failure, ksf	4.05	8.09	15.99	
	σ_3	Failure, ksf	2.02	4.03	8.06	

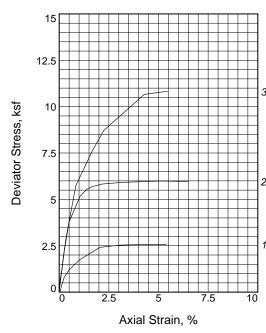
Consolidated Undrained

Description: Silt

Assumed Specific Gravity= 2.65


Remarks:

Project: Pickles Butte


Source of Sample: B2021-5

Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

Normal Stress, ksf

	Sa	mple No.	1	2	3	
		Water Content, %	18.1			
	-	Dry Density, pcf	85.7			
_	Initial	Saturation, %	51.4			
3	느	Void Ratio	0.9314			
		Diameter, in.	2.801			
		Height, in.	6.020	6.020	6.020	
		Water Content, %	24.5	24.5	24.5	
	, t	Dry Density, pcf	98.3	98.3	98.3	
	At Test	Saturation, %	95.0	95.0	95.0	
2	۸t -	Void Ratio	0.6826	0.6826	0.6826	
	`	Diameter, in.	2.618	2.694	2.795	
		Height, in.	6.004	5.670	5.268	
1	Str	ain rate, in./min.	0.001	0.001	0.001	
,	Ва	ck Pressure, psi	65.000	65.000	65.000	
	Се	Il Pressure, psi	86.000	107.000	149.000	
	Fai	I. Stress, ksf	2.58	5.99	10.83	
	Ult	. Stress, ksf				
	σ ₁	Failure, ksf	5.61	12.04	22.93	
	σ_3	Failure, ksf	3.02	6.05	12.10	

Consolidated Undrained

Description: Clay

Assumed Specific Gravity= 2.65

Remarks:

Project: Pickles Butte

Source of Sample: B2021-7

Date Sampled:

TRIAXIAL SHEAR TEST REPORT Tetra Tech Missoula, MT

PAGE 1 OF 8

L	PROJEC	T NUMBER	114-571040	-2022										PF	ROJEC	T NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	<u>, ID</u>	
NG LUGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	0 - 1.5																				
185	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	2 - 3.5										9										
٦٦	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	-		NV	NP		99.6	83.1	11.6	110	109.9		10.5									
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	4 - 5.5																				
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	6 - 7.5										8										
3 - -	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	8 - 9.5																				
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	10 - 11.5										6										
	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	15 - 16.5										5										
2	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	20 - 21.5																				
2022	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	25 - 27		NV	NP		99.9	94.7	6.2	113								0.03				
<u>₹</u> [B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	27 - 28.5																				
N/KE	B2021-1	11/15/2021	43.502927	-116.624204	2740.3976	30 - 31.5																				
3	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	0 - 1.5										7										
Ä	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	2 - 3.5																				
	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	4 - 5.5										3										
	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	6 - 7.5																				
ź	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	8 - 9.5										3										
12:0	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	10 - 11.5																				
73/57	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	15 - 16.5										5										
-	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	20 - 21										3										
3	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	25 - 26.5																				
MAK	B2021-2	11/16/2021	43.501658	-116.713829	2739.0394	30 - 31.5																				
NOS [B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	5 - 6.5																				
] P	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	10 - 11.5																				
-[B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	15 - 16.5																				
JAK	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	20 - 21.5										3										
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	25 - 27		NV	NP		99.8	97.7	31.3					25.86	0			0.04				
LAB.	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	26 - 30																				

PAGE 2 OF 8

Į	PROJEC	T NUMBER	114-571040	-2022										PI	ROJEC	T NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	, ID	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	Н	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
Š	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	27 - 28.5																				
25	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	30 - 31.5										3										
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	35 - 36.5																				
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	40 - 41.5																				
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	45 - 46.5																				
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	50 - 51.5										3										
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	60 - 62		NV	NP		99.4	97.9	19.2					20.21	0.282							
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	61 - 65		NV	NP		99.6	99.1	7.7	100	100.2		13.7			0.143						
2	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	70 - 71.5																				
707	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	80 - 82		NV	NP		99.8	99.1	23.6					32.81	0.413							
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	82 - 83.5										2										
N/2	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	90 - 91.5																				
3	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	100 - 100.2																				
힐	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	101 - 107																				
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	110 - 110.7																				
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	112 - 115																				
ż	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	116 - 120		NV	NP		86.4	81.7	16.1	104	103.6		15.75									
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	121 - 121.8										4										
77/67	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	135 - 138																				
-	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	139 - 142																			<u> </u>	
3	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	140 - 141.5																				
MA	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	147 - 151																			ļ	Ш
	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	150 - 151.5																				
3	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	159 - 161																				
=	B2021-3	11/22/2021	43.500874	-116.716768	2737.6687	160 - 161.5																				
MAK	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	5 - 6.5										6										
NOS.	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	9 - 10																			ļ	Ш
<u>8</u>	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	10 - 11.5																				

PAGE 3 OF 8

L	PROJEC	T NUMBER	114-571040	-2022										PF	ROJEC	T NA	ME _P	Pickles	Butte	Sanitary	Landfill -	Cany	on C	county	<u>, ID</u>	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	Н	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
Š	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	15 - 16.5																				
185	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	20 - 21.5										5										
9 E	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	25 - 26.5																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	30 - 31.5																				
Ä	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	35 - 36.5										8										
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	40 - 41.5																				
2	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	44 - 45																				
(LES	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	45 - 46.5										16										
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	50 - 51.5		NV	NP		100	91.9	6.3					27.04	0.123							
2022	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	51 - 52																				
칡	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	60 - 61.5										2										
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	69 - 70																				
8	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	70 - 71.5																				
취	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	79 - 80																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	80 - 81.5																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	89 - 90																				
ź[B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	90 - 91.5		NV	NP		99	96	38.4					22.83	0.198							
12:0	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	98 - 99																				
22/67	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	99 - 100.5										22										
-	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	109 - 110																				
3	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	110 - 111.5																				
MAK	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	119 - 120																				
SON SON	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	120 - 120.9		NV	NP		100	98.1	49					29.51	0.588							
LAB	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	129 - 130																				
_[B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	130 - 131.5																				
]¥ J¥	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	139 - 140																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	140 - 141.5										2										
YAB.	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	149 - 150																				

PAGE 4 OF 8

L	PROJEC	T NUMBER	114-571040	-2022										PF	ROJEC	T NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	<u>, ID</u>	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
2	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	150 - 150.9																				
200	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	157 - 159																				
낅	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	160 - 160.9																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	169 - 170																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	170 - 170.8																				
<u>₹</u>	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	175 - 177																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	179 - 180																				
	B2021-4	12/14/2021	43.665364	-116.688388	2797.1687	189 - 190																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	5 - 6.5										4										
707	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	9 - 10																				
5	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	10 - 11.5																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	15 - 16.5										3										
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	19 - 20																				
취	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	20 - 21.5																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	27 - 28																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	30 - 31.5																				
ź[B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	35 - 36.5										4										
] 	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	39 - 40																				
77/63	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	40 - 41																				
-	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	45 - 46.5																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	49 - 50																				
MAR	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	50 - 51.5		54	30									14.95	0.489			0.06				
202	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	59 - 60																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	60 - 60.6										4										
<u>-</u> [B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	69 - 70		NV	NP		99.9	99.3	77.1	112	111.5		15.5	19.09	0.037	<u> </u>						
AR AR	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	70 - 71.5										29										
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	79 - 80																				
Ϋ́E	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	80 - 81.5		35	14	0.000	98.5	95.9	83.4	104	103.5	21	19.5	31.18	0.26							

PAGE 5 OF 8

L	PROJEC	T NUMBER	114-571040	-2022										PI	ROJEC	ET NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	, ID	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
2	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	89 - 90																				
185	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	90 - 90.8		NV	NP			98.8	33.8					13.53	0.654							
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	99 - 100										11										
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	100 - 101.3																				
Ž	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	109 - 110																				
5[B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	110 - 110.6																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	119 - 120																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	120 - 121.5																				
2	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	126 - 127																				
707	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	130 - 131.4																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	139 - 140																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	140 - 140.9																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	149 - 150																				
취	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	150 - 151.4																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	159 - 160																				
	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	160 - 160.6																				
ź[B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	169 - 170																				
] - 	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	170 - 171.5																				
37/63	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	174 - 175																				
-	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	179 - 180																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	189 - 190																				
MAR	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	199 - 200																				
NON I	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	204 - 205																				
3	B2021-5	12/19/2021	43.499133	-116.713491	2661.6331	209 - 210																				
-[B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	5 - 6.5																				
ÄÄ	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	9 - 11																				
<u></u>	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	10 - 11.5										6										
ŊĘ,	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	20 - 21.5																				

PAGE 6 OF 8

	PROJEC.	T NUMBER	114-571040	-2022										PI	ROJE	CT NA	ME_F	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	, ID	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
2	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	25 - 26.5										18										
GS/E	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	39 - 41																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	40 - 41.5										22										
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	45 - 46.5																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	50 - 51.5																				
Y	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	57 - 58														7.246						
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	59 - 61																				
LES	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	60 - 61.5										25										
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	68 - 69																				
2022	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	69 - 71																				
) PRT	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	70 - 71.5																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	75 - 76																				
3	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	79 - 81		67	48			99.8	90.7													
IREP	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	80 - 81.1																				
밁	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	84 - 85																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	89 - 91																				
ź[B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	90 - 91.5																				
12:0	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	99 - 102		56	34			99.8	89.7							15.661						
73/67	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	100 - 101.5																				
-	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	106 - 107		47	25		99.2	97.6	80.8	100	100		20.5									
3	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	110 - 111.5										21										
MAK	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	120 - 121.5										22										
NOS SOI	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	129 - 130																				
] B	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	130 - 131.3																				
-[B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	140 - 141.5																				
JAK	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	149 - 150																				
	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	150 - 151.4																				
LAB.	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	159 - 160																				

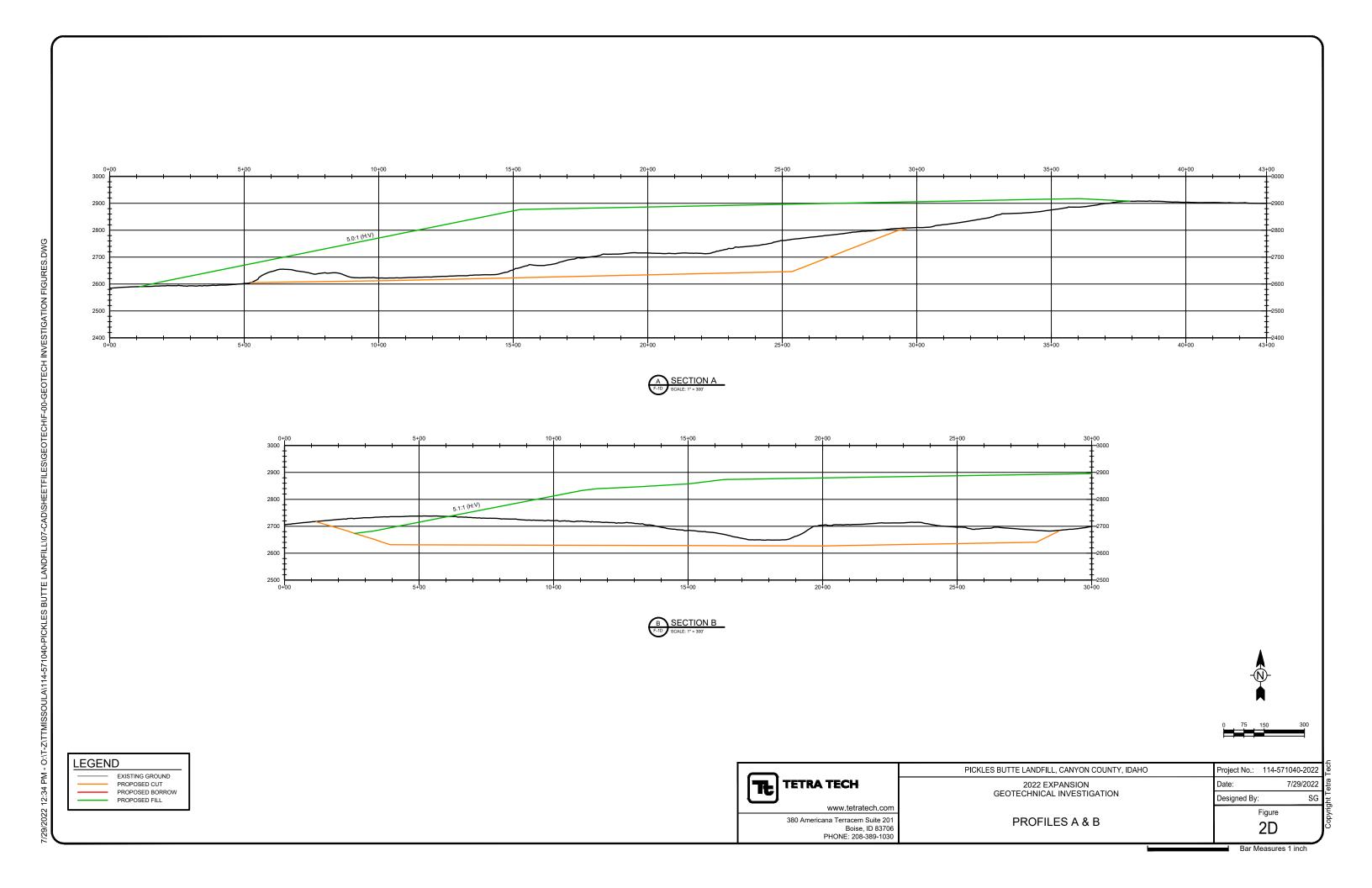
PAGE 7 OF 8

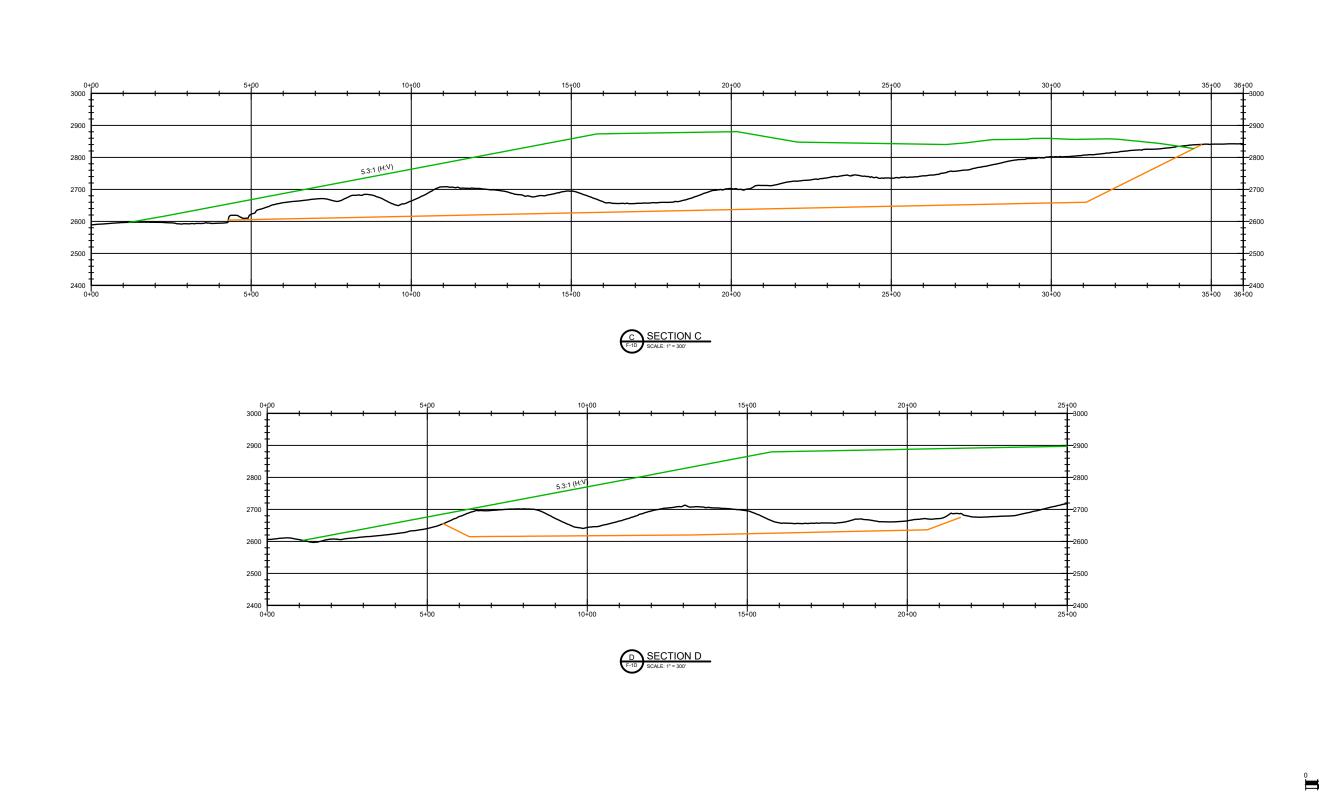
L	PROJEC.	T NUMBER	114-571040	-2022										PF	ROJEC	ET NA	ME P	Pickles	Butte	Sanitary	Landfill -	Cany	on C	ounty	, ID	
NG LOGS.GPJ	Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	၁၁	Н	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
Š	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	160 - 161.3																				
165	B2021-6	12/2/2021	43.495196	-116.715718	2636.7423	164 - 165																				
3 E	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	5 - 6.5										4										
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	10 - 11.5																				
NDF	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	15 - 16.5																				
∀	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	19 - 20																				
9	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	25 - 26.5																				
(LES	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	30 - 30.6																				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	35 - 35.8																				
2022	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	39 - 40		NV	NP		93.6	92	23.3	112	111.7		12.9			0.511						
20RT	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	40 - 41.4										23										
S'REF	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	45 - 46.5																				
ORT	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	49 - 50																				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	50 - 51.5																				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	59 - 60		NV	NP		99.9	98.9	84.3	104	104.2		17.8			1.817						
GEO	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	60 - 61.4										12										
ź[B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	69 - 70																				
12:00	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	70 - 71.5																				
23/52	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	79 - 80																				
- 1	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	80 - 80.7																				
<u>3</u> [B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	89 - 90																				
MAK	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	90 - 90.3																				
NOS SOM	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	99 - 100																				
LAB	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	100 - 101.5										20										
-[B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	110 - 111.5																				
\AR\ 	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	120 - 121.3		33	10									18.02	0.053			0.38				
	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	125 - 126																				
IAB;	B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	129 - 130																				

SUMMARY OF LABORATORY RESULTS

PAGE 8 OF 8

PROJECT NUMBER __114-571040-2022


PROJECT NAME Pickles Butte Sanitary Landfill - Canyon County, ID


I KOOLO	THOMBE	114-37 10-10	-2022											I VOUL	71 11/	<u> </u>	ICICICS	Dutte	Cariitary	Landini -	Oan	yon c	ounty,		
Boring Number	Date Drilled	Latitude	Longitude	Elevation (feet)	Depth (feet)	Soil Class (USCS)	LL (%)	PI (%)	Liquidity Index	10 Mesh (%)	40 Mesh (%)	200 Mesh (%)	In-Place Density (pcf)	Maximum Dry Density (pcf)	Percent Natural Moisture	Percent Optimum Moisture	Friction Angle (degrees)	Cohesion (ksf)	Unconfined Compressive Strength (ksf)	Splitting Tensile Strength (psi)	Cc	рН	Resistivity (ohm-cm)	Sulfate Content (%)	California Bearing Ratio
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	130 - 131.5										19										
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	139 - 140																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	140 - 141.5										24										
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	149 - 150																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	150 - 151.5																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	160 - 161.4																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	169 - 170																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	170 - 171.5																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	179 - 180																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	189 - 190																				
B2021-7	12/7/2021	43.495280	-116.712592	2659.5036	199 - 200																				
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	0 - 1.5										11										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	1 - 4		NV	NP		98.7	95.6	83.5	97	97.2		17.9									
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	2 - 3.5																				
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	4 - 5.5										11										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	8 - 10										12										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	10 - 11.5										6										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	11 - 15																				
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	15 - 16.5										5										
B2021-8	11/15/2021	43.489880	-116.703147	2956.6206	20 - 21.5										5										

JMMARY TT - LAB SUMMARY.GDT - 7/29/22 12:00 - N:\GEOTECH\REPORTS\REPORT 2022\PIC

APPENDIX D: Static Slope Stability Analyses

Slope Stability Cross Sections - Figures 1D thorough 5D Slope Stability Stability Analyses Printouts Figures 6D through 43D

380 Americana Terracem Suite 201 Boise, ID 83706 PHONE: 208-389-1030

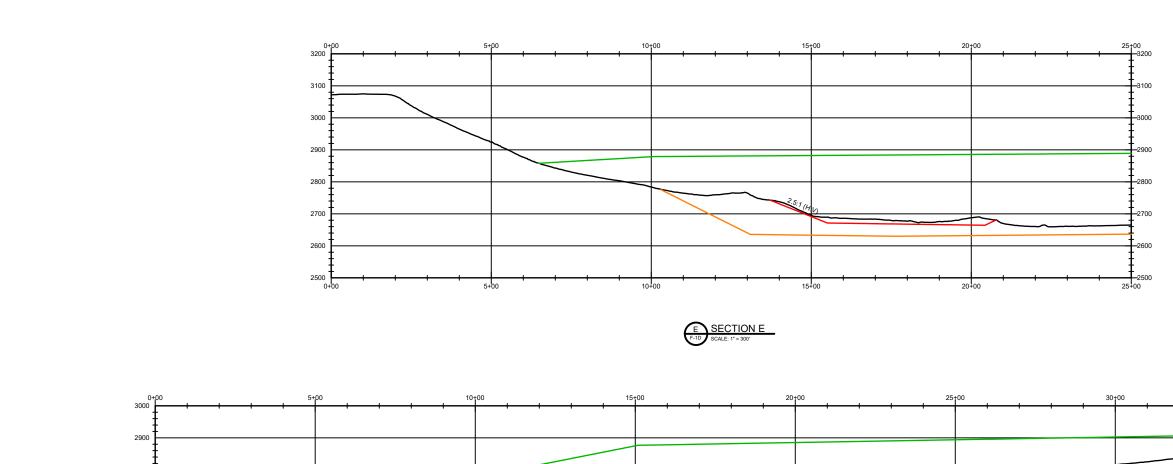
LEGEND

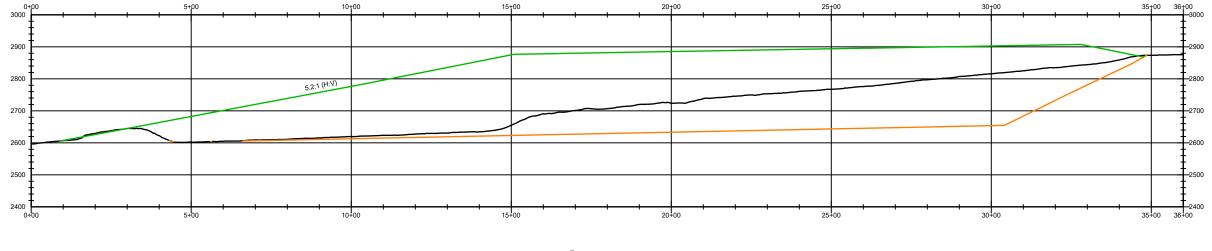
EXISTING GROUND PROPOSED CUT PROPOSED BORROW PROPOSED FILL Project No.: 114-571040-2022

Date: 7/29/2022

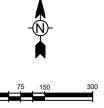
Designed By: SG

Figure


3D


Bar Measures 1 inch

PICKLES BUTTE LANDFILL, CANYON COUNTY, IDAHO


2022 EXPANSION GEOTECHNICAL INVESTIGATION

PROFILES C & D

LEGEN	D
	EXISTING GROUND PROPOSED CUT
	PROPOSED BORROW PROPOSED FILL

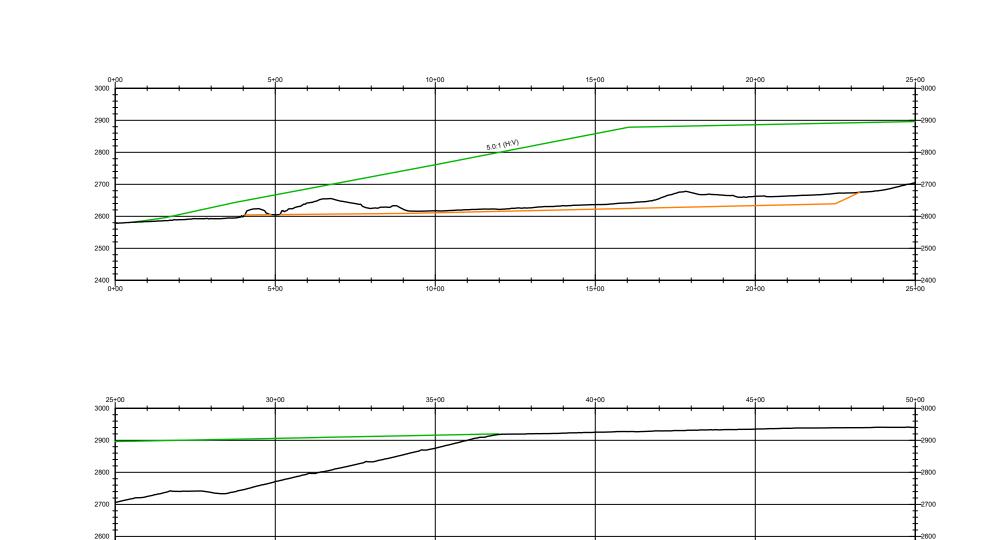
TETRA TECH
www.tetratech.com
380 Americana Terracem Suite 201
Boise, ID 83706
 PHONE: 208-389-1030

PICKLES BUTTE LANDFILL, CANYON COUNTY, IDAHO

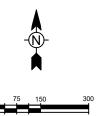
2022 EXPANSION
GEOTECHNICAL INVESTIGATION

PROFILES E & F

Project No.: 114-571040-2022


Date: 7/29/2022

Designed By: SG


Figure

4D

Bar Measures 1 inch

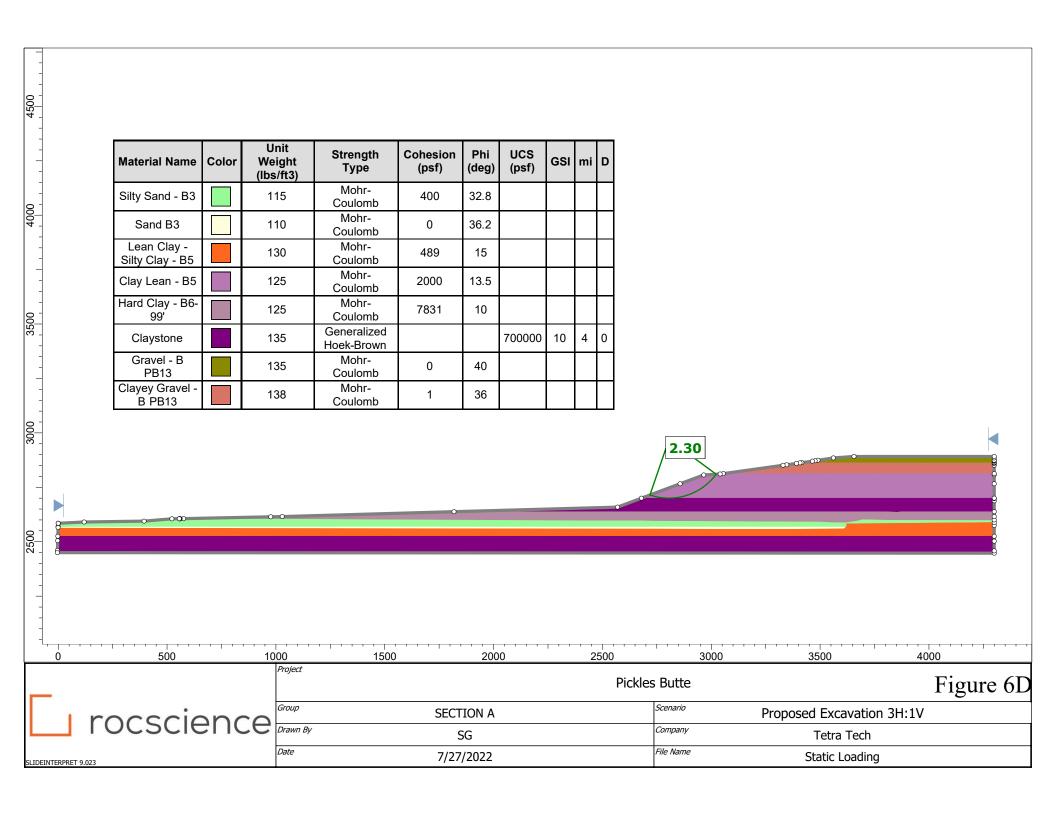
LEGEND	
	EXISTING GROUND
	PROPOSED CUT PROPOSED BORROW
	PROPOSED FILL

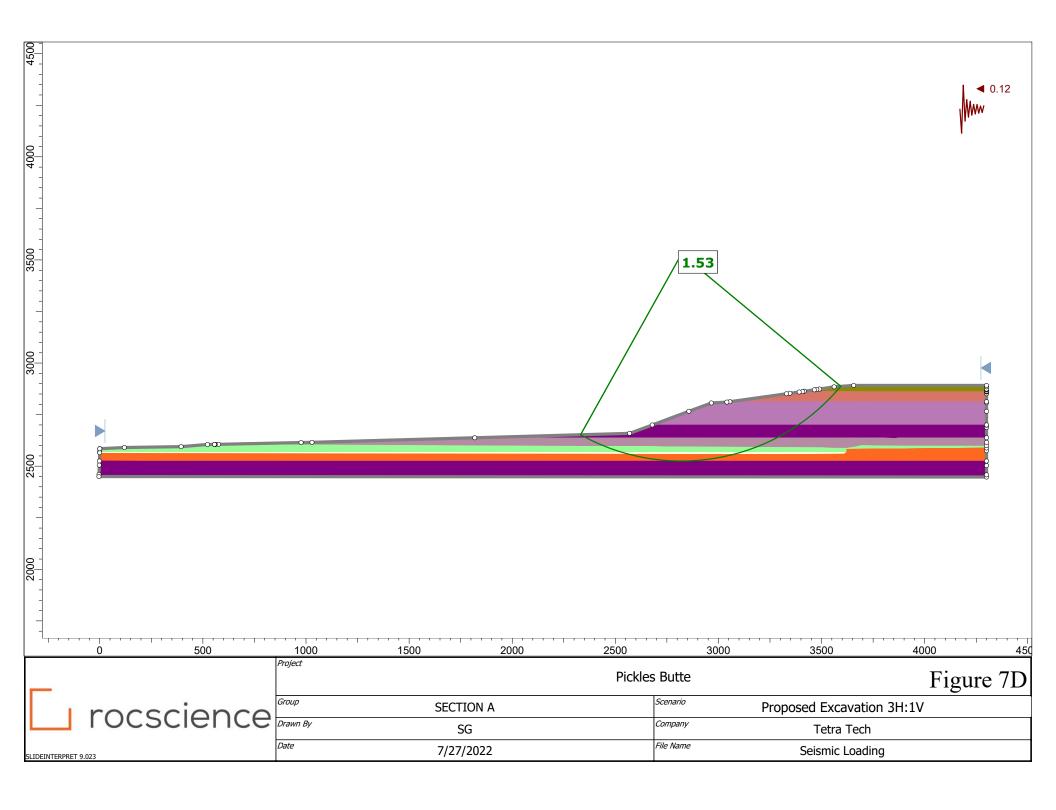
2500

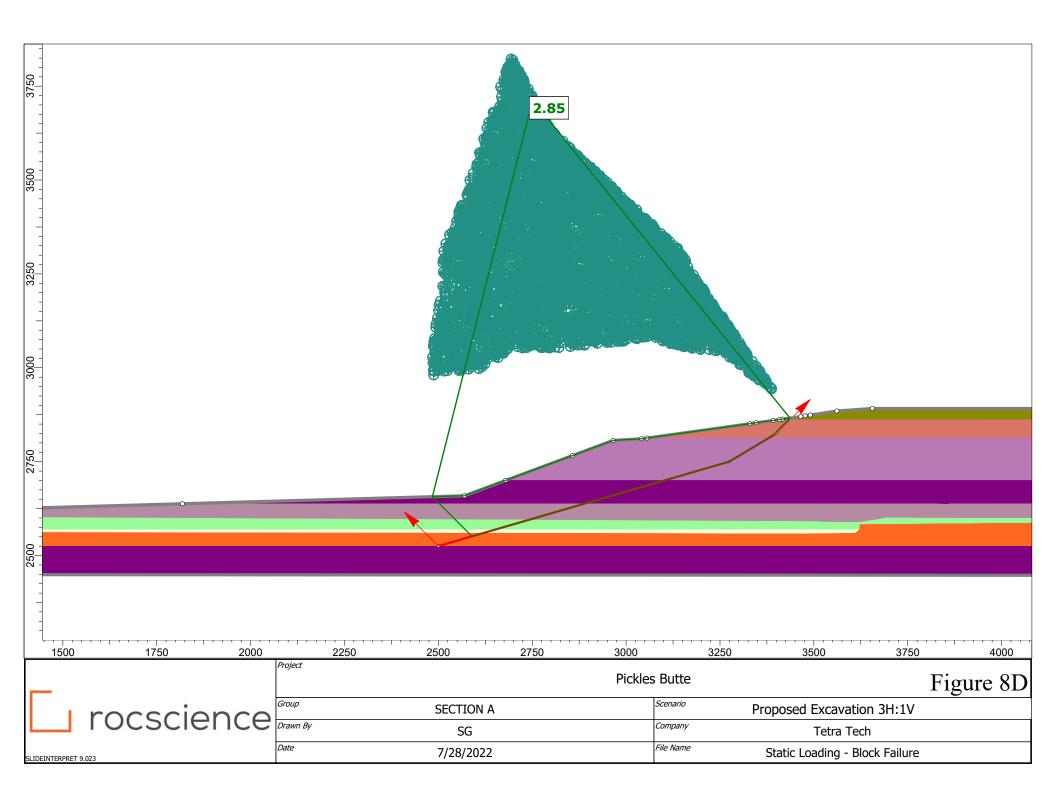
2400 25+00

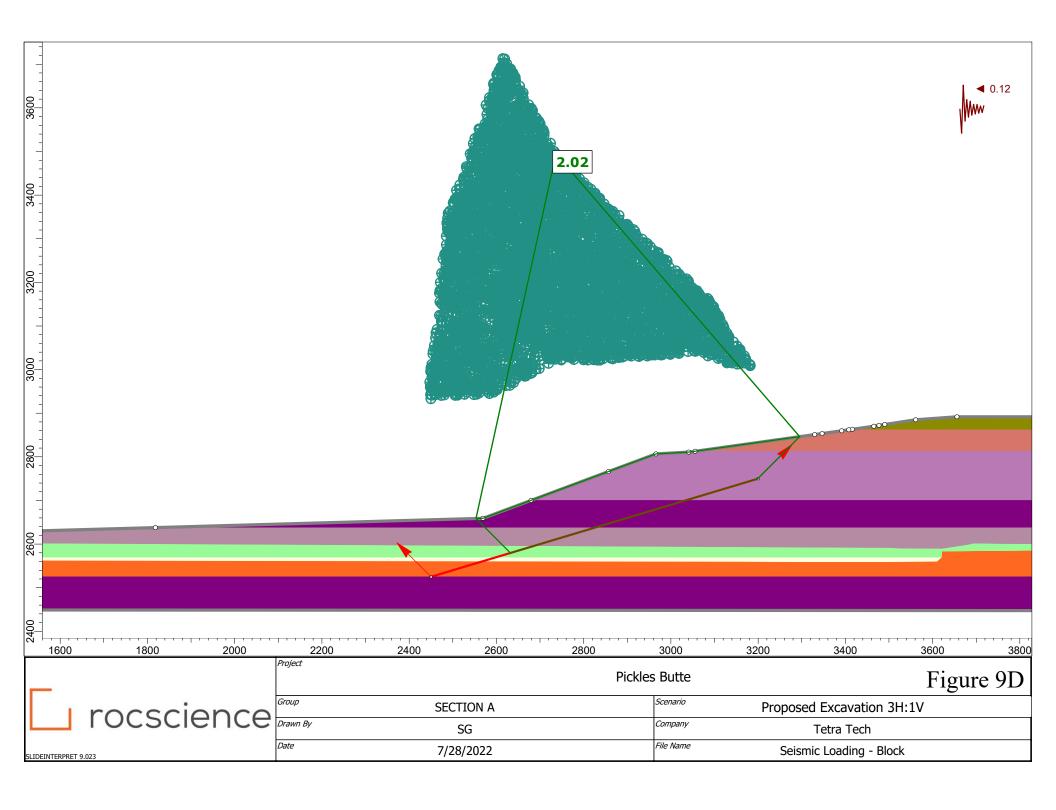
	PICKLES BUTTE LANDFILL, CANYON COUNTY, IDAHO
TETRA TECH	2022 EXPANSION GEOTECHNICAL INVESTIGATION
www.tetratech.com	
380 Americana Terracem Suite 201 Boise, ID 83706 PHONE: 208-389-1030	PROFILE G

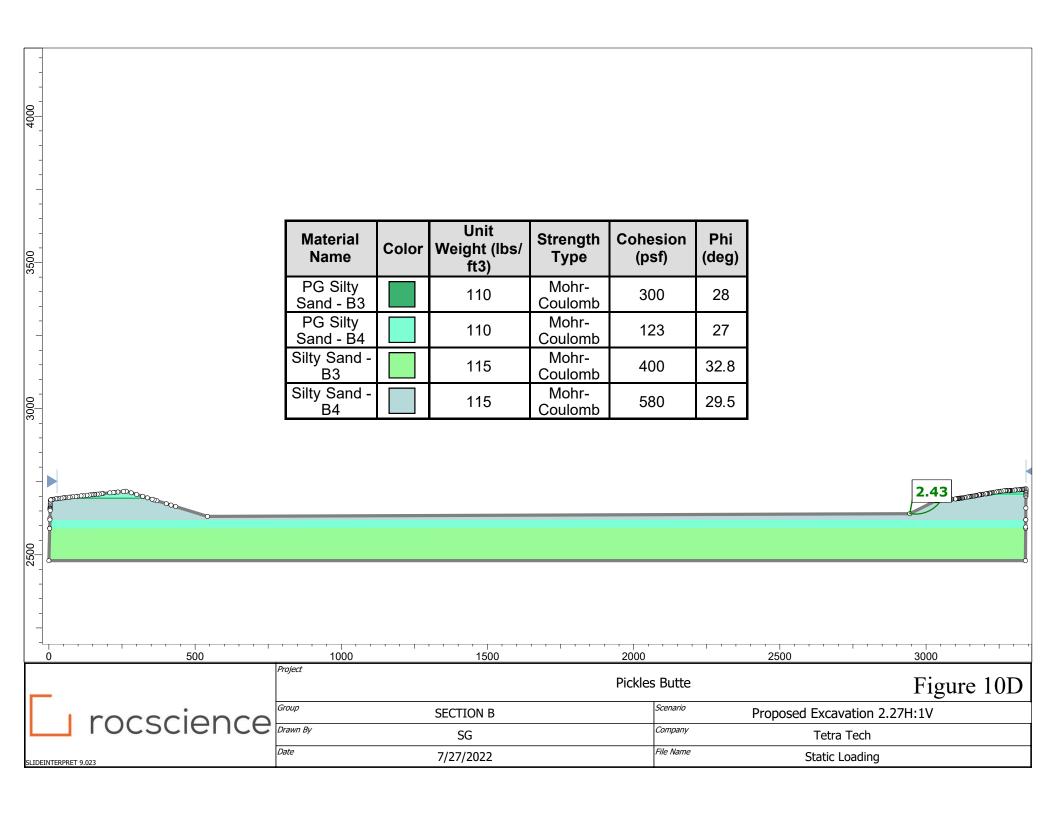
Project No.: 114-571040-2022

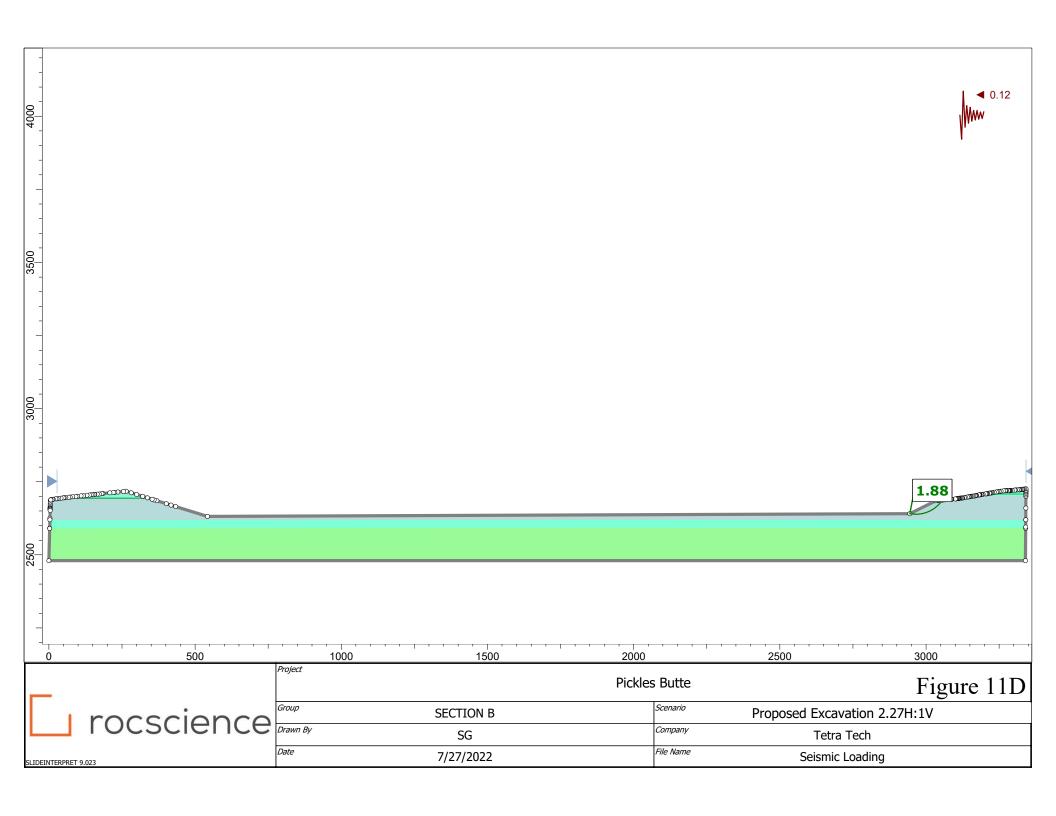

Date: 7/29/2022

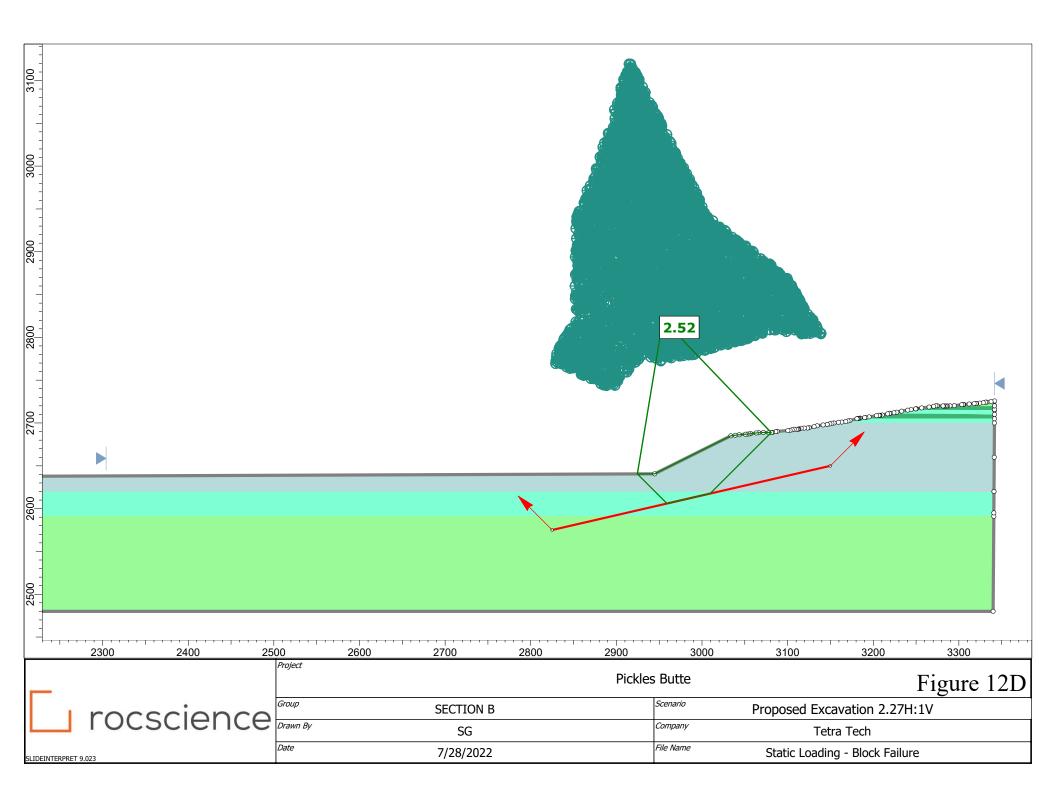

Designed By: SG

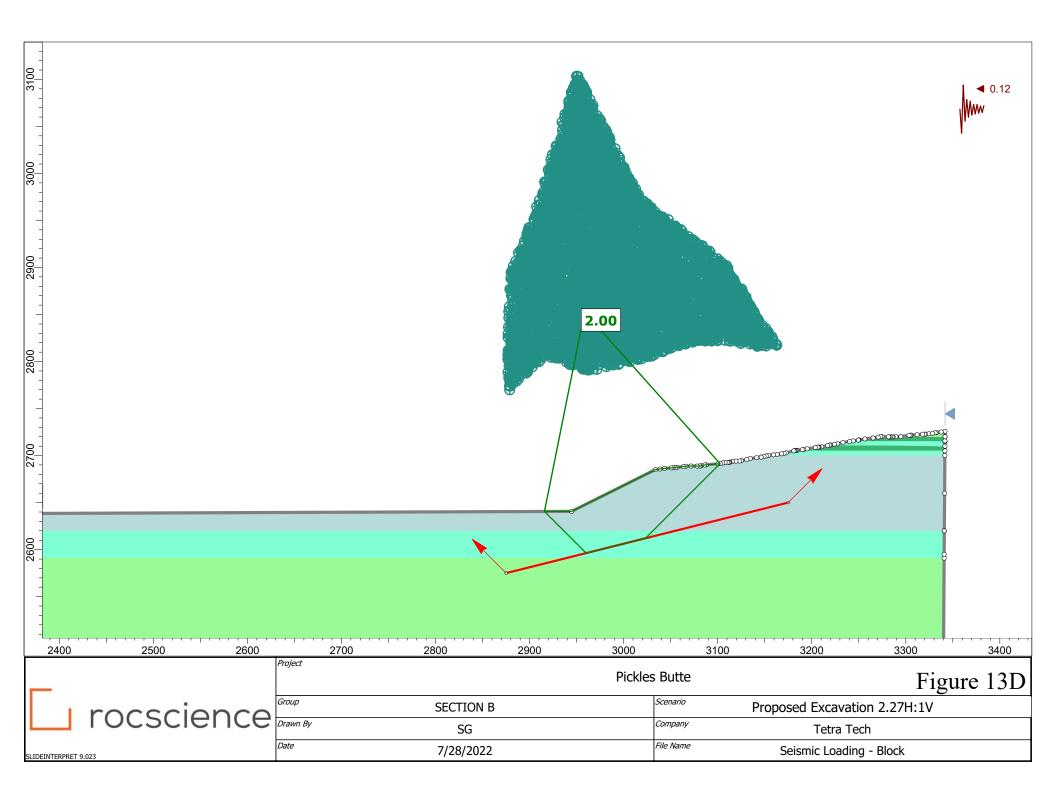

Figure

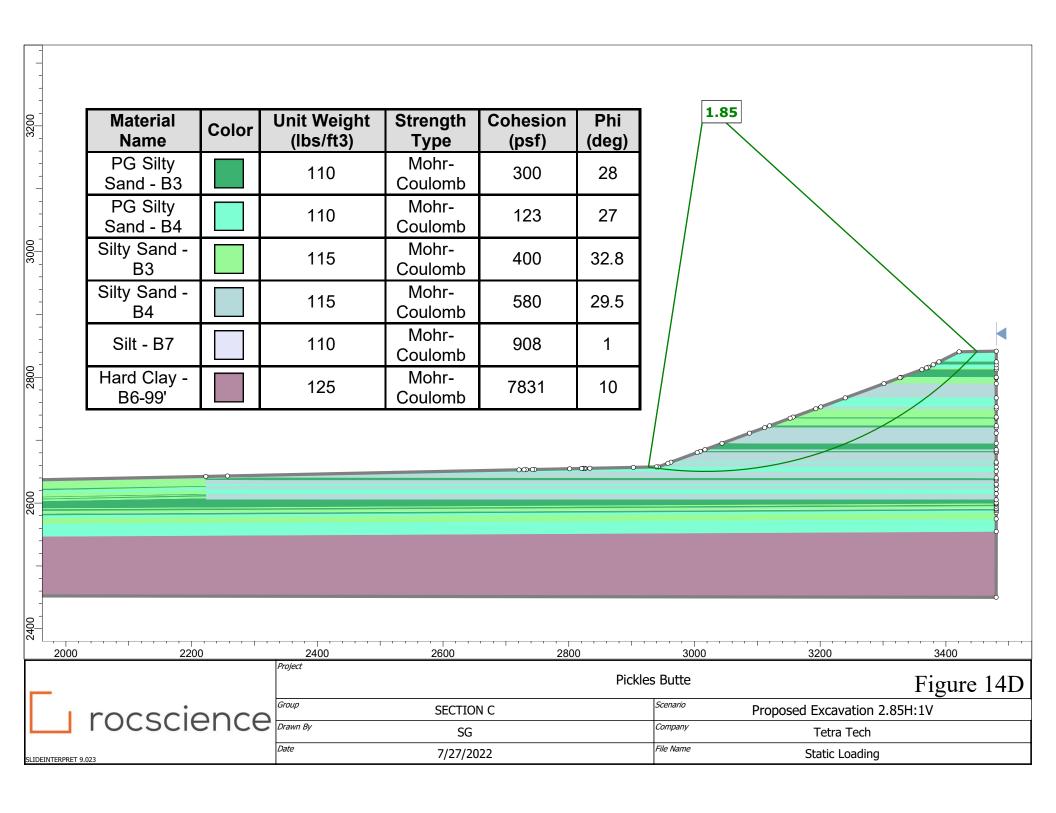

5D

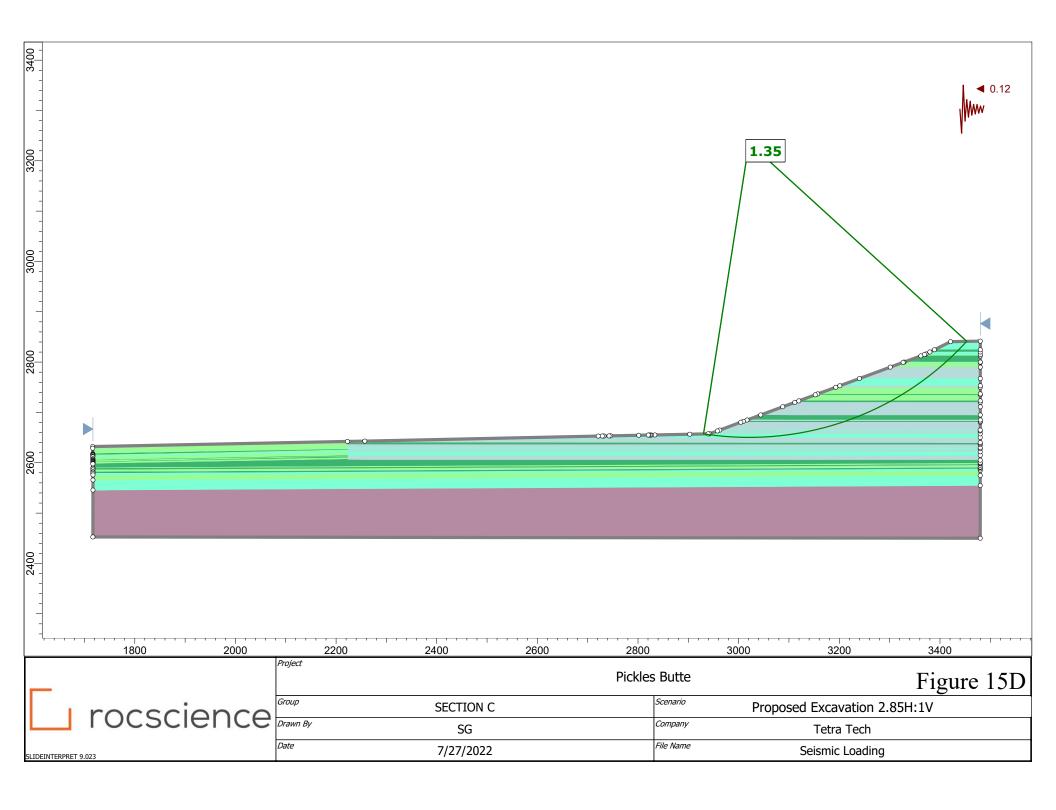

Bar Measures 1 inch

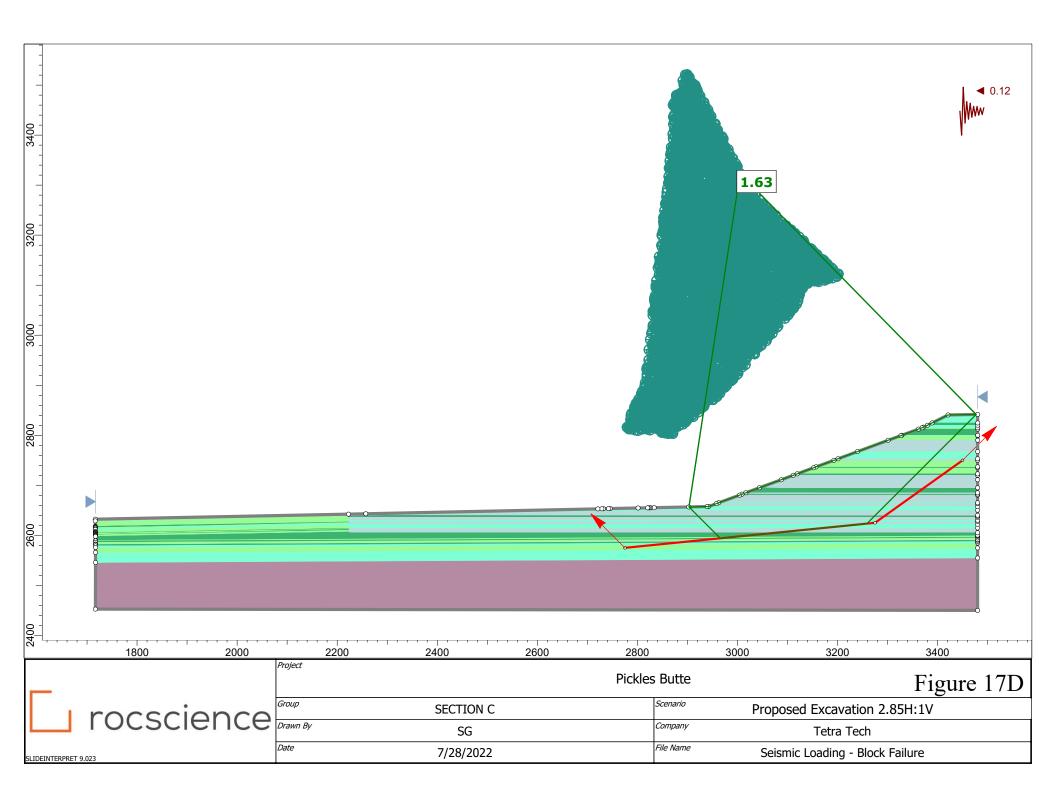


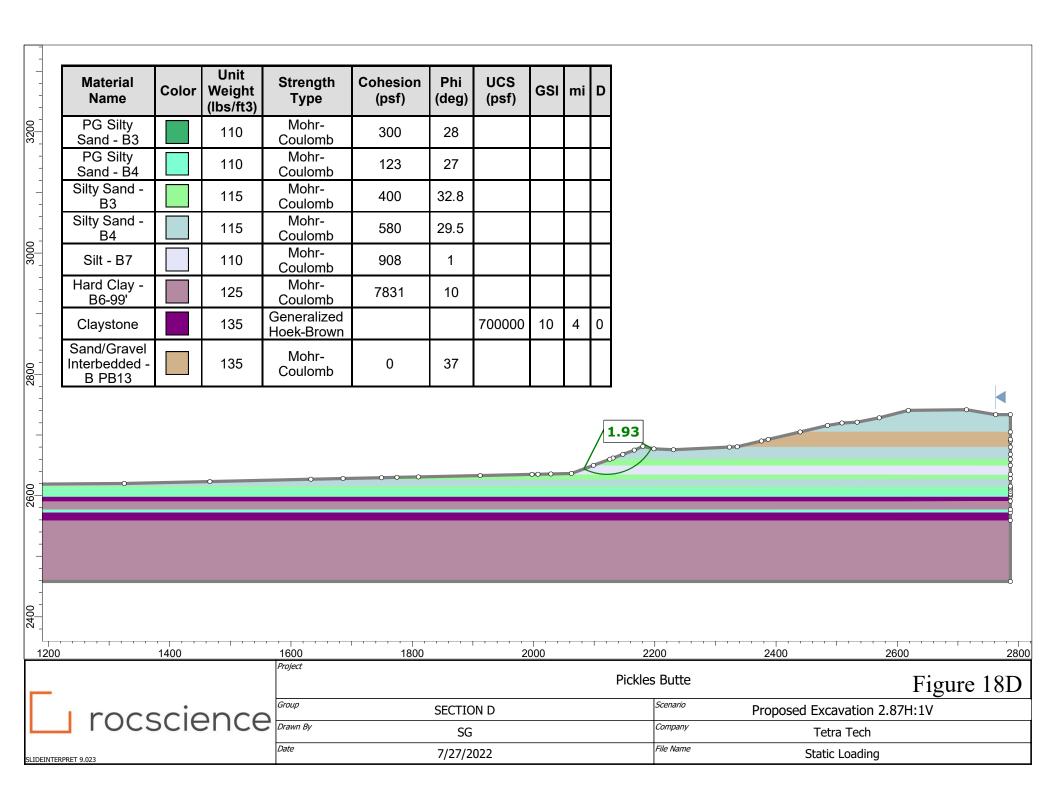


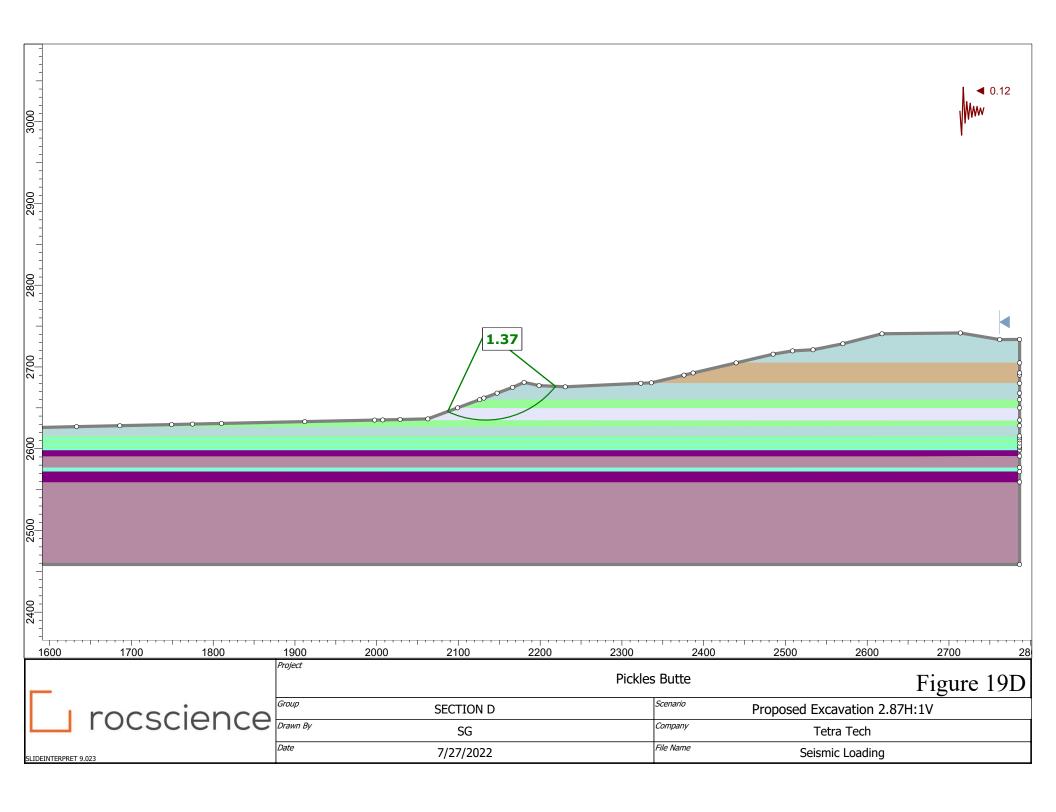


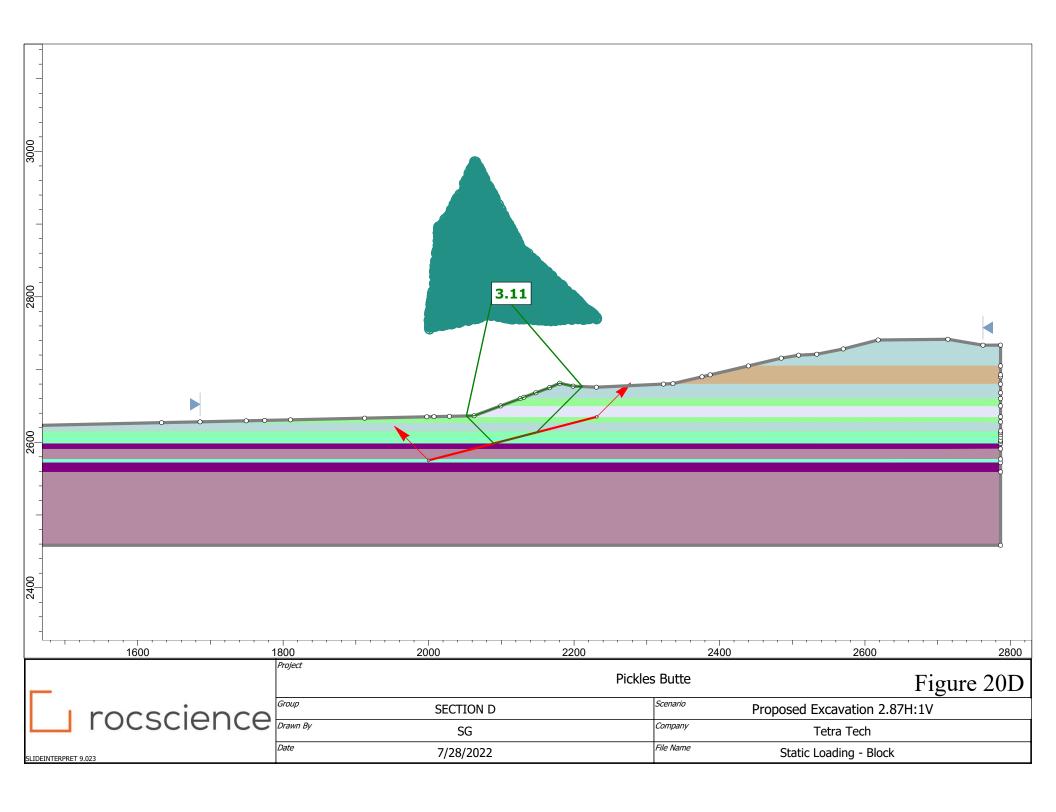


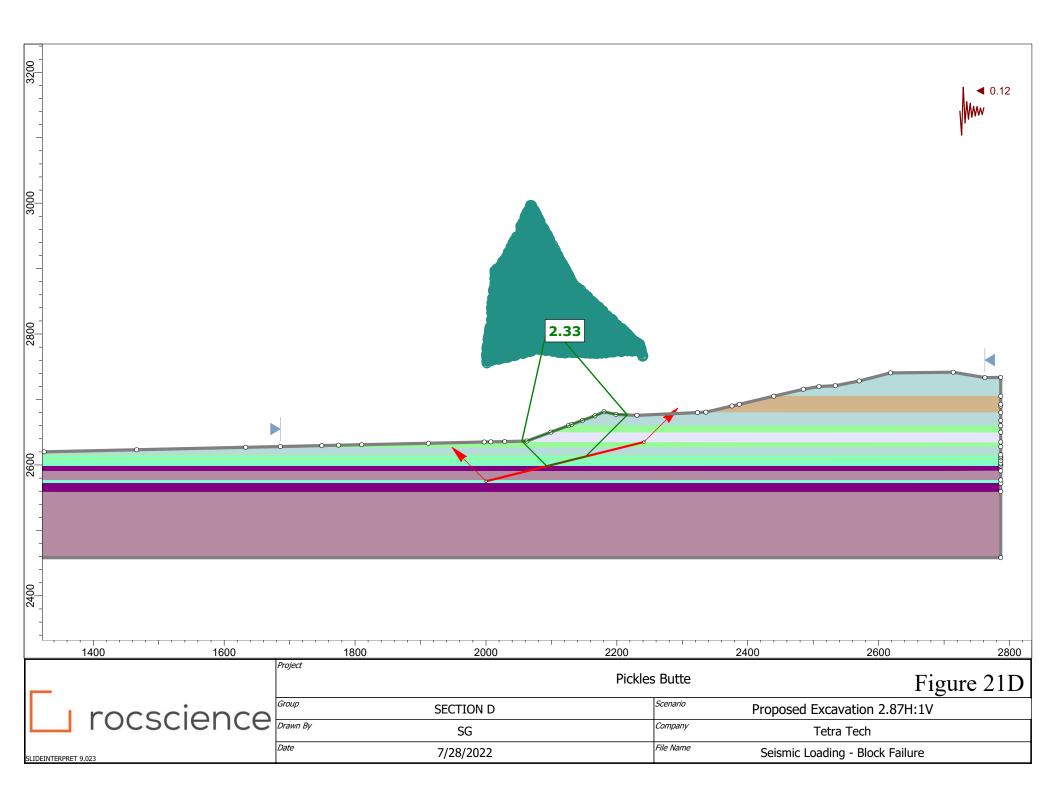


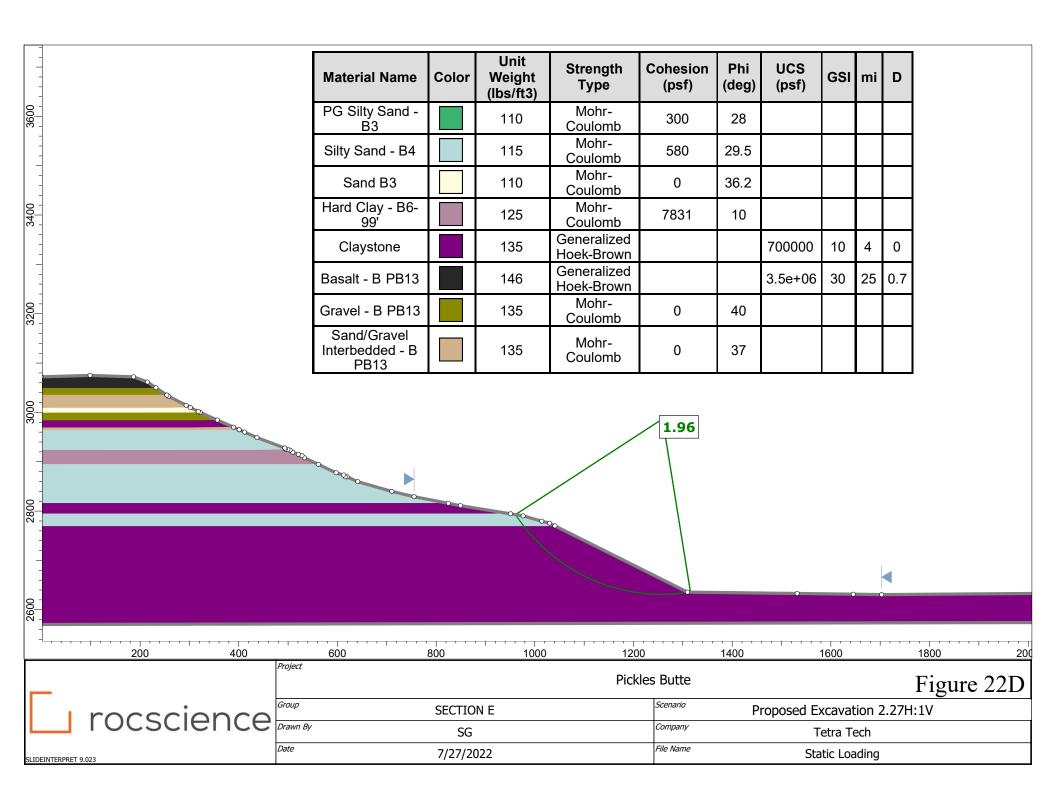


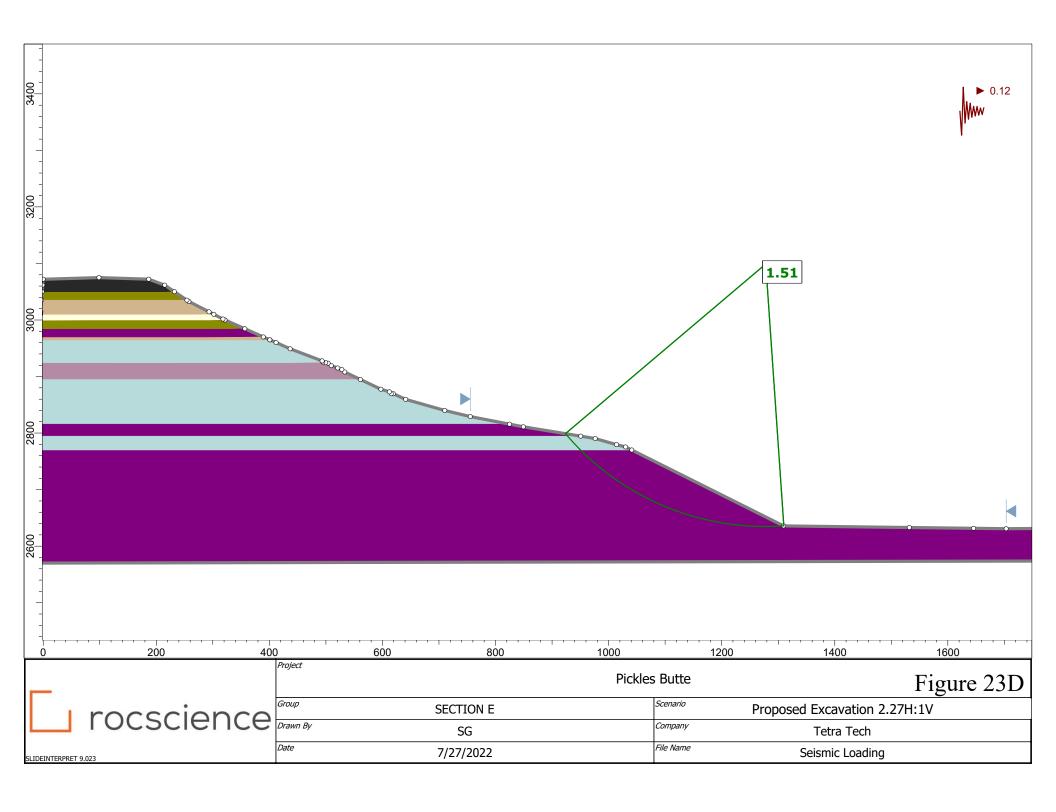


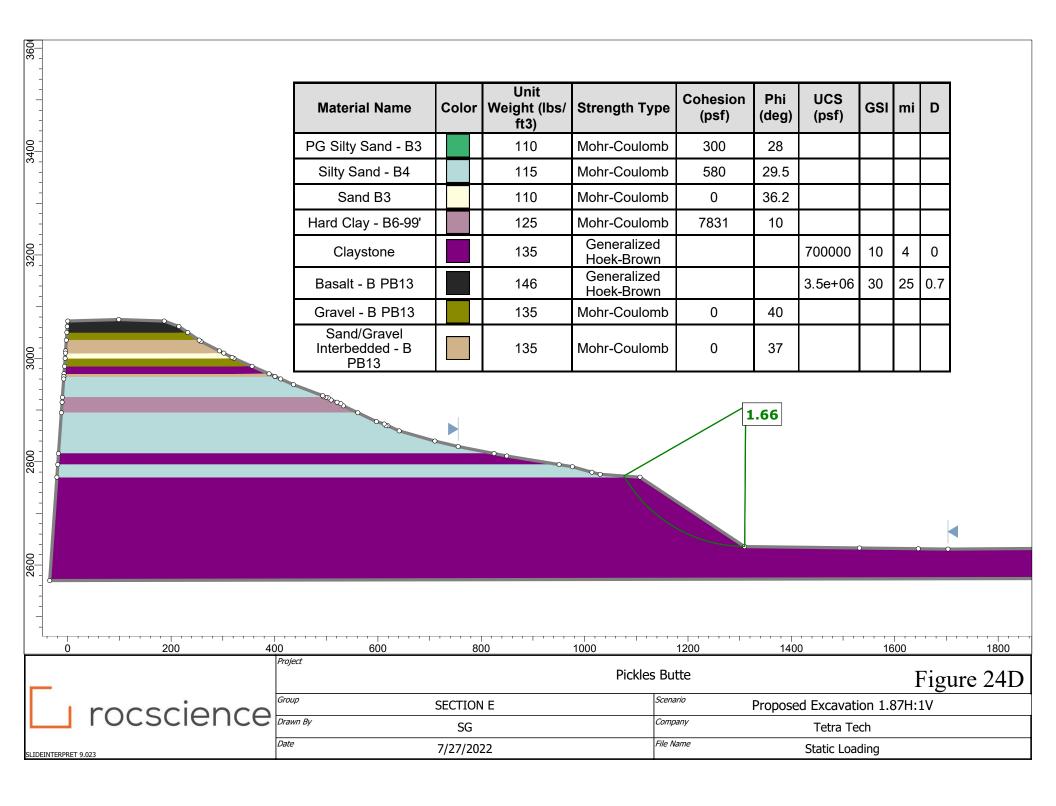


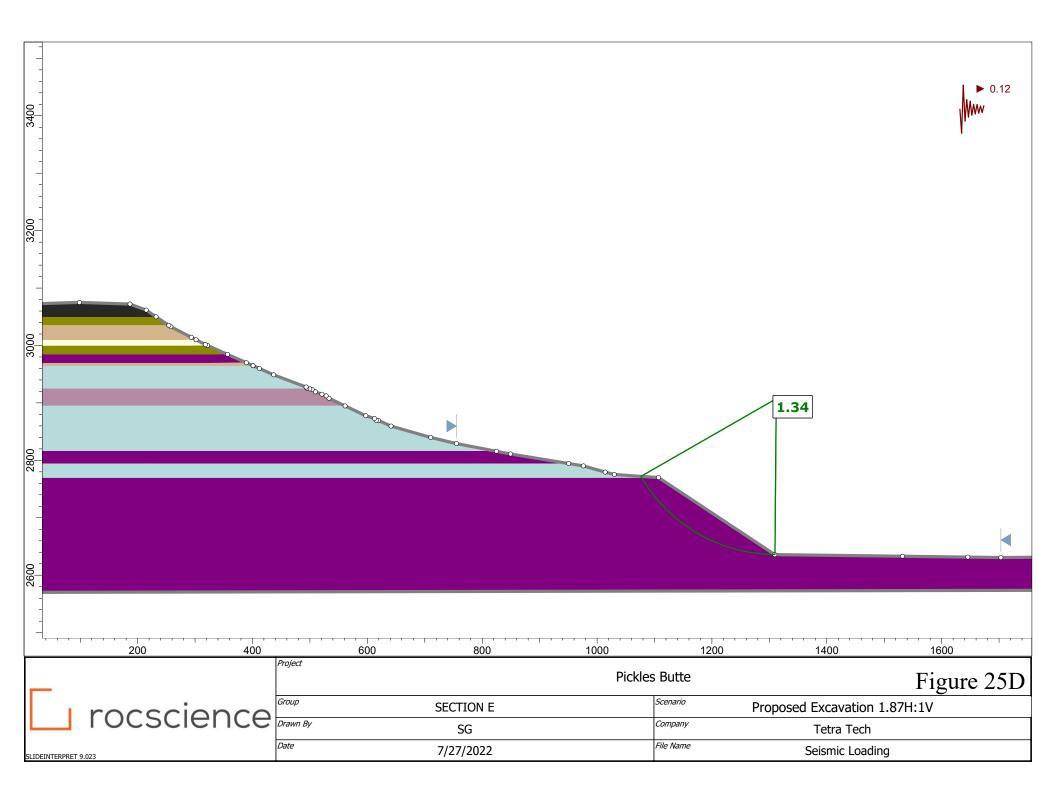


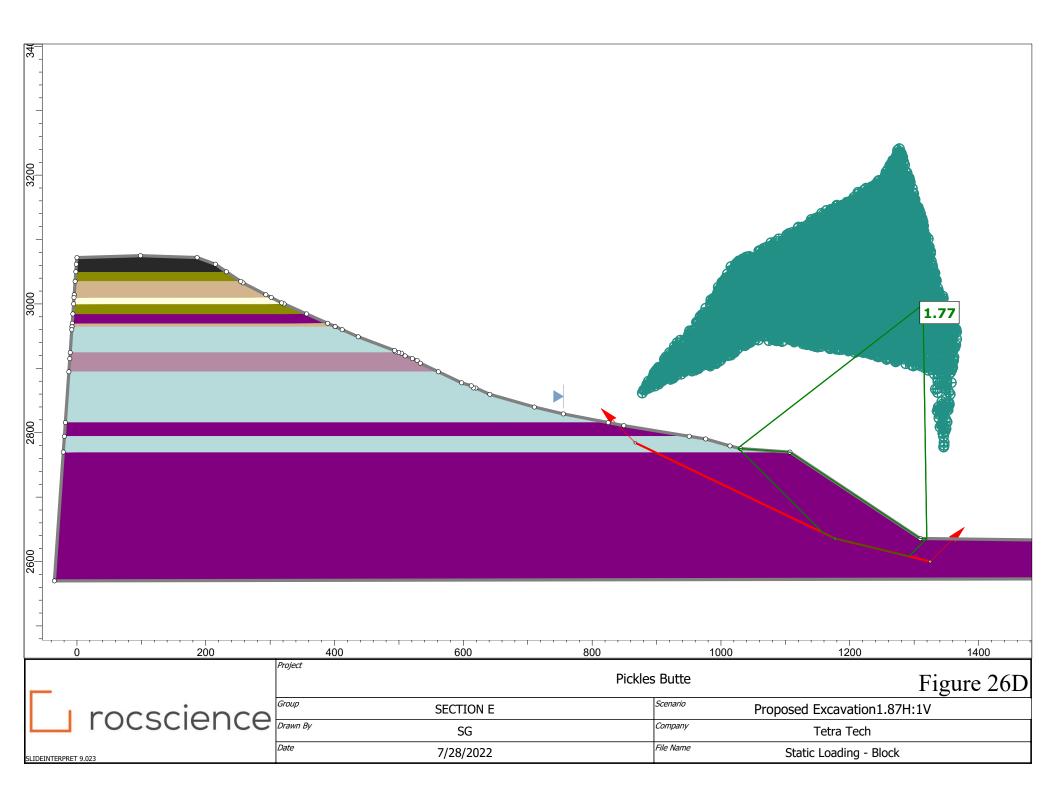


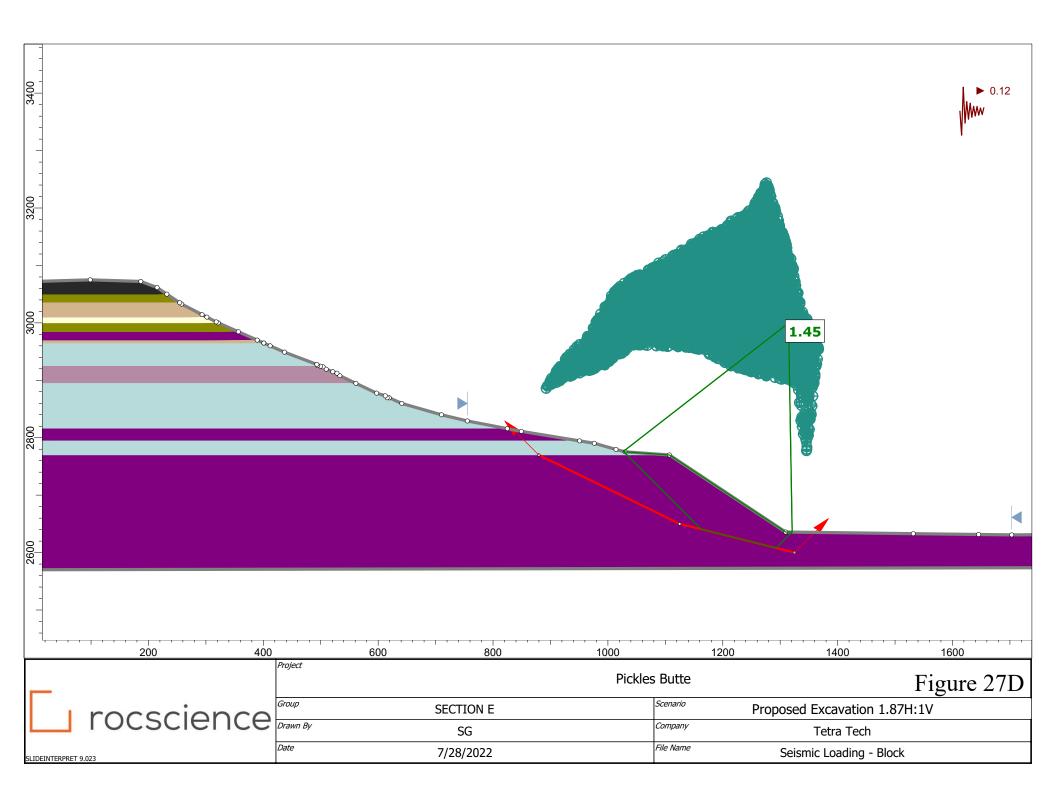


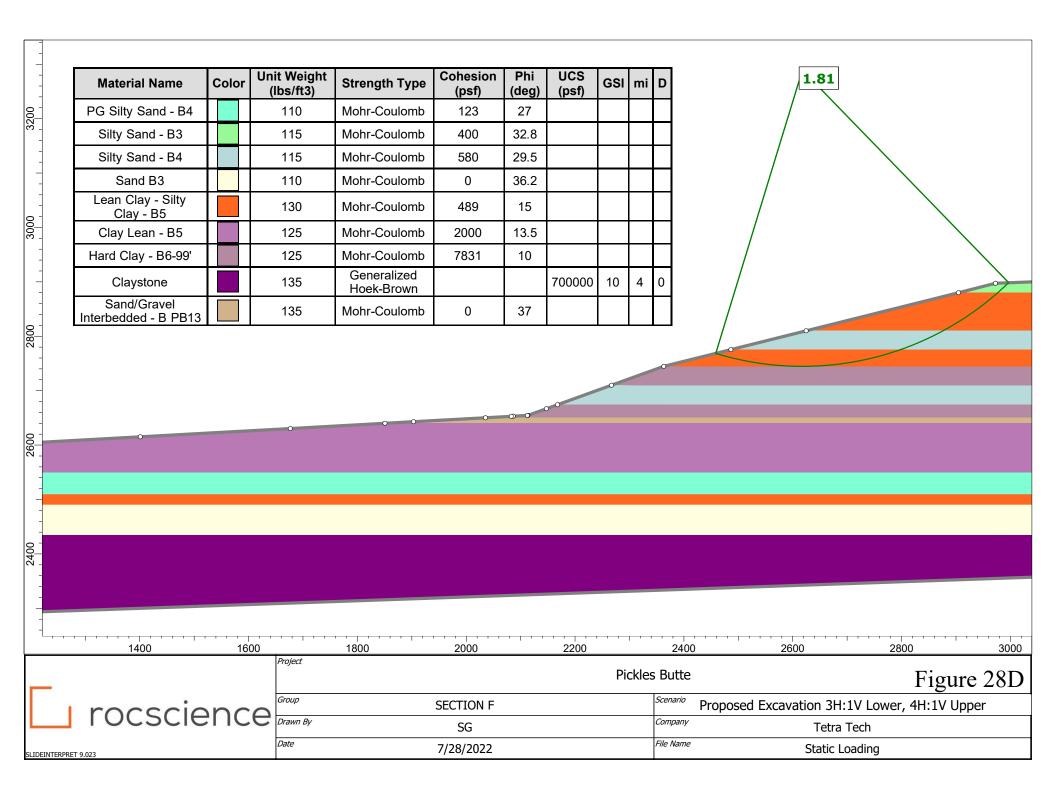


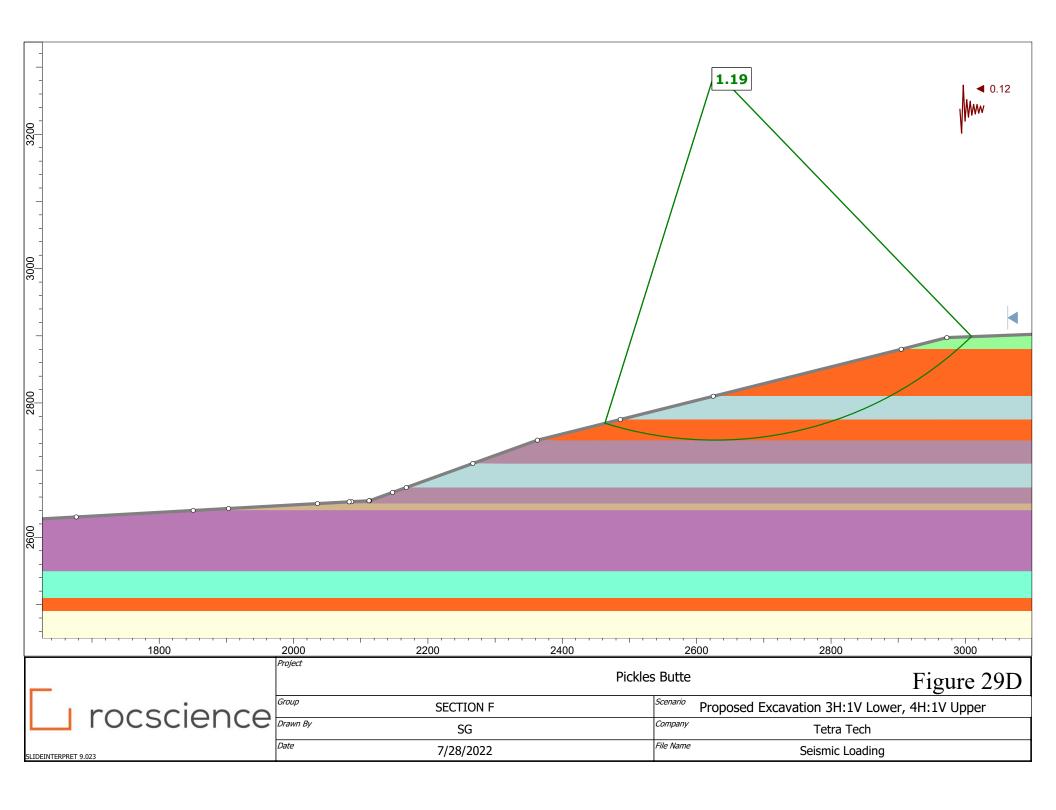


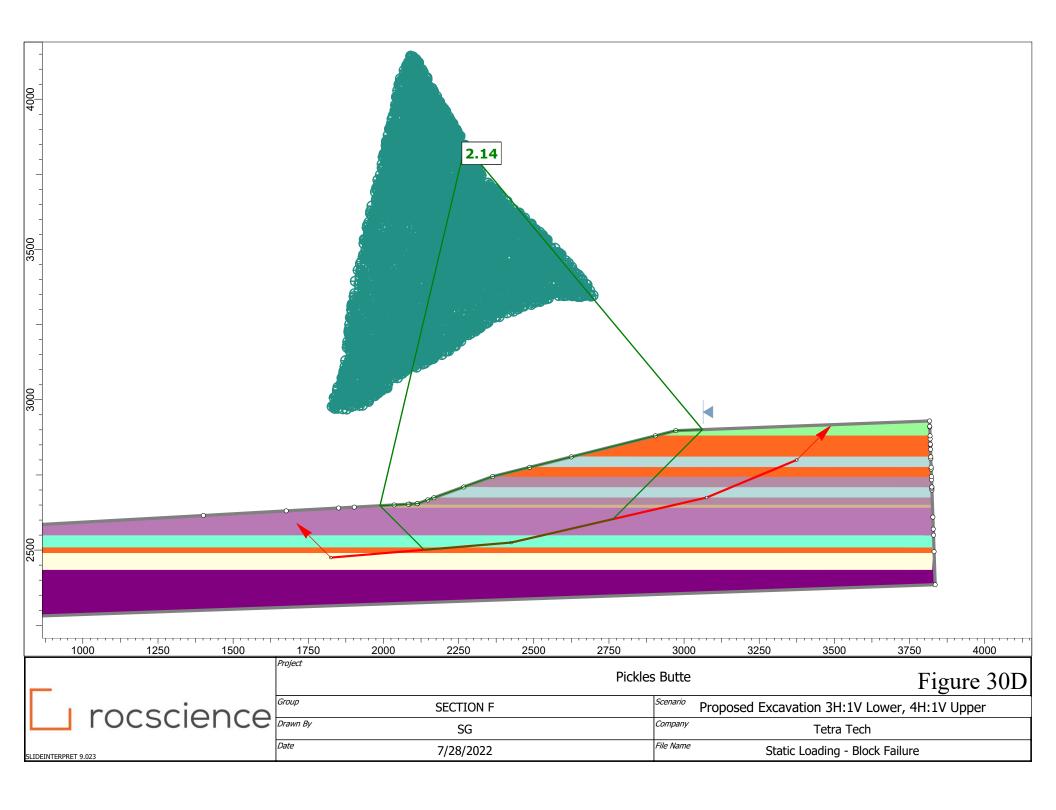


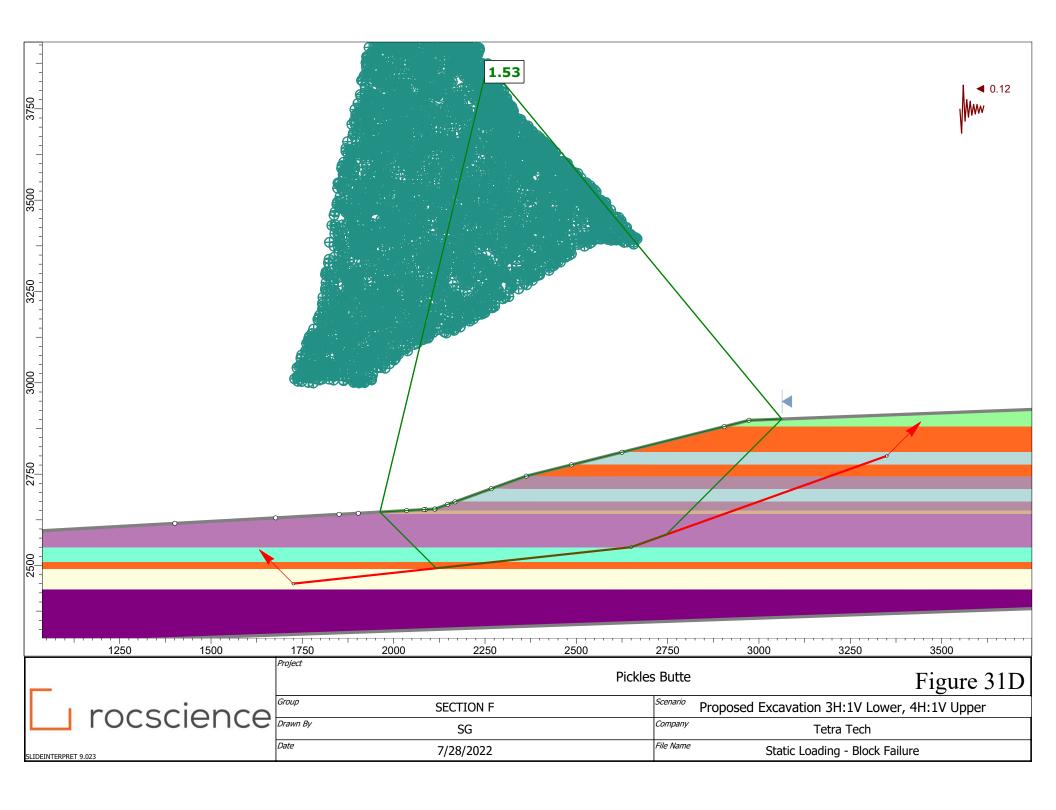


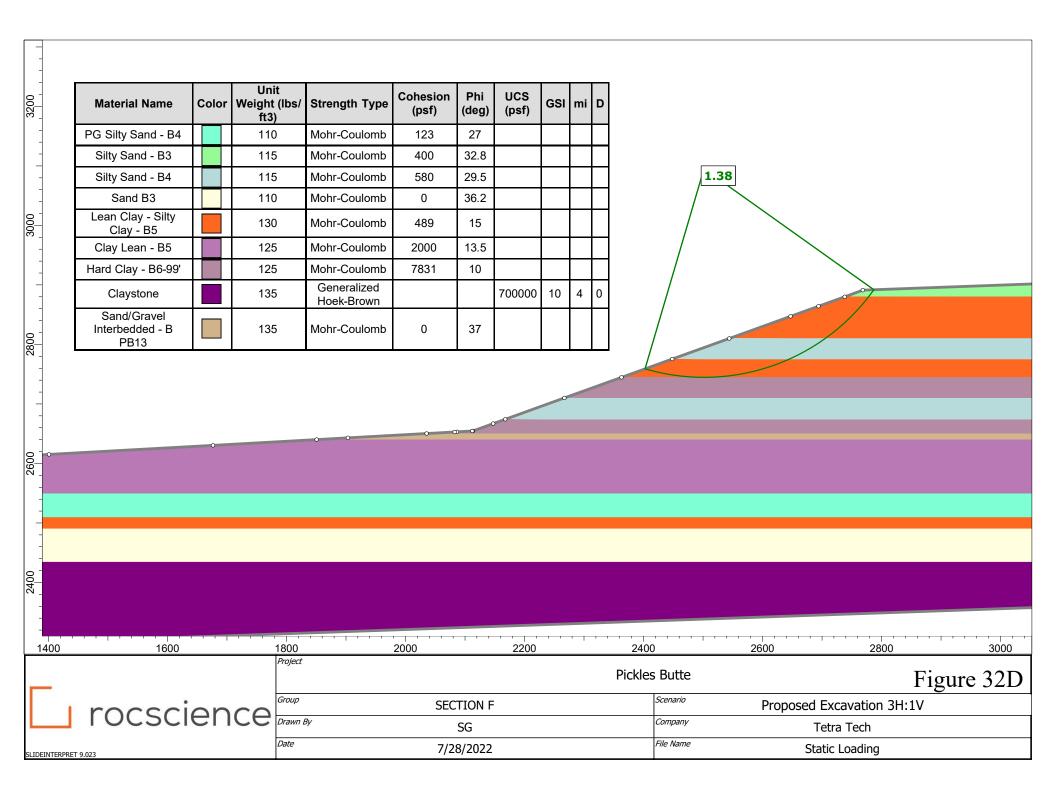


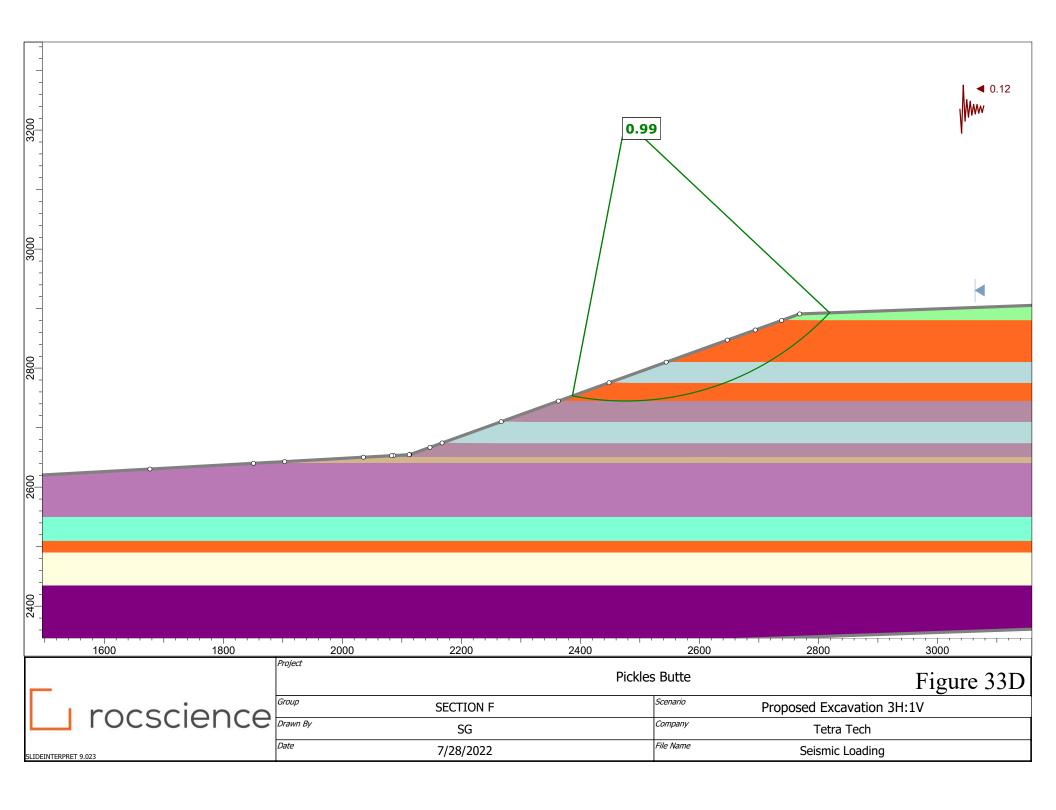


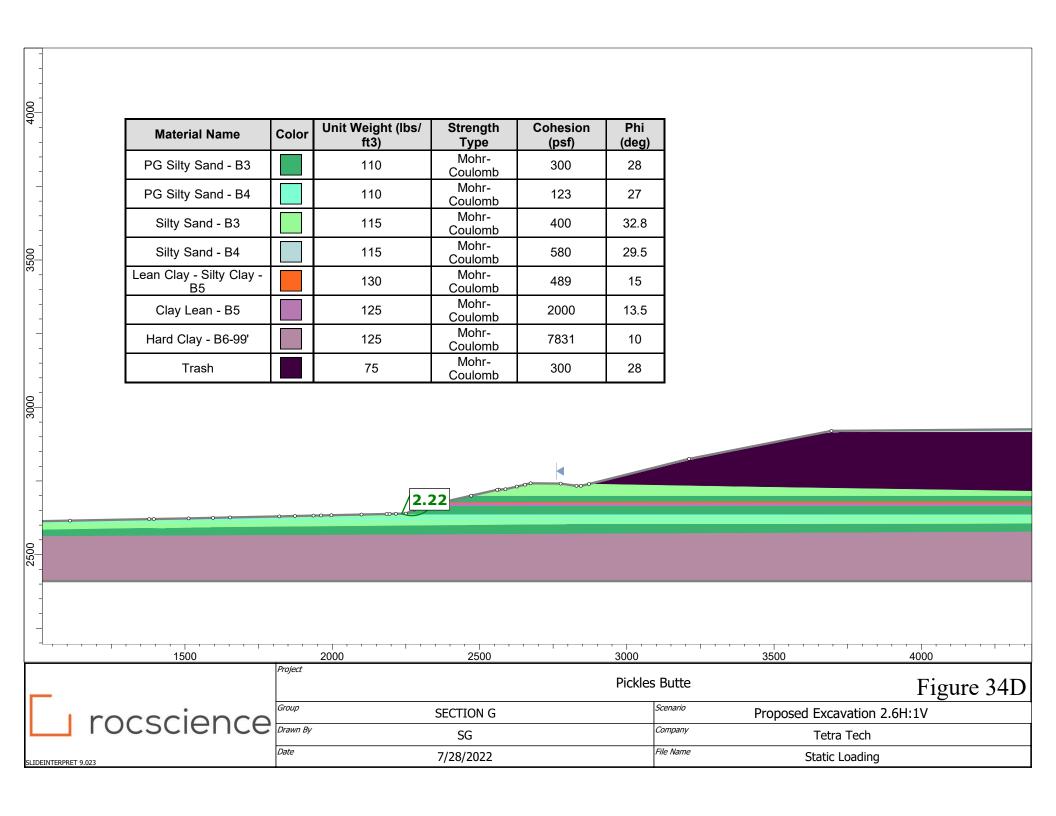


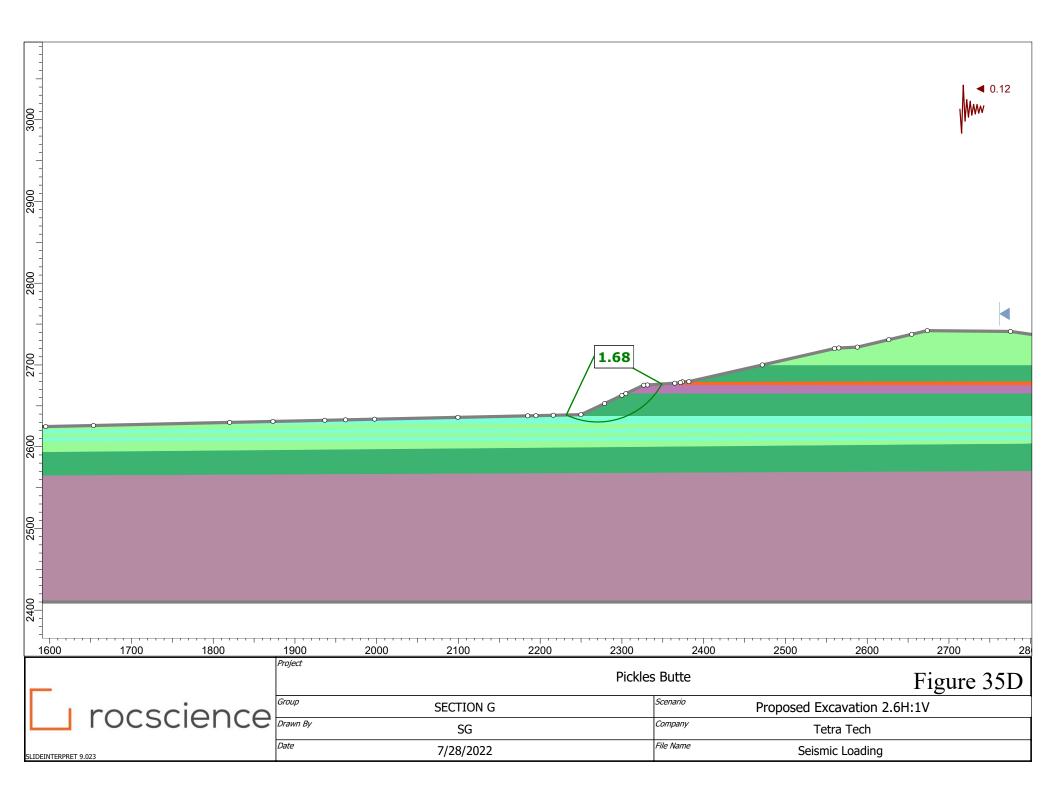


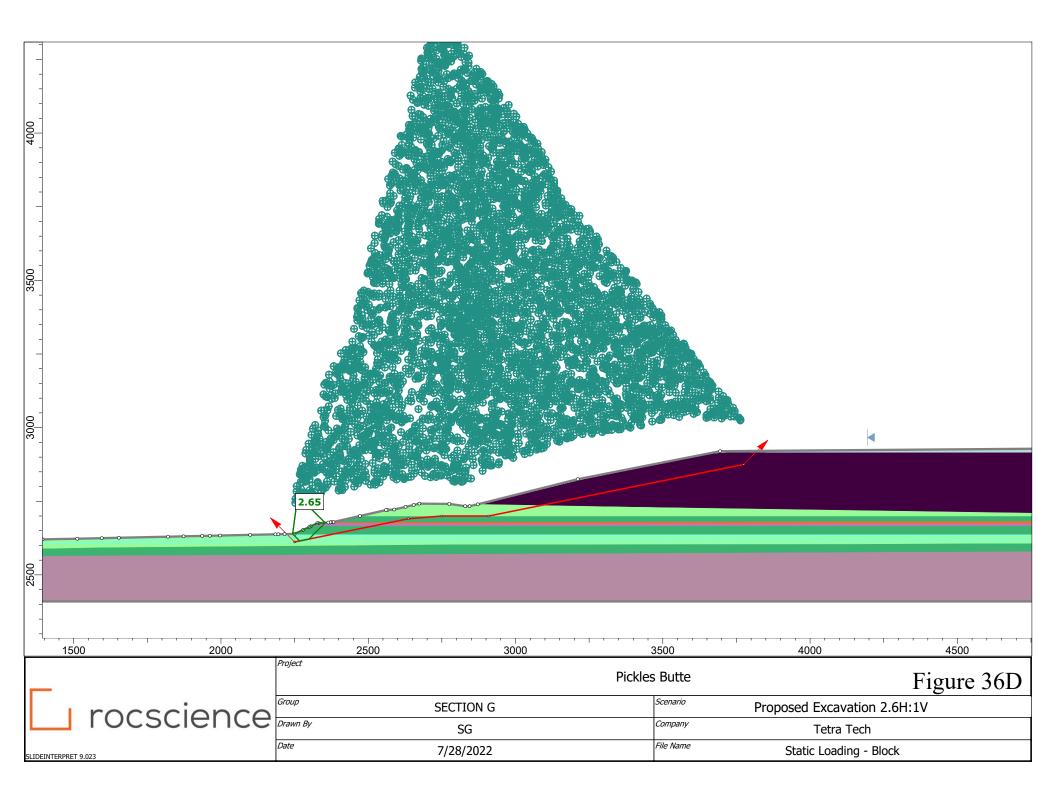


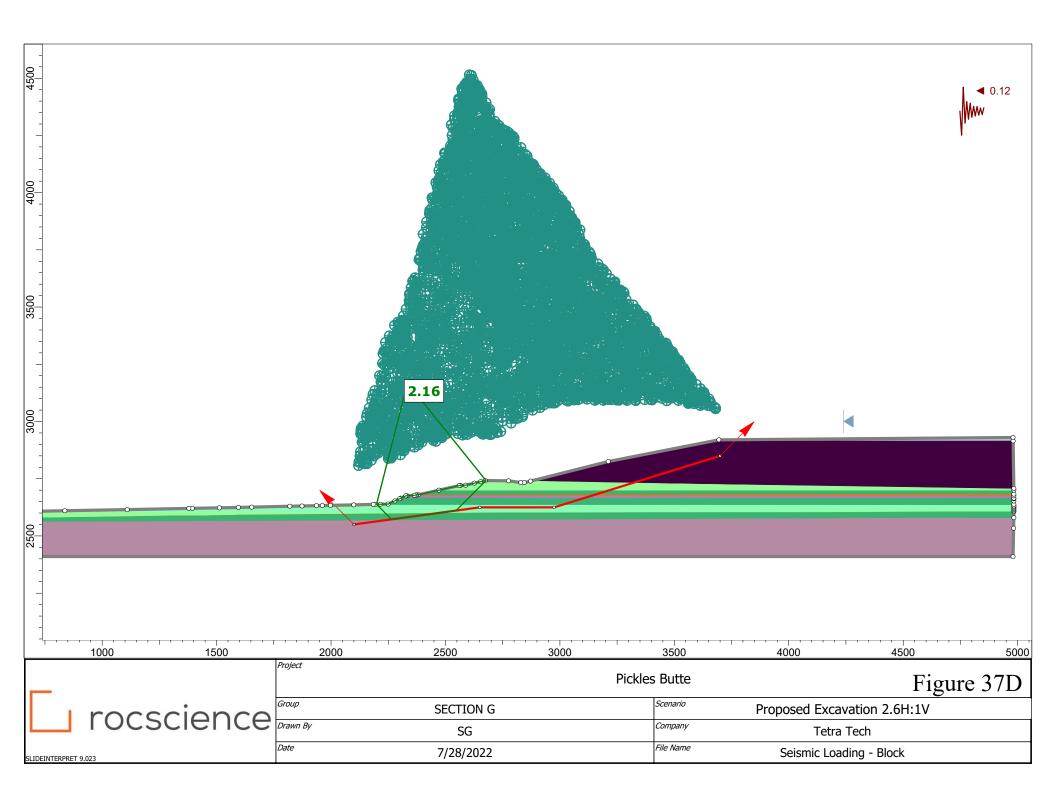


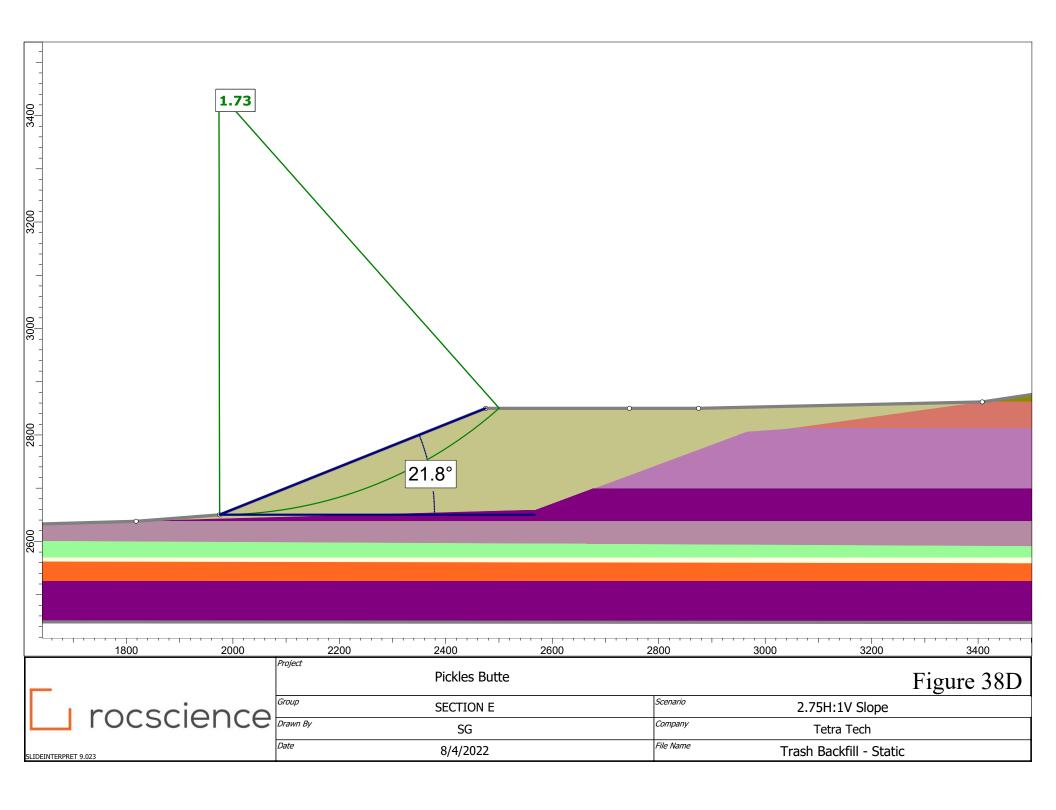


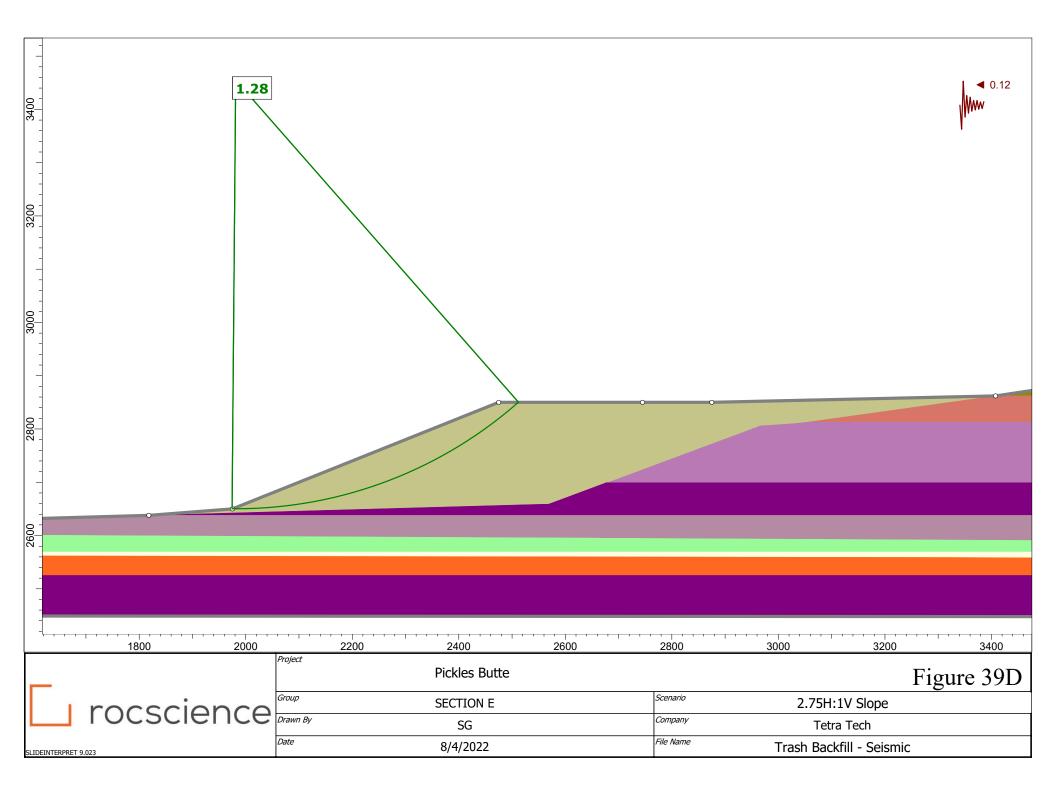


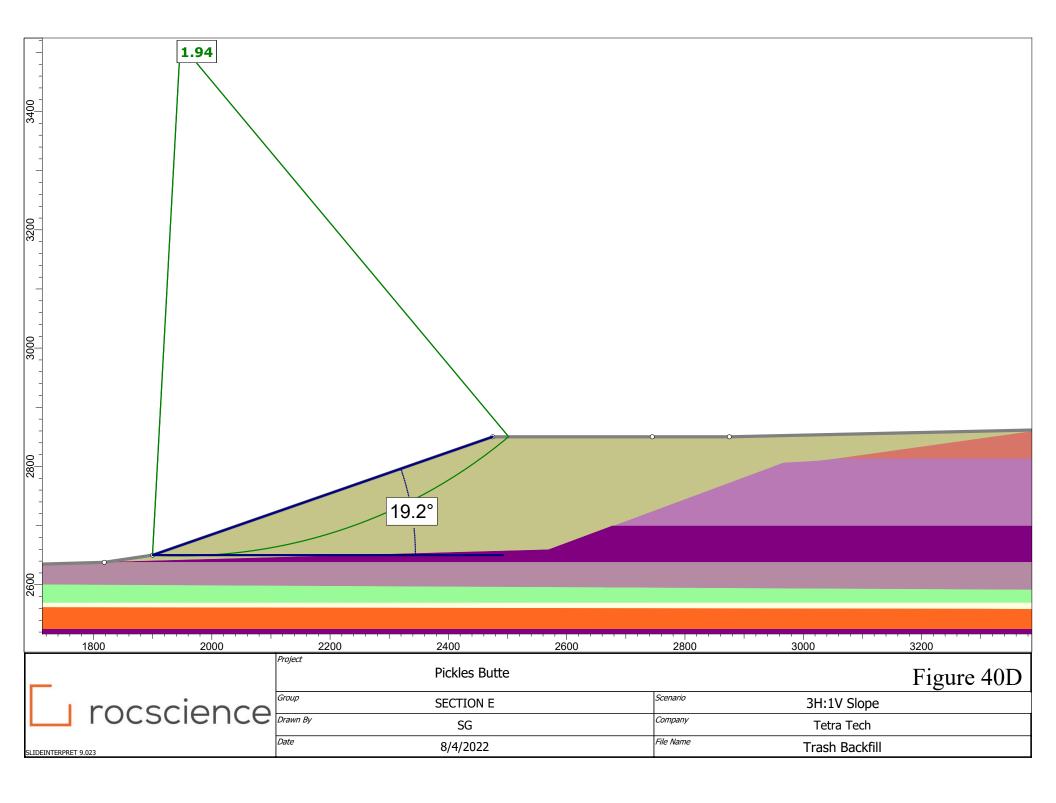


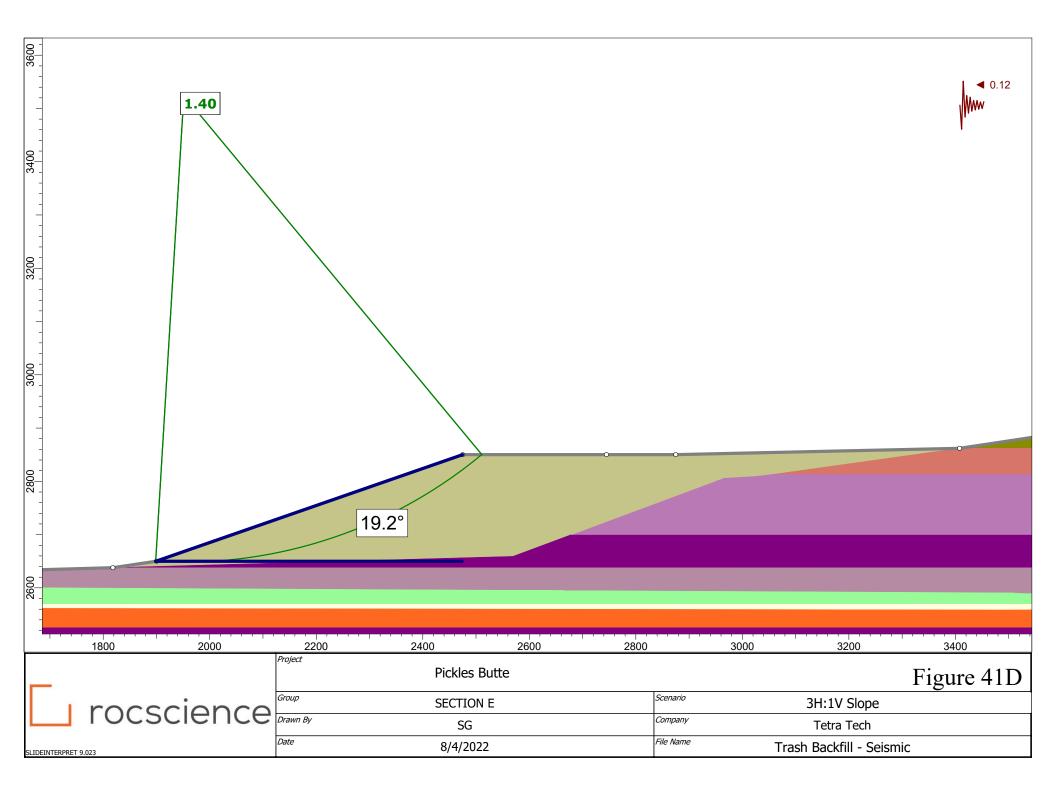


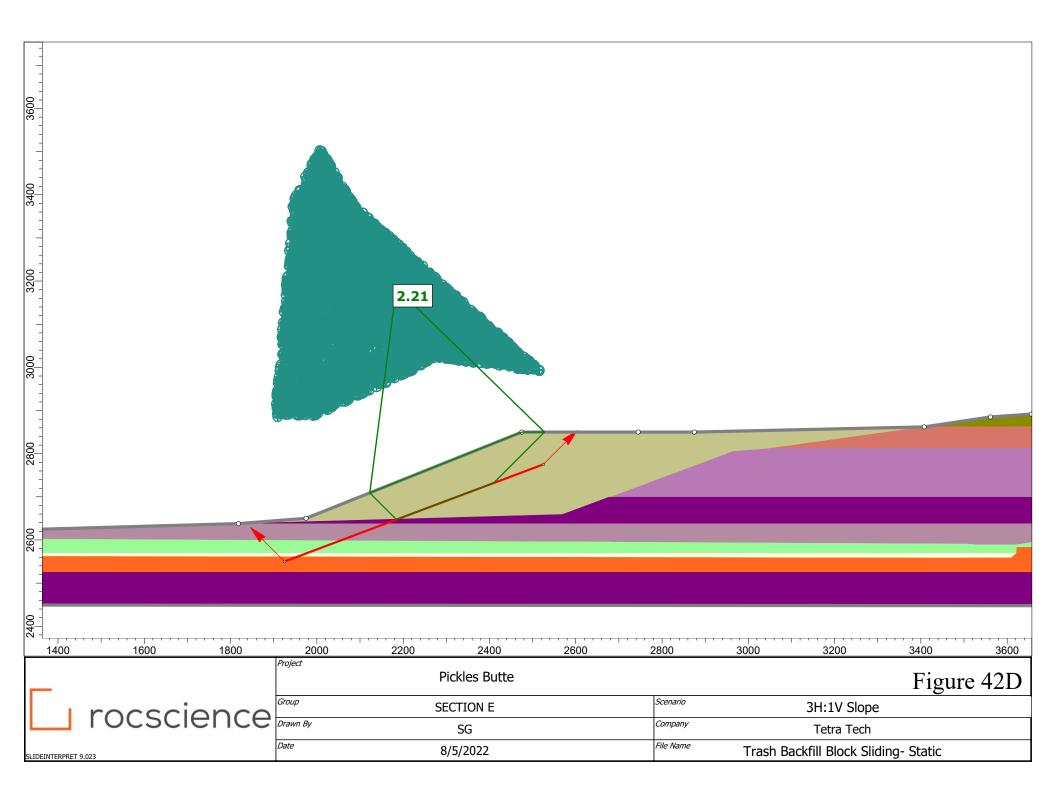


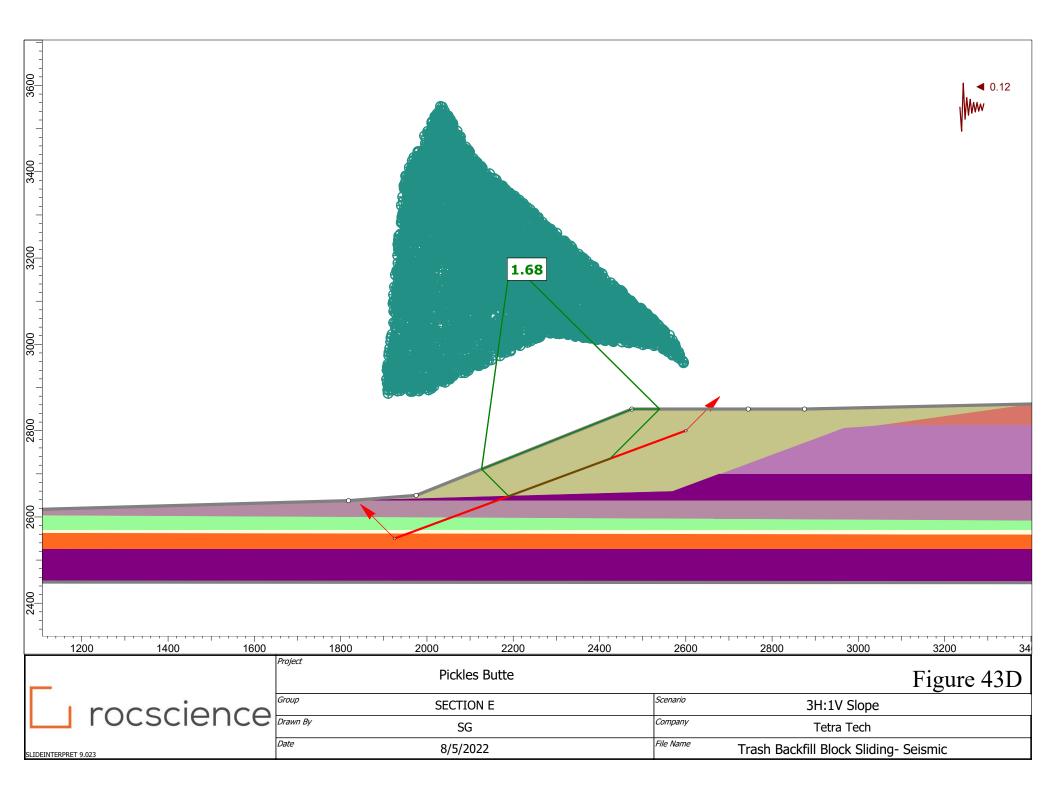


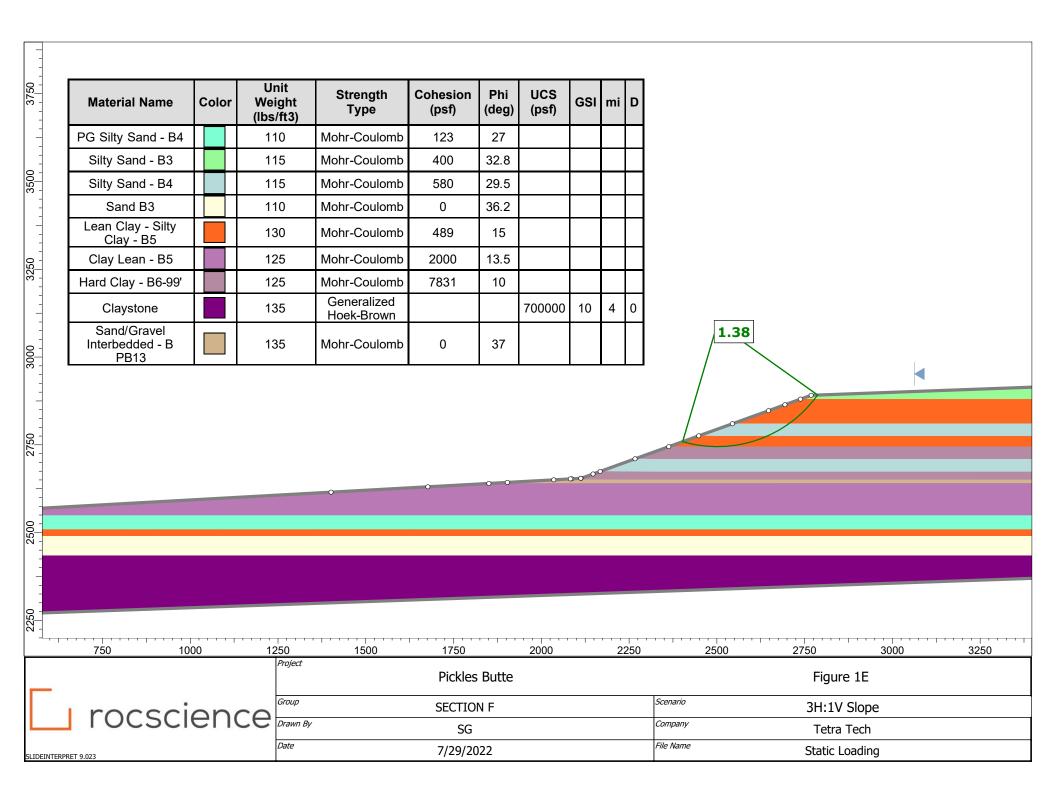


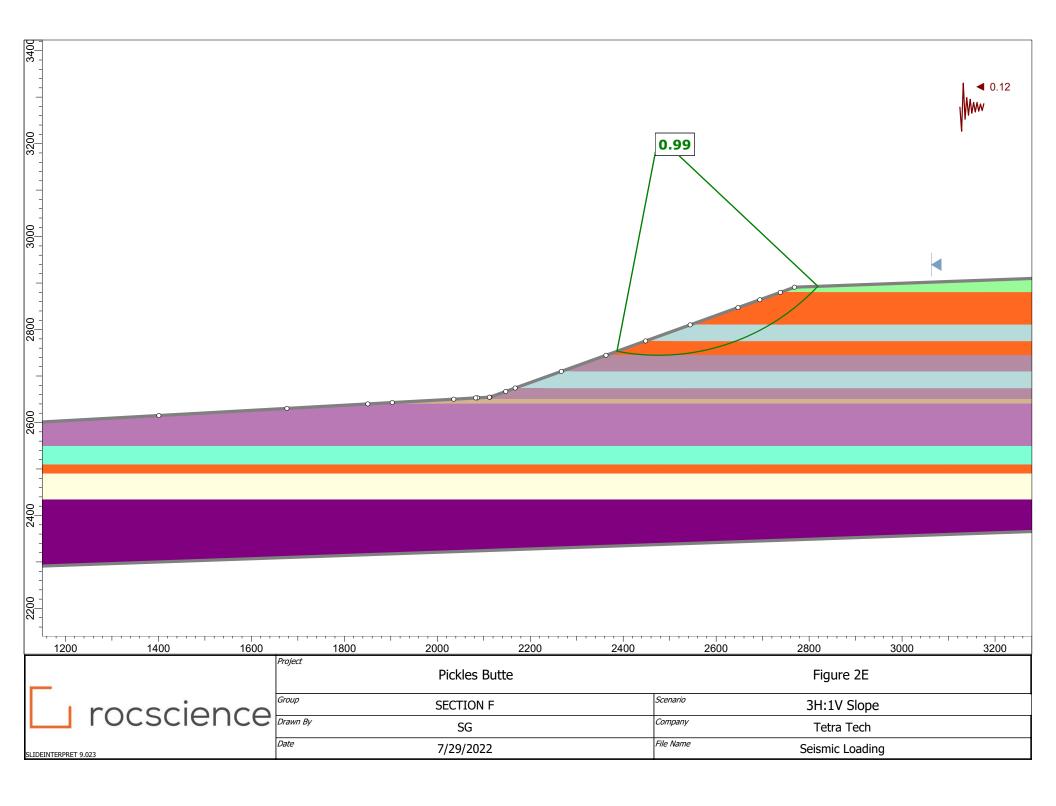


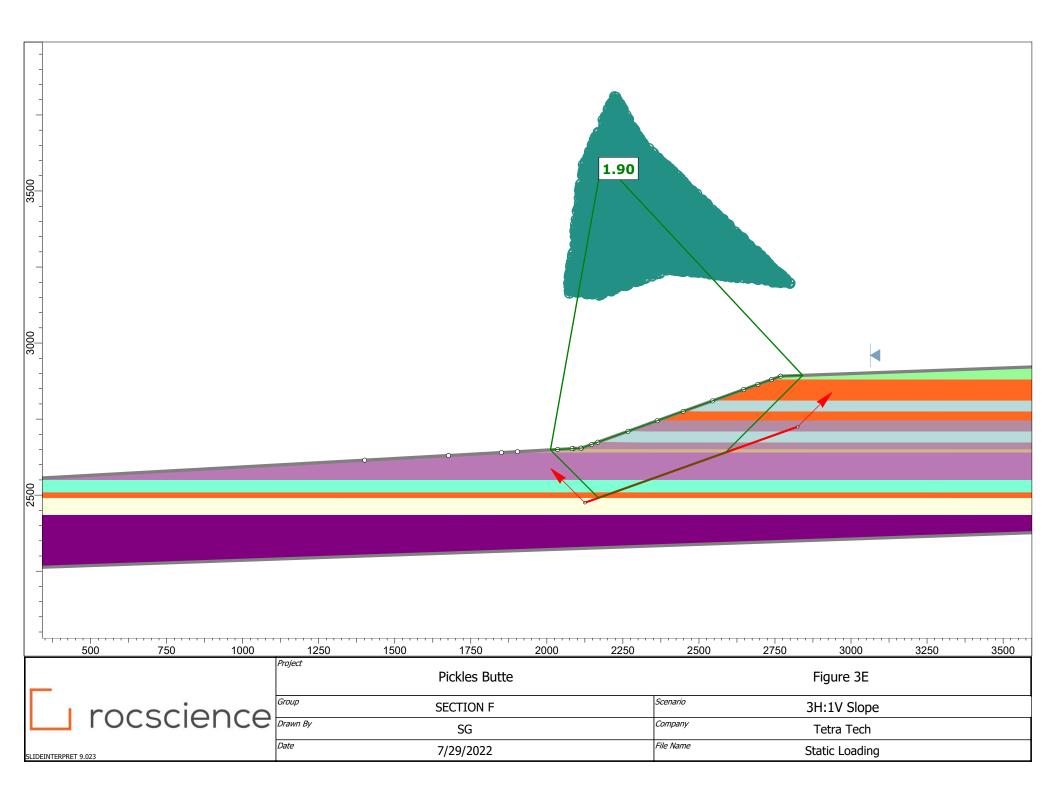


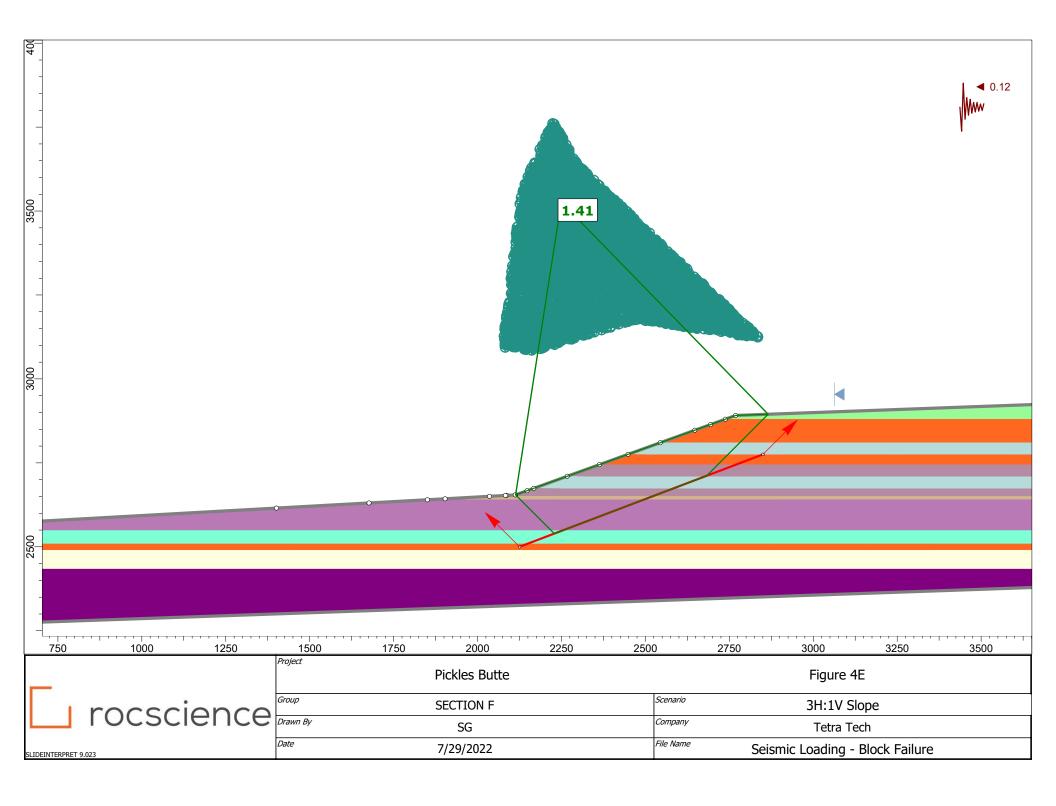


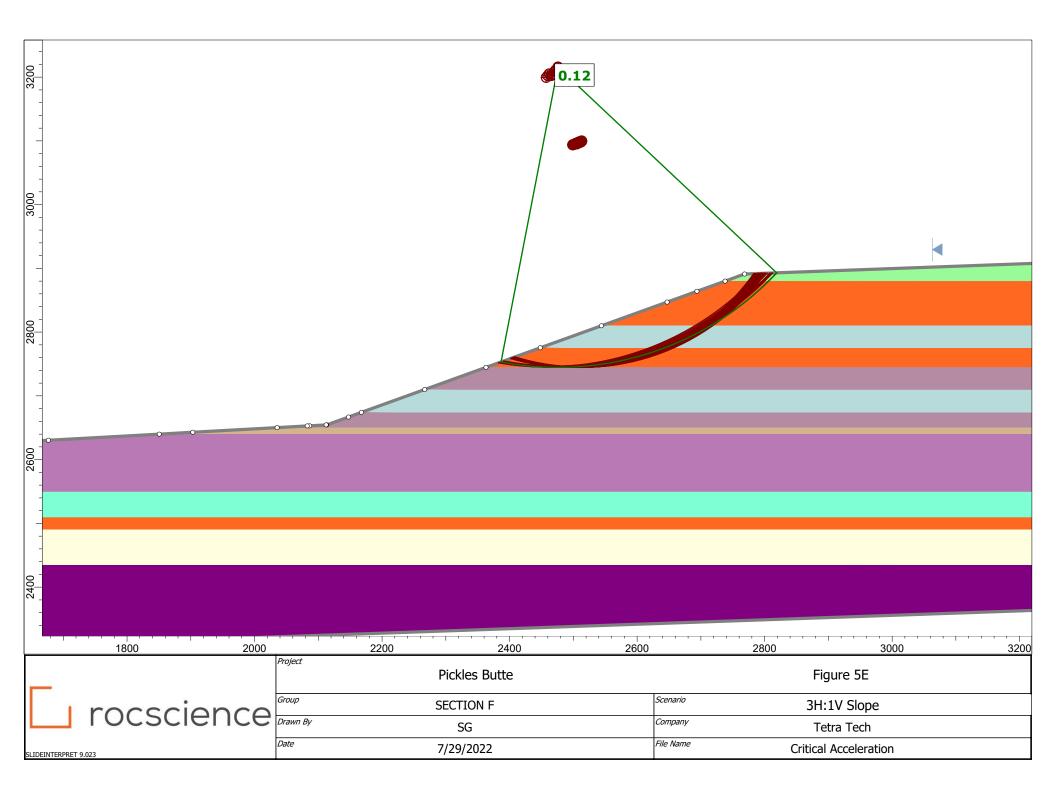


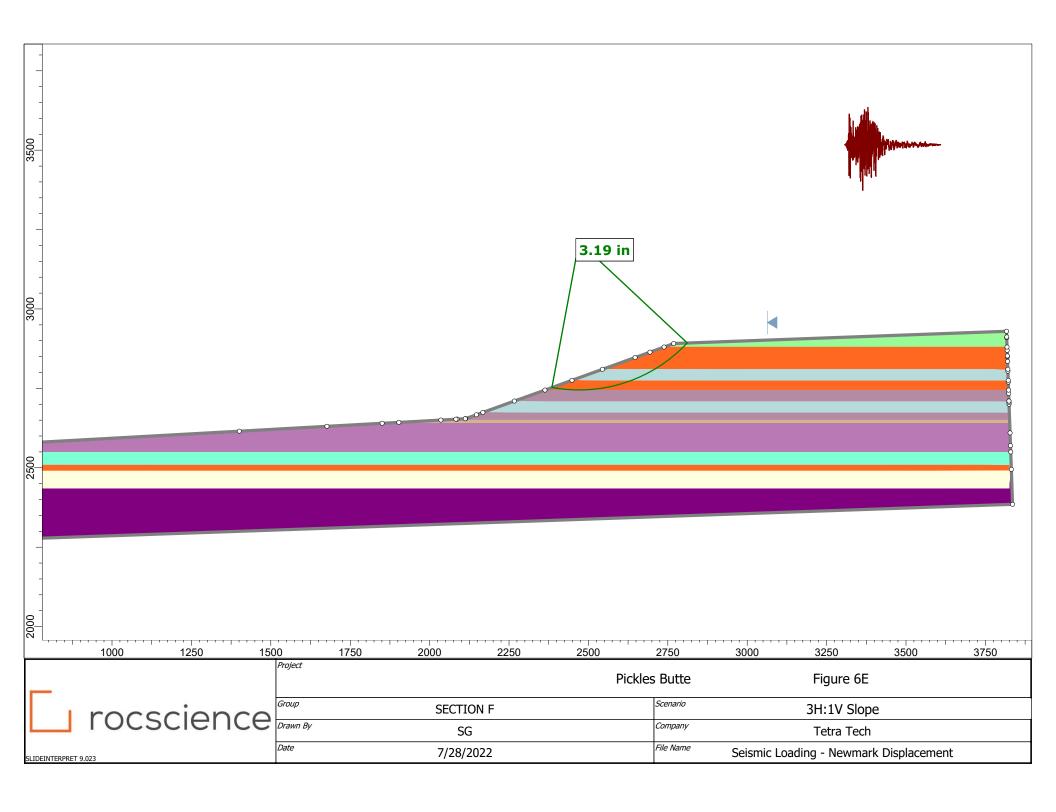


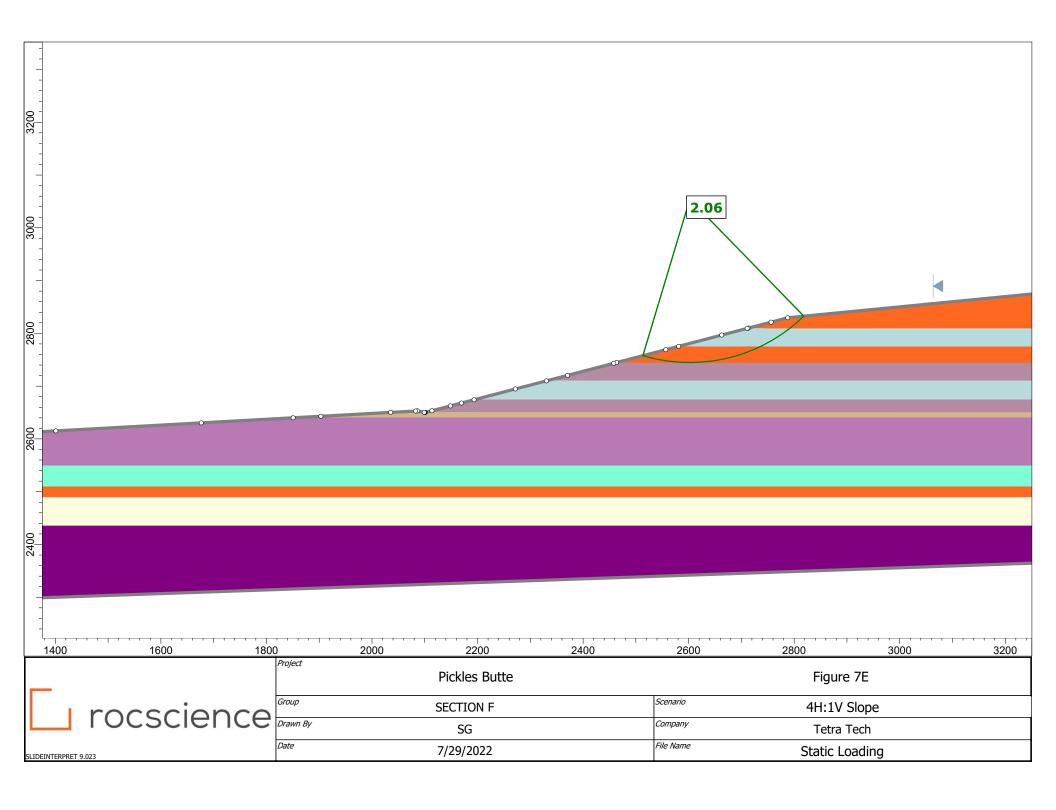


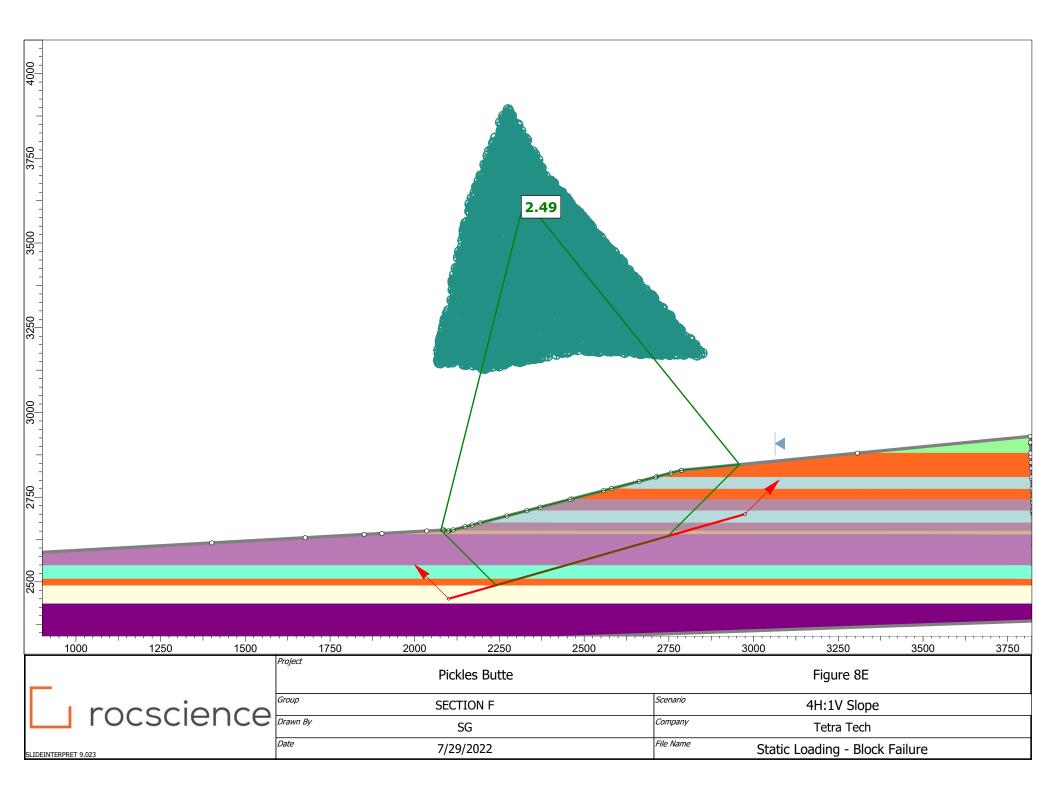

APPENDIX E: Deformation Analysis

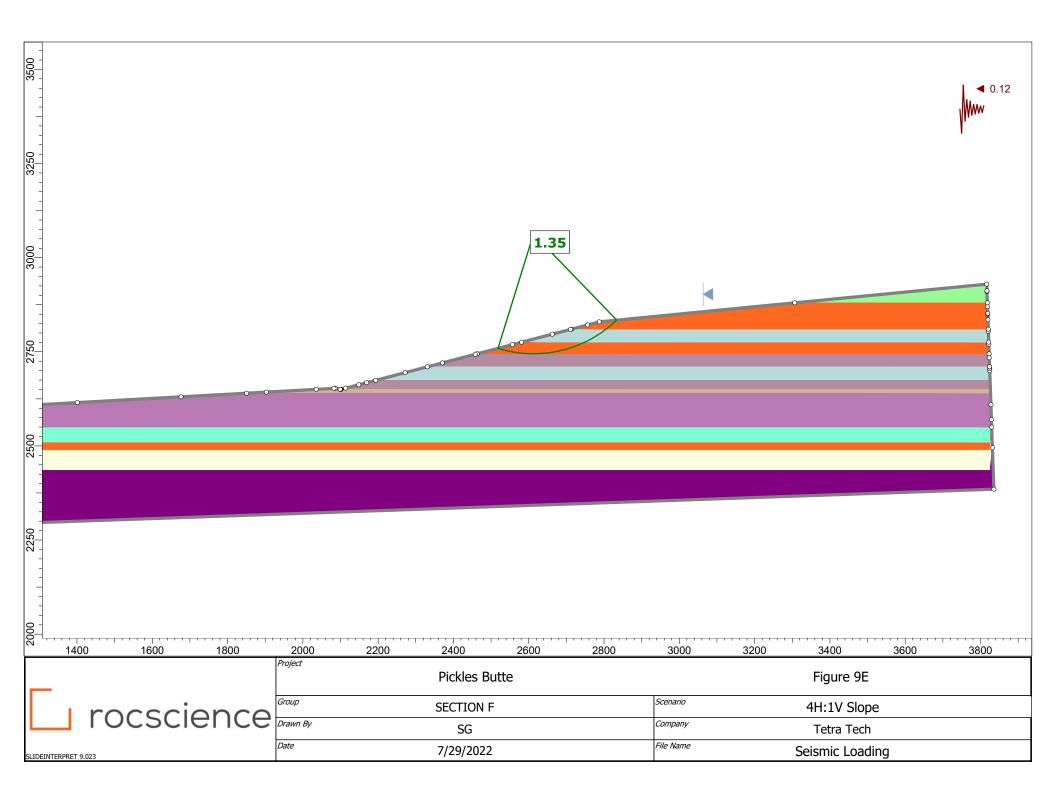

Static and Pseudo-Static Slope Stability Stability Analyses with Associated Circular and Block Failure Factor of Safety, Newmark Displacement, and Critical Acceleration for Slope 3H:1V Figures 1E through 6E

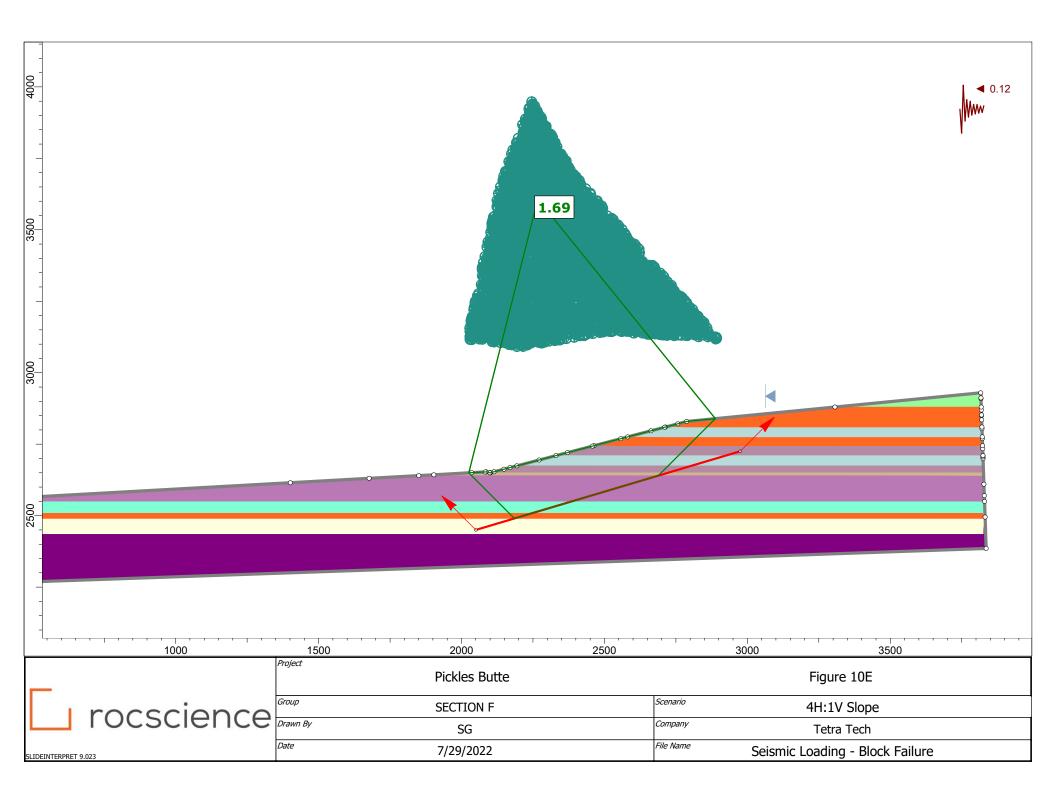

Static and Pseudo-Static Slope Stability Stability Analyses with Associated Circular and Block Failure Factor of Safety, Newmark Displacement, and Critical Acceleration for Slope 4H:1V Figures 7E through 12E



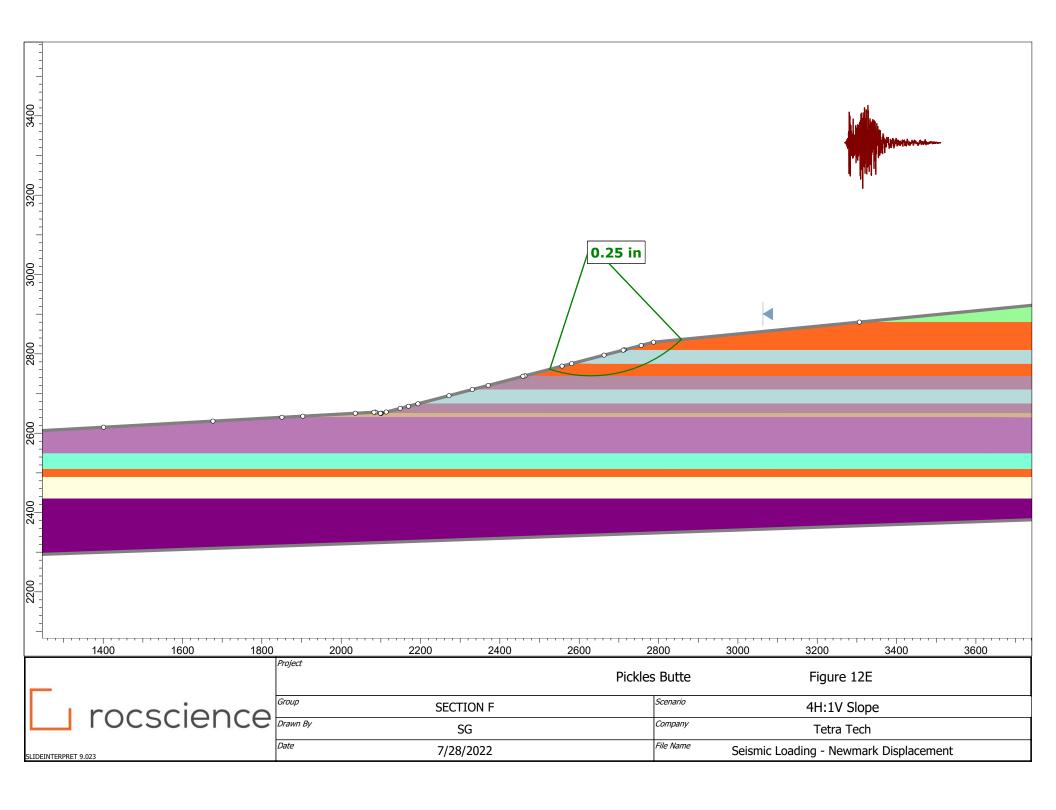


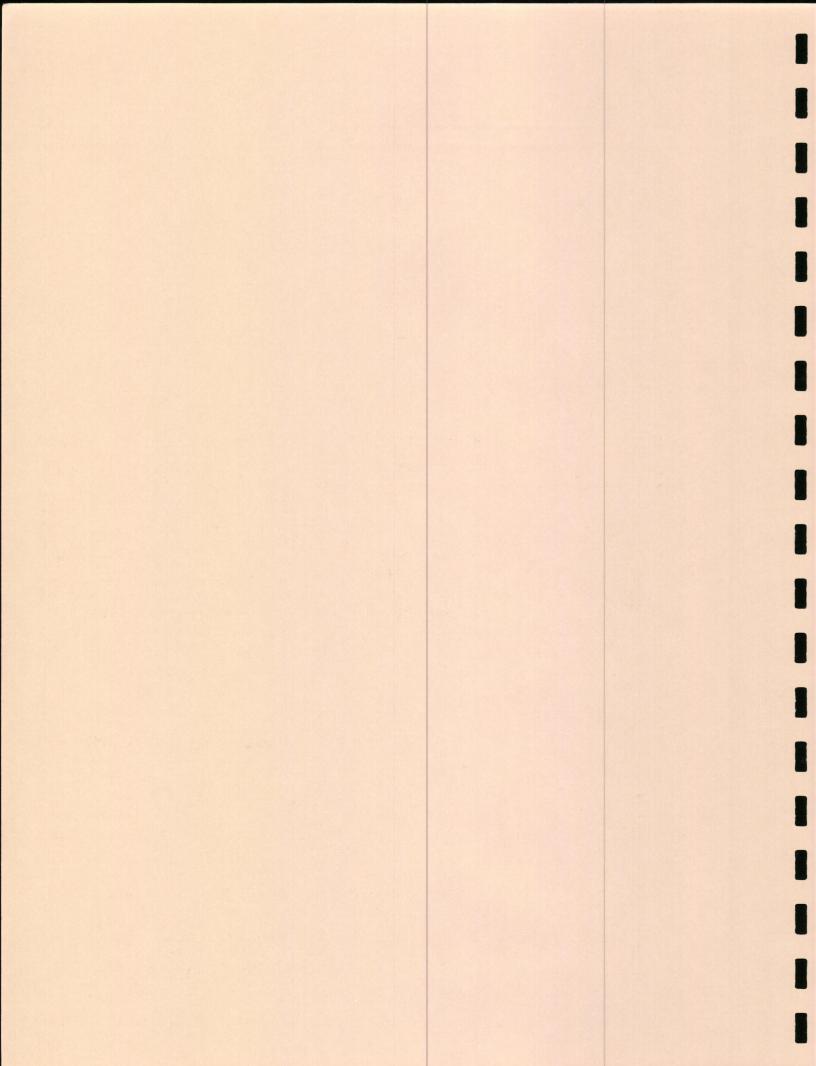












APPENDIX F: Previous Reporting Logs of Boring

LOGS GT-1 THROUGH GT-8 BY HOLIDAY ENGINEERING COMPANY(HOLIDAY) LOGS PB 5 THROUGH PB12 BY HOLIDAY and DANIEL B. STEPHENS & ASSOCIATES, INC.

APPENDIX E: Borehole Logs

* N = N · V/0

Where 0 = .05 T/12 per bt dots

HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| HOLE NUMBER GT-1 JOB NUMBER 03049 & HOLLADAY ENGINEERING COMPANY

| PROJECT Dickles Buffer bendech owner County Location: CO County SEC 1/4 OF 1/4 T N R W Sci 5 FILL

| LOCATION: CO County SEC 1/4 OF 1/4 T N R W Sci 5 FILL

| LOCATION: CO County SEC 1/4 OF 1/4 T N R W Sci 5 FILL

| LOCATION: CO County ANGLE STATE | LOCATION: CO COUNTY ANGLE STA INDURATION & GRAIN SIZE **HYDRAULIC** DATE GEOPHYSICS INTERVAL (FT) COLOR GRAIN ROUNDING STRUCTURE COMMENTS LITHOLOGY WATER REL PERCENT PROPERTIES LOG FXS. VOIDS.ETC. ROCK TYPE GRAPHIC SLT SANDGRAV ANG MK MOD WELL GRAPHIC MEAS. BLOW COURTS NOTES 11:50 Tan SAMALE 4-51/2 action and 1" clost remed of show whiten al" His Internation the time the field home mine well. Herry weathy lassicated hroaks up ongily 15-16'LT WAREF collibra Live soul 17:10 /16 how - Cand 1. 20-21/2 Willia (Sta 13.25 116 90 hue sand 130.31/1 N= 3. U, 6 35.36% 12. 36 Tit son En to med Sant some FORESS Train + quavel 110 - UZ SHELDY TIRE 245/2 10" 10 Ly 700 rds Man & house out come that) 1 45-46" house plans find counterful not use sent ut puch 21/2" @ Irro the war she + raise fier in rande) tan For to De Companie drier weakly want 12 .23 . 37 - 5 11 (40°)

(1)

HOLE NUMBER GT-1 JOB NUMBER 030496 HOLLADAY ENGINEERING COMPANY PAGE 2 OF 4 PROJECT Dirkles Fillo Gentech OWNER ____ LOCATION: CO..... PROJECT DIE FINISHED WER LOCATION: CO SEC 1/4 OF 1/4 T N R W

LOGGED BY STILLOWD DATE START WILL DATE FINISHED WE HOLE DEPTH 2011/2 ANGLE 7/2 DRILL METHOD 38T M HALLOW DIAMETER 5" ALCER DRILL MODEL BK-81 INDURATION & GRAIN SIZE REL PERCENT DATE GEOPHYSICS HYDRAULIC COLOR GRAIN ROUNDING STRUCTURE INTERVAL (FT) LITHOLOGY WATER COMMENTS TIME PROPERTIES LOG FXS, VOIDS, ETC. DRILL CLY SLT SAND GRAV ANG WK MOD WELL BLOW COUNTS N ROCK TYPE GRAPHIC GRAPHIC EST. MEAS. ory-ton Time 50-51/2 1/14 1:20 med.loose drier weeks Sand moist my-ten fine to VIIII YA 55.56/2 1:40 melor fen? ned 60 7616, 1:55 -- gry this to me 30 37 N=37 Sh. t A win had luneh 1/2 20 most loose 65-66'2 2:20 Han some line send 76-714 2:40 Hanking line mus 23 40 44 inad loose YOUNE bresta on 7(c) +we N= 45 006114 75.764-2:55 Jan In sund mod. locse 25 37 Sherkin سرو اهدير Lery five small 111,111 ditto 26 35 50 dito 15-11. 371 1917 1/251 112 15 47 140-01 7176 167 31 V 3m 5 Latin 11424 = = 90-91/2 2:45 true tion, self sand! 11 11 13 40 Markey Protection Wast woods Ping opt. N = 4 FOS (4a°) 95-961/2 11:00 11/5 Specifit tim SILT & GL yego stonela 19 Play PQL' 4000

١Ū

	ρ	ROJECT	Di ces	Bulle	Geoleck o	WNER C	H			LO	CATION	N: CO	•			_SEC	1/	'4OF	1/4	T	PAGE_3_OF_4_ N RW
	LOGGE	87	TROW	DATE	START_11-4-	94 DATE 1	INISHED	н	OLE D	EPTH_		ANGL	E-C/	2 0	RILL I	METHO	Hollow S.	(a_ /8/ DI	AMETER_	FALCE/L DRI	LL MODEL 13K-31
	INTERVA	_ (FT)	DATE TIME	COLOR	ЦТНОС	OGY	GEOPHYSICS LOG	R	GRAIN EL PI	SIZE RCEN	т	GR/	AIN R	OUNDI	NG		DRAULIC PERTIES	INDURA STRUC FXS, VOID	TURE	WATER	COMMENTS
$\left[\right]$		DRILL NOTES			ROCK TYPE					SAND	GRAV	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC	I	stiff
	00-101/2	Brass Rings	11:40	Lote ten	day		3 Balans	UUN!VIIM												damo	
1	~	1/4" ID"				İ	No Full			·											Le 3 proces princi como
	05-105/2	टल	12:00	ht for	1ft-clay			i jiri inde													12 32 34 N=29
1	106%	NO ZINGS			10 fin oran 9					49.94											Develone Cor inconfin D
	, 1				,																ring 4.0 T/C+2-
1	110-111/2	BRASS RINGS	12:25	In	Clay 8" his sandy 3,44		1 Binns No Fall	AMILIAN	r4 wiru	14										weakly must	13 32 50 0 ("N=35)
	`	LINGS			10"		Nº Par													pengrow (#1 brazz ring somple Clay 1.5 for five said (7/1/1) 4.0 Tist for clayer 3.14
		112 XIV.	do lute	1 1 4	``																11 41 50 N = 38 (40)
1	}	NO PA04	12.45	Jan sen	inderthed my Line															111111111	confined ring rendrameter in
				gent line	nlav(bdevis")															(+ 100 2 - JOA)	May 24.5 Tous/LE
}	,		1:10	Jan	silty May		-	PULLUA	NO.											weakly	12 30 48.
		NO CINCS																		Moist	$2-4$ Tord Ω^2 $N = 32$ Very stiff
ł	125-126/2	first	2:00		cly contact way fin sily and to 126	====			摦	iska: Jr										addustor	ada Live gallons water
		H, D Addoi			and to 126	737 (27)														Shirt Its	20 115 20 25.
		NO RING	25																	lan 1	N = 37 hard
<u> </u>		130 - 13114	2:25		Alay		وسنده والماران		-	/ .								Moderat		Slightly to	300 32 50@5"
		RENGS			clayersitul very fine soud				Mer	twin't								Const.		Moderativ demo	# 4 brass ring. 1 = 32
	ļ				silty clay			acyaba	,									use - mod.		VETT B	Verystiff
	135-1864	NO Rinas	3:00	grayish	Clay of trace			LUMB										CONSL.		add nater	add five gallons water 11 21 37 N = 22
		NO A MAR		CWes	5017	_															purtonites 1.75-7.75
-	12/6 22:12		3.70			=		111111111111111111111111111111111111111											_		/9 27 38 N = 25
	140-141/2	* KTNIS	2.75	gray	clay & silty clay introdu		ا ميروره ا ميروره ا ميرور	1414										Moderatoly Cort St.			se 4 rings (sest both
	}						2.7													MODERATELY MOIST (38%	7) Very Slift
. ,	45-1464	No Rinas	4:30	ari-ary	log 6" alay lower 12" a. Itu			PULLUM PULLUM										WK-HOD			23 23 28
		<u>-05</u>	5:00	* ' '	Clery			Thirts .	_											11/16 TUILE	N = 19
																					Very stiff

DORILL ROCK TYPE GRAPHIC CLY S.T. SAND BRAV AND WK MOD WELL EST. MEAS. GRAPHIC	LOGGE		 		 		7				T				T		INDUIDA	TION &	T	
NOTES NOTES 11/15	INTERVA	L (FT)	DATE	COLOR	цтнос	OGY		R	GRAIN EL P	SIZE ERCENT	GR	AIN R	OUND	NG			STRUC	TURE	WATER	COMMEN
		NOTES			1				1	SAND GRA	/ ANG	WK	MOD	WELL	EST.	MEAS.		GRAPHIC		
155-154 NO 10:30 gra-qri olary 100 gra-qr	150-151/2	STORT	9:115	grn-gry	Clay wit introde	4	1,000		. 444.00	2,,,	1							4		
155-156 1 10 10 30 gra. qry 00 y 10 set 16 y 1 10 10 10 10 10 10 10 10 10 10 10 10 1	#	mare	9:45	<u> </u>	Silt/Sin Secuel	4	No-File		-	┼	+	 	-	-	 			4	Silt a Imost do	X 2017 - 4-4.57
155 - 156 NO 10 30 Gran - Grant Obey Ob	4-	RING		 		┥		-		┼╌╌┼╌╌	+	 	 					7	ADD V Tal	
DIMSS			 	 	 					 	1	1					7 77 77 7	1		
PHOS	155-156/	NO	10:30	arn-904	Clay		I	THE STATE OF									WKCONSL]	POCH 5 61	
160-161 11:00 11:0				, ,,	d: Ho	T=	1				1						PLASTIC	4	FUSER RUNI	15 22 25 p
165-164/2 MO 11:15 dealery metalinum 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						4	1	<u> </u>	<u> </u>				<u> </u>				 	4	MOD. DAMP	
165-166/NO 11: 115 Gravey median and 17: 161 / 1		L	<u> </u>			4	ł		-		+	+			 		 	1		
11.5-166/NO 11:165 an ery our sieu with the form of th	11 11 11	DINAG	11:00	aru - aru	Duca Alas		3.13 Januar -	ATTITICAL)		 	+	 	 				WK CONSOLL	- -	AND 5 00/5	18 72 24
115-164/ 100 11:145 Ana ary mendan und 15 15 15 15 15 15 15 1	160.101.5W	K11003	71.270	17.7. 7.7	17078 23247	====			-	 	_	 						1	LICO BAND	* 3 rocket sound
115-166/NO 11:16-5 April 12:16						J						Ĺ]	N 28-429	C'Clay 1
170-17142 NO 12:30 an syx Persin of 1 31 33 3 1 1 100 Cars sub) 170-17142 NO 12:30 an syx Persin of 1 31 33 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1				L		4							ļ				ļ	4		ΝΞ
170-17142 NO 12:30 am syx Persin art 170-17142 NO 12:30 am syx Persin art 175-1764 NO 1:45 am syx Clayersit 175-1764 NO 1:45 am syx Clayersit 176-18142 Blass 7:25 am syx Silv Clay 176-18142 Blass 7:25 am syx Silv Clay 185-18642 NO 3:05 am syx Clayersit 185-18642 NO 3:05 am syx Clayersit 186-18142 Blass 7:25 am syx Clayer				<u> </u>	 		1	→ U.1312877	ļ	 	+	 	 					Ⅎ	100 5 (110	101 1111 5000 00
170-1711/2 NO 12:30 Gra-gry Pare day word 173 1 33 33 1	165-16642	PULCE	11:45	Bur-ech	THE CHAPTER			1,250	1	"	+	 						-	AUD S GALLE	1x 46 20 3
170-1711/2 NO		12111175	 	 	Give Sand	T		<u> </u>	_	 -	+	 	 -					1	~ 422	<i>N</i> =
175-1761/2 NO 12:30 an gry Review ord PINTS 175-1761/2 NO 1:45 an ery clayers: 11 176-1811/2 Brass 2:25 an ery sign clay 177-1811/2 Brass 2:25 an ery sign clay 1			<u> </u>			1												1		Ver
175-1761 100 1-45 100						<u> </u>					T							L _		
175-176 NO 7 45 OTH-SEY Clayer 5.77	170-171/2	NO	12:30	arn-gry	Purcelay word			1100					<u> </u>				CICIO CONSI	4		17 31 331
175-1764 NO 1:45 graces site in the second of the second o		PINGS		<u> </u>	1º sit hed		1			 	 	├ ──	 				_	4		N = 2 Very
140 - 161 1/2 BRASS 7:25 arm.ary Shru CLAY 141 142 23 150 Chal				 	 	+	ŀ			 	+	1	-				 	†	3661	Very
140 - 161 1/2 BRASS 2:25 arm.ary SHOW CLAY 141 142 23 150 Chal				 	 	1	ľ	-			+	 	 							
140 - 161 1/2 BRASS 7:25 arm.ary Shru CLAY 141 142 23 150 Chal	175-176%	1/0	1:45	arn.cry	clayer sitt			1	It:A			1	T				WE remove		25 % March	13 22 32
140-181/2 BRASS 2:25 Grady SILTY CLAY 150-181/2 BRASS 2:25 Grady SILTY CLAY 150-1	• •	RINGS		0 / /]	1]	500 C 22	> T/CF Donathin
190-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm				ļ	<u> </u>	4	1	<u> </u>										4	•	7/- 12
190-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm. Gry SILTY CLAY 100-181/2 BRASS 2:25 Orm			 		 	-{		 		 	+	 		-			 	1		
# RINGS	140 -1617	BRACS	2:25	am.acv	SULV CLAY	-	2 15 4	9:4	J. 2	 	+	i					WK-MOD		~3507	14 12 18 N
195-186/2 NO 3:05 arm. Gray CLITY (LAY = 1.5 T/L+2	*	RINGS		9 //] <i>-</i>	NO POLCE.											1	1195 Con	* 2 BRASS RINGS
190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 100-1914 PINGS 3.40 ora-gray sta]							!					4	v	1.5-20 T/C+
190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 100-1914 PINGS 3.40 ora-gray sta				ļ	ļ	4	ļ.	ļ			+	<u> </u>	<u> </u>		 		 	4		
190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 190-1914 PINGS 3.40 ora-gray stary clay == 1.3 mg/s 100-1914 PINGS 3.40 ora-gray sta	m- 10.11	W0 -	3.05		CITY ALDY	<u> </u>	ł	raymaya:	100	 	+		-				M. 0700	1	255	12 77 44 N
190-1914 PINKS 3. 40 gra-gravisher clay == 118 miles MK-mg0 75.35% 15 ZE 3/2 # 3.0 T/ce mm/f he long de M = 1	2,081-58	ZINICS	1 · · · · · ·	77-7704	A 11. 116.		1	SWIFF.	-	 	 	 						1		15 TISH = VA
1910 - 1914 19					1	1	i				1]		
1910 - 1914 19]	l													
190 - 1914 - 1916 - 191	.e	0	3 770	<u> </u>	(1.1.58 6 2.11	L :	1132	All total					-				01/14: 12	├ ┥	ا الله الله الله الله الله الله الله ال	
Specific long to	/40 -1911/ _~	[5/V)V.2	1.40	der- dear	SILT CLAY		No Field	PI 1583	NA	 	+-	 			 		かにっからり		~ 15 · 11 %	
	7	F		 	 	†	1	 	 	 	+	 	\vdash				 	†		11)- If he low dous -
					<u> </u>	1	i]		1/5/19
	10					I i	ł]		5
195-1961/2 4:20 Mayer 514 17 23	145-196/2		4:20		playey silt		I	XX	海 ()			L					h)ls		~ 30-359 ₁	14 17 23
11/Tay ABADAM 11018 1-11	11/7144	BEATT !	UE CHIN	7	 	†	l		 	 	+	 -	 				 	†		
	11 7 94 - ••• 1/	BENTO (1	1700	13mm	sitte Clan	<u> </u>	2 13 hours				+									12 17 20/4,5

HOLE P	NUMBER PROJECT D BY	Pickles Franciso	JO DATE	B NUMBER 030491 Geolech OWNER C	FINISHED 11-7-	96 H	OLE D	LO	GINE CATION 7 5 1/2	N: CO	NG - <u>''e</u> E= 9	<u>۳۳</u> ۳	RILL I	_SEC_ METHOD		40 TEN ALCER DI	F 1/4	T	PAGEOF. N RW ILL MODEL 3k-8
INTERVA		DATE TIME		UTHOLOGY	GEOPHYSICS LOG		GRAIN	SIZE				OUND		нут	DRAULIC DPERTIES		TION &	WATER	СОММ
	ORILL			ROCK TYPE GRAPHIC	:	CLY	SLT	SAND	GRAV	ANG	WK	MOD	WELL	EST.	MEAS.		GRAPHIC		
		11-7-96		Sand cover													4		
ļ	12:25			<u> </u>		<u> </u>	├					├	-	 		ļ	4	Stulety,	chack for me
1				garhage	1	 -		 		-			 	 		<u> </u>	1	-4.6.00/	-aulle
Į.	 				1]		
5-61/2		12:35															4		15 8 7
2	BRASS			soil + trash		<u></u>	 			ļ			-			 	4		Dirt + tras
	RING						 	\vdash		\vdash			\vdash	 		 	-		- TV 43
	 				1	 	İ	 							<u> </u>		l _		<u> </u>
10-11/2	NO.	12:55		Soil + trosh	•												T	BALLY	7.7.12 5
,,,,	RINGS			7/3 /s		ļ	↓	 					├	 		 	-	DACIP	NO METHANE
1					1	<u></u>		 		 -							┪		
ļ						—	t -	 	_									DUISIDE	Ţ
15-161/2	RINGS	1:05		all garhage	j.														17 14 10
				diaper wood								<u> </u>				<u> </u>	4	WET	5% LEL in Acres
1				(101 U Pri por						_			 				-	<u> </u>	Two RINGS firm
				etc.	1		 					 	├			 	7		
20-214,	Nο	1:20		50% Trash	-												T ~	MODERATEL	8814
2	RINGS			2090 501-			1						ļ			ļ	4	DAMP	
						<u></u>		-					├			 	4		
					1		 	 						 			1		19 13 12
24-251/2	BRASS	1:35		MOSTLY GRASS														DAMP	100% LE
	RINGS	EOH			1												4		SHUT RIG DOWN
							 	 		 			 			 	-		BACK OUT OF
	<u> </u>					 		├──		 						 	┪		1020 101 52
					-			T									j -		
					1												4		<u> </u>
							-			—		-				 	4		
1					1	-	 						 			 	†		<u> </u>
					İ]		
																	4		
						<u></u>	ļ			<u> </u>		 	-	 			-		
						 	├	 		ļ		 		<u> </u>			4		
	 				-		 									<u> </u>	_		
]																	_		
															ļ	 	4		
	ļ		<u> </u>		1		₩	 							ļ	 	+		
1					1		+	-		—		 	 			 	1		
1							1												

HOLE NUMBER GT-3 JOB NUMBER 030496 HOLLADAY ENGINEERING COMPANY 437 67 6.1 PROJECT Pictles Bute Gestech OWNER Canyon Country LOCATION: CO Canyon SEC LOGGED BY STEEMED DATE START 11/8/74 DATE FINISHED 11/9/74 HOLE DEPTH 1011/2 ANGLE - 90 DRILL METHOD SPT/AUSER DIAMETER 21/2" DRILL MODEL 3K- 8 INDURATION & GRAIN SIZE DATE TIME HYDRAULIC **GEOPHYSICS** COLOR GRAIN ROUNDING STRUCTURE WATER INTERVAL (FT) LITHOLOGY COMMENTS REL PERCENT PROPERTIES LOG FXS. VOIDS, ETC. DRILL ROCK TYPE GRAPHIC CLY SLT SANDGRAV ANG WK MOD WELL GRAPHIC EST. MEAS. NOTES 11-8-96 8:30 Filty very 2 3 2 100se 10-12: SHELM 8:50 tan fire saud WILLIAM 200 lbs (cat 6" Men Loose 15-161/2 NO 9:00 trun Frue gard /mee medeum minor sill 20-21/ 58845 9: 10 like here true and 33-13KAS5 13 21 23 auguju, Mars. loose DEMA 25-261, No 9.20 1/16 sund. 13 19 29 loase 36-311/2 RASK 9:30 11/2 POVS Gra (duit 14 21 33 3 BKASS mod loos No-Full drawn # 3 rings 10:00 Fite 301- fire to in A. ALIEU P hy to Do almost Encesono 1 Veins" 40-411/2 Rope 11): In the car five sand Prints Some med. sent bose Very dams 110 25 How ! 37 Co-Fall Price FO DY Alar 45-46/12 NO 10:70 tota giv- Lie gand

KINGS 600 monor be Dx WK CONISK 1954 demon 22 30 35

به ځ•م^ر

رچ.

40-61% PAMS 10.50 Apr. 100 Apr							H												_		PAGE	OF.	2_
INTERVAL (FT) TIME COLOR LITHOLOGY COMPANS REPRESENT GRAIN ROUNDING PROPERTIES STRUCTURE STRUC	LOGGE	D BY	3regw	DATE	START 11/2/9	L DATE	FINISHED 11/8	96 H	OLE D	LO EPTH.	CA 110	n: CO Angl	<u> 5</u>		RILL I	NETHO	40 (long)	/4OI 5Ca_ Ausoc 7OI	AMETER S	T	N R LL MODE	w 	<u>81 :</u>
50-51/2 19/5 19/5 19/5 19/5 19/5 19/5 19/5 19/5	INTERVA	L (FT)	DATE	COLOR	ПДНОГ	OGY		R	GRAIN EL PE	SIZE RCEN	т	GR.	AIN R	OUND	ING			STRUC	TURE	WATER		COMME	ENTS
55-56 100 10 100 100 100 100 100 100 100 100		NOTES						CLY				ANG	WK	MOD	WELL	EST.	MEAS.		GRAPHIC				
55-56 100 10 10 10 10 10 10 10 10 10 10 10 10	50-51/2	11-8-96	10125	gry ton	Cery Sign		マーラスカンシー アメル		W	U LLIJ								WK-MOIS		moderalely	18 3	3.7	
40-61% PAMS 10.50 Apr. 100 Apr	7	K INGS			7117 900	1	2 - NO Full											CONSUL	1	damp	73 K	165	
40-61% PAMS 10.50 Apr. 100 Apr				ļ		<u> </u>	[-						<u> </u>	ļ]				
40-61% PAMS 10.50 Apr. 100 Apr	55-56/ ₂	110	10.40	any-ten	Hery Ci.	7.7	1		I II	ПШа				<u> </u>				10k -100	1	407-572	16 2	+0	
65-66/12 00 11:00 Service Serv		RIVES			E. Hu same	· · · · · · · ·												CONFOC	7	damp			
65-66/12 00 11:00 Service Serv						1													1				
65-66/12 00 11:00 Service Serv	10-61%	Bulce	10.50	426 15	in Cir	 	2 20 000		1/2	i al I (d									- -				
65-66/12 00 11:00 Service Serv	27 101 2	R /A/133	70.50	gry. man	San Ol pordeglis		No - Full		tu l	Links				<u>. </u>					+		20 3	5 44	
15-76 / 200 11:15 (rex to 2" alou					2.14	}													Į				
15-76 / 200 11:15 (rex to 2" alou	65-661/2	41O	11:00	arv-In	Hon 3" 2.14 1		·	 						<u> </u>				SWO WE	-				
10-71/1 2/1/5 11:15 (rev Top 2" glav Top 3	- [RINGS			Jane A Inthon				St. St.	العارية								MAD - STT.]	MOD DAND	110 2	9 34	
70-71/2 21863 11:15 (ray 100 2" clay 100 100 100 100 100 100 100 100 100 10	Ì			320-3000	79 6124			100											{				
15-76/1 10 20 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria.	ļ																		1				
15-76/1 10 20 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria.	70 - 71%	PINGS	11:15	CAY	Tha 2" alow		2-13 1.455	Valent Fritze						<u> </u>				400 215	<u>-</u>	We do do	76 30	27	
15-76/1 10 20 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 10 11:30 general alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria. 15-76/1 10 2015 1:00 for 301 10 peneral alteria.	,,,,			Jan Ery	Inithe 10"		12 Full					i							i				UF SAND
80-81/2 12.00 to 12.0					sing sand							- 1											
80-81/2 12.00 to 12.0																i	 		1				
\$0-811/2 (21/25) 11:45 ary to interholding \$0-811/2 (21/25) 11:45 ary to interholding \$1.00-572	75-76/4	2214	11:20		.,,			Heel 2	Part a Di			!											
\$0-811/2 (21/25) 11:45 ary to interholding \$0-811/2 (21/25) 11:45 ary to interholding \$1.00-572	Ì	R. MAS	11.50	7(4-300	olygon all												· · .	unk- conton		WE DAMP	10000	110-0 10	ou le no
55-86/2 NO 17:00 to 944 Up his citts 12 18 50 RINAS 1200 to 944 Up his citts soil 1000 to 100	-																						······································
55-86/2 NO 17:00 to 944 Up his citts 12 18 50 RINAS 1200 to 944 Up his citts soil 1000 to 100	80-81/2	RINGS	11:45	ary. hm	interpolations		g - 64Ass =	1/2 f										MO0 - 5-72	 	24.500	15 (11)	50.6	· · ·
100 - 91 /2 100 to 100	, i			• •	gama-siit-	7.7.2	No- 744		, L								··			19 11 11 11	7 RING	CLAY 1	15,76, 5045
10-91/2 PINSS 17:45 Han-gray his also sould soul	}				sity Mais																		
10-91/2 PINSS 17:45 Han-gray his also sould soul																							
10-91/2 PINSS 17:45 Han-gray his also sould soul	2.80.5	RINGS	12:00	412-907	Scin G		}	: 1	(462)	124								1105 C-1	}	1. (1-	71 48	<u> 50</u>	1 3"7.1
100-91/2 711X5 17:45 404-5901 405-616 4046 100 50 50 50 50 50 50 50 50 50 50 50 50 5	ļ																	1137		Som is	WI FO C	216	120 - 3 198
15-96% Hornes 1:00 tonger 10's.14 to	ľ	lench																	ļ				
15-96 1/2 Ho Pints 1:00 to 10 5.16 Log 1901 10 5.16 Log 1908 10 5.16 Log 1908 10 diagnos	10-91/2	PINXSS	17:45	-Mus-civ-1	fine cittle sail		7.00 Kms	9 1		(iii)								100-5-0-	- +	Stelitz.	16 40	50	
					2-cl., 130 i	F C	Ur-Fill												ļ				
	Ì						}					- 1	<u>-</u> 1			- +			}				
	15-90%	110 200	- /:00	,	70.2017				110 2														
	16/12	eno xiel	, ,,,,,,	4211.94.1	10 5.1+ +-11						-							MOD PANSU	}	5121170	15 30	40	
AN-101/2 PARS 1/20 How greatly 5 4 6 1/20 How greatly 5 4 6 1/20 How greatly 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1				<u> </u>								<u>:, i</u>						t	7.			
	10-101/2	TARE	1:20	Jun oyen	Thing To as A	<u>1914, 33</u> 3	= 10 k 18 5 2 = 1			ALL LIVE		~ †	· · · · · · · · · · · · · · · · · · ·					MOD CONCOU	-	TATH STITLES	14 32	50	PIND HOLE

+<u>c</u>/

HOLE NUMBER 67-4 JOB NUMBER D3049(HOLLADAY ENGINEERING COMPANY lot PROJECT Pickles Butte Goodch OWNER Causen County LOCATION: CO. June SEC. _DATE_START 11-11-96_ DATE_FINISHED 11-11-96 HOLE DEPTH 1011-2 ANGLE - 90 DRILL METHOD 11-11-96 DIAMETER 2"/2" DRILL MODEL BE-\$1 INDURATION & STRUCTURE GRAIN SIZE REL PERCENT HYDRAULIC PROPERTIES DATE GEOPHYSICS COMMENTS GRAIN ROUNDING WATER COLOR LITHOLOGY INTERVAL (FT) LOG FXS, VOIDS, ETC. DRILL NOTES GRAPHIC ANG WK MOD WELL CLY SLT SAND GRAV EST. MEAS. ROCK TYPE GRAPHIC 11-11-96 vort longe 5-61/2 Rings 10:00 tam but with Arma 2 gund in 2 rings PALLEN ... minar claves. It 16-111/2 1/0 1/1 10000 11:07 Im clanes 5. 1+ terr int minor very has some 15-164- Shaller 10:15 (= 15-17) 20-211/2 No. KING 10: 25 + TUIN Ima Chang -ing 25-26/2 100 101-5 most onto 4111.65 15 27 77 30-31/2 RINGS 10:40 DY- From 16 nex NO- Full MANSON 35-76 1/2 ND 10:50 ary-ben time same : WK - MAD 12 21 32 gir fishe CONCOL thus-SINTAGE & GIRE 40-40.73 Theoline 11:05 Dry ten Citie Sans " B" sample lat sons Gods of 4 - 6 -11.10 MOILET INC- ALTO MARKE 20 27 32 11:15 Rey- tran intorioded from to 45-46/2

٠Q

NTERVA	L (FT)	DATE	COLOR	плног	.OGY	GEOPHYSICS LOG	R	GRAIN EL P	SIZE ERCENT	GF	AIN R	CUND	NG		PERTIES	INDURA STRUC FXS.VOID	TURE	WATER	COMMENTS
	DRILL	11-11-96		ROCK TYPE			CLY	SLT	SAND GR	AV ANG	WK	MOD	WELL	EST.	MEAS.		GRAPHIC		
-31/2	30055	11:25		Clay with harm	<u> </u>	2- 32455	1	601				İ				MCD - STR		inthe dame	16-30 50
	PIUSS		ļ	clay whether		Almost.	₽	(海峡)				<u> </u>	<u> </u>			dester!	↓		winer Lie ser . P
					┪	į	\vdash	-	 	_	+	 				 	1		
"]	l											1		
5612	AIO Oute	11:40	ary-ton	sif - 4"		i		5/	11/1		+					MIK-MOD ADVISCE	- 1	WK damp	11 18 31
	KINTA		5111	clay 10"					 		1	 				~ 00130C	1		
			Clay ten-]]		
7.14.	Dulce	11100	9831-2	Comments	 	2-84455	8	L MAN	 		 	ļ	<u> </u>			MOD CONSU	- -	alus + deu	25 37 50
- 61 /2	₹////G 3	.,,,,,,	in prance	This summing fel + ~ 1" Fe Do ; gon on to	 	No-Full	-		L.		†	1				100,000	1	Z1147 : (17 y	2 RIVES
]							!]		
																	1		
ر/اهاما - 1/عاما -	NO 121135	12:10	7v- len	Leade from Log	4 3 5		2	E L	UII .			i				MAN PANCE	i [ير أروا و ال	19 34 45
						ļ	-	Patri	120									he will G	
				Sine sand, sill	4						┼	 					1		
					1												<u>t</u> _		
71/2	ZINGS	12:25	ten- uni	fun saule		2-132755 =			(M)		ļ					MAN A-1150	Γ. 7	HODELUSCH	21 42 50
				<u>5.16</u>	1	, , , , ,				- -	 					 	 	MOIST	
]												j		
-, .,	115	12:44		7:	-{			- A	17.00	-	ļ	:				uch etc-		UNDERLINY	20 37 42
	2065	14.40	مهر دور مهر	Lis en o					17.44	+-	 					WASCI	†	WAST	<u> </u>
]							1			- · · · · · · · · · · · · · · · · · · ·		1 [
	LLINCU THEAT				4 .				<u> </u>										
8172	(II)	7:70	irea cort	درورام ا مرورویزا ندا یک اراموارعلی	1	-	則相	146	ig i	\dashv	 	<u> </u>				400 BE	┾ ╅	CUCATI V	22 32 40
, ,	21/1:4			١٠٠٤ لمرارا بعلي			11.41.	5										Maist	
				Para . rem .	-			ļ	 			i							
				 	† !						 	i							
رانهائ.	NO	1.50	ary-sec	May 18 A clau	<u> </u>		11.1	/å								1111 51		diffel a	1. 35 00
	KIMIK		ļ 	SE THINK GITS	··- · - ·		16. 1, 61.				-	<u> </u>					-	11716	
					1							i					 		
• //	30.4				<u> </u>	2 - 15R455 -				4		1					<u> </u>		
9! "2	BINKS	7:45	NV-leete	Sitte stan	F	2-15/2455 -	Was in		-		 	 	\dashv			purti Ata	}	7:114	7 rings
	F / 7(15)			31-10.3144	i	-	,		 	_	-	,					j	7,4,7	
]														
5-96/2	AJO	7.778	****	Manua Act	المصيدي	•	PVI VII		428							MAT, FITE	} }	200 6 00	6 32 50
שיטר	Kleys	30 1132	777-114	Very Artin	4		TTI YA		F 10		+	!				***(*) 71/4		0 200	rimit uso semo Ce 4

510-11

100 - 101% PIAIGE 7:30

HOLE	NUMBER ROJECT	GT-	5 <u> </u>	B NUMBER D	MER CL	MISHED///4/	اللـه ميك	DAY	EN LO	GINE CATION 1012	EERII	NG <u>م</u> مر 13-3	COM	APAN af Can	NY . LSEC_ METHOR	1/ 1/ Hollow Sta	401 - LSPT - LUST/01	= 1/4 AMETER 2	T "/>''OR	PAGEOFZ N RW ILL MODEL_BK-21
INTERVA		DATE TIME	COLOR	итносс		GEOPHYSICS LOG		GRAIN				AIN R			HY	DRAULIC PERTIES	INDURA STRUC FXS, VOID	TON &	WATER	COMMENTS
	ORILL			ROCK TYPE	GRAPHIC		CLY	SLT	SAND	GRAV	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC		
0-12	NOTES	10:46		COUED !					-					 	├─				MOIST	SHELBY TUBE THRU INTERIOR
0-12	11 11 2 191 <uf ay<="" td=""><td>10.05</td><td></td><td>TILASH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Fx LEL</td><td>03</td><td>] [</td><td>70</td><td>COVER PLAY SILT & TRACH</td></uf>	10.05		TILASH												Fx LEL	03] [70	COVER PLAY SILT & TRACH
	3411177															Celveck -	Vern toll	4	1204	1/2 1+ @ 500 16.
																	ollew slem	4		mashed and of the
							<u> </u>								ļ	à @ outs		- 1		15 5 4
5-61/2	NO.	10:15		MUER 1			ļ		-					-		EX LEL	100	1	MOIST	MIST OF SAMPLE NAT
•	12/1/05			TRASH				 					-			dillo so	rechures	1		RECOVERED SHOE BLACKER
			 		•											13.40 //		1		
					f													L J		
10-11/2	UO.	10:30		TRASU	_	-										FY (EL	0012		slightly	27 /0 8
,,,,,	RINGS				l :	}											ļ	4	down	TOOR PERCENT (-3.4"BALL
														ļ			 			<u> </u>
							<u> </u>								<u> </u>		 	-] 1		
				TRASIL		ł	 	<u> </u>						-	 	EX LEL	09-	1	abust desi	70 @ 4 inclus
15-16/2	NO DINIGG	19:40		7147					-							- X - C \ - C	1 73	1	<u> </u>	wood, physic, pager
	RINGS			<u> </u>				İ	 				-					1 1		
					i]		
					<u>_</u>	l _												-		
20-21/2		10:25		4124511	<u> </u>			ļ	ļ					-	<u> </u>	EX (EL	0%	-	AMIAT ANY	12 9. 19 61:3 DECEMBERY ~ 20"
	RING					•	<u> </u>		 								 	-		NEWS MAPER CONDER (45 D)
				ļ	1			}	1								 	i 1		West Water Charles 4. (3)
	<u> </u>				1	i		 	 									1 i		
25-21%	110	11:10		Trash				 								FY (EL	(C) 272	1 1		50 @ 4%"
25-262	2/A/CE	77.79		- V. C. S. S. S. S. S. S. S. S. S. S. S. S. S.	1]		SHUT DOWN WAITING ON.
		ECS			I	1											ļ	4 1		DELLUERY OF ERESS PLACE
]												ļ	4 1		<u> </u>
		11-13-96		<u> </u>	_	1 -			 							EX IEL	5%	÷ →		16 7 12 Kity north
30-31 ¹ /2	Deas	11:25	<u> </u>	Trash	ł		 -									ex (e)	1 222	1		2 hrass rives
	RINKS		 	 	1	1			 									1 1		
					1 :	į] [
																		.↓		10 10 37 510 1
35-361/2				Lrash		1	<u></u>		!							FY IEL	10000 in	-}	 -	NO MORE BLOW POWE
	thru					1	ļ	<u> </u>						_			1/20 0 -11 ov	i		= × NA3341
	NO 50	MPIE		 		ŀ	 		 		\vdash						17(3)11.21.31	1		
	 	 -		 		ł	 	 									<u> </u>	1.		
40-41	27."	2.20	 	Jrash	 -	· -										EX LEL	1000	Ţ 1		1 Isrge brass ring
۱۳ -	21/2" BRASS	<u> </u>			l	1												. I		
	PING				1	1									ļ			4		
					!	1	<u> </u>		<u> </u>							1 10 1	1007.	-		~ 8" sample
45	Grah So			touch	}	1	 	 	 		<u> </u>					EI IFL	1000	∤ }		1 - 1 - 3
	1	2:15	-		1	1											t	†		
			 	 	†	l	 	 			\vdash						1	1		
	5																			
50		4:05	 		1												10-00-] [3"-10.016 111. /34-14 500

				·																		
HOLE	NUMBER	GT-9	S JO	OB NUMBER (030470 WNER	Pausin H	OLLA	DAY	′ EN LO	IGINI CATION	EERI n: co	NG 	CON	APAI	NY _SEC_ METHO	1, Heller	/4OF	1/4		PAGE_ N R	2 of 2 w BE-81	
INTERVA		DATE	COLOR	цтноц		GEOPHYSICS LOG		GRAIN EL. PI	SIZE		$\overline{}$	AIN R			НУ	DRAULIC PERTIES	INDURA STRUC FXS, VOID	TON &	WATER		COMMENTS	
	DRILL			ROCK TYPE	GRAPHIC		CLY	SLT	SAND	GRAV	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC				
		11-13-11,															1					
					1																	
55	aya la	U: 30		407 66	225													}		colled	58 on ho	a •
56 3 5%3	حمدامي		56	The season of			<u> </u>															
587																		İ				
			<u></u>		_	_								-							P	
60	lang &	4:55	Jan arme	Sand (Med)	F : •-	-														1 MILLE	+ 3" in /	20.7
	710.0	11-14-91															<u> </u>			37.42	1 700	2
65→	1540 6	9:30	arry	Fand (wet)	55 1 12	1													Civile days	-		
45 - 65.5	401/: 4	2.02	1 000		}												20ml foll			1	و المورود المورود	1"
65.5-67	and a	1 7"	- /y n D			1											10-20-20	ļ		11 19	7/2 - 3PT	
	, ,					_											106-1400		and nine			
70-7112	< PT	10:20	trunging	Silty Sies Smil	T-: -:	_											CONSOL.	7		13 34	42	
			<u>, , , , , , , , , , , , , , , , , , , </u>			·.																
. //			77																			
75-761/2	و آج	10:40	In 1400	neural +								!					sty, a		nto-depoins	13 3c	141	
			4411-177	7.142													wood well	ļ	7.74(11)		200 100 200	
		<u> </u>		l													commercia.	ر ا				
ED- 1: 5	EET	11.00	town your	ailt, Lie Gral	Filipini.												12 a innue	Ţ	MARKE	<i>50</i> 3	5 46	
																		Ł				
85-861/2	501	11:15	tan-gray	Ling In wel and	4753						$\overline{}$						MOD WALL	F	Mai-	२० . ३	7 50	
																		ļ				
90-91/2	SOT	11.35	1110.00	companied Siens]											MOD PONSE	Ŧ	Trule	16 12	27_	
																				وي يود فرملو	mt)	
-الديم حجو																		E				
10-40 12	5 PT	111.50	ton 9.7	med son l						-1							1000 C	F	Marina + M	13 32	<i>3</i> 2	
	Service Control											ij						ļ				
100 - 101%	1200 1271	 	Vi ti tino. I	Jun 1 11 1 50 1													 	H	Acres 14 to 15	15 21	712	

USE TYPEWRITER OR BALL POINT PEN

State of Idaho Department of Water Resources 2692 CollAR 2353 Static

2097 Water Intercept (Top)

WELL DRILLER'S REPORT

State law requires that this report he filed with the Director, Department of W days after the completion or ebandminimat of the viet. 1 WELL OWNER J. WATER LEVEL Static water level, 7337 feet below land surface Flowinin 11 Yes 13 No. G.P.M. flow 1 emperature ______ F. Quality _______ Home Change Bist _ Crave Tig Address Caldwell TUAHC ... Artesian closed in pressure _____ _D . i. □ Cas Controlled by (3 Valve f.J. Plug Owner's Permit No. R. WELL TEST DATA 2. NATURE OF WORK & Fump 13-New well | | Despend | | Replacement □ Bailer Displaye G.F.M. Drew Down 13 Abendoned (Jescribe method of abendoning) .. S & 5'Ns . 3... A PROPOSED USE D buneate | | tripates Other besuity typed A. LITHOLOGIC LOG - Marky Disposed or ☐ Shedk Yes i • 3 بنمك 4. METHOD DRILLED 20201 3 SANG 45 1 48 152 11 /52 205 Saude D'Cath □ Rotory □ Dug ☐ Other 11 705 75/ & WELL CONSTRUCTION Rluel SHANG Alue Clay 102 SAM Alue Clay (SHA)el Grey SHAIR SHAIR SAMAY Divineter of hole _2/1 2/1_inches (8 Steel Total depth 45E feet Casing schedule: [] Cenarete The same 375 inches 14 inches 12 feet 575 feet 256 feet 527 feet 537 feet 527 feet 256 inches 16 inches 437 feet 458 feet _____inches Inches Was paring thing the 01 Was a pecker or und word? O No [] Yes Perforated? D Ne How perforuted?

| Factory | Knife D Terch Size of perforation _ _ inches by _ , perforations BYW □ No Well screen installed? Manufacturer's name TD/FN TCN

Type ST4 N 4 SS Model No.

7 Diameter LE Seet size 25 Seet from 577 feet to 437 feet Department .. of visitor Reported Mestern Regional Comm Diameter __ Slot slee __ Set from __ __ feet to ___ Gravel packed? BYos O No Size of grand MC/A (b) M 1777.
Placed from 537 feet to 454 feet forten and days. Z.C. Marriel and in said Of Comes greet D Problem day D Wall delays and procedure and D Story pl & Storymany control control [] Creaters to said Aut Work served 15/4/77 Made 2/16/78 A LOCATION OF WOLL IL BRILLIANS CONTITIONION CANHON rde. Astre _AC R.

PONISHED THE WHITE GOT TO THE GOTALTS

a design of the second

HOLLADAY ENGINEERING COMPANY COLLAR ELU. ~ 2830' HOLE NUMBER PB-2-CC JOB NUMBER T1120491 LOCATION: CO. Canyon SEC 21 1/4 SE OF 1/4 NW TZN R 3 W PAGE / OF Z OWNER Canyon Co: LOGGED BY STROWD DATE START 4-15-92 DATE FINISHED -- - 92 HOLE DEPTH 557 ANGLE 90 DRILL METHOD CORE ZEWN DIAMETER 2.4" DRILL MODEL LONGER 44 DATE GRAIN SIZE INDURATION & GEOPHYSICS INTERVAL (FT) COLOR HYDRAULIC LITHOLOGY GRAIN ROUNDING TIME REL PERCENT STRUCTURE LOG WATER COMMENTS PROPERTIES FXS. VOIDS.ETC. ROCK TYPE GRAPHIC CLY SLT SANDGRAV ANG WK MOD WELL NOTES EST. MEAS. GRAPHIC 4-15-94 2:00 no com recovery/loose sand Z silty sand unconsolid. sample vallacted in contain-It gy br at colla-, erob. rd fill OA no core re Rd fill that liner colleged 250 D ,. 11 *** dame • 10 gy whtistly send on cly 102 min p went to call office about cullings 10 15 pt 15' وأنحز مصاح to doubling heles in leve circular word dame - 67. 12.5 -15 Finite first mere Rec. 10.3 Class WT miors Med consolid 45% sek bedden. 10.7 we consolid massiu 10-7 4-16-92 7:00 10.3 uncondolid coarse imature sand the hole Luga 7:30 med soldstone 10-3 miner uk co dry bimoda l'grain sea distrib. coury 13 9:15 It ay to fine filty sand 10-5 ج جرسانيه cuitores 9:45 no rec. somple call. @ caller silter Cin sd + chy 10.5 ادموے بات - من Jacked -illies colled Ray SLC 10-6 wk Cansol. 13 sampling bais favors coarse 10.5 or collector catalines cuttings siltury cly 10-6 clayer filt 10-6 MASSIVE ** 10-6 10.6 10.6 30 11 10-5 10 10-5 diy 10-5 E05@434 1:45 35 9 4-17-9 8:00 10-6 1:50-3:00 REARING STUFF to Et CHE pline ten ar clansey silt inject clear thund + water : hale better 33.5 WK consolid Using 10-4 uk·mod const. (DAVE E) CHE BOSES TON SOCKET 10-4 FOR LEXAN TURES 10-4 drolling 10-4 FEET 8:30 10-5 Olive ave 19-5 100% drilling Claney Silt 10 -5 squeet HOD fast 10-+ pelymer 10-5 48.6 Warren 9:05 10-5 . .. 11-61 •• 152 ا-ميا ** 10.5 1.0 ---15-5 11 10.00 10-4 19-5

HOLE NUMBER 78-2 JOB NUMBER TILTO491 HOLLADAY ENGINEERING COMPANY PAGE Z OF Z OWNER Canyon Co. LOCATION: CO. Canyon SEC 21 1/4 5E OF 1/4 NW TZN R3 W PROJECT Pietles Butte LOGGED BY Strond DATE START 4-15-92 DATE FINISHED 4-20-92 HOLE DEPTH ANGLE GO DRILL METHOD CORE DIAMETER Z.4" DRILL MODEL Company 44 DATE COLOR INDURATION & GRAIN SIZE GEOPHYSICS INTERVAL (FT) LITHOLOGY GRAIN ROUNDING HYDRAULIC REL PERCENT STRUCTURE WATER COMMENTS PROPERTIES FXS. VOIDS.ETC. DRILL CLY SLT SANDGRAV ANG WK MOD WELL ROCK TYPE GRAPHIC NOTES EST. MEAS. GRAPHIC fut gry-gen siltudy sd : -:--10-4 902 With comple massive inject Ho 0 = polymen dillin Filtztone ainch --10-4 (Flicitaill clear round) 10:50 53 10-5 a. consol. ماتند مده W =2 . 10 -3 45% 10 -** 10-5 ١٠ 11:10 10-5 58 40 Siltstone. 10-4 10-4 25% grygen 10-+ Inject 4.12 IN PA 10-4 دی' lost use 11:30 10-4 Sand in hale better laring circa fine sand 10-3 wk consol. cross beds come silt 10-4 my-ten silty sand X hadden 10-4 silt up clay wk hdd 10-4 Hatermy 12.15 sundy clay 4-14 E3 2.30 Bios 10-5 Qui+ to lay EOS. 02:00 high winds + dast 5 h Fine sand + silt mod. comfol . 10.4 we had invest H.D 10-4 132 10.4 MASSIVE 10-4 8.75 73 10-4 10-4 NK consel ill will mine ely MATSIL 10-5 100% 10-5 Hiller 10.5 9:05 Clayen fult 78 10-6 mud. consd. ailty olay 10-7 coorge! clay orgreparting silt 10-7 552 10-7 .. inich H.O 10-7 POSS- BEOD 83' 9:30 his sent - cit + pulymer CHOSS. 1-19 800 m " 10-6 ar bluby p carrie water run 10-3 loose fine drillinder free " (fine Hole squeezed: re-reenies 15 get 07. 7/11: 10-3 Land)" sand) stack in hide after 3 ft in 10-3 --hale better Issing wire 11:00 hecks off help be Hom 10.2 * Gills ut sand /air into form NO GAMPLE 10.3 sample from sand blensing up case NO CORB SAMP 10-3 10-3 44 0% gry. ta 10.3 10-3 10-3 Silty fire cond Try Air tan-alia 10-4 wk consal Quik + Dir Quik F Zinches of core receivery 10-4 Clear Mul. last rost down hole 10-4 HO is jest trie out 4:30 10-41 3:10 ABORTHON TIPE 7:30 4 10 92 10-4 Lose Cim. Tele out - get shung-56' ABORT HOLE

Н							H										2.	. 46			-	PAGE 3 OF 12
ر	OGGE	D BY_C	Strowd	DATE	START 4 - 20 -	12 DATE	FINISHED 5-1	<u>ح</u>	OLE DI	LO ЕРТН_	557	N: CO.	<u> </u>	o. D	RILL N	SEC_	O ROTALY/C	4 <u>7C</u> 0	F 1/4_AL	٦_٢	— DRI	N R JW
INT	ERV	L (FT)	DATE	COLOR	штноц	OGY	GEOPHYSICS LOG	R	GRAIN EL PE	SIZE RCEN	r	GR.A	AIN R	ומאטכ	NG		DRAULIC OPERTIES	INDURA STRUC FXS, VOIL		WA	TER	COMMENTS
REC		ORILL			ROCK TYPE	GRAPHIC		CLY	SLT	SAND	GRAV	ANG	WK	MOD	WELL	EST.	MEAS.	}	GRAPHIC			
	-	<u> </u>	4-22		no temp	1		ļ											-		_	MUI) ROTHAY WI BENTOWITE
l	03'		9:20		silt	; <u></u> ;	<u> </u>												1			cuttings indicate sitt but buti
					NO 1007	1													1) 	does not allow fuller
l			 		-	1											ļ		1	-/		classification
						}	ŀ												1	\preceq		
						<u> </u>													Ĺ _			
	(1								-					1		 	
ర్మ్,	13 14	Punch	/0:00 2:30	gry-tan	silf	1 = = -									- 	10-4			1	(à in)	4.0	BEAMING TO SET CARINE - ON BOTTO
ſ	• `	BORG.		7 16	Fire sand 147				UQI	Wa						-4			1	clear	Q	cosing set to 113 The Auren
252		clear mad														~4		bald	1			BORE GRE
		camora.			sild us line				W V							-4			d			LOKe badding / Signific &
-	175	spring con list			Are		-			HIME			4	Щ		- 4		minor bild				core bodding / significant grain size sharps
07	173	hole	3:44		- SAM!	}									\neg				1 .		\vdash	
30%		meet			line sand					40						-4 -4			massiu	100 m		por recommy from
30 4		7,000	4:15	It soy to	clayed 54 clayer silts 5d											-5			1 5 1	wien	<i>H</i> 10 ?	to much water 1 Upper sample very wet - lower sample almost dry (damp)
50%	127			19	class, miner silt					<u> </u>				<i>,,,</i>		-5				less H		sample almost day (damp)
	139		4:45	10	fine worderst	35 34 247						- 4				- 4		massive	\ \		de ice	
867	βı	4-23-42	R:30	-	Selt muse uy		1		No.							-5		maye jus	-	inj U	0+	Last down hale Sing /129-15
	. 133		9:10		· sit					8						-5 -4				clea	- mud	Refriciand 6:00 pm ;
					No sample]						-			-					$\overline{}$		
202		retimina			. 0					_										\rightarrow		
	138	SBLING PRE	4 10:00	H wy.					TUM							-5				_		retaining spring in backmarks . 1970gs ask loss to use loss (4,0 inject
	135		10:05	lt for set	silted nine dy chart pera cly claren silt								<u></u> l			-7 -5		plastic cly				
- I					no somple		. 7								\dashv				7			0
10%					7				Ţ													Ross seys sample is packing +
	145		11:20				ŀ													-		
50%. 37%	146		12:00		silly time sand						\dashv					- 4 - 4		massim		(miner clan
*	148	trip out	12:45		1.	15,50										- u					- 1	try lou ante trin - fare recovery
													l l			- 4			}			triplant try come anishing up

	LUGGE) BY	K/ODIC	DATE	START T-40-9	Z DAIE	PINISHED	HOL	E DE	1H-39-1	_ ANGL	E	0	\ILL	ME INCU	1000	D1.	AMETER_	2.4 (ORII	L MODEL longyee - 44
ıN	ITERVA	L (FT)	DATE TIME	COLOR	цтнос	0GY	GEOPHYSICS LOG	GF REI	RAIN S	SIZE RCENT	GRA	NN R	OUNDI	NG	HYD PRO	RAULIC PERTIES	INDURA STRUC FXS, VOID	TURE	WA	TER	COMMENTS
Per		DRILL			ROCK TYPE	GRAPHIC		CLY	SLT S	AND GRAV	ANG	wĸ	MOD	WELL	EST.	MEAS.		GRAPHIC			
oz		4-23		911-90-1-0	Sie ille soud	222						E			10-6			1	وردن	at Hzo	
	153	Trip out	2:15		clay clayer filt		1						(I)		10-41		mod consul.	1		{	50% me trop out for local holy bil
1	2100			il I	p'/		1.				\vdash			I	10 ⁻⁴	·]		<u> </u>	
łζ) .				selly plan		1.	V				E			-4			ł		\ \ 	
				greente	with class										-5		uk lamadad			\$	silly clays and consolidate
i	-156		3:45	it gry tan	cheer him wad	5-7-2-5	1.				 	•	Ш		~ 5		bld is elys			{	could wik to unconsolidate
				u	11,1										- 4			L _		/	
577						·		4	- 4	-			H^{r}	1-1	-4						
	- 163	505	4:30	10	*				Ī						-4			İ			
	.	4-28-97	7:00 am		no same.	1		-	-				·					Į	nyist	H ₂ O	trip back in hale , lood of H . O
01.		NO Feb.				1												ĺ	-		
	-167	MO PROCE	8:15							100											
led?		heatenet		14 444 400	silly fire mad			11				<u> </u>]	-4		Sparedic Commit		-/		APPENDING THE STEET
		-		u	clares silt	<u></u>	1 _	, W	Ų.						-5		wk -vacons				nd lumpy Consolidated 7 ans how the we to un composition
	L172	5	9:00	•	silly fin same		1 1			AH I	<u> </u>	!		-	- 4		41		$\frac{1}{4}$		
	۲۰۰۶	/	7.00		3	* * * * *			, a						- 5		"			} — {	you visible clay binding som
132	:(<u> </u>		14	180±		1			ļļ				- u - u	<u> </u>					
					-			- 7			-	-			- 4				{		
	١٦٦ع		9:45	11	oilty fine soud	·		- 1	Y.						- #						
]						j	- W	M - 75					-	-4				- \		
567				·	4			N.							-4						
				-:-			1		M A		<u> </u>				-4						
					•	· - · · - ·							7		- 4					-+	
1	7184		10:30	It cory ten	Soudy Gilt										- 9		most str co-nl				
m				-	sity clan			TALK			- 1				-4		wk coul.	i	/	-	
Į				-		<u>:</u> نام ا	1 ·	7/4					M I		-4			l			ladding standares
ſ	188		11:12	14 14	sandusilt us cly	٠	`								- 4		mod const.	. [1	<u> </u>
1				774	**************************************										-5		- (•			more clay less soud
13				"	43		1	u u							-5		M	7			
L	193		11:45	-	sitty care t		1		1 1		- 1	\vdash		-	- G		ak consel	ŀ	: · F	// 	consoledation limited to
Γ				Hary ten	Stayen silt										-5		/	į	ayen /	7 20	zones unless to a foot the
₽				-	Silte From Your			N A	- 4			\vdash	W - I		-4		- } -]	ſ		\Box	
1	ارا				1	V	[1 1	L VO						-4			ł	/		
ł	194		15:30	 	are earl]		PA	40					-3		\rightarrow	Ţ			
-1	1				Sandy 1.14		I 8		WW	Ll		i	HAI M	1	-41	ŀ	S 1			1 J	

•••

HOLE NUMBER PB-2 JOB NUMBERT 11 20491 HOLLADAY ENGINEERING COMPANY PAGE 5 OF 12 OWNER Change Co. LOCATION: CO. Cange SEC ZI 1,45E OF 1,4 AIW T Z N R 3 W PROJECT Pickles Butte LOGGED BY STOWN DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 557 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 1/1 00 DRILL MODEL LANGUAGE 44 INDURATION & GRAIN SIZE DATE GEOPHYSICS HYDRAULIC INTERVAL (FT) COLOR GRAIN ROUNDING WATER LITHOLOGY STRUCTURE COMMENTS REL PERCENT TIME PROPERTIES LOG FXS. VOIDS.ETC. ORILL ROCK TYPE GRAPHIC CLY SLT SANDGRAV ANG WK MOD WELL EST. GRAPHIC MEAS. NOTES imjest the same clay fraction and to be for who are his other mud+Had H try ten 222 belden on . - 4 mm's to 1204 1:00 garanel makes increasing clay company ine sacdu gilff ---4cole ~5 2 3 cearader mot orange consolidatasame hemitie stain It gov to fine bulling on 47 hilling core apart 1:30 -4 209 formule bad - 4 -4 we consol. degree of rounding revely 50 2 ALL - 4 scoms to chance law sec. · 4 214 214-1-15 مراح المن دمع ٠. 75 2:00 POPLIALY LOST SOMETIAS DOWNGOLD -4 12 --4 tell diller will blow hate -4 clear of water at FOS to test 220 2:45 -4 G- mothers Clayer siltstone King Gardy Zelt hold consul had places come to se mitter Cly schimben fabrer masked from levamad-consol -4 - 4 1 - 4 -4 3:45 H lan 94 229 - 4 Have silt us - 5 IUK- nega -51 consolid. -51 - 5 236 EOS 4:30 blook 10 from halo-methon chk mad-induration - halds together 4-29-42 8:00 It ton au mod · consul Hzo+m -5but can be easily broken by March claves it ws . -5 ~ 5 mm round blobs of ovenge siltstone of chy - 241 8:45 -5 K hematile stain + tengy -6 1-4 send more-strong Charles w POSSIBLE MONITORING HORY
HEMATIK REMANDE CLASS ST. CLASS
WITHIN THE CHICAGO MARRY
10.5 MJ 10.7 CLASS HOLE Concoledation 100 % Siltstone clan Celests milited -6 246 9:40 -6 the bod 4"+1" Will 15 - L 10-7 moded funds Clas 13 This Clas 4 Fine man dail without Locus lines - for LEYAR museuve class haller logging. 10-6 liner جزائع دهره دا

8		PROJECT	Hokli	₹\$\$\$#*	٢ر	JWNER_C	HO Benyon Co.			U	OCATIO	N: CO	C	مرسد	<u>~</u>	SEC_	21 1	/4 <u>5ē</u> 0f	F 174.A	wing 2	1
-	S LOOK		1	DATE	START 4-20-	92 DATE	FINISHED 5-75	<u></u> H	IOLE (нгчэс	557	ANGU	<u>= 9</u>	<u>ء</u> ر	RILL	METHO	٥ کصوت			2.4 4 as DRI	The Amount of the
	MIEN		DATE	COLOR	1	LOGY	GEOPHYSICS LOG		GRAIN REL PE	N SIZE PERCEN	NT	GR/	AIN R	ROUNDI	ING	НАТ	DRAULIC OPERTIES		TION &	WATER:	
	+	ORILL	1 1	ļ	ROCK TYPE	CRAPHIC		CLY			D GRAV	1		T25	Ī,	+	7	FXS, VOID	DS.ETC.		
	T.5.			It soy to	iltread	1:2:2			34.	114.1	S.	ANG	WC	MOU	WELL	10-4		Very wik coasal	GRAPHIC	C . I A JEAN HE O	
3	-525	Part ver	2:50	Ht are gella	Clay , 1. 4, 19-1		<u>.</u>	W.			F-'					10-7	·	areonolid.	7.	blow dry hole	port of barrel w/o liner
ે તુ	3 2 1 25	3 Buch	 '	# 927 1	3:14 fin som	4	.1 '		4	Wag.	#==			<i>W</i>		10-4		cly to consol.	1	NO CAD HOO Att 3/2 hrs.	STREET PRILL REAW @ 2:0
T	1 3		—		silty clay		1 '	4	## <u></u>	WACE.	+	1	/	////	#	10-7		most str. com	7	ALR COPE	DOWG AR CIEC PLUX BERNE
	1.4		4:45	: to.	المناته وامرافناتها	455E	. 1				747					10-71		11] ;	IMJECT 4,0 ~	This I sand had in class
	F 259	E03 4-30-92	4:46	''			.† "	地 面	上		1.5	\Box				10-7		mod the and	<u>.</u>	— /—	2" = 3" sale bale
.	 	DOLL	H:00		sitty cand	الإزادا	<u> </u>	- I		M					4	10-4		medicons.	'۔یہ ل		DESCRIPTION NEW HELPER 7:
	50%	WET	$\overline{}$	ا ا	Souther Sit		<u> 1</u>			W.						10-4		Wall Str.			coall delines hadding 63
1	7- 10	LINER		741-777 74		传统	1	<i></i> /	ANNA T	***	+		1			10-5			1=-		sub horiz. bdd.
	1	Slowing	—	"	12	1-1-3	1 1				口					10-5		l.	$\cdots \equiv '$		parting on bold plans
	1340	dom		ara gry fo	silly sandson		1 7			HARM				# "		10-5					
	>268		9:30		selly gent	لتنينين	1	 		MAN	\Box					10-4		w X Consol.			
· -	969		==		Claring Sillylow	<u> इंटिस्ट</u>	, J			1						10-5		mod. Consol.	, — I		
	85%			- 1	clayen silbstone	+	1 4				$\overline{\Box}$		\blacksquare			-5			; -		
	273		10:00		zilly claystone		, 7			\sqsubseteq	口			<i>A</i>		-5			, — ,		Lenetito sta me bed pl
	73%	dolling	ightharpoonup	-			. 1						+		\longrightarrow	-6		mod const.	, F		
	3.	industrial			-		i V	AN Y		rightarrow	\Box	<u> </u>	丁	\rightrightarrows	二	-6			, <i>,</i>		I
	279		11:15	; ,	clayur silkshare		, F			\Box	二		\Rightarrow	\exists		-6					
L	7 400				silky rlayston		N	WALL T		\longrightarrow	-		7 10		7	-4			r		
8	16 0%	1					· •			=	\Box	#	$\dot{=}$	긐	二	-61		rosotde	احر ٠		material 12 "tight" and
	200						, y	繼出	H			-+	+	-+	-	-6		Md 2 4 10	آبید	L	consolidated since ohis
	284	1-1-92	12:40		na samale	,=:-:=	, ;) /			\Box	二	-	#	二	二	-6					Deede to case to this and try air care aga
	1 1	Tricone to set		==	у замерте	.	r	二	二			\perp	<u></u>	<u></u>	<u></u>	-			Į.	l t	•
		CALINA	\Rightarrow					-+	-+					m	<i></i>	-7.			ļ		Tricore Ream Trole 11: 288 - cot casing to a
	- Z88	5-2-95	\longrightarrow	- 194	elegen sileston	المحاجات		AT Y	4	二	=					-6	r	hariz. hdd.	MAKIU	damp from	7
		AIR COL		9.4-	1 /	7 Ed	#	A	M		-+	144	- 44			-1,1			. ~(.[i	prevent 5	Establish circ. blow water
28						-=-	₩.	AY		二	二			<u>A</u> TY	口	- L		$\overline{}$	ا (ب	injected 1	dry hole 7:00 - 9:00
	F 294	blow do	10:15	- 6	Chuyay 61 Historie			AL Y		+	-	- 181		A W	\longrightarrow	-6		$\overline{\Box}$). F		parting places on bad
50	1 1	chan		• 5	sitty clays on			MAN		耳	—			<u> </u>	#	-71		acitty.	() t	AID PLOUD	parting places my bad gunar infratile spots" COOP SAMPLE FOR HTDRAULL
non	247	OO Kadina L	4:30			====	b ^w	Male		士	士		+	+	+	-7			massing D	DRY MOST	FOR HYDRAULC
	298	466	8:30	-;		二十三日	₽Vr	Ai Mal			\Box							diema) F	15 15 15 15 15 15 15 15 15 15 15 15 15 1	4:00 ON WET WITH

- ,

HOLE NUMBER PB-2 JOB NUMBER T1120491 PAGE 7 OF 12 HOLLADAY ENGINEERING COMPANY PROJECT Pickles Butte LOCATION: CO Canyon SEC 21 1,4 SE OF 1,4 NW F. 2 N R 3 W -DIAMETER 2.4 /4 " DRILL MODEL LONGYERA 44 LOGGED BY STOWED DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 557 ANGLE - 90 DRILL METHOD CORE INDURATION & GRAIN SIZE DATE **GEOPHYSICS** HYDRAULIC GRAIN ROUNDING INTERVAL (FT) COLOR LITHOLOGY STRUCTURE WATER COMMENTS REL PERCENT TIME LOG PROPERTIES FXS. VOIDS. ETC. SLT SANDGRAV ROCK TYPE GRAPHIC CLY ANG WK MOD WELL GRAPHIC EST. MEAS. NOTES hold subborg gry-grand course clayst minet Had Clay over feeting but <u>-</u>---100 % a pleasing or notty type a "Coarse" soundery dawing clay wy mines will broken ned Str. claying minor 1304 12:05 •7 consolidati Try block ilterment Achor est affect than arev. MASSIVE اله معلوما 24 % much con -6 tube-SAICED INTO TO CHEEK SITUATION he any -6 weekt - 6 be stoned. CRUSHED WER BUCKING OFF Occasional bands, ble to, and errote sames of hendill stain are precent in all of the clares. Think facily plant debrit sacs the gastade of manual hours. ary arm towardte claustons 84 % MESSING clear week or -1. 316 AIR 2:00 Quick silty clauston 6 dd Decemp 190 % -6 2.40 1321 mad strong massive إسطعيها Jame powdery damp clay min 116 7. - 326 2:10 Sittle Clarge tonace 85 2 - 6 -6 . 332 4:00 -1 blow hale dry 70 PRIL DEM 5-4/8:10 -10 NO WATER DOUL DRY WTO ON (2880 ML) INT SAMPLE SAMPLE DAMP BUT NOT SATURATED rotter classistem ay an to-INJECT HOO | SLINE MATTERIAL MASSIVE CIYS. Sheindur BUT BECOMING HARDED 742 -6 3:45 WALL HORE ayth clayed -6 -6 923 -61 9:30 strong indication occassional humatile orange 84 2 -6 5-tains -6

ļ

HOLE NUMBER PB-2 JOB NUMBER TILZO 491 HOLLADAY ENGINEERING COMPANY PAGE 8 OF 12 PROJECT Pikles Butte OWNER Compan Co. LOCATION: CO. Compan SEC 21 1,456 OF 1,4 NW T 2 N R 3 W

LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE FINISHED 5-15 HOLE DEPTH 5-57 ANGLE - 90 DRILL METHOD CORE DIAMETER 2.4 4 DRILL MODEL LOGGED BY STROWD DATE START 4-20-92 DATE S INDURATION & GRAIN SIZE HYDRAULIC DATE **GEOPHYSICS** GRAIN ROUNDING COLOR STRUCTURE INTERVAL (FT) LITHOLOGY WATER COMMENTS REL PERCENT TIME PROPERTIES LOG FXS. VOIDS, ETC. SLT SANDGRAV ANG WK ROCK TYPE GRAPHIC CLY MOD WELL EST. GRAPHIC MEAS. NOTES dilly glagating 10-6 INCH HO ABIT COARSES THEN PROVING grants = 351 INTECT 10:30 A,O WI CHOR mod strind hematile state bleke by CHANCELLAKET parties on moist dama 27 gg-gm 272 4 claystone in mineral in reduced ğey-9en form as metallic group bless must induse CARMLINGEOU REDOX second 353 /2 しょまて 12:10 gry-br AMIT THE TRANSMITTENAL OXIDATEON OCCASE. NO MATERIAL CHANGE OTHER 837 Lodd - Hoa .. -1-INJECTING HID THAN ONID. NO MOMERLY PARTIAL REDUCTION HERE SHADES IN REDUCE D HERE blue-gry -6 12:45 AUGM BURSTE MATTUR ON DRYING CLAYSTONE BECOMES silti Clauston -6 4013 RULE POWDERY BUT MOD. HALD Dritting SLOWER 4 -(-CONTENTS BECOMES LIGHT GRAY ON DETING 717 HOUZ BOD HARDER 10-127. CARBON PLANT TRASH ~ ~ COMMON SINCE REDUCED -6 GOT STUCK 10 MINUTES BREAKING 370 STUCK 1:45 .. INJECTING HE GOD TOINT ABOVE HOLE COTTOM. setty clayet Fine bala MED.GRY ADDEARS SUCHTLY MORE SILTY HOLE TAMP CLY / 232 Austraio C 10-127 MUSCOUTE MOLE ABONDANT OFF® MAD STA MASSILL CONTACIDATE HOMOGENEOUS SICTY CLAY 376 SPT LANGE 2:20 16 HAS NOT UNLIED MUCH menicey sitt clayston PHYSILALLY SINCE + 270 872 LI647 627 DEY SAME MARD SUFFICIENTLY 382 2:50 me 17 647 MINIST CLY TO CRACK IN LINER FOU عمعاه طمعكم * ~ dilly clauston Ross soy MEN FLUID BILLES 10-127-- 6 hell Hope tire being 632 carried -6 MAD TIP רי וייינים OUTOLO. 1910 in ٦-OPRES TAD CHONATED CARRA BAD 7 molerical dent fresh MED. GRY Silly Claystone INTER (4,0 THIS RUN TOESN'T HAUF MUDH INSTETED HID IN 100 -6 HOER BOO SAMPLE LINER-GOOD TEST SIM -6 EUS 4:10 5-5-92 7:30 BLOW DE HOLE 395 -101 claystone -7 MESON Loss silty 397 DULDLY 8:18 10-1270 42 NO HO INJ: sticka @12/master 10-1400} strong consoll " " Glmost pure modeling clay"

PAGE 9 05 12 HOLLADAY ENGINEERING COMPANY HOLE NUMBER PB-2 JOB NUMBER TILZ0491 OWNER Causon Co. LOCATION: CO. Causon SEC 21 1,450 OF 1,4 NW T 2 N R 3 W PROJECT Pekles Butte LOGGED BY Strong DATE START 4. 20-92 DATE FINISHED 5-15 HOLE DEPTH 557 ANGLE 90 DRILL METHOD CORE DIAMETER 2.4" DRILL MODEL LONGUER 44 INDURATION & GRAIN SIZE HYDRAULIC GEOPHYSICS GRAIN ROUNDING STRUCTURE WATER COMMENTS INTERVAL (FT) COLOR LITHOLOGY REL PERCENT PROPERTIES TIME LOG FXS, VOIDS, ETC. GRAPHIC DRILL SLT SANDIGRAV ANG MK MOD WELL EST. MEAS. ROCK TYPE GRAPHIC NOTES 10-7 inject 4,0 Sticky ely wy minor silf 5-000 med. GAY claystone IPSECTIV Massiv est. 10-1876 -7 consolidati 450+ formation MOIST + Sticke -7 403 AIR DVIK 9:00 4 MEDIUM GOLY DECOMES -7 massive w VERY LICHT LEMENT GRAY - 7 bit of ON DRYING OUT 1007 bdd strue. -7 ~2% 114 98% dy 10-14% -7 408 1 9:30 when HO NOT ASEARAN ACEOUS CLAYSTONE STR. COMMA MED GET -7 -7 802 -7 ~ 7 10:00 WATER 1:00 · Layston MED GAY STR COUNTS -7 232 - 7 DAMP CLY - 7 1:30 DEFECTURE ON COAS - 7 instance. MED GRY CLAYSTONE TUBE HAS TO TRIP 3:20- 4:0. -7 W. 410 REPUNCED UNIT - SHOE AT 582 * BIT WASN'T IN ALL THE LIMY -7 -7 -7 424 Tripad 3:30 -7 STROWE CLAYSTONE HED CRY -7 COMOLIDATE 712 ~7 -7 -7 -7 उक्त मन्द्राह 3/2 HRS DOWN 6/2 Daile -7 433 EDS 5:30 LATECT U.D BROUGHT IN LANGER COMMERCON 5-6-92 7:00 STROVE MEO GRY LLAUSTONE ~ 7 270 per DRILL STEM WAS CONSOLID. 10-14% MORENAL BEGINALING OF SHIFT 71% MAINTURE WITH HAD ACLOSS GEDOING -7 -7 8:45 HORIZ BODI INT. KAD MED GRY CLAYSTONE -7 STA CONS. -7 -7 $\overline{}$ 70% -71 -7 - 7 447 6 9:16 76 - 7

PAGE 10 OF 12 HOLLADAY ENGINEERING COMPANY HOLE NUMBER PB-2 JOB NUMBER T1120491 PROJECT Pickles Butte OWNER Canyon Co. PROJECT Pickly Butte OWNER Canyon Co. LOCATION: CO Canyon SEC 21 1/4 3E OF 1/4 AND T 2 N R 3 W

LOGGED BY Strong Date START 4-20-93 DATE FINISHED 5-15-93 HOLE DEPTH 557 ANGLE - 90° DRILL METHOD CORE DIAMETER 2.4" DRILL MODEL CONGRESS 444 INDURATION & GRAIN SIZE HYDRAULIC DATE GEOPHYSICS STRUCTURE GRAIN ROUNDING WATER INTERVAL (FT) COLOR COMMENTS LITHOLOGY REL PERCENT PROPERTIES LOG FXS. VOIDS.ETC. DRILL CLY SLT SANDIGRAV ANG WK MOD WELL EST. GRAPHIC ROCK TYPE GRAPHIC MEAS. NOTES 10-7 10 FCT MED. GRY CLAYSTONE MAD STE: MATERIAL BASKALY DULLINE MASKUE Hea PPE SOME GEDMANAND WET CONSOLIP . -7 OR EVEN 362 Lus41 19:45 NATUE WED GAY CLAY STONE MOUNTLE ~10-127 /20 -7 10:00 INSECT H, O -7 MED GRY ADD STRANG CLAYATONE -7 CONSOLIO UFAY -7 MIFORM 712 -7 GRAY -7 COLOR -7 -7 *4*67∏ ١, CLAYSTONE • 7 ī -7 הדווווי 837 -7 INTECTH, O -7 17:15 ı٠ -7 -7 ED CEY CLAY STONE MOD STR -7 - (1 CONSULD 832 12:45 -7 -7 CARONALEOUS WOOD FLAGS MEDGRAH CLAYSTONE -LINER CRUSHEP BY COMPRESSION -71 -7 NARVE MOIS 93% -7 ~12-142 ~7 GOT SACK IN HOLE 15 MIN -7 2:00 MED. GRY CLAY STOUP ~7 MOD STRONG USING HIO CONSOLIU. -7 + CLEAR-MU 832 -7 (ALYMER) CASWG -7 CASING WORKING LOOKE SEDL 491 EAUNK 7:45 -7 MED FRY CLAY STONE -7 -71 METERS 4915-7-97 10:15 MED GAY CLAYSTONE WATER IN U. OF Blow light - relam air HOL'S BOTTOM CAMER From Promotion Casing ... MORNITUL STO. WILL DRILL DOY THIS ONE FOOT SAMPLE 5-15-42 10:00 NO SAME-PACKER PROKED MET TIME NO SAMOLE SET NORE CANN OF FROM 240 401

HOLLADAY ENGINEERING COMPANY HOLE NUMBER 182 JOB NUMBER TILZO491 Date START 1/2/22 DATE FINISHED 5-15 HOLE DEPTH 55.7 ANGLE-90° DRILL METHOD CORE DIAMETER 2.4 /4" DRILL MODEL LONGYERS 44 PROJECT Pieldes Botte LOGGED BY STROWD INDURATION & HYDRAULIC COMMENTS GRAIN SIZE STRUCTURE WATER GRAIN ROUNDING **GEOPHYSICS** DATE PROPERTIES LITHOLOGY REL PERCENT INTERVAL (FT) COLOR FXS. VOIDS, ETC. LOG GRAPHIC MOD WELL EST. MEAS. CLY SLT SANDGRAV WK ANG DRILL ROCK TYPE GRAPHIC NOTES CORE TUBE NO SAMORE PACKED BLOCKED OFF MADRUE INTRET HOD SOME AWAGER PACKE & 505 10-7 MOD THE MED GY CLAYSTONE CLEAR MCD. DEBRIS MIXED WT SAMKE CONSOLIA 507 DAMING. ___ HATTUR MOTSTAR INSIDE COAR WETTING 64 64 -7 100 % 15-20% med STR -7 I WED GRAY OYOR -7 COUR nussive IS VERY LIGHT TAN-SRY MED GY. //:30 512 -7 UPAN DRYING THIS COLO CLAYSTONE -7 CHARACTERISTIC APPLIES 40 -7 TO ALL CRY CLAYSTONE 1002 10 -7 MANUFERED THUS EAK. u Girlamise hdd -7 12:00 -577 -7 MED GRY CLAYSTONE. Lost -7 LOBER PROME DAGRES IN SAMP RECOVER -7 707 PARALE المراط. -7 * -7 Acres 4 К -7 MENT PLA 20-267. LSZY 1:00 1:00 CUT MOLES IN SINE & P RELEASED INJ. 4,0 C MED GAY CLAYSTONE NATIVE RETAPPED. 4,0 -7 832 -7 -/1 -7 -7 GOOD SAMPLE FOR 1:15 61 20-25 530 יייניי רוויויי חיירייי INDISTURBED SAMPLE CLAYSTONE MED GAY MATUR DRILLE MOISEME NO PACKED IN INTECT. W/o -7 HO / DAILLED WTO LINER -7 LEXAN LINEA) - 7 -7 536 2:00 -7 CLAYSTONE MED LEY myth Huer 1002 CLASSIME MERHAD BEDWINE 2: 50 •• -.7 SLICHTLY COARSER GRANED MED GAY CLAYSTONE -7 -7 100% -7 3:00 545 CLA4 STONE MED 6Y -7 837 -7

ک معنا

HOLE NUMBER 782 JOB NUMBER TUZO 491 HOLLADAY ENGINEERING COMPANY PROJECT Pickles Butte PAGE 12 OF 12 OWNER Conum Co. LOCATION: CO Canyon SEC 21 1/4 SE OF 1/4 NW T, Z'N R 3 W LOGGED BY Strond DATE START 120-7-DATE FINISHED 5-15-92 HOLE DEPTH 557 ANGLE -90 DRILL METHOD COLE DIAMETER 2.474" DRILL MODEL CONGRESS 44 DATE LITHOLOGY INTERVAL (FT) COLOR GEOPHYSICS GRAIN SIZE TIME INDURATION & HYDRAULIC GRAIN ROUNDING LOG REL PERCENT STRUCTURE WATER PROPERTIES COMMENTS DRILL FXS, VOIDS, ETC. ROCK TYPE GRAPHIC CLY SLT SAND GRAV ANG CED CET CLAYSTONE WK MOD WELL EST. MEAS. 3:30 GRAPHIC 10.7 7777 MIO 5772 INTEST HO DRAINED INJECTED 833 -7 CONSOL. - CLEAR MUD WATER FROM LINEA -7 ** -7 -7 EOH 5/14/92 •• -7 NAME Ho 16-15 Amount Blow Hole Day to
48 halor in manage 800 con't street
hele 27:000 formation water 16

HOLE NUMBER 78-4 HOLLADAY ENGINEERING COMPANY ELEV. V 2930 JOS NUMBER TZ!ZOUS! PROJECT Pickles Buble OWNER Compar Co. LOCATION: CO. Compan SEC ZI 1,14 SW OF 1,14 SE - Z N R 3 W LOGGED BY START 9.29-12 DATE START 9.29-12 DATE START 9.29-12 DATE START 12.41 DATE START 1 INDURATION & STRUCTURE GRAIN SIZE DATE GEOPHYSICS HYDRAULIC INTERVAL (FT) COLOR GRAIN ROUNDING LITHOLOGY REL PERCENT WATER COMMENTS TME PROPERTIES FKS. VOIDS. ETC. CLY SLT SANDIGRAV ANG WE IMOD WELL EST. I MEAS. ROCK TYPE GRAPHIC GRAPHIC NOTES Revose 9-29-92 CIAC. AIR ROMAT 515/4" 4:20 Hay-ton Road GIL us ~3% GRAVEL FRACTION WELL ADVUDGED will fine sand + Can CONSOLIGHTON MAY BE FORMATION GAME Ream IN PLET OR GAMEL SAUM 10 126 PAR CONSTRUCTION and 10 Rotury 4:27 1/the ten fine soul/onv = した ~10%. CHAVEL CLASTS 11 TO + 2 AND BEAMAR LARGER 15 1 4:26 Hharta fine sand الديد- محم shift dame ~1200 Minor coul! 10.2/12 14.30 Ithe - In this said WK-mad ~ 127 slightly done MILLET GAV. 1 25 4:37 Hpa-lon line send 1000. Crier gone Gilt 4:36 Jan claners gelt WK-Moril ~ 10% Cry Lug Ling - read : 4:40 | ten 10- 5 ---2157 Shephol dama man 9-30-91 sand clan 7:30 tam maney au card ===== 110 -> ~ 127. I yeard. 7:45 tan mod Wary pools corted materia khad we many Grayal I Chan sit -1-ex 0 -0-0-1/0-5 mm 15:00

HOLE NUMBER PB-4 JOB NUMBER 72120491 HOLLADAY ENGINEERING COMPANY PAGE_2 OF 13 PROJECT PICKLES Butte OWNER Canyan Co. __ LOCATION: CO. Compare SEC 21 1/4 5W OF 1/4 5E - 2 N R 3 W LOGGED BY STROND DATE START 9-27-72 DATE FINISHED 10-21 HOLE DEPTH LYO ANGLE - 90" DRILL METHOD AIR ROTHAY R.C. DIAMETER _____ ORILL MODEL SCHOOL DATE GRAIN SIZE INDURATION & GEOPHYSICS INTERVAL (FT) HYDRAULIC COLOR GRAIN ROUNDING LITHCLOGY STRUCTURE REL PERCENT WATER COMMENTS LCG PROPERTIES FXS, VCIDS, ETC. ROCK TYPE GRAPHIC CLY SLT SANDIGRAVI ANG WK MOD WELL EST. MEAS. GRAPHIC NOTES R.C. 9-20-92 AIR BOTDEY 18:15 tan setto clar 10-61 mad. chay is partially balling up ₩ 9.30 tom silly clay on 60 10-51 mod. ~ 207. Somethat "damp" feeking niver sand 65 8:45 ay-tan fire sonly sift = -10-4 : WK- mud. almost dry + dusty" true grand 70 9:00 gy-ten fix cuty sit - 3: ~15% min - grand mar man 9:02 au - little fire sand 75 ~157. "flowing sand" almost do 40 7:05 tam fris sandy sitt = - = : 10-51 WE-mod ~ 1570 35 9:00 cluyer has const WK-mori 10.5! - 15% 9:10 av-tan the candy year! WITH U WK- Mod ~ 129. 7.120 Hbonton billy line sour 95 ~ /29. uk-mod 9:15 III ha La Bille for so ~ 15% Elmest days tealing

,

PAGE 3 OF 13 HOLLADAY ENGINEERING COMPANY HOLE NUMBER PB-4 __ JOB NUMBER T2120491 PROJECT Pickles Butte OWNER Comm Co. LOCATION: CO Company SEC ZI 1/4 5W OF 1/4 SE T Z N R 3 W -DRILL MODEL Scheen LOGGED BY START 9-19-92 DATE FINISHED 10-21 HOLE DEPTH 640 ANGLE - 90 DRILL METHOD DIAMETER ... INDURATION & GRAIN SIZE HYDRAULIC GEOPHYSICS DATE GRAIN ROUNDING STRUCTURE WATER COMMENTS COLOR INTERVAL (FT) LITHOLOGY REL PERCENT PROPERTIES LCG FXS. VOIDS.ETC. DRILL GRAPHIC CLY SLT SAND GRAV ANG WK MOD WELL EST. I MEAS. ROCK TYPE GRAPHIC NOTES 9-30-72 R.C. D.C AIR Romany Pa TRAN 9:18 Hba-ton sitts for sand 10-51 105 WK-MOO ~12-152 9:20 If ha-lam sells fro sand 10-3 wit ~ 10% DRY , almost us Che fraction 110 INK-MOD some clay again 9:25 It britan site time good ~/2970 115 4. 30 If grown silter for soul ! less clay υ)k ~12.70 120 9:32 Hay tom classes ilt up 10.51 WE MOD ~127. 125 130 state 9:35 It ov ton Chew silt un 1=0==0 UK MART ~12% almst dex US124 mine gravel AVX. COMPRESS MIHOR 135 Toequine 9:40 Hey tan sitte fine good :--Dev ~ 1020 9:45 It ay-low silts fire conditions ~ 120% 140 10-4 wŁ marine grovel: almost dump / cleaner some G: 50 Haylan Silt him sand -THE . ULL I 10-3/-4 1451 WK Killiam under 1907 - 1973 150 9:58

HOLLADAY ENGINEERING COMPANY HOLE NUMBER PO-4 JOB NUMBER T2120491 PAGE 4 OF 13 PROJECT Pickles Butte OWNER Comm Co. LOCATION: CO Comp SEC 21 1/45W OF 1/4 SE T 2 N R 3 W LOGGED BY STROWD DATE START 9-29-72-DATE FINISHED 10-11 HOLE DEPTH 640 ANGLE - 90 DRILL METHOD - DRILL MODEL Schraum _DIAMETER___ INDURATION & GRAIN SIZE HYDRAULIC DATE GEOPHYSICS GRAIN ROUNDING STRUCTURE WATER INTERVAL (FT) COLOR STREMMCD LITHOLOGY REL PERCENT TIME PROPERTIES FXS. VOIDS.ETC. CLY | SLT |SAND |GRAV | ANG | WK | MOD | WELL GRAPHIC ROCK TYPE GRAPHIC EST. | MEAS. NOTES AIR LOTALY A.C. 10:00 It be too sand, city up 155 Wk-med 12-1574 10:10 ton-beautiful fine some IN K - MUD ~12-157. 160 wi gravel 10:20 par-hen gitt his sand wk 165 v/27. Almost Day 170 10 me 10:30 H. bon ten silter fire same ~1270 still "Clowing" and WK 10:40 bra-tan sandy CARUEL ... -12-15% LIMONTE DIND ON MANY CLASTS WE-MOD CLASTS MAVE BEEN WELL BOWNE 10:45 ha-tan fin sondy 10:00 180 WK-MOD I 11290 fairly well sorted sand wy 10:50 tu-hen his sand 127. 10-3: WK possible few growel class. 10:55 the-ben fine sand ~1270 Clean sand 11:00 to hen fore sand NE ~10% DRY 195 11:03 to hon with fine same fiver land more silt

HOLE NUMBER 78-4 JOB NUMBER 72120491 HOLLADAY ENGINEERING COMPANY PAGE 5 OF 13 LOCATION: CO Compres SEC 21 1,45W OF 1,45E TERN R3 W PROJECT Pickles Butte OWNER Compon Co. LOGGED BY Stead DATE START 7-27-72-DATE FINISHED 10-21 HOLE DEPTH 640 ANGLE - 90 DRILL METHOD ______DIAMETER____ -DRILL MODEL Schraum INCURATION & GRAIN SIZE HYDRAULIC GEOPHYSICS GRAIN ROUNDING STRUCTURE WATER STYMMECS COLOR INTERVAL (FT) LITHOLOGY REL PERCENT PROPERTIES LOG FXS, VGIDS, ETC. CLY | SLT |SAND GRAV ANG | WK | MOD | WELL ORILL GRAPHIC ROCK TYPE GRAPHIC EST. I MEAS. NOTES R.C. 9-30-92 AIR ROTHRY AMOST DRY : "HINF" OF MORTULE 11:15 for how filt for sand in the WK·mvd 10-3 ~1270 LEXE SILT wk 210 11:25 Hau-Gra Gingtocourge W129 MUTTE SILT AS DEFORE 11:30 How bru silty sound wk 215 ~12º7° WK-FOD 220 11:40 How- bransito fire south MORE CLAY 10.31 isk · mon ~10-12% NO CLAY 225 slowing 11:55 1+600 fine-course Jane 47 save convict ALL OUIS
A STICKING - Silf binding 230 Torques 17:10 by -tan silty squal on silve + Loving on Roos ~127 νò 12:30 ben for set fine sound WK-MID - 1220 205 12:50 tea-hon sittle fine send ~ 12.9 2401 WK-MAD twee sant sitt 10-4/10-5 BETTING FINE R WK-MAD ~ 12.00 245 In Sparty St H

HOLE NUMBER PB-4 JOB NUMBER T2120491 HOLLADAY ENGINEERING COMPANY PAGE 6 0F 13 OWNER Congue Co. PROJECT Pickles Butte LOCATION: CO Compan SEC 2/ 1/45W OF 1/4 SE T 2 N R 3 W -DRILL MODEL Schramm LOGGED BY Strong DATE START 9-19-72 DATE FINISHED 10-21 HOLE DEPTH 640 ANGLE - 50 DRILL METHOD -DIAMETER_ INDURATION & GRAIN SIZE HYDRAULIC GEOPHYSICS DATE GRAIN ROUNDING STRUCTURE WATER COMMENTS COLOR INTERVAL (FT) !!THOLOGY REL PERCENT PROPERTIES TIME LOG FXS. VOIDS, ETC. CLY SLT SANDIGRAV ANG WK MOD WELL EST. i GRAPHIC MEAS. ROCK TYPE GRAPHIC NOTES R.C. 19-30-92 ALP ROPERY 51/4" WIZ-157. TRACE CLAY 1:45 hen-ton 5/15 fin and 10-4 MOD CONSOLIDATED ream to 12 44 2.00 km-to- for famely filt NOD ~1270 UNITUALLY DRY + DUSTY 210 + Casun frem 0 40 265 270 2:45 hen ham fine sandy silt == 0-WK-MOD ~/22 minor graval COSMG 10-6/10-7 H hon clayston ---MOD-STR INSTRUMOISTURE WAS 270 needs 2:10 POLYMER "DRY" SAMNE WETTED Pulmer BOTTOM POACE SAND, MINDLESILT INJECTA 272 SAND-SICT AUIN L 275 TORQUENT 2:15 VF brn CLAYSTONE ----10-7 NOD-STR WETTER SAMPLE BUT CLAY DUST BEFOR INJECTION لهم عن RODL 280 10-7 DUST (D DISCHARGE (DAY) MAYSTONE ---MOD-STR. 2:20 tan 420% MUCH OF SILT FRACTION BENG COLLECTED & SAMME DUCHARCE! AS DUST CLAY BLOWNE AWAY ~ 25%. WETTER BY INSECTION 2:25 tan CLAM STONE 410D -5TR 285 SLIGHT! 4 290 F 15-7: MOD-STA 6700 CLAYSTONG ---4207 7:35 CUMSTONG 1 10-7 1 100-5TR tan TRIPS OUT . CAN'T GO FURTIER R.C. AIR : WILL DEAM 1274" MUD RIMARY 0-300 PT. FUD OF SHIFTE 5:00 42000 300 TRIPS 2:40 tun CLAYSTONE MOD-JITE

PAGE 7 OF 13 HOLLADAY ENGINEERING COMPANY JOB NUMBER TILZ 4041 HOLE NUMBER 78-4 LOCATION: CO Common SEC 21 1/45W OF 1/45E T 2 N R 3 W OWNER Canyon Co PROJECT Pickles Butto LOGGED BY STRUMD DATE START 9-29-92 DATE FINISHED 10-21 HOLE DEPTH 640 ANGLE 900 DRILL METHOD AIR ROTARY DIAMETER 8" DRILL MODEL Schrenn INDURATION & **HYDRAULIC** GRAIN SIZE GEOPHYSICS STRUCTURE WATER COMMENTS GRAIN ROUNDING DATE COLOR LITHOLOGY INTERVAL (FT) REL PERCENT PROPERTIES FXS. VCIDS.ETC. TIME LOG GRAPHIC WK MOD WELL EST. MEAS. CLY | SLT |SAND|GRAV ANG | ROCK TYPE GRAPHIC REAMED 0-279' NOTES No HO 8" AIR 10-13-92 CHECK FOR WATER - JOHA INJECT Loracy POSIDLE RETURN WHER BLOW HOLE WAIT ZHES - NO H. wetted to unter in lack SMMME 36 10-6 WK-MOD LT.TAN SILTY CLAY NOT APPREZENTING - HOVE NEDWAZS ELDWINZ 305 7:40 CONSOLIO 10-6 ~ 35%, UT-TAN SILTY CLAY WE-MED LASSE AIR 4--6 CORE DENHITT POOR SAMPLE CORE 71 CLAT 310 304 - 311. LIFE RECOVERED 16 BUT -6 2:30 3.35% .. TTAN SHIY CLAY VIIOS AIR COLE ATTEMPT AGAM M >35% -61 ---LOSD RECOVERY (311 - 315 Core \$ \\ \335m •• AGAIN ** > 35% BAMPLE LELY DAMP - BELEASE -61 315 V FILM OF MOISTURE ON COMPET 10-14-97 ain Part AY >15% SLIGHTLY DRIEN FROM HOT WK MOD 10-5/1016 320 7:15 ITTAN SILTY CLAY 7 COMPRESSOR HIR ROTTALY 10-6 735% WK-MOD 7:25 IT TAN SILTY CLAY 325 10-5 w/< ~ 252 7:50 LT TAN CLAYERS S.CT 330 ~ 32% 10/14 10-5 WK 4:05 ITTAN CLAYET SILF 332 ~ 35% 8:15 LITAN CLAME GUT 10-5 340 ωK QUITE DAMP 10-5 WK > 3571 345 8:30 LT TAN CLAYPY SILT > 35 2 10-5/-1 WK 350

VT TOON CLAYER SILT ==

PAGE_ 80F 13 HOLLADAY ENGINEERING COMPANY HOLE NUMBER PB-4 JOB NUMBER T2120491 PROJECT Pickles Butte OWNER Compu Co: LOCATION: CO Cargon SEC 21 1,43W OF 1,4 JE T ZN R 3 in -ORILL MODEL Schman LOGGED BY STAND DATE START 9-29-72 DATE FINISHED 16-21 HOLE DEPTH 640 ANGLE - 90 ORILL METHOD ___OIAMETER____ INDURATION & HYDRAULIC GRAIN SIZE GEOPHYSICS GRAIN ROUNDING STRUCTURE COMMENTS WATER DATE COLOR LITHCLOGY INTERVAL (FT) REL PERCENT PROPERTIES FXS. VOIDS.ETC. CLY SLT SAND GRAV ANG WE MOD WELL EST. MEAS. GRAPHIC DRILL ROCK TYPE GRAPHIC NOTES No HO AIR 10-14-92 INGEGIA Pempay ~ 35% 10-6 ۵۵- علام 355 \$:50 GT TAN SUTYCLAY CONSOLITA ~ 35% 10-61 WK-MOD ¥ 9:00 IT TAN SUTY CLAY OULY CHE LOST CORE SARREL DOWN HO LE REGINERY ! 11:45 - 2:00 ~ 35 % W/c J/ 3:49 LTTAN CLAYEY SUT 1 AIR BOTHEY ~35% Mone cay WK-MOD 3:50 KITAN SILTY CLAT 370 ~ 352 MOI) 3:55 LTTAN SILTY CUTY 10-6 1 ~ 35%o MOD 4:00 LITAN SILTY CLAY ~3570 10-61 MOP CH:05 IT THAT SILTY CLAY 385 >35% 4:10 IT TAN CLAYSTONE ---10-7 MUD . W 35% 410 4:13 LITAN CLAUSTONE = 400 400 YEOS U: 20 G TAN CULINAME

HOLE NUMBER 76-4 JOB NUMBER 72120491 HOLLADAY ENGINEERING COMPANY PAGE 9 OF 13 OWNER Came Co. LOCATION: CO Conyan SEC 2/ 1/4 SW OF 1/4 SE T Z N R 3 W LOGGED BY START 9-29-92-DATE FINISHED 10-21 HOLE DEPTH 640 ANGE - 90 DRILL METHOD AIR ROTTALY DIAMETER 8" DRILL MODEL Sederan INDURATION & EST. DATE GRAIN SIZE GEOPHYSICS HYDRAULIC INTERVAL (FT) COLOR GRAIN ROUNDING **LITHOLOGY** STRUCTURE TIME REL PERCENT WATER COMMENTS LOG PROPERTIES FXS. VOIDS. ETC. DRILL CLY SLT SANDIGRAV ANG WK MOD WELL ROCK TYPE GRAPHIC EST. I MEAS. GRAPHIC NOTES 10-15-92 LT GRN- CLAY 10-7: AIR WK-MOD + 35% DOWN TO 388 (TO Q 400) MELTIC CORE 7:45 +352 -71 CANSALI CATION -71 IBIAN LINER COMMERCED SALT DONT -7 I F 352 TURE W COLE BARREL MAKING 405 V 10:40 CANFBAN -7 | EXTRACTION OR SPUT TUBE WAR OUR AUTO POPPER COAL SAMPLE QUITE DAMP TIME LAMINATED THIN BEDDING DA LLIN NO 11,0 INTEGRAP IN HOLE 404 - 405 pulled for lab fosts DRY 12:05 KON-MU CLAY MOD . CONSU FORMS CLAY GALLS @ DUKE DISCHARGE UBRY DAMP feelma ī 415 12:10 Granden Clan + 35% ا ۱۶ نامی صدی trace silt 420 12:25 GAN- DEN CLAY MOD CAUSE. + 35% ONIDIZEO REDUCED 425 12:40 CEN-GEY CLAY +3570 MAD CONSE. 430 12:55 BEN-GRY CLBY + 35% THACE SILT MOD. CONSU 7:05 -GRY CLAY MOD CONSL 4401 EOS 1:20 -GLY CLAY + 35% MOD CONSI DRILLEY I EWES WK-coustly Baskon 11.0 in 10-20-92 GRY-CON- couch sill Grandwish Abect offer utto 4-days - now.

VERY (GAT TO WITHIN 3 FT OF NOW.)

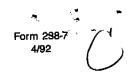
JAMPS SAN ROTTOM) HOLE MEMBER (CERY SAT 60% for PIR OTIDIZED Hen un clan ME · COPE ! 44 AHD UK -11 Wose Aprel . NOT'WET ! COPE JAME 400-405 445 JANAJE 9:30 •• -5 22 31-47 CORE BUT BURNES + FAILED HOVE TO MERE SMOTTER the stratures siltri 17:00 +35% WK PARTIALLY OFFORZED

HOLE NUMBER 70-4 JOB NUMBER 72120491 HOLLADAY ENGINEERING COMPANY PAGE 10 OF 13 PROJECT Pickles Butte OWNER Compan Co: LOCATION: CO Compan SEC ZI 1,45W OF 1,45E T Z N R 3 W LOGGED BY STOWN DATE START 9-29-92 DATE FINISHED 10-21 HOLE DEPTH 640 ANG. = 90 DRILL METHOD AIR ROTTREY DIAMETER 8" DRILL MODEL Schromm GEOPHYSICS GRAIN SIZE REL PERCENT HYDRAULIC INTERVAL (FT) COLOR GRAIN ROUNDING STRUCTURE LITHOLOGY WATER COMMENTS PROPERTIES LOG FXS. VCIDS. ETC. CLY SLT SANDGRAV ANG WK MOD WELL ROCK TYPE GRAPHIC EST. i MEAS. GRAPHIC NOTES HICH 66-20-72 PENONE PLAN AATE 455 MARCH 19:00 CRY-DRU Fing send - 5.11 +35% WERY MAND PLATITURY AUDIZED ωK 12:15 Kay-ARM Clamer silt -wk +35% BECOMING LESS CHIDIZED 12:25 Gen. Ben clayer 11 17 ---wK ~ 35% MOLE ONIDIZED 470 12:30 DARK MACLAYEN SILT -5/-61 1, i/c ~ 35% 12:34 BEN-GEY CLAYERY SILT -5/-/ ~357 12.34 BON-GOT CLINET SILT _ & +35% UFRY PART wis 17:46 DON GRY CLAMEN SILT !-485 ~ 35% 490 12:45 BRNGRY CLAYEY SILT +35% STILL PARTICILY ONDICED WK 495 12: 50 MEN GRY SILTY CLAY -61-71 WK-MOD + 3590 QUICE PAMP - MARE CLM MAMP ALM INCREASING 500 12:55 MED GRY SHITY CLAY WK-MUS

HOLE NUMBER 76-4 JOB NUMBER 72120491 HOLLADAY ENGINEERING COMPANY PAGE IL OF 13 LOCATION: CO. Canyon SEC 21 1/4 5W OF 1/4 5E 7 2 N R 3 W OWNER Conyon Co. PROJECT Pickles Butte ORILL MODE Schrenn LOGGED BY Strand DATE START 9-29-92 DATE FINISHED 10-21 HOLE DEPTH 640 ANGLE - 900 DRILL METHOD DIAMETER ... INDURATION & GRAIN SIZE DATE GEOPHYSICS HYDRAULIC GRAIN ROUNDING INTERVAL (FT) COLOR STRUCTURE WATER COMMENTS LITHOLOGY TIME REL PERCENT PROPERTIES LOG FXS, VCIDS, ETC. DRILL CLY SLT SANDGRAV ANG WK MOD WELL ROCK TYPE GRAPHIC EST. I MEAS. GRAPHIC NOTES Clan hale to Trie in + blow water check 9:00 - 10:00 AIR 10-20-2 20 none (10-21-91) 14 10-21-92 10-20-7 - AIR COLE HAD NO WARE NO RECOVERY DUE TO LOOSE

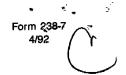
11 MOTHER FORMATION - 40 BLOWN OF METERINA

+ 35 % Se S OUT OF MET TUE . RETURN CELLIN. 10-7 505 AIR 10:35 MAK GAY CLAM INK-MOD ROTARY consciona SOO-SOS VERY DAMP SILTY WK - MOI) 510 +35% 10:40 mark 607 CLAY -71 More SILT . STILL BALLING" 10:45 NED LEY SILTY CLAY -61 المحدد المحدد 2352 NO LONGER IN HALLS @ DISCORD 520 10:47 MEDGRY CLAYEY TILT ---~ 25% とん 525 10:50 GRAY SETTICLAY -6/1-7 ~ 357, may gand 500 10:52 GRAY CLAY -71 + 35% wk 535 10:55 GRAY SILTY CLAY - 7 + 35% WIC CONCIL 10:59 GRAY SUTY CLAY -----7 UK=MOD ナマンツロ DUITE DAME 11:01 GRAY SHITT CLAY + 35% wk to med 1116 VAAM SILTY CLAM


PAGE 12 OF 13 HOLLADAY ENGINEERING COMPANY HOLE NUMBER PB-4 JOB NUMBER T2120491 LOCATION: CO. Compos SEC ZI 1/4 FW OF 1/4 52 T Z N R 3 W PROJECT Pickles Butte OWNER Cause Co. LOGGED BY Strowd DATE START 9-29-92 DATE FINISHED 10-21 HOLE DEPTH 1040 ANGLE 90 DRILL METHOD - DRILL MODEL Schrame -DIAMETER----INDURATION & GRAIN SIZE HYDRAULIC DATE GEOPHYSICS GRAIN ROUNDING STRUCTURE WATER COMMENTS INTERVAL (FT) COLOR LITHOLOGY REL PERCENT PROPERTIES TIME LOG FXS. VOIDS.ETC. SLT SAND GRAV ANG WK MOD WELL EST. MEAS GRAPHIC DRILL CLY ROCK TYPE GRAPHIC NOTES AIR 10-21-7 ROTHRY 8" **~352** 10-7 שע אנו 555 11:10 GRAY CLAYSTONTS +35% UK-MOD 11:14 CARY CLAYSTONE -+ 35% VERY DAME WK . MOD 11:16 GRAY CLAYSTONE ---565 WE-MOD ++ 352 VERY DAMP : TRACE SILT 579 11:20 GRAY CUAYSTONE -VERY DAMP . ZONE 565- 575 -7 WK- MOD 11:24 CARY CLAYSTONG ALTHOUGH NO APPRECIAGE YIELD FURDENCE IN HELE DURING DEILUME. +35 20 wk-mop 580 11:28 GRAY CLAYSTONG ==== 11:30 GRAY CLAYSTONE ==== MOP ABIT HARDER MATERIAL 585 CONSOUR + 35% MOD 11:35 GRAY CLAY STONE 591 MAD +3592 11: 40 CRAY CLAYSTONE 545

HOLLADAY ENGINEERING COMPANY PAGE 13 OF 13 HOLE NUMBER PB-4 JOB NUMBER 7120491 OWNER Compan Co. LOCATION: CO. Compan SEC 2/ 1/4 5W OF 1/4 5E T 2 N R 3 W PROJECT Pietles Dulle LOGGED BY STARD DATE START 9-29-92 DATE FINISHED 10-21-92 HOLE DEPTH 640 ANGLE - 90° DRILL METHOD ALL ROTALY DIAMETER 8" DRILL MODEL Schramm TLYS INDURATION & GRAIN SIZE **HYDRAULIC** GEOPHYSICS GRAIN ROUNDING STRUCTURE ZTYJMMCD WATER COLOR LITHOLOGY INTERVAL (FT) REL PERCENT PROPERTIES TIME LOG FXS. VCIDS. STC. CLY SLT SANDIGRAV ANG WK MOD WELL GRAPHIC EST. MEAS. ROCK TYPE GRAPHIC NOTES AIR 10-21-7 ROTMAY H35% 10-7 UERY DAMP 11:50 GRAY CLAYSTONE ---MaD 605 CONSTLICANS +35% VERY DANG 11:53 GRAY CLAYSTONE MOD + 35% gran 615 12:00 GRAY CLAYSTONE DAILE & FEELS POSHING WATE BEARING ZONE 11/1/1 435% 12:08 GRAY CLANSTONE rkoi) ADIT MORE SILT - DRIVER FEE 17:15 GRAY CLAUGENIC MOD MAKING MINER WATER
610-430 PRIMITER SCREEN ZOND MAD ABUT DRIEK FEBUNG ~ 3500 12:20 GRAY CLUMSTONIE 630 T 17:15 GRAY CLAMETONE -In Date ~ 30-35% DISTRICTLY LECE MOISTURE دمد PARETALLY OFICE CLAY QUARTS ~ 30-352 water check -water in the 690 TOV 17: 20 GRAY CLAYSTONE == mos PARTALLY OXIGING CLAN CLAST

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES


USE TYPEWRITER OR **BALLPOINT PEN**

2.	WELL OWNER PICKLES BUTTE SANITARY LANDFILL Address115_Albany, Caldwell, ID_83605 Drilling Permit No63-93-W-0554-001004 Water Right Permit No	Si FI A C Te	lowing? rtesian ontrolle	ater lev closed ed by: ture EST D	el <u>514</u> /es /es /es Valv -77 °F. Describe a	surep.s.i. re	/l. flow			
	 □ Domestic □ Irrigation □ Monitor □ Industrial □ Stock □ Waste Disposal or Injection 	9. L Bore	LITHOLOGIC LOG re Depth Material					water		
	Other (specify type)		From	То	tan f	Material ine sandy silt		Yes	No	
4.	METHOD DRILLED	11	40	48	brown	sandy gravel				
	☐ Rotary ☐ Air ☐ Auger ☐ Reverse rotary ☐ Cable ☐ Mud ☐ Other	11				ilty clay silty fine sand	1			
	(backhoe, hydraulic, etc.)	- 1 1	1.85	225	gray	fine to med sar	nd			
5	WELL CONSTRUCTION	11	225 240	240 250	light light	gray clayey si gray silty fir	ne sand			
.	Casing schedule: 🛛 Steel 🗆 Concrete 🗆 Other	- 11	250	275	tan c	lay `				
	Thickness Diameter $\frac{25}{4}$ inches $\frac{2}{5}$ feet $\frac{512}{5}$ feet	11				to med sand gray fine sand	l and			
	inches feet feet	11		400	tan c	layey silts				
	inches feet feet feet Was casing drive shoe used? Yes No	123/4	100 135	435 455	gray no sa	fine sand mple				
	Was a packer or seal used? ☐ Yes ☐ No	10"	155	125	tan a	rav silty clay	stone	X		
	Perforated?	10''	485 560	56 0 620	gray clave	brown silty firey silt and fine	ne sand e sand	X		
	How perforated? ☐ Factory ☐ Knife ☐ Torch ☐ Gun Size of perforation? inches by inches	51411	620	660	blue	gray claystone				
	Number From To		,		•					
	perforations feet feet feet									
	perforations feet feet		_							
	Well screen installed? ☐ Yes ☐ No Manufacturer Houston TypePre-pack									
	Top Packer or Headpipe				Ë	RECEIVED			_	
	Bottom of Tailpipe				1					
	Diameter <u>4</u> Slot size $\underline{.020}$ Set from $\underline{512.5}$ feet to $\underline{522.5}$ feet				N	ov 3 0 1993 —			<u> </u>	
	Diameter Slot size Set from feet to feet Gravel packed? ★ Yes □ No □ Size of gravel 10/20					VATER RESOURCE				
	Placed from <u>496</u> feet to <u>535</u> feet		-		<u>'</u>	WESTERN REGION				
	400-496 Surface seal depth Material used in seal: ☐ Cement grout		مان ليان			RECE	IVED			
	🛚 Bentonite 🗀 Puddling clay 🗀	1-	1 5 S g Mg	1 11 11		NOV 2 (า กาก ว			
	Sealing procedure used: Surry pit Temp. surface casing Overbore to seal depth	FFE	200	-		Dependant				
	Method of joining casing: □ Threaded □ Welded □ Solvent Weld □ Cemented between strata	-	0 3	1994	,	•		<u> </u>		
	;	10.			_ /	. 07	11_73	<u>.</u> .a	?	
	Describe access port Top of casing with locking cap and protective cover		Work s	started	<u> </u>	7-93 finished		<u> </u>	<u> </u>	
6.	LOCATION OF WELL	11.	DRILL	ER'S C	ERTIFIC	CATION				
	Sketch map location must agree with written location.					minimum well constru		ards v	vere	
1	Subdivision Name <u>Pickles Butte</u> Landfill		•			time the rig was remo				
	w + ' - E	Firm NameBoyles Brothers Firm No. 503								
	Lot No Block No	Address Box 23000 Salt Labe Date								
	Address of Well Site Perch Road, Pickles Butte (give at least name of road)		Signed	by Dr	_	pervisor	- HILL			
	(give at least name of road) $ \frac{SW}{4} = \frac{NE}{4} = \frac{21}{5}, R. = \frac{3}{5} = 0 \text{ or } W \stackrel{\text{fig.}}{5} $			(Oı	and perator) ₋	(118 ditterment them the	Deillian Su	nevi+-	<u></u>	
L	, , , , , , , , , , , , , , , , , , ,	[1] /(If/different than the Drilling Supervisor)								

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

2.	NamePICKLES BUTTE SANITARY LANDFILL Address 6284 Perch Road, Ca1dwe11 Drilling Permit No63-93-W-0554-001 Water Right Permit No										
3.	PROPOSED USE ☐ Domestic ☐ Irrigation ☐ Monitor ☐ Industrial ☐ Stock ☐ Waste Disposal or Injection ☐ Other (specify type)	Bore		oth	LOG	Material	70567	Wa	··········		
4.	METHOD DRILLED Air Auger Reverse rotary Cable Mud Other (backhoe, hydraulic, etc.)	Diam. 123/4 '' '' '' '' ''	17 18 60 95	17 18 60 95 125	sand tan med tan	y sand y gravel silty clay sand calyey silt clay		Yes	No		
5.	Casing schedule: √□ Steel □ Concrete □ Other	1234 778	160 195	195 220	fine silt	sand y_clay					
	Thickness Diameter From To 25 inches 4 inches + 2.5 feet 487.5 feet inches feet feet feet inches inches feet feet feet was casing drive shoe used? Yes X No Was a packer or seal used? Yes X No Perforated? Yes X No How perforated? Factory Knife Torch Gun Size of perforation? inches by inches Number From To feet feet feet perforations feet feet feet feet well screen installed? Yes No Manufacturer Houston Type Stainless Stee1 Top Packer or Headpipe Bottom of Tailpipe	11 11 11 11 7 78	620	380 435 510 620 690	tan fine 435- gray gray	and med sand clayey silt sand 490 tan, 490-5 silty clay stone silty clay RECEIVED NOV 3 0 1993	10 gray si	ļ	,		
	Diameter $_4$ Slot size 020 Set from 487 Seet to 497 Seet Diameter $_$ Slot size $_$ Set from $_$ feet to $_$ feet Gravel packed? \Box Yes \Box No \Box Size of gravel $_$ Placed from $_$ feet to $_$ feet					WATER 2030/ACES WESTERN REGION					
	Surface seal depth $\frac{478}{1}$ Material used in seal: \square Cement grout \square Bentonite \square Puddling clay \square						2 6 1993				
	Sealing procedure used: \$\sigma\$ Slurry pit \$\sigma\$ Temp. surface casing \$\sigma\$ Overbore to seal depth Method of joining casing: \$\sigma\$ Threaded \$\sigma\$ Welded					-4	2 0 1393	. L			
	□ Solvent Weld □ Cemented between strata Describe access port Top of casing with locking cap and protective cover.	10.	Work s	started	7+3	31 <u>-93</u> finish	ed <u>11-20</u>	_~ 93			
6.	Sketch map location must agree with written location. Subdivision Name Pickles Butte Landfill Lot No. Block No. 09 County Canyon Address of Well Site 6284 Perch Road (give at least name of road) T. 2 N Tor S D SE 1/4 NW 1/4 Sec. 21 , R. 3 E D or W	1994	J/We of complete of the comple	ertify ed with lame _ ss d by Dr	that all h at the Boyle	Supervisor	moved. m No. <u>503</u> te <u>//-23</u> // // //	9-	<u> </u>		

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

	WELL OWNER Name PICKLES BUTTE SANITARY LANDFILL Address 6284 Perch Road, Caldwell Drilling Permit No. 63-93-w-0554-001 003 Water Right Permit No. Replacement Well diameter increase Modification Abandoned (describe abandonment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.)	Controlled by:									
3.	PROPOSED USE Domestic Irrigation Monitor		9. LITHOLOGIC LOG 70565								
	□ Industrial □ Stock □ Waste Disposal or Injection □ Other (specify type)		Diam. From To		Material			ter No			
4.	METHOD DRILLED	1234				clayey sand					
	X Rotary	"	25 35	35 55	_san _fin	dy gravel e sand					
	□ Cable □ Mud □ Other	"	_55	65	tan	_clayey_silt					
	(backhoe, hydraulic, etc.)	ii II	65	130	fin	e and med sand					
_	WELL CONCEDUCTOR	"	130 185			yey fine sand					
5.	WELL CONSTRUCTION	11	210			ty clay					
	Casing schedule: Steel Concrete Other Thickness Diameter From COLO	11	250	260	fin	e sand					
		11	260	280	_cla	yey silt	•				
	inchesinchesfeetfeet	-"-	280 370		Tin دام	e sand yey silt					
	inches feet feet feet Was casing drive shoe used? Yes No	1234	390	455	fi	ne sand					
İ	Was a packer or seal used? ☐ Yes ☐ No	10"	455	515	_și	<u>1t</u>					
l	Perforated? ☐ Yes ☐ No	11	515 525	525 540	<u>ta</u>	n clayey silt ay clayey silt	X				
	How perforated?	10"	540	570	qr	av clav	X				
	Number From To	54"	570	600	ar	av siltv clav					
	periorations reet reet	54"	600	630	ь1	ue gray clay					
	perforationsfeetfeetfeet										
l	Well screen installed? ☒ Yes ☐ No										
	Manufacturer Houston Type Wire Wrap				PI	ECEIVED					
	Top Packer or Headpipe										
	Bottom of Tailpipe				NO	V 3 0 1993					
	Diameter 4" Slot size02 Set from 535 feet to 555 feet				W	ATER RESOUL					
	Diameter Slot size Set from feet to feet Gravel packed? FV Yes _ No _ Size of gravel 10/20	——			V	ESTERN REGIO					
	Gravel packed? \square X Yes \square No \square Size of gravel $\underline{10/20}$ Placed from $\phantom{00000000000000000000000000000000000$										
	•					RECEIVED					
	Surface seal depth520Material used in seal: Cement grout Rentarite				<u> </u>	<u> </u>					
ŀ	☐ Bentonite ☐ Puddling clay ☐ Sealing procedure used: ☐ Slurry pit					NOV 2 6 1593					
	☐ Temp. surface casing ☐ Overbore to seal depth		ļ <u> </u>			Department of vision Recourse	ļ				
	Method of joining casing: ☐ Threaded ☐ Welded	<u> </u>	<u>[</u>	l	L						
	☐ Solvent Weld ☐ Cemented between strata Describe access port <u>Top of casing with protective cover and lock</u>	10.	Work s	tarted]	10-01-93 finished 11-20-93	1				
6.	LOCATION OF WELL	11.	DRILLI	ER'S C	ERTI	IFICATION					
	Sketch map location must agree with written location.					all minimum well construction stands	ards v	vere			
	Subdivision Name Pickles Batte		compli	ed with	at th	ne time the rig was removed.	•	- -			
	Landfill	7-20	Firm N	ame	Boyl	les Brothers Firm No. 503					
	W Lot No. Block No.	Address Date									
	County Canyon FFD 0										
	Address of Well Site 6284 Perch Road	799 Signed by Drilling Supervisor Lange Hall									
	(give at least_name of road)		7	f	and	+	-				
	NW 1/4 SE 1/4 Sec. 21 , R. 3 E □ or W €	(Operator) W different than the prilling Supervisor)									

Form 238-7 4/92

STATE OF IDAHO DEPARTMENT OF WATER RESOURCES

USE TYPEWRITER OR BALLPOINT PEN

2.	WELL OWNER Name CANYON COUNTY (PICKLES BUTTE LANDFILL) Address 115 Albany, Caldwell, ID 83605 Drilling Permit No. 63-93-W-0554-001-00- Water Right Permit No. NATURE OF WORK New well Deepened Replacement Well diameter increase Modification Abandoned (describe abandonment or modification procedures such as liners, screen, materials, plug depths, etc. in lithologic log, section 9.) PROPOSED USE	S F A C Tr	lowing1 rtesian ontrolle	ater lever l	Yes Yes J-in pr 74 Descrit	3931 feet below land surface.		
	 □ Domestic □ Irrigation □ Monitor □ Industrial □ Stock □ Waste Disposal or Injection □ Other(specify type) 	Bore	Wate Yes N					
4.	METHOD DRILLED ☑ Rotary ☑ Air ☐ Auger ☑ Reverse rotary ☐ Cable ☐ Mud ☐ Other	Diam. 1234		25 35 50	tan fine tan	silty sand clayey silt e sand clayey silt clay	tes	X X X X X
5.	WELL CONSTRUCTION	11	70 100 105	100 105	sil: clay	ty fine sand		x x x
	Casing schedule: Steel Concrete Concr	12 34	115 120 125 145 150 240	120 125 145 150 240 365	tan fine tan san tan gray	clay e sand silty clay d with cobbles silty clay y clay y clay MOV 3 0 1993	X	x x x x
	Diameter Slot size Set from feet to feet Gravel packed? □ Yes □ No □ Size of gravel Placed from 299 feet to 424 feet Surface seal depth294 Material used in seal: ☒ Cement grout Bentonite □ Puddling clay □ Sealing procedure used: □ Slurry pit Temp. surface casing □ Overbore to seal depth					PECEIVED NOV 2 6 1993 Coperation in sugar fields of the control	es	
	Method of joining casing: ☐ Threaded ☐ Welded ☐ Solvent Weld ☐ Cemented between strata Describe access port ☐ Top of casing with protective cover and locking cap.	10. 7e	Work s	started.		10-26-93 finished 11-20-9)3	
6.	Sketch map location must agree with written location Subdivision Name Pickles Butte Sanitary Landfill Lot No. Block No. FEB 0 County Canyon Address of Well Site Perch Road, Pickle Bufte (give at least name of road) T. 2 N South Site Perch Site Site Site Site Site Site Site Site	11. 9 199	I/We conspired	ertify t ed with ame _ s	hat a at the Boyl illing and	FICATION Ill minimum well construction stand ne time the rig was removed. es Brothers Firm No503 Date	9=	<u></u>

IDAHO DEPARTMENT OF WATER RESOURCES WELL DRILLER'S REPORT NOV 2 0 1995

Use Typewriter en

2	0	1995	or Ball Point Pe

		O	30	WATER RE	SOURCES OF 2		
1. DRILLING PERMIT NO. 63-95-6-001	11. W	ELL Pur		TS: □ Bailer - Æ Air	,		
County of Consum		ld gal./m	<u> </u>	Drawdown		ime	_
2. OWNER: County of Carejon Name HOLLADAY ENGINEERING	110	u yai./in		Diawdown	RECEIVED	IIIIO	-
Name HOCCHUHY ENGINEERING	-			 			
Address 1431 Bus ALT HWY 95				· · · · · · · · · · · · · · · · · · ·	NOV 2 7 1995		
City PAYETTE State II) Zip 83661				<u> </u>	IDUJ		
3. LOCATION OF WELL by legal description:		• -		Botto	m hole temp. spartment of Water Resource:	ŝ	
Sketch map location must agree with written location.		•					
N	12. LI	тно	LOG	IC LOG: (Describe	repairs or abandonment)	Wa	ter
Twp. 2 North ★ or South □	Dia.	From	To	Remarks: Lithology, V	Vater Quality & Temperature	٧	N
Rge. 3 East or West 🛪	12	<i>.1.</i>	10	TOP SOIL !			Ш
Sec. 21 , 500 1/4 NE 1/4 1/4 OC 1/4 Gov't Lot County Carrier 1/4 1/60 acres	7	10	17	GRAVEL IN	HARD PAN		
Gov't Lot County County 160 acres		17	28	CARGER GRI	AVEL + HARD PAN		
·		28	30	CLAY 1 SMA	LL GRAVEL		
Address of Well Site PICKLE BUTTE DUMP	77	30	32-	MORE GRAVE		Γ	
PB*9 City			40		IN SMALL GRAVE	L	
(Give at least name of road + Distance to Road or Landmark)			90		IN SMALL GEAVEL		
LtBlkSub. Name			95	COARSE SAN		•	
Lt Bik Sub. Name			112			1	\Box
			120		-/	 	1
4. PROPOSED USE:		———Т	135		DARSE SAND	1	\vdash
□ Domestic □ Municipal ★Monitor □ Irrigation	P		180				\vdash
☐ Thermal ☐ Injection ☐ Other			187				-
5. TYPE OF WORK					KD CLITY	 	1
New Well Modify or Repair Replacement Abandonment			205		MAR JOINY	1	\vdash
6. DRILL METHOD		205			AND ! CLAY	-	\vdash
□ Mud Rotary 🛱 Air Rotary 🗆 Cable 🗆 Other		210			LAY THRU REG		\vdash
- 0511 NO BROOFFILES		263				-	
7. SEALING PROCEDURES	\rightarrow		305		JANDY CLAY	<u> </u>	Ш
SEAL/FILTER PACK AMOUNT METHOD Makerial From To Sacks or			315	SAND	·	<u> </u>	
Pounds			375	CLAY		.	Ш
BENTOWITE 00 381 19000 # POUR			400		CLAY (CLAY ROCK)		Ш
· · · · · · · · · · · · · · · · · · ·	الحا	too	405	JOFT SAND	Y CLAY / CLAY	ļ	
			430	REG CLAY		1	
Was drive shoe used?	$\perp \angle \perp'$	430	435	SOFT CLAY	OR SANDY CLAY	<u> </u>	Ш
Was drive shoe seal tested? Y□ N□ How?	71.	135	445	CLAY REG	TYPE_	<u> </u>	
8. CASING/LINER:	<u> </u> <u> </u> <u> </u>	145	455	HARD CLAY 4/1	DARK PEAGRAVEL/COA	257	542/2
Diameter From To Gauge Material Casing Liner Welded Threaded	,	155	465		1 1 1	<u> </u>	4
4" +3 508 Smuless #	بالحا	465	470	JOFT CLAY	HKE SANDY CLAY		
	اک	470	475	CLAY		<u> </u>	
	4	+75	480.		SANDSTONE LIKE	ρ_{c}	<u> </u>
Length of HeadpipeLength of Tailpipe	81	180	487	$I \subseteq \mathcal{U}$	H. H. L.	211	
9. PERFORATIONS/SCREENS		t87		GRAY BLUE	CLAY	1	
□ Perforations Method				CONTINU	EN		
Screens Screen Type Huston	Com	pleted	Denth			eurah	10)
A delection ocident type del 17 te 27 DTG		: Starte		- 	<u>MAR 0.7 199</u> 6 Mea Completed	Juiet	",
From To Slot Size Number Diameter Material Casing Liner	Date	. Start			Completed		
508 543 -020 4" 55 0	13. D	RILI	ER'S	CERTIFICATIO	V.		:
908 343 800 4 33 0 0					ction standards were comp	lied w	ith at
				removed.	· · · · · · · · · · · · · · · · · · ·		
			Λ	\sim	1	ز وربيان سامه در	## (
	Firm N	ame <i>‡</i>	<u>t</u> DA	mson Pump	- WULLING Firm No	<u>. 04</u>	57
10. STATIC WATER LEVEL OR ARTESIAN PRESSURE:		6	$\sqrt{2}$	- 60.	DULING Firm No SOR Date //-/		
5/3.17 ft. below ground Artesian pressurelb.	Firm O	fficial	Lo	we aldam	001 Date //-/	1-9	5
Depth flow encounteredft. Describe access port or		7/1	· 				
control devices:	and Superv	isor o	r Oper	and Due Het	Auson Date //-/	7-9	5
				(Sign once If Firm C	official & Operator)	•	

Form 238-7 7/94

WELL DRILLER'S REPORT 63656

Use Typewriter or Ball Point Pen

1. DRILLING PERMIT NO. <u>63-95-W-0564-001</u> 11. WELL TESTS: ☐ Flowing Artesian Other IDWR No. □ Pump □ Bailer □ Air Yield gal./min. Drawdown Pumping Level 2. OWNER: Name_ Address City Water Temp.___ Bottom hole temp. 3. LOCATION OF WELL by legal description: Water Quality test or comments:___ Sketch map location must agree with written location. 12. LITHOLOGIC LOG: (Describe repairs or abandonment) Water Remarks: Lithology, Water Quality & Temperature South [FRAC GRAY & BLUE-CLAY 510 REG. 1 <u> 511.</u> 518 528 519 FRAC CLAY VERY HARDCLAY BLUE/GRAY 5286 REG. 528.6 530 Address of Well Site FRAC/HARD DRILLING 530 531 City_ (Give at least name of road + Distance to Road or Landmark) REG CLAY BLUE/GRAY 531 544 ____ Bik._ __Sub. Name 4. PROPOSED USE: □ Domestic □ Municipal ☐ Irrigation ☐ Monitor ☐ Thermal ☐ Injection ☐ Other 5. TYPE OF WORK RECEIVED □ New Well □ Modify or Repair □ Replacement ☐ Abandonment 6. DRILL METHOD ☐ Mud Rotary ☐ Air Rotary □ Cable ☐ Other_ WATER RESOURCES 7. SEALING PROCEDURES SEAL/FILTER PACK AMQUNT From Sacks or Material Was drive shoe used?

Y

N

Shoe Depth(s) Was drive shoe seal tested? Y□ N□ How?_ RECEIVED 8. CASING/LINER: Diameter From Casing Welded Threaded NOV 2 7 1995 \Box Department of Water Resources Length of Headpipe Length of Tailpipe_ 9. PERFORATIONS/SCREENS □ Perforations Method_ Completed Depth <u>544</u> (Measurable) □ Screens Screen Type 9-29-95 Date: Started 8-25-951 Completed_ Slot Size Number Diamete Material From Casing Liner 13. DRILLER'S CERTIFICATION I/We certify that all minimum well construction standards were complied with at \Box the time the rig was removed. TUMP DRILLING FIRM NO. 0457 10. STATIC WATER LEVEL OR ARTESIAN PRESSURE: Artesian pressure ____ _ft. below ground Depth flow encountered __ft. Describe access port or Supervisor or Operator Sou Man Sow Date 11-17-95 control devices:

(Sign once if Firm Official & Operator)

WELL DRILLER'S REPORT

Use Typewriter or Ball Point Pen

WELL BIMEL	63657 _{MOV} 20 1995 O
1. DRILLING PERMIT NO. 63 - 95 - W - 0565 - 001	11. WELL TESTS: WATER RESOURCES Pump Bellier Air Flowing Artesian
2 OWNER County of Caryon	Yield gal./min. Drawdown Pumping Level Time
	RECEIVED
Address 1431 1345 ALT HWY 95	
City PAYETTE State ID Zip 83661	NOV 2 7 1555
Vily 17 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Water Temp. Bottom hole temp.
3. LOCATION OF WELL by legal description:	Water Quality test or comments: Department of Water Resources
Sketch map location must agree with written location.	
N	12. LITHOLOGIC LOG: (Describe repairs or abandonment) Water
	Bore From To Remarks: Lithology, Water Quality & Temperature Y N
Twp. North or South	570.
Rge. 3 East or West	1 5 TOP SOIL
Sec. 2 , StO 1/4 NE 1/4 1/4 1/4 Gov't Lot County Catagory 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	12 5 10 CLAY W/SMALL GRAVEL
Gov't Lot County C40 acres 160 acres	1 10 20 GRAVEL . SAUD
S USTON M.	10 20 31 GRAVEL & SAND
Address of Well Site 15500 MISSOURI	31 45 CLAY WSOME SMALL GRAVEL
(Give at least name of road + Distance to Road or Landmark)	TITO DO CONFIDE SAND
00.0	55 73 CDARSE SAND W/SOME CLAY (SLOW) PULL
LtBlkSub. Name <i>PB10</i>	73 100 CLAY
	(100 105 SAND
4. PROPOSED USE:	105 115 SAND (COARSE) YCLAY SOCT : HARD
□ Domestic □ Municipal ♠Monitor □ Irrigation	115 120 CDARSE SAUS/SMALL GRAVEL VCLAY
☐ Thermal ☐ Injection ☐ Other	120 125 SAND GEAVEL SMALL & CORREL
5. TYPE OF WORK	/ 125 130 SAND WUTTLE CLAY
New Well	(130 135 SAND & MORE CLAY
6. DRILL METHOD	1 135 136 VERY HARO CLAY
☐ Mud Rotary → Arair Rotary ☐ Cable ☐ Other	8 205 210 SANDY CLAY
7. SEALING PROCEDURES	
SEAL/FILTER PACK AMOUNT METHOD	210 215 SANDY CLAY WHARD PCS CLAY
Material From To Sacks or	215 220 SANDY CLAY - WERY HARD DRUING 220 275 SANDY CLAY - MORE CLAY
Pounds	220 275 SANDY CLAY -MORE CLAY AGUES
BENTONITE 20 12000 POUR	300 305 SAND
	305 339 CLAY
Was drive shoe used? Y \(\simeq \) N Shoe Depth(s)	339 341 VERY HARD CLAY
Was drive shoe used? ₩ N Shoe Depth(s)	341 430 CLAY
8. CASING/LINER:	430 455 VERY HARD CLAY DEILHE YOU
Diameter From To Gauge Material Casing Liner Welded Threaded	455 467 "SUPER" VERY HARD CLAY
10 0 140 125 STEEL # 0 0	457 465 REG. CLAY
8 +2 500 25 STEEL # 0 0	46 470 CLAY GRAVEL
4 +2 504 STAINLESS	470 615 CLAY WIROW SPOTS)
Length of Headpipe Length of Tailpipe	\$15 518 TURNIN GRY
9. PERFORATIONS/SCREENS	518 525 BROWN CLAY
□ Perforations Method <u>MGD 0.7.1</u> 9	OG 525 540 JAND COARSE W/CLAY
Screen Type Houston	Completed Depth CONTINUED (Measurable)
/ -//	Date: Started 8 25-95 Completed 9 29 95
From To Slot Size Number Diameter Material Casing Liner	
504 534 ,020 41 STAINDER	13. DRILLER'S CERTIFICATION
	AND certify that all minimum well construction standards were complied with at
	the time the rig was removed.
	Firm Name HDANSON THIND SIDULINGEN NO DUITE
10. STATIC WATER LEVEL OR ARTESIAN PRESSURE:	Firm Official Date adamson Date 11-17-95
ft. below ground Artesian pressurelb.	Firm Official David al Chamson, Date 11-17-95
Depth flow encounteredft. Describe access port or	and
control devices:	and Supervisor or Operator David Adamson Date 11-17-95
	(Sign once if Firm Official & Operator)

Form 238-7 7/94

IDAHO DEPARTMENT OF WATER RESOURCES

Use Typewriter Ball Point Pen

WELL DRILLER'S REPORT

		ump	☐ Bailer ☐ Air ☐ Flowing Artesia		
OWNER: HOLLADAY ENGINEERING CO	Yield gal.	./min.	Drawdown Pumping Level	Time	
	-				
dress		/			
, <u>, , , , , , , , , , , , , , , , , , </u>	_	D.	Bottom hole temp.		
LOCATION OF WELL by legal description:			or comments:		
etch map location must agree with written location.					
· N	12. LITH	OLOG	IC LOG: (Describe repairs or abandonmen	t) w	/ate
Twp. A North DY or South	Bore Dia. From	То	Remarks: Lithology, Water Quality & Temperature	∍ Y	
Twp. A North of or South Rge. East or West Sec. 1/4 Sw 1/4 NT 1 Gov't Lot County Conty or 160 acres	8 54	360	TURNING BLUE CLAY W/		
Sec. 2 (,1/4 <u>SW</u> 1/4 <u>NF</u> 1/4	/4	↓	COARSE SAND		1
Gov't Lot County County 100 acres		 	<u></u>		4
\$	 		and the second	1	+
Address of Well Site		+-	CAVED IN TO 544	+	+
(Give at least name of road + Distance to Road or Landmark)		†		\top	+
BlkSub. Name					士
		<u> </u>		<u> </u>	Ţ
PROPOSED USE:		┼—		\perp	\downarrow
□ Domestic □ Municipal □ Monitor □ Irrigation		1		+	+
☐ Thermal ☐ Injection ☐ Other	-	+		+	+
TYPE OF WORK ☐ New Well ☐ Modify or Repair ☐ Replacement ☐ Abandonme	ont -	†	RECEIVED	+	†
DRILL METHOD	,,,,,				1
☐ Mud Rotary ☐ Air Rotary ☐ Cable ☐ Other		ļ	NOV 2 7 1995		Ţ
					- 1
ACALINIA DEAACEDUREA					4-
SEALING PROCEDURES	,	<u> </u>	Department of Water Resource	96	†
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or	7			98	†
SEAL/FILTER PACK AMOUNT METHOD				36	+
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or				36	
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or				98	
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds As drive shoe used? Y N Shoe Depth(s)			Department of Water Resource	36	
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds Is drive shoe used? Y N Shoe Depth(s)			Department of Water Resource	96	
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds Is drive shoe used? Y N Shoe Depth(s) Is drive shoe seal tested? Y N How? CASING/LINER:			Department of Water Resource RECEIVED	36	
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds Is drive shoe used? Y N Shoe Depth(s)	ed		Department of Water Resource	98	
SEAL/FILTER PACK Material From To Sacks or Pounds AMOUNT METHOD METHOD Sacks or Pounds As drive shoe used? \(\text{\te}\text{\tex			Department of Water Resource RECEIVED NOV 2 0 1995	96	
SEAL/FILTER PACK Material From To Sacks or Pounds AMOUNT METHOD M			Department of Water Resource RECEIVED	96	
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds as drive shoe used? Y N Shoe Depth(s) as drive shoe seal tested? Y N How? CASING/LINER: ameter From To Gauge Material Casing Liner Welded Threads Casing Liner Welded Threads	27 12		Department of Water Resource RECEIVED NOV 2 0 1995	98	
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds as drive shoe used? Y N Shoe Depth(s) as drive shoe seal tested? Y N How? CASING/LINER: Ameter From To Gauge Material Casing Liner Welded Threads Output Depth of Tail Pipe PERFORATIONS/SCREENS	27 9		Department of Water Resource RECEIVED NOV 2 0 1995	96	
SEAL/FILTER PACK Material From To Sacks or Pounds AMOUNT METHOD M	2715	d Denth	Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION		
SEAL/FILTER PACK AMOUNT METHOD Material From To Sacks or Pounds as drive shoe used? Y N Shoe Depth(s) as drive shoe seal tested? Y N How? CASING/LINER: Ameter From To Gauge Material Casing Liner Welded Threads Output Depth of Tail Pipe PERFORATIONS/SCREENS	Complete		Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION	easura	
SEAL/FILTER PACK Material From To Sacks or Pounds AMOUNT METHOD M	Complete Date: Sta	rtedi	Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION (Me 8-25-15 Completed 9-29	easura	
SEAL/FILTER PACK Material From To Sacks or Pounds as drive shoe used?	Complete Date: Sta	rted	Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION MESTERN REGION MESTERN REGION Completed 9-29	easura -95	>
SEAL/FILTER PACK Material From To Sacks or Pounds AMOUNT METHOD Material From To Sacks or Pounds AMOUNT METHOD	Complete Date: Sta 13. DRIL I/We certify	LER'S	Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION (Me 8-25-95 Completed 9-29 CERTIFICATION minimum well construction standards were com	easura -95	>
SEAL/FILTER PACK Material From To Sacks or Pounds Is drive shoe used?	Complete Date: Sta	LER'S	Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION (Me 8-25-95 Completed 9-29 CERTIFICATION minimum well construction standards were com	easura -95	_
SEAL/FILTER PACK Material From To Sacks or Pounds Is drive shoe used? Y N Shoe Depth(s) Is drive shoe seal tested? Y N How? CASING/LINER: Impact From To Gauge Material Impact Perform To Gauge Material Impact Perforations Method Impact Perforations Method Impact Perforations Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Method Impact Perforation Material Impact Pe	Complete Date: Sta 13. DRIL I/We certify	LER'S that all	Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION (Me 8-25-15 Completed 9-29 S CERTIFICATION minimum well construction standards were comes removed.	pasura –95	with
SEAL/FILTER PACK Material From To Sacks or Pounds s drive shoe used? Y N Shoe Depth(s) s drive shoe seal tested? Y N How? CASING/LINER: meter From To Gauge Material Casing Liner Welded Threads gth of Headpipe Length of Tailpipe PERFORATIONS/SCREENS Perforations Method Screen Type From To Slot Size Number Diameter Material Casing Liner	Complete Date: Sta 13. DRIL I/We certify the time the	LER'S that all e rig was	Department of Water Resource RECEIVED NOV 2 0 1995 WATER RESOURCES WESTERN REGION Mestern Region Completed 9-29 CERTIFICATION minimum well construction standards were comes removed.	pasura –95	wit

3. \	rojects	\E309.010	4_FICKIES	VR_Drawings\ES09_0	1134_0/8_	poreid		-11 (1015)	,	
				_Locking steel vault	Graphic		Rock Quality	Sample	uscs	_
- [\neg		Log		Designation	Interval (feet bgs)	Symbol	Comments and Lithology
	0	-118-AA	l V V V	Ground surface	7777777	0-	Recovery			
	1				CL.]	40%/40%	0-5	CL	Silty clay, light brownish gray (2.5Y 6/2).
	1	188		- 17" Borehole 0.0'-50.0'	SP		70%/90%	5-10	SP	Sand, light gray (10YR 7/2), medium gravel, well sorted.
	10-				CL/SC	10	25%/25%	10-15	CL-SC	Sandy clay/clayey sand, light brownish gray (2.5Y 6/2).
	1111			16" Steel casing (temporary) 0.0'-50.0'		=	40%/50%	15-20	SM	Silty sand, light yellowish brown (7.5Y 7/3), fine—grained, well sorted.
	20-			0.0 00.0	SM 1	20-	90%/90%	20-24	мн	Clayey silt, grayish brown (2.5YR 5/2), low plasticity, hard.
	4			4.5" O.D. Stainless	SP		90%/90%	24-25 25-27 27-30	SP SP	Sand, dark yellowish brown (10YR 4/4), medium—grained, well sorted, well cemented, hard. Same as above.
1	3			steel (S.S.) blank	SM:	3	70%/90%	27-30	SM	Silty sand, light alive brown (2.5Y 5/4), fine— to medium—grained, moderately sorted, soft.
	30-			casing 0.0'—340.0'	sw .	30-	50%/50%	30-35	SW	Sand, light brownish gray (2.5Y 6/2), thinly laminated, fine— to medium—grained, moderately sorted, moderately cemented.
	1				MH/SM	=	75%/75%	35-40	MH-SM	Clayey silt and silty fine sand, light gray (5Y 7/1), laminated, some orange banding, moderately indurated.
Surface	40			- 3/4" Bentonite	Urrinjarisi-	40	70%/70%	40-45	SP	Sand, dry color light gray (10YR 7/2), medium—grained, moderately to well sorted, moderately to well indurated.
	t t			0.0'-60.0'	SP	1	75%/75%	45-50	SP	Same as above.
¥ Ground					sw	50	30%/30%	50-55	SW	Sand, light gray (2.5YR 7/1) to light brownish gray (2.5YR 6/2), prominent orange banding, medium—grained, moderately sorted, soft.
Below					şw 	1	20%/20%	55-60	SM	Silty sand, light olive brown (2.5Y 5/4) to grayish brown (2.5YR 5/2), fine—grained, weakly indurated.
Feet	60			12" Borehole 50.0'200.0'	ML/SP	60-	40%/40%	60-65	ML-SP	Silty very fine sand, gray (2.5Y 6/1), massive, grading downward to sand, olive yellow (2.5Y 6/6), medium—grained, well sorted, hard.
	=				SP/ML	بيلية	45%/45%	65-70	SP-ML	Sand, as above, grading downward to silt and silty fine sand, slightly moist.
	70					70	60%/60%	70-75	SM	Silty sand, light brownish gray (2.5Y 6/2), fine—grained, slightly moist.
	4			Neat cement grout	S S	1	20%/20%	75–80	SM	Similar to above, finer—grained, dry.
	80			20.0 0000		80-	65%/65%	80-85	SP	Sand, light brownish gray (2.5Y 6/2), fine—grained, well sorted, moderately indurated, slightly moist.
							55%/55%	85–90	SP	Same as above, dry.
	90-			— Stainless steel centralizer	SP	90-	20%/20%	90-95	SP	Sand, light brownish gray (7.5YR 6/2), fine— to medium—grained, moderately sorted.
				TOTAL WILLY!	सामासा	1	85%/85%	95–100	SM	Sand, light gray (2.5Y 6/1), silty fine—grained, softer than above, slightly moist.
	E ₀₀₁				SM I	100				
	2eologi	ist: J. Ro	ucci	Drilling m	ethod: Co	250 0	ir rotanı	<u> </u>	l	Northing: 668731 199

Geologist: J. Raucci Driller: HAZ-Tech Date completed: 6-30-11 Drilling method: Core, air rotary

Bit diameters: 19" (0'-50'), 12" (50'-200'), 9 7/8" (200'-420')

Sampling device: HQ core, air rotary cuttings (400'-420')

Steel suface casing: 16" steel (0'-50')

Northing: 668731.199 Easting: 243735.206 Elevation: 2654.1 (TOC)

Note: TOC = top of casing

PICKLES BUTTE Well Log: PB-11

	Graphic Log		Rock Quality Designation	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
[¹⁰⁰]		100-	20%/20%	100-105	ML	Sandy silt, pale yellow (2.5Y 8/2), moderately indurated, dry.
		1	20%/20%	105-110	ML-SP	Same as above, interbedded with dark gray (2Y 3/1), medium—grained sandstone, very hard, CaCO3 cement.
110-	MUSP		20%/20%	110-115	ML	Sandy silt and silt, light olive gray (5Y 6/2), weakly indurated, slightly moist.
	ML ML ML/SP		20%/20%	115-120	ML-SP	Same as above, interbedded with dark gray medium—grained sandstone.
120-	50.0'-200.0'	120	50%/50%	120-125	SM-SP	Sandy silt, light olive gray, similar to above, slightly moist, with white fine—grained, well sorted sandstone, cross bedded, some yellow with orange banding, dry, hard.
	SM/SP	1	20%/20%	125-130	SM-SP	Same as above, interbedded with sandstone, dark gray (2Y 3/1), medium—grained.
130		130-	60%/60%	130-135	SM-SP	Sandy silt, pale yellow (2.5Y 7/3), with white fine—grained sand with yellow color banding, dry.
	III.	=	30%/30%	135-140	SM	Silty sand, light gray (5Y 7/2), fine—grained, moist, reddish yellow color banding.
Surface 1401	Stainless steel centralizer	140	0%/30%	140-145	ML	Sandy silt, light gray (2.5Y 7/2), fine—grained, slightly moist with small (less than 1 inch) reddish yellow clay lenses.
Ind Su	Stainless steel centralizer		55%/55%	145-150	ML	Siltstone, light gray (2.5Y 7/2), hard, dry.
- Ground		150	100%/100%	150-155	SM-CL	Interbedded, silty sand/sandy silt, light brownish gray (7.5Y 6/2) with clay, dark greenish gray (5GY 4/1), thin bands of reddish clay, fine—grained.
at Below	4.5" O.D. S.S.	1	20%/20%	155-160	SM	Silty sand, light yellowish brown (2.5Y 6/4), laminated and color banded, cross bedded, fine—grained, weakly cemented, slightly moist.
160	0.0'-340.0' SM	160-	50%/50%	160-165	SM	Silty sand, light brownish gray (2.5YR 6/2), otherwise as above, very fine—grained, borderline sandy silt.
			100%/100%	165-168	SP	Similar to above, but dominantly fine sand.
170-	SP	170	100%/100% 50%/50%		SP SM	Sandstone, light olive brown (2.5Y 5/4), color banded, cross bedded, fine, soft, slightly moist. Silty sandstone, grayish brown (7.5Y 5/2), massive to laminated, color banding (yellow), trough cross bedded, fine—grained, organic material (?).
	Neat cement grout SM. 50.0'-308.0'	4	30%/50%	175-180	\$М	Silty sandstone, light olive brown (7.5Y 5/3), fine—grained, similar to above, slightly moist.
180-	1111EL@3111	1 1	100%/100%	180-185	SM-ML	Sandy silt and silty sand, gray (5Y 5/1) to grayish brown (2.5Y5/2), moderately indurated, slightly moist.
	SM/ML]	85%/85%	185-190	ML	Siltstone, gray (5Y 5/1), moderately to strongly cemented, massive, slightly maist to dry.
190-		190-	0%/0%	190-195	CL	Little recovery, clay, appears to be dark gray (5Y 4/1).
	ML I	1	65%/75%	195–200	ML	Siltstone, sandy silt and clayey silt intervals, gray (5Y 5/1), reddish brown color banding, moderately indurated, very slightly moist.
Ceologiet: I Paucei	Drilling method: C		<u>. </u>			

Geologist: J. Raucci

Drilling method: Core, air rotary

Driller: HAZ-Tech Bit diameters: 19" (0'-50'), 12" (50'-200'), 9 7/8" (200'-420') Date completed: 6-30-11

Sampling device: HQ core, air rotary cuttings (400'-420') Steel suface casing: 16" steel (0'-50')

PICKLES BUTTE Well Log: PB-11

Daniel B. Stephens & Associates, Inc. 6-05-2012

5: \Project	s\E309.0154_P	ickles\VR_Drawings\ES09_0	Graphic	_Doreio	Rock Quality	Sample Interval	uscs	Comments and Lithology
200-	7// K	\T	Log	200-		(feet bgs)		
				1	60%/85%	200-205	ML	Siltstone, gray (5Y 5/1), same as above.
=				4	90%/100%	205-210	ML	Same as above.
210				210-	100%/100%	210-215	ML	Same as above.
					85%/100%	215-220	ML	Same as above.
220-	-	10" Borehole		220-	100%/100%	220-225	ML	Siltstone, dark gray (5Y 4/1), finely laminated, moderately indurated, slightly moist.
		200.0'-420.0'		4	100%/100%	225-230	ML	Same as above.
230-				230-	75%/85%	230-235	ML	Same as above.
1			ML ML	1	90%/90%	235-240	ML	Same as above, lighter color (5Y 5/1).
240-		Stainless steel centralizer		240	25%/75%	240-245	ML	Same as above, highly fractured.
JS 1				1	90%/90%	245-250	ML	Same as above.
ground 250-				250	40%/100%	250-255	ML	Same as above, many fractures.
Below				1	60%/100%	255-260	ML	Same as above.
260		4.5" O.D. S.S. blank casing 0.0'-340.0'	a	260	70%/100%	260-265	ML	Same as above.
				بطيب	80%/100%	265-270	ML	Same as above.
270-			[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	270	85%/85%	270-275	CL	Similar to above, finer—grained (claystone, some silt).
		Neat cement grout		7	100%/100%	275-280	ML	Similar to above, silty, locally cross bedded.
280		60.0'-308.0'	ML III	280-	100%/100%	280-285	ML	Siltstone, same as above.
=			Ci	1	50%/100%	285-290	CL	Silty claystone, similar to above.
290			ML/CL	290	50%/100%	290-295	ML/CL	Siltstone and claystone, same as above, fractured.
					60%/100%	295-300	CL	Predominantly silty claystone, two prominent, steeply inclined fractures.
J ₀₀₀		M	(//////	L ₀₀₅				
Geolog	nistrul Rauca	i Drilling me	othode C					

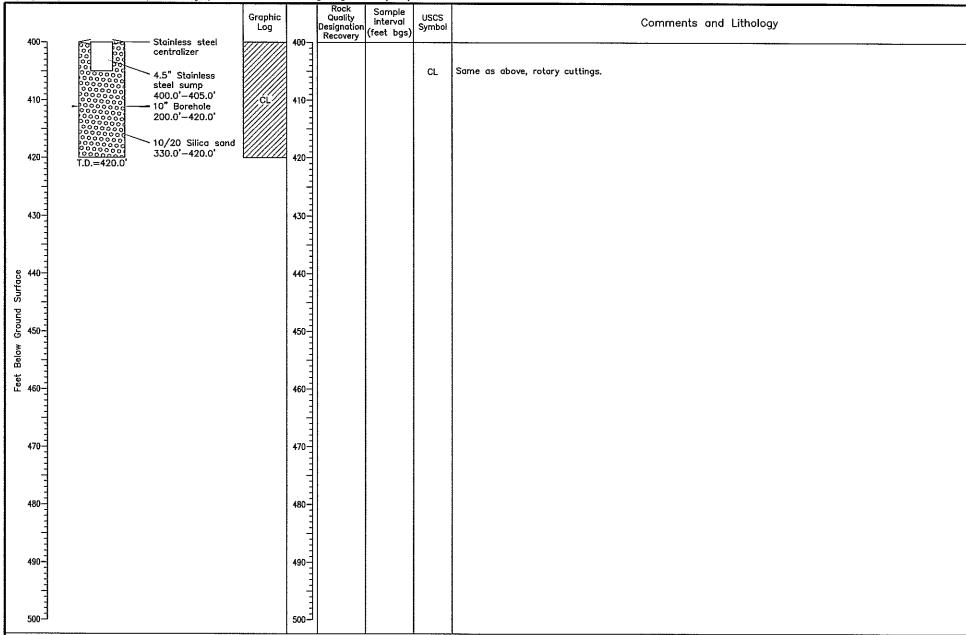
Geologist: J. Raucci Driller: HAZ-Tech Date completed: 6-30-11 Drilling method: Core, air rotary

Bit diameters: 19" (0'-50'), 12" (50'-200'), 9 7/8" (200'-420')

Sampling device: HQ core, air rotary cuttings (400'-420') Steel suface casing: 16" steel (0'-50')

PICKLES BUTTE Well Log: PB-11

	cts\E509.0154_Pickles\VK_Urawings\E509_0	Graphic Log		Rock Quality Designation Recovery		USCS Symbol	Comments and Lithology
30	Neat cement grout 60.0'—308.0'		300	100%/100%	300-305	CL/ML	Clay, silty claystone and siltstone, color as above (5YR 4/1-5/1), siltstones are laminated, locally cross bedded, claystone is massive to finely laminated, slightly moist, moderately indurated, brittle to slightly plastic.
				100%/100%	305-310	CL-ML	Same as above.
311	4.5" O.D. S.S. blank casing		310	40%/75%	310-315	CL-ML	Same as above.
	0.0'-340.0'		1	80%/100%	315-325	CL-ML	Same as above.
320	3/4" Bentonite	CL/ML	320				
	chips 0.0'-60.0'		1	100%/100%	325-330	CL-ML	Same as above.
330			330-	100%/100%	330-335	CL-ML	Same as above.
	4.5" O.D. S.S. blank casing 0.0'-340.0' 3/4" Bentonite chips 0.0'-60.0'		1	100%/100%	335-340	CL-ML	Becoming more dominantly claystone and silty claystone.
g 34) Stainless steel	1	340-	100%/100%	340-345	CL	Same as above.
Surface 340	00 - 00 centralizer 00 - 00 00 00 00 00 00 0		1		345-350		Same as above.
Ground 350			350	75%/90%	350-355	CL	Claystone, silty claystone and siltstone, gray (5Y 5/1), interbedded, predominantly claystone and silty
Below (10			100%/100%			claystone, slightly moist, slight to moderate plasticity. Same as above.
е † 36	-		360	90%/90%			Same as above.
1 300	10/20 Silica sand		300	,			
			-	·	365-370		Same as above.
376)-		370-	95%/95%	370–375	CL	Same as above.
	4.5" O.D. Stainless steel slot 20		1	75%/90%	375-380	CL	Same as above.
380			380-	100%/100%	380-385	CL	Same as above.
	- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00		=	80%/80%	385-390	CL	Same as above.
390)		390-	55%/100%	390-395	CL	Same as above.
			1	90%/90%	395-420	CL	Same as above.
40	- 00 - 00 - 00		E ₀₀₄				
Geo	logist: J. Raucci Drilling me	ethod: Co	оге. С	ir rotary		1	


Geologist: J. Raucci Driller: HAZ-Tech

Drilling method: Core, air rotary

Bit diameters: 19" (0'-50'), 12" (50'-200'), 9 7/8" (200'-420') Date completed: 6-30-11

Sampling device: HQ core, air rotary cuttings (400'-420') Steel suface casing: 16" steel (0'-50')

PICKLES BUTTE Well Log: PB-11

Geologist: J. Raucci Driller: HAZ-Tech

Drilling method: Core, air rotary

Bit diameters: 19" (0'-50'), 12" (50'-200'), 9 7/8" (200'-420') Date completed: 6-30-11

Sampling device: HQ core, air rotary cuttings (400'-420')

Steel surface casing: 16" steel (0'-50')

PICKLES BUTTE Well Log: PB-11

Daniel B. Stephens & Associates, Inc. 6-05-2012

0 1 1	$\overline{\Box}$	ng steel vault	Graphic Log	De F		Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
10-	- 16" E	Borehole 50.0'		10-	0%/0%	0-15		No recovery.
20-			SP.	1110	0%/20%	15–20	SP	Sand, olive brown (2.5Y 4/3), coarse—grained, no plasticity.
	4.5" (steel casing 0.0'-4][5%/60% 5%/60%	20-25 25-30	SM	Silty sand, olive brown (2.5Y 4/4), fine-grained, no plasticity. Same as above.
30-][5%/55% 5%/55%	30-35 35-40	SM SM	Same as above.
40-	3/4" chips 0.0'9	Bentonite 37.0'			0%/100%			Silty sand, olive brown (2.5Y 4/3), fine-grained.
40 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					0%/100% 5%/90%	45-50 50-60		Clayey silty sand, light alive brown (2.5Y 5/4), very low plasticity. Silty sand grading into sand, light yellowish brown (2.5Y 6/3), fine— to medium—grained, no plasticity, had alive brown (2.5Y 5/3), fine—grained, hard no plasticity.
60-	10" Bc 50.0'-	orehole 555.0'		60-1100	73/100%	60-70		Clayey silty sand, light olive brown (2.5Y 5/3), hard no plasticity.
70-	— 10" Bc 50.0' –			70 95	%/95%	70-80	ML	Sandy silt, light yellowish brown (2.5Y 6/3), no plasticity.
80-	— Stainles	ss steel izer		80 100	%/100%	80~90	ML	Clayey sandy silt, grayish brown (2.5YR 5/2).

Geologist: M. Nauck Driller: HAZ-Tech

Date completed: 7-15-11

Drilling method: Core, air rotary

Bit diameters: 16" (0'-50'), 9 7/8" (50'-555')

Sampling device: HQ core (0'-350'), air rotary cuttings (350'-555') Steel surface casing: None

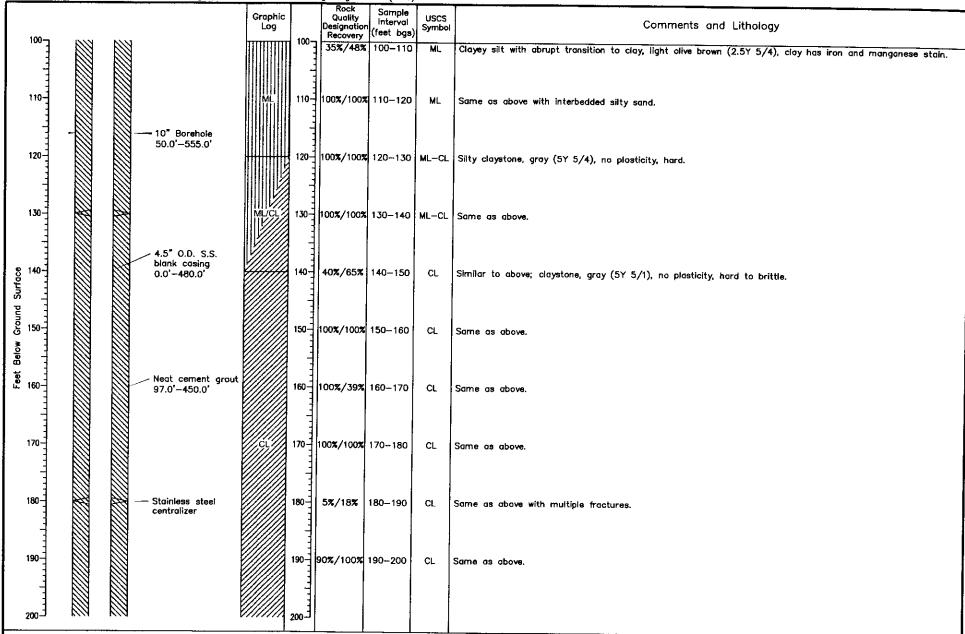
100%/100% 90-100

ML

Same as above.

Northing: 667697.966

Easting: 243653.665 Elevation: 2657.2 (TOC)


Note: TOC = top of casing

PICKLES BUTTE Well Log: PB-12

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN F509 0154 JN ES09.0154

Neat cement grout 97.0'-450.0'

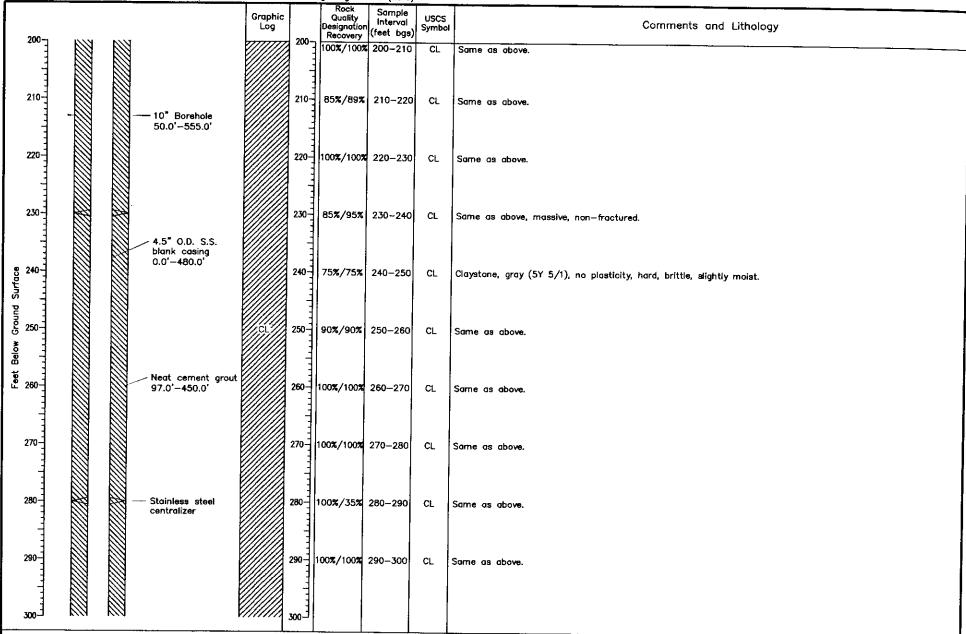
S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-12 (2of6)

Geologist: M. Nauck

Drilling method: Core, air rotary

Driller: HAZ-Tech
Date completed: 7-15-11

Bit diameters: 16" (0'-50'), 9 7/8" (50'-555')


Sampling device: HQ core (0'-350'), air rotary cuttings (350'-555')

Steel suface casing: None

PICKLES BUTTE Well Log: PB-12

Daniel B. Stephens & Associates, Inc. 5-05-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-12 (3of6)

Geologist: M. Nauck

Drilling method: Core, air rotary

Driller: HAZ-Tech
Date completed: 7-15-11

Bit diameters: 16" (0'-50'), 9 7/8" (50'-555')

Sampling device: HQ core (0'-350'), air rotary cuttings (350'-555')

Steel suface casing: None

PICKLES BUTTE Well Log: PB-12

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-12 (4of6) Sample Graphic Quality Interval Comments and Lithology Designation Symbol (feet bgs) Recovery 300-100%/100% 300-310 Same as above. 310-1100%/100% 310-320 Same as above. 10" Borehole 50.0'-555.0' 320-320-1100%/100% 320-330 Same as above. 330-330-1100%/100% 330-340 Same as above. 4.5" O.D. S.S. blank casing 0.0'-480.0' 100%/100% 340-350 Ground Surface Same as above. NA 350-555 Cuttings not sampled at discrete intervals from 350 feet to 555 feet. Visual inspection indicated predominantly gray silt with varying amounts of clay and sand. Below Neat cement grout 97.0'-450.0"

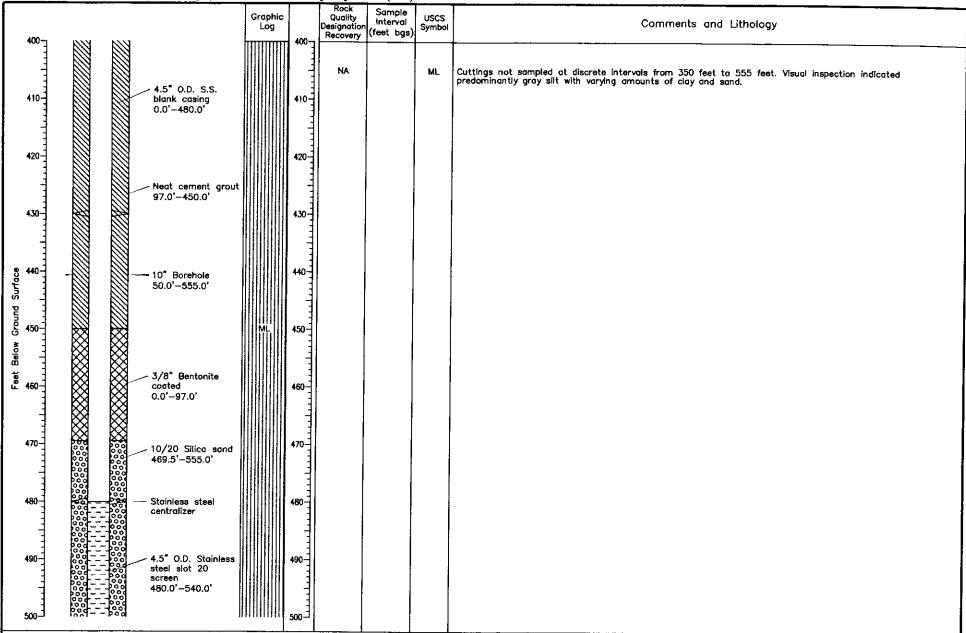
Geologist: M. Nauck Driller: HAZ—Tech

Date completed: 7-15-11

390-

Drilling method: Core, air rotary

Bit diameters: 16" (0'-50'), 9 7/8" (50'-555')


Sampling device: HQ core (0'-350'), air rotary cuttings (350'-555')

Steel suface casing: None

PICKLES BUTTE Well Log: PB-12

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154

Stainless steel centralizer

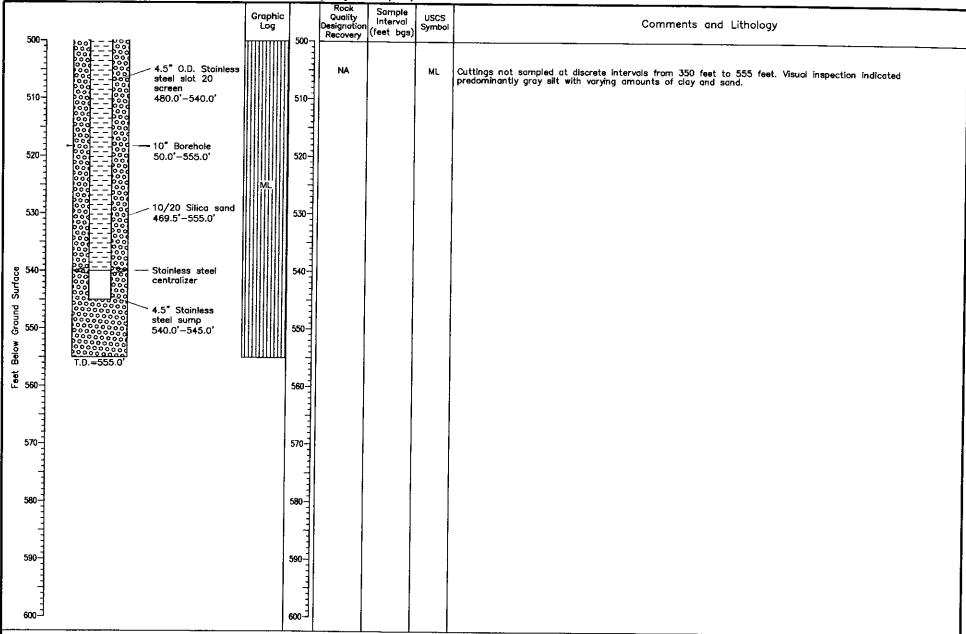
Geologist: M. Nauck

Drilling method: Core, air rotary

Driller: HAZ-Tech
Date completed: 7-15-11

Bit diameters: 16" (0'-50'), 9 7/8" (50'-555')

Sampling device: HQ core (0'-350'), air rotary cuttings (350'-555')


Steel suface casing: None

PICKLES BUTTE Well Log: PB-12

Daniel B. Stephens & Associates, Inc.
6-05-2012

JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-12 (6of6)

Geologist: M. Nauck Driller: HAZ-Tech Drilling method: Core, air rotary

Date completed: 7-15-11

Bit diameters: 16" (0'-50'), 9 7/8" (50'-555')

Sampling device: HQ core (0'-350'), air rotary cuttings (350'-555')

Steel suface casing: None

PICKLES BUTTE Well Log: PB-12

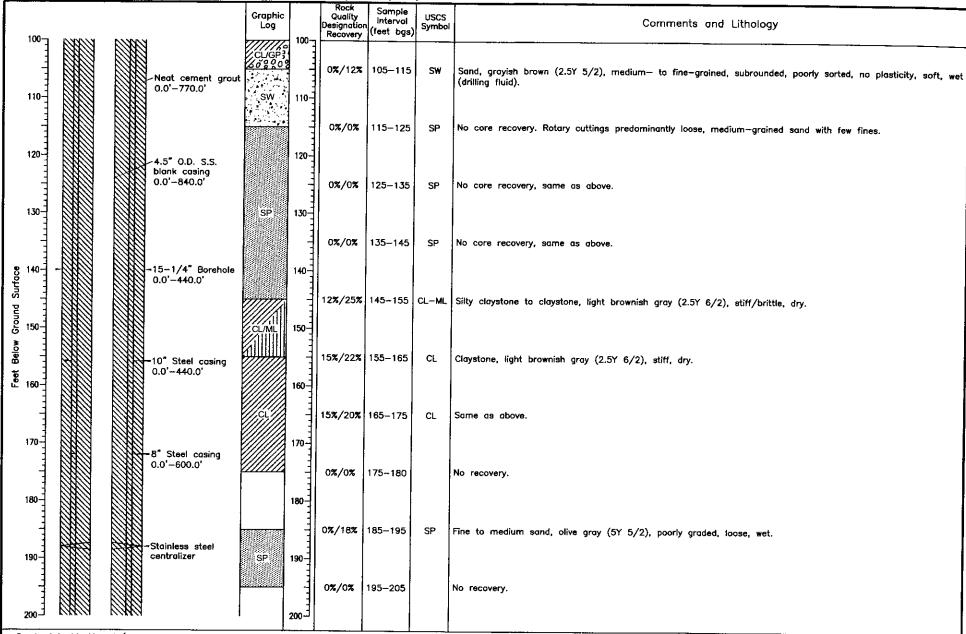
Daniel B. Stephens & Associates, Inc.
5-05-2012

Stephens & Associates, Inc.
JN ES09.0154

5:	\Projects	ES09.01	54_Pickle	s\VR_Drawings\ES09_	0154_07B	_boreid		-13 (1of10	<u>) </u>	
				Locking steel vault	Graphic		Rock Quality	Sample	uscs	
1		F			Log	ł	Designation	Interval	16 1	Comments and Lithology
1	0	- Name (1	Ground surface		J 0_	Recovery	(feet bgs)		
1	- 1			3]	90%/95%	0-5		Vesicular basalt, gray (2.57 5/1), several fractures near top of core, slightly glassy texture.
	- 1			3		1 1	1	1		
	7			Neat cement grout] =	100%/100%	5-10		Same as above.
	3			0.0'-770.0'] [İ	ľ		
	10-	133113		3	Basalt	10-	80%/95%	10-15		Same as above with vertical and horizontal fractures.
	1			3]		1		
		138613		3		1 3	25%/70%	15-20	l	Westerday hearth and (DEV E/4) to the
	- 1			3]	20%/ 10%	13-20	!	Vesicular basalt, gray (2.5Y 5/1), highly fractured.
	1			3					ĺ	
1	20-			4.5" O.D. Stainless	008800	20	0%/2%	20-25	GP	Gravel, unconsolidated, well rounded, loose, 1 to 2.5 inches diarmeter.
1	7			steel (S.S.) blank	600000					
ı		100000		casing	88089	1 1	0%/10%	25-35	GP	Same as above, 0.25 to 3.0 inches diameter.
				0.0'-840.0'	0.GP3]				
	3n-J	<i>[MM]</i>		3	200200	30-	l			
	~ 1			3	082280	"	ľ			
	1				00000					
	7			3			0%/0%	35-45	SP/GW	No core recovery. Rotary cuttings indicate predominantly medium— to coarse—grained sand and interbedded
1	1	-13311		-15-1/4" Borehole	8	1	!			gravel.
1	g 40-]			0.0'-440.0'	5.1	40-				
ŀ	Surrace 10			3	90	1				
ı	3 -			3	98	E	0%/0%	45-55	co /cw	No core required as the control of t
	<u> </u>			3	SP/GW	<u> </u>	020/02	40-00	3P/GW	No core recovery, same as above.
ı	50 50 J	133113		3	50884	1			•	
	5 50-			3	0,0000	50-				
	≱ 1			3	30.900	1				
	#elo#	1990		10" Steel casing	000000	- 4	8%/15%	55-65	GP	Gravel, 0.5 to 3.0 inches diameter with abrupt change to clayey silty fine sand, light olive brown (2.5Y 5/3),
1	Ξ.			3 0.0' -44 0.0'	GP 18	7	· ·			very fine-grained, well graded, well rounded, moderate plasticity, soft.
-	60			3	<i>?????</i> ?	60			SC	· · · · ·
1	- ~ 1	13300		3		~∃				
ı	- 1	133413		3		- ‡∣				
ı	4	<i>CORCH</i>		3		4	0%/23%	65-75	SM	65 to 69 feet silty fine sand, light olive brown (2.5Y 5/3). 69 to 75 feet coarse sandy gravel, polychromic,
ı	1			3	I SM k	- 41		1	Ī	well rounded, 0.25 to 2.0 inches diameter, loose.
ı	70-	1300		3	800864	70-		ļ	ļ	
1	-	13411		8" Steel casing	0 8 80 8 9	- 1]	
	E	<i>[M]</i>		0.0'-600.0'	60000 B	J.	0%/10%	75-85	~~	Constant than 2 inches diameter lease
1		13300		3	800000][U/6/ IU/6	/5-65	GP	Greater than 2 inches diameter, loose.
	‡			1	80000	:		ĺ	j	
	80-			3	00%00	80-				
	- 1			3	00000	41]	1		
				1	2977777	-11	85%/95%	85~95	CL	Claystone to sitty claystone, pale alive (5Y 6/3), none to medium plasticity, hard to stiff, dry, transition to
ı	3	777777	TTXX	-Stainless steel		- 11	· [very well consolidated to well consolidated.
	90-	13444	1777	centralizer		90-	ŀ		J	l l
	~ 1	<i>(330)</i>		1		~][į	ľ	·
		13311		1		- 31	. 1			i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de
ı	4	MM)		1		-	55%/55%	95~105	CL/GP	Silty claystone, light yellowish brown (2.5Y), medium plasticity, medium density, slightly moist, some ferric like
1	‡	133113		}	/CL/GP	41	İ			staining. Gravel lenses noted at 95 to 100 feet in rotary cuttings.
	100-⊐	UMU	VIMI	۱ ا	2028 KOS	100		i	ŀ	I
\perp						i				
	Caslasi			Daniel 1 D. 202	41 4	A				

Geologist: M. Nauck/J. Raucci Driller: HAZ-Tech

Date completed: 12-15-11


Drilling method: Core, mud rotary, air rotary Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

Sampling device: HQ core, air rotary cuttings Steel suface casing: 8" (0'-600'), 10" (0'-440') Northing: 666231.696 Easting: 243986.781 Elevation: 3073.9 (TOC)

Notes: HAZ-Tech core drilling 0'-666'; Adamson

Pump and Drill air rotary drilling 666'-920'
TOC = top of casing

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-13 (2of10)

Geologist: M. Nauck/J. Raucci Driller: HAZ-Tech

Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

Sampling device: HQ core, air rotary cuttings Steel suface casing: 8" (0'-600'), 10" (0'-440') Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

3. \1 TOJECA	s (E309.0134_Pickles (VR_Drowings (E309_0	134_070_00		- 13 (3011C	"	
200-		Graphic Log	Rock Quality Designation Recovery	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
210-	Neat cement grout 0.0'-770.0'	20 SP 21	0%/20%	205-215	SP	Sand, olive brown (2YR 4/3), medium-grained, well sorted, loose, wet.
1	4.5" O.D. Stainless steel (S.S.) blank		0%/0%	215225		No recovery.
220-	casing 0.0'-840.0'	220]	225-235	SP	Same as above.
230	-15-1/4" Borehole 0.0'-440.0'	230]	235-245	SP	Same as above.
Surface 5401.		SP 240]			
9 250 T		250]	245-255	SP	Sand, same as above, color $(2.5Y 4/2)$, then 3 inches of claystone, light yellowish brown $(2.5Y 6/2)$, slight plasticity, slightly moist.
86 560 - 1	10" Steel casing	260]	255-265	CL-SP	Interbedded brown sand, same as above, with light yellowish brown claystone, some oxidation color banding.
1	0.0'-440.0'	CL/SP]	265–275	CL-SP	Same as above, predominantly sand with sandy claystone interbeds.
270-	8* Steel casing	270	50%/100%	275-285	SP	Sand, light yellowish brown (2.5Y 6/3), fine-grained, well sorted, micaceous, claystone interbeds, moderately compact, slightly moist.
280-	0.0'-600.0'	280 SP	45%/95%	285-295	SP	Sand, grayish brown (7.5Y 5/3) medium~grained, well sorted with uncommon silty and clayey interbeds, 1 to
290	Stainless steel centralizer	290		230 200	5	2 centimeters thick, loose to weakly cemented, moist, prominent oxidation color banding.
300		SP/ML 111111111111111111111111111111111111	1 1	295305	SP-ML	Similar to above, grayish brown sand interbedded with lighter colored silty fine sand and sandy clay, loose to weakly cemented.
						

Geologist: M. Nauck/J. Raucci Driller: HAZ—Tech

Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

Sampling device: HQ core, air rotary cuttings Steel surace casing: 8" (0'-600'), 10" (0'-440') Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

5: \Projects \E509.0154_Pickles \VR_Urdwings \E509_C	Graphic Rock Guality Log Designati	Sample USCS Interval Symbo	
300- 	SP/ML	305-315 SM-ML	Sandy silt and silty sand, light yellowish brown (2.5Y 6/3-6/4), fine-grained, weakly cemented, brittle, moist, interbedded with olive brown sand, similar to above.
320- 4.5" O.D. Stainless steel (S.S.) blank	MINI((((())))	0% 315325 SM	Similar to above, but also several thin layers (5 to 10 centimeters) very hard fine sandstone, pale yellow (5Y 8/2), prominent oxidation color sanding, hard rock is dry.
330 - 330 -	50%/100 ML/SP 330-	0% 325-335 ML-SP	Sandy siltstone, pale yellow (2.5Y 7/4), hard, dry, interbedded with light olive brown loose sand, similar to above.
-15-1/4" Borehole 0,0'-440.0'	340	335-345 SM	Silty sandstone and sandy siltstone, light yellow brown (2.5Y 6/4), generally weakly cemented with loose and very hard layers, oxidation staining especially in very hard layers.
Ground Surface	60%/90	% 345-355 SM	Same as above, color mottled with olive yellow (2.5Y 6/6), massive to finely laminated, dry to slightly moist.
10" Steel casing 0.0'-440.0'	40%/90	% 355-365 ML-SM	Siltstone, sandy siltstone and very fine sandstone, pale yellow (2.5Y 7/4) to light olive brown (2.5Y 6/3), weakly to moderately cemented, laminated, local oxidation staining, dry to slightly moist.
370	370-	365-375 SM	Interbedded silty fine sandstone, and siltstone, same as above, with olive brown, fine— to medium—grained sandstone, weakly comented, slightly moist.
380	380-	375-380 SM	Sandstone, light olive brown, fine—grained, similar to above, finely laminated, cross—bedded, claystone 384 to 385 feet, slightly moist.
390 - Stainless steel centralizer	ML 390	385-395 ML	Similar to above, sandy siltstone and very fine—grained silty sandstone, local oxidation staining, highly fractured, slightly moist.
Geologist: M. Nauck/J. Raucci Drilling r	nethod: Core, mud ro	395-405 CL	Sandy claystone and siltstone, color same as above. Note: HAZ-Tech core drilling 0'-666':

Driller: HAZ-Tech Date completed: 12-15-11 Drilling method: Core, mud rotary, air rotary Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

Sampling device: HQ core, air rotary cuttings Steel suface casing: 8" (0'-600'), 10" (0'-440') Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-13 (5of10)

	TO TEL TORIOS (TILEDIONINGS (ESOS_	0101_010_000		13 (30)10	"	
400-7 1/1/1	N KNAKA VA	Graphic Log	Rock Quality Designation Recovery	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
410-	4.5" O.D. S.S. blank casing 0.0'-840.0'	CL SM/ML 410-		4 05–415	SM-ML	Sandy siltstone and sandstone, light olive brown, finely laminated, cross-bedded, very fine-grained local oxidation staining, slightly moist.
420-	-15-1/4" Borehole	ML 420	0%/15%	415–425	ML	Silty claystone and siltstone, light yellowish brown to pale olive.
430-1	0.0'-440.0'	CL/SM 430-	60%/80%	425-435	CL-SM	Similar to above, light olive brown fine-grained sediments, some organic material, slightly moist, laminated, weakly to moderately cemented.
Surface Surface Trick the trick	0.0'-440.0'	ML 440-	75%/85%	435~445	ML	Same as above, dominantly sandy silt, clayey fine sand, color same as above.
Ground 450	8" Steel casing 0.0'-600.0'	SMML 450-	15%/50%	445-455	SM-ML	Same as above, a bit more sand.
Faet Below	Neat cement grout 0.0'-770.0'	CL 460	20%/50%	455-465	CL	Silty claystone, olive gray (5Y 5/2), massive, micaceous, brittle, very slightly moist.
470-		ML 470	30%/90%			Similar to above, siltier (clayey siltstone), sub-vertical fractures 460 to 465 feet.
480	9-7/8" Borehole 440.0'-923.0'	ML/CL 480-				Same as above, color pale olive (5Y 6/3).
490	— Stainless steel centralizer	ML 490	00%/100% 4			Same as above, clayey siltstone, pale olive, some oxidation staining, few fractures.
500		CL/ML 500	00%/100% 4	195-505	CL-ML S	Siltstone and claystone with minor very fine sandstone, light olive gray (5Y 6/2), micaceous, dry to slightly noist, indurated, oxidation staining along bedding.

Geologist: M. Nauck/J. Raucci Driller: HAZ-Tech

Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary
Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

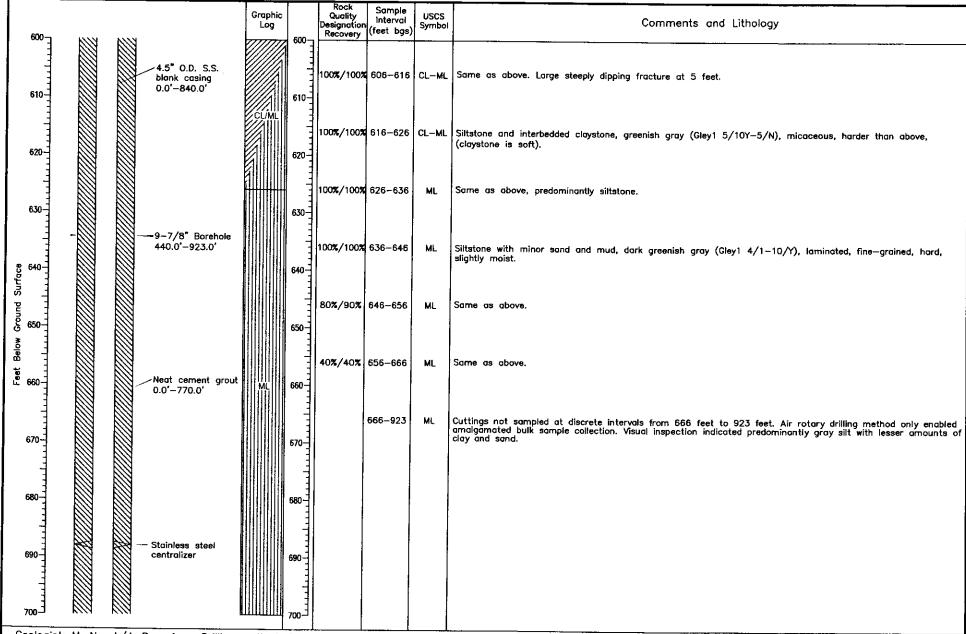
Sampling device: HQ core, air rotary cuttings Steel suface casing: 8" (0'-600'), 10" (0'-440') Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_078_borelogs.dwg PB-13 (6of10) Sample Graphic Quality USCS Interval Log Comments and Lithology Designation (feet bgs) Recovery 500-4.5" O.D. S.S. 80%/100% 505-515 CL-ML Same as above, silty clay and clayey silt, abundant organic material and oxidation staining. blank casina 0.0'-840.0' 510-0%/100% 515-525 | CL-ML | Same as above. 520 520-⁻ 9-7/8" Borehole 80%/100% 525-535 Similar to above, less muddy, siltstone and silty very fine sandstone with claystone, clive (5Y 5/3), sandy 440.0'-923.0' layers are laminated, cross-bedded. 530 530-0%/100% 535-545 Predominantly fine-grained silt, sandstone and clayey siltstone. Surface 540-Neat cement grout 100%/100% 545-555 Silty claystone, pale olive to olive gray, weakly cemented to 553 feet, then clayey siltstone, gray (5Y 5/1), Ground 0.0'-770.0' dense, finely laminated, slightly moist. Contact with "blue clay" unit at 552.5 feet. 550-Belo¥ 555-565 not Sity claystone with minor sand, gray (5Y 5/1), massive to laminated, fine-grained, weakly to moderately recorded cemented, dense, very slightly moist. 560-560-40%/100% 565-576 Silty claystone, dark greenish gray (Gley1 4/1), hard, brittle, numerous fractures. 8" Steel casing 0.0'-600.0' 570-70%/100% 576-586 Same as above. 85%/100% 586-596 Silty claystone, dark greenish gray (Gley1 4/1), slight plasticity, brittle, slightly moist, micaceous. Stainless steel centralizer 590-

Geologist: M. Nauck/J. Raucci Driller: HAZ-Tech

Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary

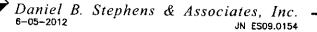

Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923') Sampling device: HQ core, air rotary cuttings

Steel surface casing: 8" (0'-600'), 10" (0'-440')

Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

80%/100% 596-606 CL-ML Same as above, a bit siltier, greenish gray (Gley1 5/1), interbedded with hard micaceous siltstone.

S:\Projects\ES09.0154_Pickles\VR_Drowings\ES09_0154_07B_borelogs.dwg PB-13 (7of10)



Geologist: M. Nauck/J. Raucci Driller: HAZ—Tech

Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

Sampling device: HQ core, air rotary cuttings Steel suface casing: 8" (0'-600'), 10" (0'-440') Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

		kies\VK_Drawings\ESU9_0	Graphic Log	Rock Quality Designation	Sample Interval (feet bgs)	uscs	Comments and Lithology
710-		4.5" O.D. S.S. blank casing 0.0'-840.0'		710			Cuttings not sampled at discrete intervals from 666 feet to 923 feet. Air rotary drilling method only enabled amalgamated bulk sample collection. Visual inspection indicated predominantly gray silt with lesser amounts of clay and sand.
720-		9-7/8" Borehole 440.0'923.0'		720-			
Feet Below Ground Surface		Neat cernent grout 0.0'-770.0'	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50-			
770-		3/8" Hydrated bentonite pellets 770.0'-804.0'		70-1			
790	t: M. Nauck/J	- Stainless steel centrolizer	79	90 90 11 11 11 11 11 11 11 11 11 11 11 11 11			

Geologist: M. Nauck/J. Raucci Driller: HAZ—Tech

Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary

Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923') Sampling device: HQ core, air rotary cuttings

Steel surface casing: 8" (0'-600'), 10" (0'-440')

Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling

666'-920'

	<u></u>		s\VR_Drawings\ESO9_C	Graphic Log	1	Rock Quality Designation Recovery	<u> </u>	i 	Comments and Lithology
800	\bigotimes		3/8" Hydrated bentonite pellets 770.0'-804.0'		800	Recovery			Cuttings not sampled at discrete intervals from 666 feet to 923 feet. Air rotary drilling method only enabled amalgamated bulk sample collection. Visual inspection indicated predominantly gray silt with lesser amounts of
810-		\$ 100 m	Sand and slough 804.0'-827.0'		810				clay and sand.
820-1 	006		4.5" O.D. S.S. blank casing 0.0'-840.0'		820				
830	000 000 000 000 000 000 000	000	9-7/8" Borehole 440.0'-923.0'		830	:			
Surface Little	000 000 000 000	000			840-				
Below Ground	000	000 000 000 000 000 000 000 000 000 00		S	850-				
P. 860	000	000 000 000 000 000 000 000	_0.020" Slot screen 840.0'-900.0'		860-				
870	000	000 000 000 000			870				
880	000	000 000 000 000 000 000 000 000 000	10-20 Silica sand 827.0'-902.5'		880				
890-	200	000 000 000 000 000 000 000	– Stoinless steel centralizer		890-				
900	st: M. Nauc	000			900-	mud rote			Note: HA7-Tech core drilling 0'-666'.

Geologist: M. Nauck/J. Raucci

Driller: HAZ-Tech
Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary

Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

Sampling device: HQ core, air rotary cuttings Steel suface casing: 8" (0'-600'), 10" (0'-440') Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

PICKLES BUTTE Well Log: PB-13

Daniel B. Stephens & Associates, Inc. 9-05-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-13 (10of10) Sample Graphic Quality

USCS Interval Designation Comments and Lithology Symbol (feet bgs) Recovery 900--10-20 Silica sand 827.0'-902.5' Cuttings not sampled at discrete intervals from 666 feet to 923 feet. Air rotary drilling method only enabled amalgamated bulk sample collection. Visual inspection indicated predominantly gray silt with lesser amounts of clay and sand. Sump 910-905.0'-910.0' 9-7/8" Borehole 480.0'-923.0' 920-Slough 902.5'-923.0' T.D.=923.0' 930-930~ Ground Surface 940-950-Below ₩ 960-960-970-970-980-980-990-990-

Geologist: M. Nauck/J. Raucci Driller: HAZ-Tech Date completed: 12-15-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15 1/4" (0'-440'), 9 7/8" (440'-923')

Sampling device: HQ core, air rotary cuttings Steel suface casing: 8" (0'-600'), 10" (0'-440')

Note: HAZ-Tech core drilling 0'-666'; Adamson Pump and Drill air rotary drilling 666'-920'

> PICKLES BUTTE Well Log: PB-13

Daniel B. Stephens & Associates, Inc. JN ES09.0154

S:\Projects\ES09.0154 Pickles\VR Drawings\ES09..0154_078_borelogs.dwg PB-14 (1of10)

		Locking steel vault	Graphic Log		Rock Quality Designation Recovery	Sample interval (feet bgs)	USCS Symbol	Comments and Lithology
0,1		Ground surface	00000	ولسبيل	0%/0%	0-10	GP	No core recovery. 0 to 30 feet description based on rotary cuttings unconsolidated gravel, meterolithic clasts up to 3 inches, rounded, coarse—grained, poorly sorted, sand matrix.
10-		Cement grout 0.0'-50.0'	0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 %	10-		10~20	GP	Same as above.
20-		-4.5" O.D. Stainless steel (S.S.) blank casing 0.0'-845.0'	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20-11-11-11-11-11-11-11-11-11-11-11-11-11		20-30	SP	Sand, medium— to coarse-grained, moderately well sorted, loose.
30-		-15-1/4" Borehole		30- 30-	80%/80%	30-35	ML	Silstone, light brownish gray (2.5Y 6/2), weakly cemented.
1		0.0'-480.0'		1	85%/85%	35-40	ML	Siltstone—sandy siltstone, light brownish gray (2.5Y 6/2), weakly cemented.
Surface Surface				40~	85%/85%	40-45	ML	Siltstone-clayey siltstone, pale yellow (2.5Y 7/3), weakly cemented.
		Stainless steel centralizer	ML	1	45%/75%	45-50	ML	Sandy silstone, light yellowish brown (2.5Y 6/3), very weakly cemented, highly fractured, oxidation staining.
* Ground				50-	60%/75%	50-55	ML	Same as above.
at Below				1	25%/40%	55-60	ML	Same as above, fine-grained.
- 09 F	-	-10" Steel casing 0.0'-480.0'		60-	50%/95%	60-65	ML	Same as above, fine-grained, highly fractured.
				1	35%/35%	65-75	SM	Silty sandstone, light yellowish brown (2.5Y 5/4), laminated, fine— to medium—grained, weakly cemented.
70-1		Neat cement grout 0.0'-807.0'	SM	80-1	25%/30%	75–85	SM	Same as above, light olive brown (2.5Y 5/4).
				1	19%/19%	85-91	SM	Same as above with coarse-grained sand in drilling fluid matrix.
90-			200 GP 80	90		91-95	GP	Rotary cuttings indicate gravel layer at 91 to 95 feet.
			SW .	1	60%/99%	95–100	SW	Sand, pale yellow (2.5Y 8/3), coarse—grained, subrounded, loose, wet.
100-1	1888 88	M. Nauck/J. Raucci (Detting	ا د 100	60%/99% 1: Core, n		SM	Silty sandstone, pale yellow (2.5Y 8/3), fine—grained, weakly cemented. otary Northing: 665549.182

Geologist: J. Fisher/M. Nauck/J. Raucci Drilling method: Core, mud rotary, air rotary Driller: HAZ-Tech; Adamson Pump and

Bit diameters: 15-1/4" and 9-7/8"

Northing: 665549.182 Easting: 244947.947 Elevation: 3080.9 (TOC)

Drill Date completed: 10-11-11

Sampling device: HQ core, NQ core, rotary cuttings Steel suface casing: 10"

Note: HAZ-Tech core drilling 0'-385', 520'-750' (NQ core 600'-750'); Adamson Pump and Drill mud rotary

drilling 385'-520', air rotary drilling 750'-923'

PICKLES BUTTE Well Log: PB-14

Note: TOC = top of casing Daniel B. Stephens & Associates, Inc.

6-05-2012

JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-14 (2of10)

- 1				· · · · · · · · · · · · · · · · · · ·		T	Rock	11 (2011)	-	
	100-7	I NXXXI	6 3331		Graphic Log		Quality Designation	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
	110-				SM 1	110-	0%/0%	105-115	SP	No core recovery 105 feet to 175 feet, rotary cuttings indicate dominantly medium sand, moderately well sorted, unconsolidated.
-	120-			4.5" O.D. S.S. blank casing 0.0'-845.0'		120	0%/0%	115-125	SP	Same as above.
į	130~			-15-1/4" Borehole		130	0%/0%	125175	SP	Same as above to 175 feet (rotary cuttings).
	140ce			0.0 -480.0	SP	140				
	ow Ground Surface			Stainless steel centralizer		150				
	Feet Below			-10" Steel casing 0.0'-480.0'		160-				
	170-			Neat cement grout		170-	0%/50%	175–180	SW	Sand, dark yellowish brown (10YR 4/4), coarse-grained, non-plastic, loose, wet.
	180			0.0'-807.0'	. SW	180-	0%/50%	180-185		Silty sand, light yellowish brown (2.5Y 6/4), fine-grained, low plasticity, loose, wet.
	1			ļi.	- Hilling	1	30%/40%	185-195	sw	Sandstone, dark grayish brown (2.5Y 5/2), coarse-grained, subrounded, weakly cemented, vertical fractures.
	190-				SP/SM	190	35%/35%	195–205	SP-SM	Sandstone grading to silty sandstone, olive brown (2.5Y 4/3), coarse— to fine—grained, weakly cemented.
F	Geologiet:	· I Fich	ar /11 1	Javale / L. Davasi	Dwillia.	1	h - 1 - 0		 _	

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ-Tech; Adamson Pump and Drill Date completed: 10-11-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8"

Sampling device: HQ core, NQ core, rotary cuttings

Steel suface casing: 10"

Note: HAZ-Tech core drilling 0'-385', 520'-750' (NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'

PICKLES BUTTE Well Log: PB-14

Daniel B. Stephens & Associates, Inc. 6-05-2012

JN F509 0154 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-14 (3of10)

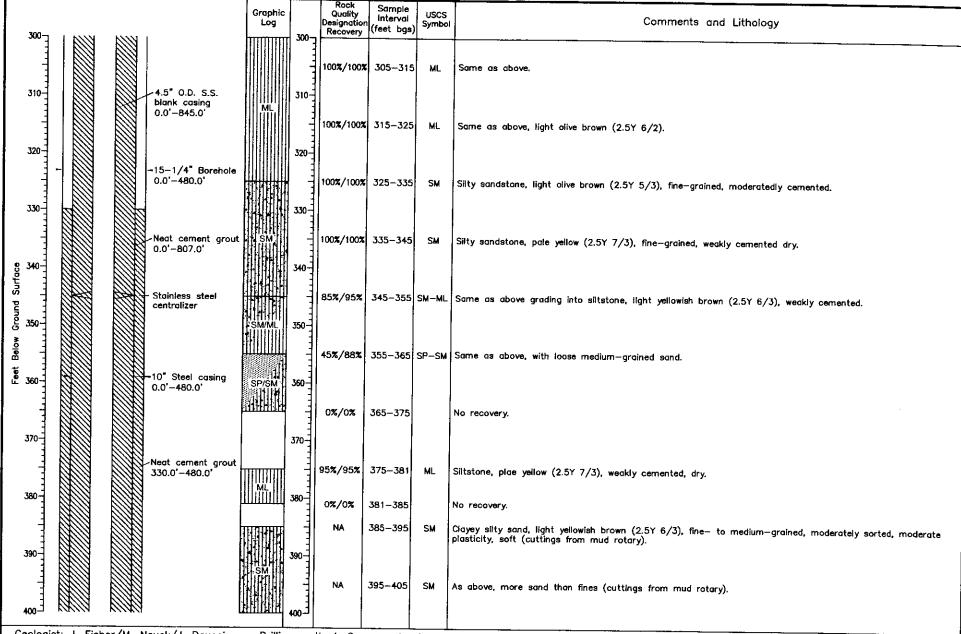
5: \Projects \E309.0134_Pickles \VK_Drowings \E309_	0134_076_5616		14 (30110		
	Graphic Log	Rock Quality Designation Recovery	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
	200	0%/48%	205–215	SW	Sand, dark yellowish brown (10YR 4/4), coarse-grained, non-plastic, loose, wet.
4.5" O.D. S.S. blank casing 0.0'-845.0'	210- SW]	215–225	SW	Same as above.
220-	220-]] :	225-235	SP-SM	Loose sand graiding to silty sandstone, light yellowish brown (2.5Y 6/3), fine-grained, weakly cemented.
230 -15-1/4" Borehole 0.0'-480.0'	SP/SM 230-	0%/48%	235–245	SM	Silty sandstone, light yellowish brown (2.5Y 6/3), fine— to medium—grained, weakly cemented, fractured.
Stoinless steel	240-	11			
centralizer centralizer	250-	1) 1	245-255	SM	Same as above with iron staining.
10" Steel casing 0.0'~480.0'	SW. 260-	0%/48%	255-265	SW	Sandstone, light olive brown (2.5Y 5/3), laminated, coarse-grained, very weakly cemented, iron staining.
270-	ML 270-		265-275	ML	Sandy clayey silt, light yellowish brown (2.5Y 6/3), low plasticity, soft, damp.
Neat cement grout 0.0'-807.0'	380		275–285	SM	Silty sandstone, light yellowish brown (2.5Y 6/3), iron stained banding, fine—grained, weakly cemented.
	SM 280-		285-295	ML	Sandy siltstone, light yellowish brown (2.5Y 6/3), fine-grained, weakly cemented, fractured.
290-	290-	0%/48%	295-305	ML .	Same as above, light olive brown (2.5Y 5/3).
Geologist: J. Fisher/M. Nauck/J. Raucci	l	ethod: Cor	re, mud r	otary,	air rotary Note: HAZ-Tech core drilling 0'-385', 520'-750'

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—11—11

6-05-2012

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8" Sampling device: HQ core, NQ core, rotary cuttings

(NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'


PICKLES BUTTE
Well Log: PB-14

Steel surface casing: 10"

Daniel B. Stephens & Associates, Inc. -

JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-14 (4of10)

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—11—11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8" Sampling device: HQ core, NQ core, rotary

Note: HAZ-Tech core drilling 0'-385', 520'-750' (NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'

cuttings Steel surface casing: 10"

5: \Projects\E509.0154_Fickies\Vr_Drowings\E509_0	Graphic Log	Rock Quality Designation	Sample	USCS Symbol	Comments and Lithology
400 	400	NA NA	405-415	ML.	Same as above, clayey silt with sand, more fines than sand (cuttings from mud rotary).
420-1-15-1/4" Borehole	420	NA NA	415-425	ML	Same as above (cuttings from mud rotary).
0.0'-480.0'	430	NA NA	425–435	ML	Same as above (cuttings from mud rotary).
Neat cement grout 330.0'-480.0'	440	NA NA	435–445	ML	Same as above, few cutting returns (cuttings from mud rotary).
Stainless steel centralizer	ML 450	NA NA	445-455	ML.	Same as above (cuttings from mud rotary).
10" Steel casing 0.0'-480.0'	460	NA NA	4 55–465	ML	Same as above (cuttings from mud rotary).
A70- Neat cement grout	470	NA NA	465-475	ML	Same as above (cuttings from mud rotary).
0.0'-807.0'	480	NA NA	475-485	ML	Same as above (cuttings from mud rotary).
	490	NA NA	485 –520		No cuttings return.
500	500	1			

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—11—11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8" Sampling device: HQ core, NQ core, rotary Note: HAZ-Tech core drilling 0'-385', 520'-750' (NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'

cuttings Steel surace casing: 10"

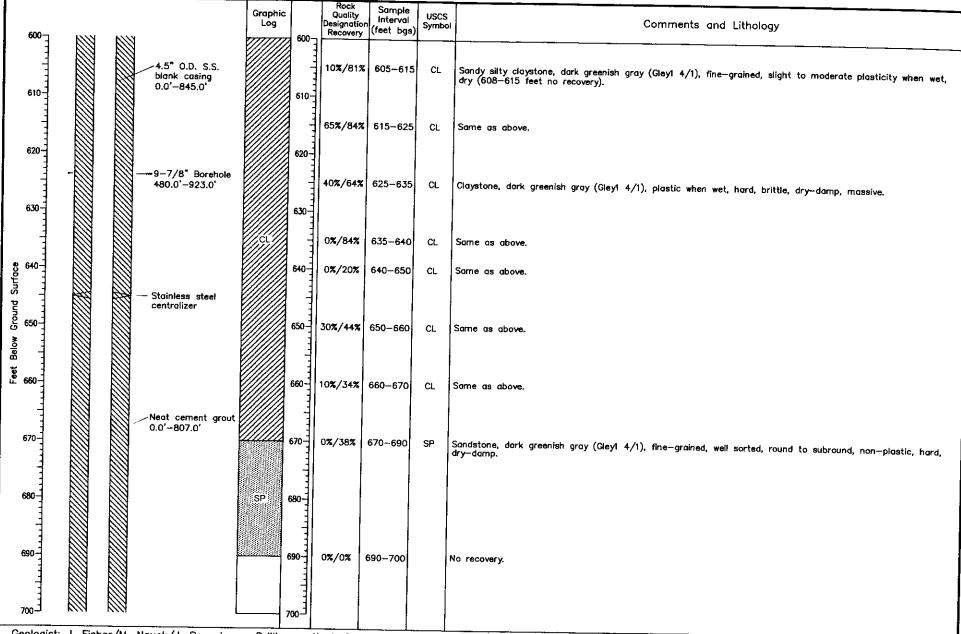
 $S: \label{eq:condition} S: \label{eq:condition} Projects \end{tabular} ES09.0154_Pickles \end{tabular} VR_Drawings \end{tabular} ES09_0154_07B_borelogs.dwg PB-14 (6of10)$

500-7	ckies /ac_n.cemiuās /cona_c	Graphic Log		Rock Quality	Sample	uscs	Comments and Lithology
510-	4.5" 0.0. s.s. blank casing 0.0'~845.0'		510	NA NA			No cuttings return.
520			520	70%/77%	520-525	CL	Silty claystone, clive gray (5Y 3/2), weakly cemented.
1	9-7/8" Borehole		1	96%/96%		CL	Same as above.
530-	480.0'-923.0'		530-	90%/90%	530-540	CL	Silty sandy claystone, dark olive gray (5Y 3/2), fine-grained, weakly cemented, moist.
Ground Surface	Stainless steel centralizer		540	90%/95%	540-550	CL	Same as above, with dark gray mottling, moderately cemented, few fractures.
South	centralizer		550	95%/95%	550-560	CL	Some as above.
Feet Below	Neat cement grout	CL	260	95%/95%	560–570	CL	Same as above.
570	0.0'-807.0'		570	70%/95%	570-580	CL	Sandy silty claystone, light yellowish brown (7.5Y 6/3), very fine—grained, weakly cemented, slight to moderate plastice when wet.
580-1			580	82%/82%	580-590		Same as above, some fractures.
590-			590	70%/90%	590-595	CL	Sandy silty claystone, dark greenish brown (2.5Y 4/2), very fine-grained, weakly cemented, dry to damp.
600			600	0%/37%	595-605	CL	Sandy silty claystone, greenish gray (Gleyl 5/1), very fine~grained, slight plasticity, moderately cemented, brittle, dry.

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ-Tech; Adamson Pump and Drill Date completed: 10-11-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8" Sampling device: HQ core, NQ core, rotary

(NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling


cuttings Steel suface casing: 10"

Note: HAZ-Tech core drilling 0'-385', 520'-750' 750'-923'

PICKLES BUTTE Well Log: PB-14

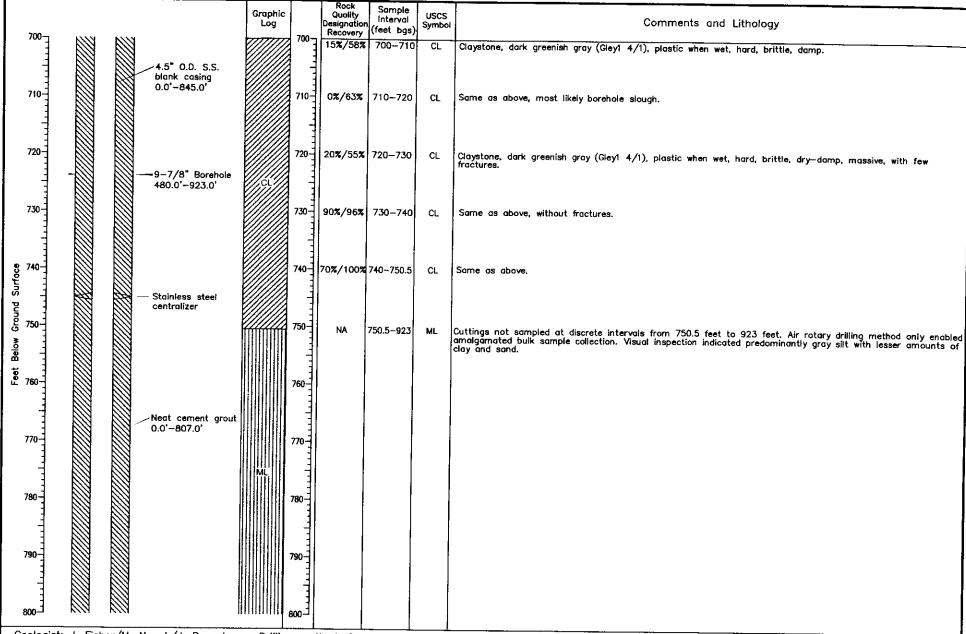
Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-14 (7of10)

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed; 10—11—11 Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8"

Sampling device: HQ core, NQ core, rotary cuttings

Steel suface casing: 10"


Note: HAZ-Tech core drilling 0'-385', 520'-750' (NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'

PICKLES BUTTE Well Log: PB-14

Daniel B. Stephens & Associates, Inc.
6-05-2012

JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-14 (8of10)

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ-Tech; Adamson Pump and Drill Date completed: 10-11-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8"

Sampling device: HQ core, NQ core, rotary cuttings

Steel suface casing: 10"

Note: HAZ-Tech core drilling 0'-385', 520'-750' (NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'

PICKLES BUTTE Well Log: PB-14

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154

			s\VR_Drawings\ESO9_0	Graphic Log		Rock Quality	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
800-			Neat cement grout 0.0'-807.0'		800	NA NA		ML	Cuttings not sampled at discrete intervals from 750.5 feet to 923 feet. Air rotary drilling method only enabled amalgamated bulk sample collection. Visual inspection indicated predominantly gray silt with lesser amounts of
810-			4.5" O.D. S.S. blank casing 0.0'-845.0'		810				clay and sand.
820			3/8" Hydrated bentonite pellets 807.0'-834.0'	The state of the s	820-				
830		××	—9-7/8" Borehole 480.0'-923.0'		830-				
Below Ground Surface	000 000 000 000 000 000 000 000 000 00	000000000000000000000000000000000000000	Stainless steel centralizer		840				
860 880	000 - 000 -	000000000000000000000000000000000000000	0.020" Slot screen 845.0'-905.0'		860				
880-	000	000000000000000000000000000000000000000	/10-20 Silica sand 834.0'-902.0'		880-				
890-	100	000 000 000 000 000 000 000 000 000	Nevel (1. Save		890				

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10-11-11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8"

Sampling device: HQ core, NQ core, rotary cuttings

Steel suface casing: 10"

Note: HAZ-Tech core drilling 0'-385', 520'-750' (NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'

PICKLES BUTTE Well Log: PB-14

Daniel B. Stephens & Associates, Inc. 5-05-2012 JN ES09.0154

	S LESUS UTD4_PICKIES VR_Drawings LESUS_C	1 1				· ·	
	0.020 Slot screen	Graphic		Rock Quality Designation Recovery	Sample Interval	USCS	Comments and Lithology
	845.0'-905.0'	Log		Designation Recovery	(feet bgs)	Symbol	comments and Ethiology
F ⁰⁰⁰	10-20 Silica sand 834.0'-902.0'		F^{000}			-	
]			3				
1 =	— Stainless steel centralizer		4	NA NA		ML	Cuttings not sampled at discrete intervals from 750.5 feet to 923 feet. Air rotary drilling method only enabled amalgamated bulk sample collection. Visual inspection indicated predominantly gray silt with lesser amounts of
]			3.				arrialgamated bulk sample collection. Visual inspection indicated predominantly gray silt with lesser amounts of clay and sand.
910-	Sump 905.0'-910.0'		910				
]							
1 =			╡				
1 3	A WAR TO THE STATE OF THE STATE		3			1	
920-	Slough 902.0' -923.0'		920				
1]	T.D.=923.0'	mmmm][
1 =]				
1 1]				
930		1	930				
E I			- 4				
1 7]]				
E 040 4		1	940	Ì			
Surface Surface		!	370] [
1 s 1			31				
E 3			41				
Ground 520			950-	ļ			
. 1			- 1	٠			
Below			- 11			İ	
"			3	:			
# 960 =			960-		Ì		
1]						İ	
1 - 1			-11		İ	ŀ	
-			3		ŀ		
970-			970-		ļ	ļ	
			- 41		İ	-	
] -					ŀ		
1 1		1][ŀ		
980-] '	980	ļ			
]		ļ	- 11	Ī	İ	j	
=		İ	41				
]			- 1		İ		
990] !	990~	1			
1 =		- 1	- 11			1	}
]		ĺ][ĺ			
E ₀₀₀₁			lE₀₀o			ļ	
1000-5		11	- w				

Geologist: J. Fisher/M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—11—11

Drilling method: Core, mud rotary, air rotary Bit diameters: 15-1/4" and 9-7/8" Sampling device: HQ core, NQ core, rotary cuttings

Steel suface casing: 10"

(NQ core 600'-750'); Adamson Pump and Drill mud rotary drilling 385'-520', air rotary drilling 750'-923'

Note: HAZ-Tech core drilling 0'-385', 520'-750'

PICKLES BUTTE Well Log: PB-14

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg.PB-15_(1of9)

3. (Frojects (t		_FICKIOS	VR_Drawings\ES09_0Locking steel vault	Graphic	_boreio	Rock Quality	Sample	uscs	
			Ground surface	Log		Designation	Interval (feet bgs)	I C	Comments and Lithology
			Neat cement grout	0 8 6 6 9 0 8 6 8 GP/SP		NA .	0-10	GP-SP	Gravelly sand, olive gray (5Y 5/2), fine- to medium-grained, subrounded, well sorted, non-plastic, loose, moist.
10-			0.0'-757.0'	sw	10	NA	10-20	SW	Sand, light gray (5Y 7/2), fine— to coarse—grained, well sorted, subrounded, non—plastic, loose, dry.
20-			4.5" O.D. Stainless		20	NA	20-30	SP	Same as above.
30-			steel (S.S.) blank casing 0.0'-790.0'	SP	30-1	AA	30-40	SP	Same as above.
Ground Surface					40	NA	40-50	SC-SM	Clayey silty sand, pale yellow (5Y 7/3), fine-grained, subrounded, low plastic, soft, slightly moist
et Below			-15-1/4" Borehole 0.0'-400.0'		50	NA	50-60	SC-SM	Same as above.
1				SC/SM	60,7	NA	60-70		Same as above.
70-1			→Stainless steel centralizer		70-1	NA			Clayey silty sand, light olive brown (2.5Y 5/3), fine— to coarse—grained, rounded to subrounded, low plastic, soft, moist.
80-1			-10" Steel casing	SP	80	NA .	8090		Sand, pale yellow (2.5Y 7/4), fine-grained, non-plastic, loose, moist
100			0.0'-400.0'		100	NA	90-100	SP	Same as above.
Geologist	t: M. Nau	ick/J.	Raucci	Drilline	a mel	hod: Core	e. mud r	otarv	Northing: 665617.168

Geologist: M. Nauck/J. Raucci

Date completed: 10-26-11

Drilling method: Core, mud rotary

Driller: HAZ-Tech; Adamson Pump and Drill Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings

Steel suface casing: 10" Note: TOC = top of casing

Northing: 665617.168 Easting: 246058.254 Elevation: 3023.3 (TOC)

Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154 JN ES09.0154 $S: \label{eq:conditional_problem} S: \$

S. (*Tojects \ESOS.OTS+Tickes \VI_Drawings \ESOS_O	Graphic Log		Rock Quality	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
Neat cement grout		100		100-110	SP	Sand, light yellowish brown (2.5Y 6/3), fine—grained, poorly sorted, subrounded, non—plastic, loose, moist
0.0'-757.0'		110	NA i	110–120	SP	Sand, light olive brown (2.5Y 5/3), fine— to medium—grained, subrounded, poorly sorted, non-plastic, loose, moist
4.5" O.D. Stainless steel (S.S.) blank		120	NA	120-130	SP	Same as above.
steel (S.S.) blank casing 0.0'-790.0'	1	130	NA	130–140	SP	Same as above.
0 140- 0 150- 150- 150- 150- 150- 150- 150- 150-	1	140	NA	140150	SP	Same as above.
et Below	SP 1	150	NA	150-160	SP	Same as above.
		60	NA	160-170	SP	Same as above.
170 Stainless steel centralizer		70		170-180		Same as above.
180- 190- 190- 190- 190- 190- 190- 190- 19		80		180-190		Same as above with iron staining.
190 - 10" Steel casing 0.0'-400.0'		90-1	NA 1	90-200	SP	Sand, pale yellow (2.5Y 8/4), fine- to coarse-grained, poorly sorted, subangular to subrounded, non-plastic, loose, dry.
Geologist: M. Nauck/J. Raucci	. Drilling	meth	nod: Core	mud ro	ntary	Note: Adamson Pump and Drill mud rotany

Geologist: M. Nauck/J. Raucci Date completed: 10-26-11

Drilling method: Core, mud rotary Driller: HAZ-Tech; Adamson Pump and Drill Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings Steel suface casing: 10"

Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

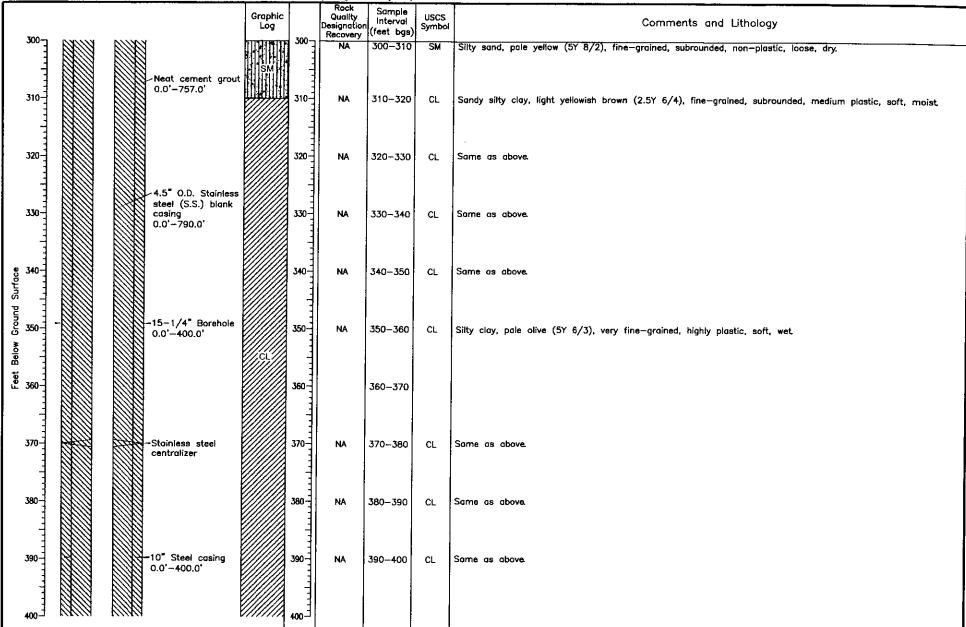
PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 5-05-2012 JN ES09.0154 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-15 (3of9)

5. (. 10)0013	(2000:010	Fickles (VI_Drawings (E309_	3131_070	_001610			7	
200-7			Graphic Log	200	Rock Quality Designation Recovery	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
2007				200-	NA	200-210	SP	Same as above, medium-coarse grained
210-		Neat cement grout 0.0'-757.0'		210-	NA NA	210-220	SP	Same as above.
				1				
220-				220	NA .	220-230	SP	Same as above.
1		4.5" O.D. Stainless steel (S.S.) blank		******				
230-		casing 0.0'-790,0'	SP	230	NA	230-240	SP	Same as above with iron staining.
9: 240-				240-	NA NA	240-250	SP	Same as above.
Surfac				1	121	240 - 250	JI	Carrie da deve
Puno 250	-	-15-1/4" Borehole 0.0'-400.0'		250	NA	250–260	SP	Sand, pale yellow (2.5Y 8/3), fine-grained, well sorted, subrounded, non-plastic, loose, dry.
it Below				1				
260				260	NA	260~270	SM-SC	Silty clayey sand, pale yellow (5Y 7/3), fine-grained, subrounded, low plastic, soft, moist
270-		-Stainless steel	SM/SC	270	, la	272 222	Su 50	Same as about
"		centralizer		2707	NA	270-280	SM-SC	Same as above.
280				280-	NA	280-290	SM	Silty sand, pale olive (5Y 6/3), fine-grained, subrounded, non-plastic, loose, slightly moist
			SM	11				
290-		10" Steel casing 0.0'-400.0'		290	NA :	290300	SM-SC	Clayey silty sand, clive (5Y 5/3), fine-grained, subrounded, very low plastic, soft, slightly moist
1			SM/SC	1				
300-l	et: M. Na	ick/J. Roucci	<u>i</u> _	300 J	thod: Core			Note: Adamses Burse and Dell

Geologist: M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—26—11


Drilling method: Core, mud rotary Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings Steel surface casing: 10"

Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 5005-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-15 (4of9)

Geologist: M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—26—11

Drilling method: Core, mud rotary Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings Steel surface casing: 10" Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_078_borelogs.dwg PB-15 (5of9)

		des/VK_Drawings/ES09_0	Graphic Log	-	Rock Quality	Sample Interval (feet bgs)	USCS Symbol	Comments and Lithology
400-		-12" Borehole 400.0'-405.0'	SL	400 T	NA NA	400-410	CL	Same as above.
420-		9-7/8" Borehole		420-	NA .	410-425		No recovery.
430-		405.0'-870.0'	ML	430	30%/65%	425-435	ML	Siltstone, pale yellow (5Y 7/3) to light yellowish brown (2.5Y 6/3), moderately soft, significant clay fraction.
140°		4.5" O.D. S.S. blank casing 0.0'-790.0'	SP.	- 11	75%/100%	43 5–445	SP ML	Sand, light yellowish brown (2.5Y 6/4), medium-grained, well sorted, laose (from 435 to 437 feet) then siltstone as above to 445 feet
Ground Surface			M O	450	50%/75%	445-455	SM	Silty clayey sand, pale olive (5Y 6/3), fine—grained, appreciable clay with alternately clayey soft and hard layers, with organic material and orange oxidation. No recovery from 452.5 to 455 feet.
Feet Below		Neat cement grout 0.0'-757.0'	SM/ML	460	100%/100%	4 55–465	SM-ML	Silty sand and sandy silt, pale clive (5Y 6/3), laminated, fine—grained, alternating soft and hard layers, brittle to plastic, slightly moist, with abundant organic material
470-		— Stainless steel centralizer	SM/SP	470-	100%/100%			Same as above interbedded with sand, olive gray (5Y 5/2), fine— to medium—grained, moderately well sorted, loose, soft
480-			ML	480-	85%/100%			Sandy siltstone, pale olive (5Y 6/3), laminated, weakly to moderately cemented, micaceous with some clay.
490			SM/ML	490				Similar to above silty sand and sandy silt, color mottled pale olive (5Y 6/3) to light olive gray (5Y 6/2), massive to laminated, weakly cemented, interbedded clay and clayey layers.
500 Geologi	ist: M. Nauck/L	J. Raucci		500-3	60%/75% thod: Cor			Same as above, less sand. Note: Adamson Pump and Drill mud rotary

Geologist: M. Nauck/J. Raucci

Driller: HAZ-Tech; Adamson Pump and Drill Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings Date completed: 10-26-11 Steel suface casing: 10"

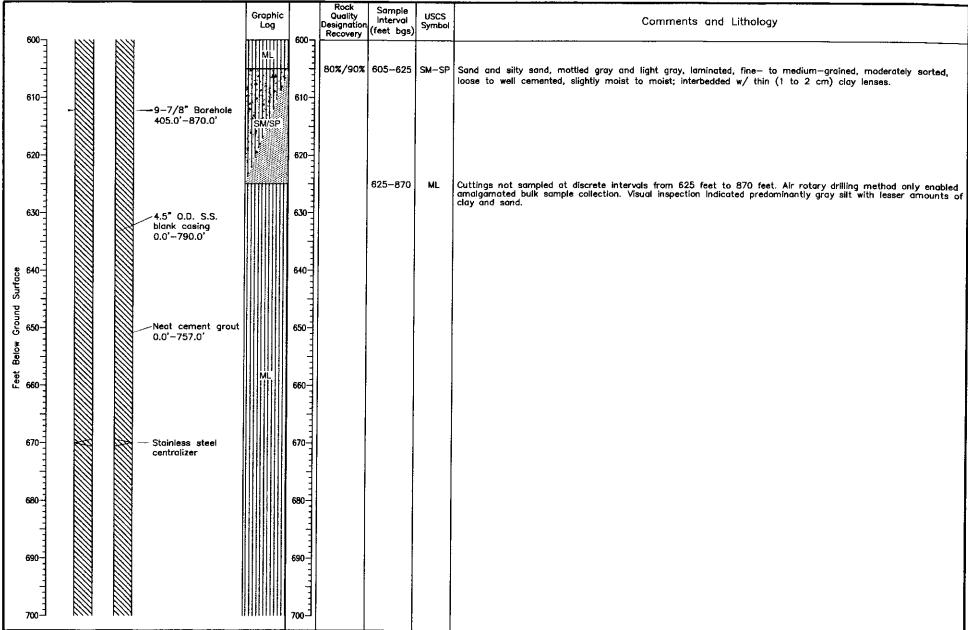
Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154 JN ES09.0154

S:\Projects\ES09.0154 Pickles\VR Drawinos\ES09 0154 07B borelogs.dwg PB-15 (6of9)

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_01	Graphic Log	Rock Quality Designation	Sample Interval	USCS Symbol	Comments and Lithology
	500-	90%/100%	(feet bgs) 505-515	ML	Same as above, predominantly silt
510—9—7/8" Borehole 405.0'—870.0'	510	80%/90%	515–525	ML	Same as above.
530- 530- 530- 530- 530- 530- 530- 530-	ML 530	85%/100%	525-535	ML.	Same as above, predominantly silt with minor sand and clay, massive to laminated, locally crossbedded, slightly moist
blank casing 0.0'-790.0'	540	50%/65%	535–545	ML	Same as above.
00 540 -	550	100%/100%	545555	₩L	Similar to above, clayey siltstone, light yellowish brown (2.5Y 6/2-6/3).
Below 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ML/CL 560	100%/100%	555-565	ML-CL	Same as above at 555 feet silty clay, brownish gray (2.5Y 5/2), at 565 feet weakly to moderately cemented.
570 — Stainless steel centralizer	ML 570-	100%/100%	565–575	ML	Clayey silt, olive (5Y 4/3), soft, slightly plastic to 568.5 feet, silstone, dark greenish gray (Gley1 10Y 4/1), siltstone with sand and clay, sandy at top, well cemented, contact w/ "blue clay" unit at 568.5 feet
580-	CL 580-	20%/30%	575-585	CL	Sandy clay, dark gray (Gley1 4/N), well cemented, slightly plastic when wet, micaceous, dry.
590-	590	100%/100%	585-595	ML	Silstone with clay and minor sand, mottled dark gray (Gley1 4/N), well cemented, micaceous.
600		90%/95%	595-605	ML	Sandy silstone with clay, dark gray (Gley1 4/N), massive to laminated, micaceous.


Geologist: M. Nauck/J. Raucci Driller: HAZ-Tech; Adamson Pump and Drill Bit diameters: 15-1/4", 12" and 9-7/8" Date completed: 10-26-11

Drilling method: Core, mud rotary Sampling device: HQ core, rotary cuttings Steel suface casing: 10"

Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 6-05-2012

Geologist: M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—26—11 Drilling method: Core, mud rotary Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings Steel surface casing: 10" Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 6-05-2012 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-15 (8of9)

		Graphic Log	Rock Samp Quality Interv Designation Recovery (feet b	e uscs	Comments and Lithology
700	9-7/8" Borehole 405.0'-870.0'	700		ML	Cuttings not sampled at discrete intervals from 625 feet to 870 feet. Air rotary drilling method only enabled amalgamated bulk sample collection. Visual inspection indicated predominantly gray silt with lesser amounts of clay and sand.
720	4.5* 0.D. S.S. blank casing 0.0'-790.0'	730-			
ow Ground Surface	Neat cement gro 0.0'-757.0'	740			
35	3/8" Hydrated bentonite pellets 757.0'-777.0'	760			
7770-	- Stainless steel centralizer	770			
780-	777.0'-866.0'	780-			
790-	100 100	790-			

Geologist: M. Nauck/J. Raucci

Driller: HAZ-Tech; Adamson Pump and Drill

Date completed: 10-26-11

Drilling method: Core, mud rotary Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings Steel suface casing: 10"

Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

PICKLES BUTTE Well Log: PB-15

Daniel B. Stephens & Associates, Inc. 9-05-2012 JN ES09.0154 JN ES09.0154

S:\Projects\ES09.0154_Pickles\VR_Drawings\ES09_0154_07B_borelogs.dwg PB-15 (9of9) Sample Graphic Quality USCS Interval Designation Recovery Log Comments and Lithology Symbol (feet bgs) 9-7/8" Borehole Cuttings not sampled at discrete intervals from 625 feet to 870 feet. Air rotary drilling method only enabled amalgamated bulk sample collection. Visual inspection indicated predominantly gray slit with lesser amounts of 405.0'-870.0' clay and sand. 810-0.020" Slot screen 820-790.0'-850.0' 830-10-20 Silica sand 777.0'-866.0' Ground Surface Stainless steel centralizer Below Sump 850.0'-855.0' 870-866.0'-870.0' T.D.=870.0 880-880-890-890

Geologist: M. Nauck/J. Raucci Driller: HAZ—Tech; Adamson Pump and Drill Date completed: 10—26—11 Drilling method: Core, mud rotary Bit diameters: 15-1/4", 12" and 9-7/8" Sampling device: HQ core, rotary cuttings Steel surace casina: 10"

Note: Adamson Pump and Drill mud rotary drilling 0'-425'; HAZ-Tech core drilling 425'-625'; air rotary drilling 625'-870'

APPENDIX G: SEISMIC INVESTIGATION REPORT

Pickles Butte Sanitary Landfill 3D Seismic **Survey Report**

Nampa, Idaho

Project No. 114-571040-2022

February 21, 2022

PRESENTED TO

Mr. David Loper Canyon County Solid Waste Director 15500 Missouri Avenue Nampa, ID 83686

PRESENTED BY

Tetra Tech

350 Indiana Street, Suite 500 Golden, CO 80401

(303) 217-5700 tetratech.com

Prepared by:

Lincoln Steele Project Geophysicist

Reviewed by:

February 21, 2022

Dan O'Connell PhD

Principal Geophysicist

February 21, 2022

DISCLAIMER

The subsurface conditions and recommendations presented in this document are based on conditions encountered at the specific geophysical survey locations at the time they were conducted. Due to the complexity and variability of natural earth and rock formations and materials, significant variations may occur between and around these locations or with time. Because these data represent a very small statistical sampling of subsurface conditions, it is possible that conditions may be encountered that are substantially different from those indicated. In these instances, modification and adjustment to the recommendations presented may be warranted.

TABLE OF CONTENTS

1.	1.1 1.2 1.3	Background Purpose Geologic Background of the Western Snake River Plane Fault System	1
2.		MIC IMAGING	
	2.1 2.2	Seismic Data Acquisition	
	2.3	Seismic Data and Interpretations	4
3.	CON	CLUSIONS AND RECOMMENDATIONS	6
4.	REF	ERENCES	7
-	REF SUR		7
FIC			7
FIC	SUR	ES	7
Figu Figu	BURI	Faults Mapped Near the Project Area	7
Figu Figu Figu	BURI ire 1. ire 2.	Faults Mapped Near the Project Area PBSL3D Seismic Survey	7

- Figure 6a. Seismic Reflection Two-Way-Time Cross-Section along Western Inline 1033
- Figure 6b. Interpreted Seismic Reflection Two-Way-Time Cross-Section along Western Inline 1033
- Figure 7a. Seismic Reflection Two-Way-Time Cross-Section along Middle Inline 1040
- Figure 7b. Interpreted Seismic Reflection Two-Way-Time Cross-Section Along Middle Inline 1040
- Figure 8a. Seismic Reflection Two-Way-Time Cross-Section Along Eastern Inline 1053
- Figure 8b. Interpreted Seismic Reflection Two-Way-Time Cross-Section Along Eastern Inline 1053
- Figure 9. 3D Perspective of Mapped Western Snake River Plain Fault Surfaces
- Figure 10. Examples of Normal Faulting and Splay Faulting Distributions
- Figure 11. 3D Map Perspective (3x Vertical Exaggeration)
- Figure 12. Example of Flexure Leading to Fault Offsetting
- Figure 13. Field Example

1. INTRODUCTION

Acronyms		
Ft	Feet	
ka	Kiloannum (thousand years)	
mm	millimeters	
PBSL	Pickles Butte Sanitary Landfill	
QC	Quality Control	
USGS	United States Geologic Survey	
WSRP	Western Snake River Plain	

1.1 Background

The Pickles Butte Sanitary Landfill (PBSL) is an operational landfill site in southwestern Canyon County Idaho (**Figure 1**). The county is in the process of expanding the footprint of the landfill, primarily to the northwest of the current landfill site. The site is located within the Western Snake River Plain (WSRP) fault system and a portion of an undifferentiated Quaternary aged northeast-dipping WSRP normal fault is mapped within the project boundaries, extending northwest through the proposed expansion area (**Figure 1**). The mapped fault is labeled as a normal fault with an approximate slip rate of less than 0.2 mm/year. Proposed excavations within the fault areas are expected to extend up to 150 ft below ground surface, potentially intercepting this fault.

1.2 Purpose

This report presents results from an active-source 3D seismic survey conducted at the PBSL site in Nampa Idaho. Tetra Tech was contacted to support and provide technical insight for the ongoing expansion program at the PBSL site. Tetra Tech developed a technical approach and an expedited timeline for a seismic survey to help delineate a mapped fault at the site. The seismic survey was designed to image and delineate a suspected fault in support of the proposed expansion program at the PBSL (**Figure 1**). Seismic imaging over the suspected fault area was attained by using 3D seismic velocity tomography and reflection processing. Seismic reflection is a reliable method for imaging the faults when present and can help to orient the faults and subsurface structure as well. The 3D seismic tomography provides the information needed to accurately convert seismic reflection data in time to depth and elevation. The information gained from this survey was used to direct the final proposed boring of the larger geotechnical investigation at the site.

1.3 Geologic Background of the Western Snake River Plane Fault System

The fault segments from the Western Snake River Plain (WSRP) fault system were extracted from Personius (2003). The WRSP faults closest to the project are shown as red lines in **Figure 1**, herein referred to as USGS WSRP faults. From Personius (2003), "The Western Snake River Plain fault system consists of numerous northwest-striking, northeast- and southwest-dipping normal faults that offset older (Plio-Pleistocene) fluvial deposits (Glenns Ferry Formation, Tuana Gravels, Tenmile Gravel) associated with the Snake River, and isolated volcanic and sedimentary rocks of the Snake River Group, in southwestern Idaho. Some faults form asymmetric linear ridges as much as 30-m-high of Plio-Pleistocene deposits and some early Quaternary deposits and surfaces are tilted or downwarped, but most have subdued expressions on the floor of the Snake River Plain. No detailed studies on the age of faulted deposits have been published, but most fault traces are confined to older Quaternary deposits on the western Snake River Plain, so the faults are herein assigned a Quaternary age until further detailed studies are conducted." Measured fault dips are 55-88° NE from the subset of exposed USGS WSRP fault segments mapped by Wood and Anderson (1981).

The USGS WSRP faults are subdued and do not show evidence of activity within the past ~100 ka (Wood and Anderson, 1981). From Personius (2003), "Most faults in this zone have subdued expressions on the floor of the

Snake River Plain, and some are mapped in the subsurface and have little surface expression. Faults form asymmetric linear ridges as much as 30 m high of Plio-Pleistocene deposits, and some early Quaternary deposits and surfaces are tilted or down-warped (Wood and Anderson, 1981; Othberg and Stanford, 1992; Ostenaa, October 2, 1985). Faults in the Western Snake River Plain fault system offset older (Plio-Pleistocene) fluvial deposits (Glenns Ferry Formation, Tuana Gravels, Tenmile Gravel) associated with the Snake River, and isolated volcanic and sedimentary rocks of the Snake River Group (Wood and Anderson, 1981; Gilbert and others, 1983; Othberg and Stanford, 1992; Othberg, 1994). Othberg (1994) noted that fault movements are older than the sediments underlying the Whitney Terrace; Wood and Anderson (1981) used soil development to infer an age of more than 100 ka for these deposits." A caution is that inferred ages based on soil development are very uncertain. Inferred soil ages can be in error by a factor of five (meaning an inferred age based on soil development of 100ka could really be as little as 20ka or as long as 500 ka). Consequently, it is prudent to map WSRP fault system structure that is mapped to extend within the project site (Personius, 2003).

In the project area the USGS WSRP fault segments approach the site from the northwest as a northeast dipping normal fault, making a right step to the south to another USGS NE-dipping WSRP fault segment, and then stepping southwest to a second SW dipping USGS WSRP fault segment (**Figure 2**). Consequently, within or close to the project site USGS WSRP fault deformation is expected to splay to accommodate the right step in the USGS WSRP fault system across the project site (**Figure 1**). Further there is another USGS WSRP fault segment mapped northeast of the project site (**Figure 2**) so the USGS NW-striking NE-dipping WSRP fault segment that approaches the project site from the northwest would be expected to also possibly split or step left (northeast) at some position close to or within the project site. If the USGS NW-striking NE-dipping WSRP fault segment (red line in **Figure 2**) is splaying out then in addition to fault structure complexity like splays, steps, and horsetails, this fault segment might become locally steep or even change dip direction along strike, structures typical near the ends of normal faults, and may partition slip between normal slip and strike slip deformation (Mandl, 1988; pgs. 24-44).

2. SEISMIC IMAGING

2.1 Seismic Data Acquisition

In December 2021 Vantage Geo LLC. with support from and under the direction of Tetra Tech deployed a 3D array of single component, wireless seismic nodes over an approximate 9-acre area at the PBSL site. The primary objective was to intercept the suspected fault trace with the geophone array and provide meaningful imagery of the fault (**Figure 3**). Seismic stations were positioned within the seismic array using a proprietary in-house method developed to produce surveys with high fold data while also minimizing source points and total number of receiver stations. A total of 285 GTI© single channel wireless nodes were deployed over the surveys area and installed into the ground surface. The installation of the GTI nodes below grade provides excellent geophone-ground coupling while also reducing acoustic noise thereby increasing seismic signal relative to noise. To further reduce noise at the site Tetra Tech timed the survey to coincide with a non-operational day at the landfill along with posting signage to temporarily restrict access to the site. Both measures helped to improve the signal against noise in the data, which was critical for imaging a weak fault trace in low-contrast unconsolidated geologic conditions (**Figure 4**).

Once installed, the GTI nodes run self-diagnostic routines to ensure high data quality and proper installation. The nodes also record GPS positions, instrument tolerances, and assigned station numbers for efficient data processing. Tetra Tech chose to utilize an IVI© Envirovibe2 (EV2) as the active source vehicle for the survey. The EV2 provides excellent signal and can provide custom sweep lengths and frequencies which help to overcome site and geologic conditions that may interfere with data quality. Based on the geologic conditions at the PBSL site, Tetra Tech chose a linear sweep table with a limited frequency range of 5-75Hz. The relatively low sweep frequencies allow energy to better penetrate the slow materials at the site, mainly the loose unconsolidated overburden and weathered bedrock profile. Pre-plot source positions were provided to the EV2 operator via a heads-up display in the cab of the EV2. The EV2 operator recorded 440 individual shot locations within and around the survey area (Figure 5). A portion of the proposed shot locations were inaccessible for the EV2 primarily due to steep terrain along the western half of the site. To ensure safe operation of the EV2 most of the western source points were confined to road tracks and relatively flat areas (Figure 5). The 440 EV2 shot points and 285 receiver stations provided 124,224 receiver traces for data processing.

Data were acquired over the course of two days following the installation and QC of the GTI nodes. The nodes were then picked up from the survey area and data were harvested from using the EV2 shot records as the data harvest template. The nodes record data continuously for up to 21 days and EV2 source files are used to re-create individual shot records from each node for processing. No data QC or health and safety issues were noted during the field work at PBSL.

2.2 Seismic Data Processing

To provide rapid data turnaround, Tetra Tech utilized the services of Agile Seismic LLC to provide 3D seismic velocity tomography and reflection processing. Seismic data were assigned geometry based on the measured survey parameters and imported into a GeoTomo® database to QC the raw shot gathers and the project geometry. A processing grid was established with a 3-meter nominal spacing between stations to calculate fold from the survey and assign inline numbering and crossline numbering. First arrival times were straightforward to pick and with the GeoTomo® 3D traveltime P-wave velocity tomography software to estimate 3D P-wave velocities. The 3D P-wave velocity model provided refraction statics and the information required to convert seismic reflection two-way time images to depth and elevation. 3D P-wave are critical for seismic reflection migration processing since it is not possible to derive shallow (near-surface) velocities from reflection analyses and provide an initial 3D velocity model for seismic reflection processing. Seismic reflection velocity analyses updated the 3D velocity model to calculate residual statics and create the initial stack to produce 3D reflection-two-way-time volume. Several iterations of velocity analyses and denoising were used to improve imaging of stratigraphic horizons before final time migration were completed. Post Stack Time Migration (PoSTM) was selected to produce the final reflection results based on testing by Agile. The PoSTM data were produced using true amplitude processing to improve imaging of structural

truncations produced by faulting. All seismic processing is performed using NAD83 UTM Zone 11 positions in meters and elevations in meters to ensure a processing is accurate; state plane coordinates use a foot (U.S. survey foot) which has a different length than the standard international foot used for vertical coordinates. Details of seismic processing steps are provided in **Appendix A**.

Overall, the data acquired at PBSL was relatively clean data with little environmental noise but strong surface waves (**Figure 4**). Denoising was used to attenuate the surface waves and provide clean data with good first breaks picks for the 3D P-wave travel time velocity tomography. Initial interpretations using early processing of the seismic data and final PoSTM interpretations was used to select a boring location to intercept faulting at similar depths.

2.3 Seismic Data and Interpretations

The seismic reflection data are relatively low frequency in spite of the 5-75 Hz vibroseis sweep (**Appendix B**). The combination of a deep water table, thick surficial dry sediments, and weathered rock strongly attenuate high frequency reflections. However, the broadband low-frequency data provide good signal-to-noise and good resolution of first order fault structure as discussed below.

Two tip splay fault structures are identified and mapped in 3D using seismic inlines (SSW-NNE cross sections) spanning the range of inline 1033 (northwest extent of good continuous 3D imaging) to inline 1053 (southeast extent of good continuous 3D imaging). Uninterpreted seismic reflection two-way-time cross sections are presented first in **Figures 6A-8A** paired with the same data with fault picks in **Figures 6B-8B**. The positions of inlines 1033, 1040, and 1053 in **Figures 6-8** are provided in **Figure 5**. The signed energy reflection attribute is used in **Figures 6-8** because it provides the sharpest delineation of fault structure (**Figures 6B-8B**). The central horst between the two faults (**Figure 9**) is likely less deformed, resulting in high amplitudes within the horst relative to the hanging wall (downthrown) sides of the two faults to the south and north (**Figures 6B-8B**). Conventional true amplitude color wiggle travel reflection cross sections with fault picks are provided from inline 1033 to inline 1053 in **Appendix B** for reference.

Both mapped 3D fault segments correspond to tip splay faults since they have substantially different strikes than the N34°W strike of northwest NE-dipping WSRP fault segment postulated to run through the project site (**Figure 5**). This is best illustrated in 3D perspective (**Figure 9**) with comparison to observed normal-faulting termination structures in **Figure 10**. Perrin et al (2016) provide field scale examples near the termini of normal faulting tip splay faults that develop and extend beyond main normal fault traces (**Figure 10**). We interpreted the southwest dipping fault (medium green fault in **Figure 9**) that strikes N47°W is a tip splay fault since it changes strike 15° and changes dip direction to the southwest whereas the USGS NW-striking WSRP fault is mapped as dipping northeast. The second, north-northeast dipping tip splay fault (blue fault in **Figure 9**) strikes N69°W which cuts off the main USGS NW-striking WSRP fault further west than the SW-dipping tip splay fault (**Figure 11**).

Preliminary borehole data are used from Boring B2021-5, abbreviated as borehole B5 in this report. Borehole B5 provided preliminary geotechnical and geologic data at depth within the extent of the 3D seismic volume (Figure 9). The 3D mapping of the two tip splay faults in Figures 6-9 and 11 demonstrates that main USGS NW-striking WSRP fault deformation terminates northwest of borehole B5 and splinters into a series of tip splay faults within the project site. These tip splay faults are typical of normal-fault termination structures observed for normal faults (Figure 10). Thus, the mostly likely scenario is that primary USGS NW-striking WSRP normal-faulting deformation is unlikely to occur within the project site. Since the USGS WSRP normal faults are not observed to display ~100 ka deposits, the likelihood of primary WSRP normal fault deformation occurring within the project site likely has a very small probability. It is possible that main USGS NW-striking WSRP normal fault deformation transfers to a southwest-dipping right-stepping splay fault segment west of the project site (cyan fault in Figure 11). This would produce uplift between the main USGS NW-striking WSRP normal fault and the right-step to the SW-dipping fault segment producing a topographic fault-parallel horst ridge (outlined in yellow in Figure 11). It is clear from the 3D fault mapping that primary USGS NW-striking WSRP faulting is decreasing west of the project site as faulting splinters to splay faults (Figure 11), typical of the terminus regions of normal faults (Figure 10). Where main USGS NW-striking WSRP faulting ends is constrained to be no further southeast than the west extent of the NE-dipping tip splay fault (blue fault in Figure 11).

The shallow limit of faulting of the tip splay faults within the project site is not directly constrained by the 3D fault mapping in **Figure 9** because fault structure does not produce consistently discernable seismic signatures above the water table. However, combining the seismic 3D tip splay fault mapping with observations from borehole B5 provides a constraint on the potential shallower manifestations of tip splay fault deformation along the SW-dipping tip splay fault. Three possible cases to considers for the upward progression of the tip splay faults from the mapped position in the 3D seismic volume are:

- 1. Fault deformation continues upward at a SW dip of 71° through borehole B5 as a narrow fault plane
- 2. Fault deformation becomes complex in the 66-86-foot depth interval of clay (shale) between sands (sandstones) in borehole B5 due to flexure and complex faulting within the clay (shale) interval like deformation in this case from Mandl (1988) (see **Figure 12**).
- 3. Fault deformation does not extend above the elevation of the water table and does not intercept borehole B5, but instead produces flexure in strata located above the water table.

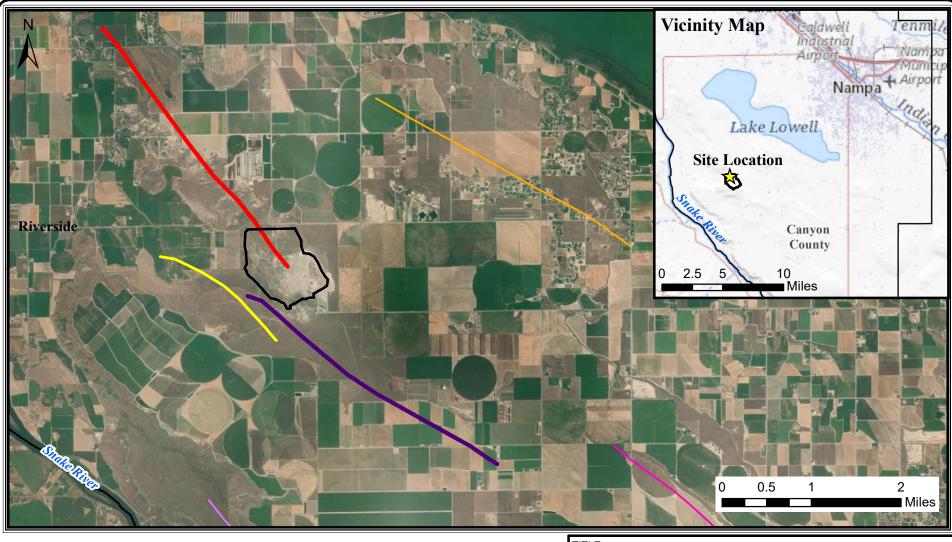
Case 2 seems most likely since it explains the observed broken pieces of consolidated clay observed in borehole B5 and general lack of deformation in the overlying and deeper sands, e.g. the WSRP southwest-dipping tip splay fault intersects borehole B5 near the base of the silty clay at a depth of 81 feet in **Figure 9** producing complex deformation and low blow counts within the 66-86-foot deep clay interval in a pattern similar to the shale interval in **Figure 12**. Based on age constraints on WSRP faulting, deformation observed within the 66-86-foot depth interval in borehole B5 may be older than ~100 ka (Personius, 2003).

It may seem unrealistic to consider that a right-stepping splay normal fault could develop with a southwest dip on the southwest side of the main USGS NW-striking NE-dipping WSRP normal fault, but this has been observed at other sites. For instance, Marchal et al. (2003) provide marine seismic reflection data with exactly this style of normal faulting with a southwest-dipping spay fault developing on the southwest side of a northeast-dipping primary normal fault (**Figure 13**). The important point is that primary normal-faulting deformation from the main NW WSRP fault is clearly decreasing toward its terminus no further southeast than the west side of the northeast-dipping (blue) tip splay fault in **Figure 11**, although primary faulting may already be decreasing prior to entering the far western side of the project site with fault slip partitioning to the southwest dipping right stepping splay fault further west (cyan fault in **Figure 11**).

The 3D seismic fault mapping clearly shows there is no single continuous NW-SE northeast-dipping normal fault extending through the entire 3D seismic volume extent (Figure 11). There may be additional unmapped limited extent (lengths < 200 feet) fault splays or relay faults within or outside of the 3D seismic volume extent shown in Figure 11. Distributed small stepover and relay faults commonly occur between large fault stepovers, like the less than one-mile right step from the northwest USGS NE-dipping WSRP fault (red fault in Figure 1) to the southwest USGS NE-dipping WSRP fault (purple fault in Figure 1) (Marchal et al., 2003; Perrin et al., 2016). The primary conclusion of these investigations is that any primary normal faulting deformation on the USGS northwest-striking NE-dipping WSRP normal fault (red line in Figure 2) will be confined to the northwest 800 feet of the fault's extension within the project site boundary. Any slip on the USGS northwest-striking NE-dipping WSRP normal fault will be decreasing toward the project site since this investigation shows that the primary fault terminates before reaching the area near borehole B5 in the project site (Figure 11).

3. CONCLUSIONS AND RECOMMENDATIONS

Seismic reflection results from the Pickle Butte 3D survey revise the location and structure of the USGS mapped NW-striking NE-dipping WSRP normal fault across the project site (Figure 11). The new 3D imaging of fault structure (Figure 9) demonstrates that faulting along the USGS NW-striking NE-dipping WSRP normal fault is tapering to zero west of borehole B5 and that residual fault deformation is distributed amongst a network of tip splay faults across the project site (Figure 11). Thus, primary normal fault slip is unlikely east of the west edges of the tip splay faults mapped in Figures 9 and 11. Instead, any fault slip associated with earthquakes along the USGS mapped NW-striking NE-dipping WSRP normal fault will likely partition into attenuated fault slip among the splay faults within the project site. There may be additional limited extent (strike lengths < 200 feet) fault splays and relay fault within or outside of the 3D seismic volume extent shown in Figure 11. Distributed small stepover and relay faults commonly occur between large fault stepovers, like the less than one-mile right step from the northwest NE-dipping WSRP fault (red fault in Figure 1) to the southwest NE-dipping WSRP fault (purple fault in Figure 1) (Marchal et al., 2003; Perrin et al., 2016).


Typically, in highly weathered rock or in poorly consolidated sediments, fault slip transitions to distributed deformation or bedding flexure prior to reaching the ground surface. Tip splay faulting may decrease with decreasing depth above the water table (**Figure 9**) and transition to flexure or distributed deformation (**Figure 12**). This is the most likely scenario for the PBSL project site. The projected intersection of the SW-dipping tip splay fault at a depth of 81 feet in borehole B5 (**Figure 9**) near the base of a zone of distributed broken clay deformation, suggests the fault has produced distributed deformation in the 66-86-foot depth interval of borehole B5. Since the age of this depth interval in borehole B5 is probably much greater than the ~100 ka overlying unfaulted geologic strata used by Personius (2003) to constrain the most recent age of active faulting along the WSRP normal faults, this possible fault deformation observed in borehole B5 in the 66-86-foot depth interval is likely older than 100 ka.

The USGS NW-striking NE-dipping WSRP normal fault that is mapped as extending into the project site from the northwest does not appear to displace ~100ka age sedimentary units (Personius, 2003). From a probabilistic perspective there seems to be little possibility of significant shallow (< 200 feet) faulting within the project site southeast of the west edges of the mapped tip splay faults in **Figure 11** (negligible nonzero fault slip for annual exceedance probabilities greater than 0.01%). To best characterize the potential movement and absolute location of faulting would require geologic mapping during excavation of the future landfill cell. This area of the proposed landfill expansion would be constructed in >50 years in the future. When the area is excavated for cover material in the future before waste is placed in this area it is recommended that geologic mapping of the fault is conducted, with particular attention to identifying narrow fault zones with evidence of recent activity and areas of potential distributed deformation. Careful sampling can yield materials suitable to date the most recent age of fault activity to determine if any detected fault activity is recent (unlikely) or > 100 ka in age (most likely).

4. REFERENCES

- Breckenridge, R.M., Lewis, R.S., Adema, G.W., and Weisz, D.W., 2003, Miocene and younger faults in Idaho: Idaho Geological Survey Map 8, 1 sheet, scale 1:1,000,000.
- Dahlen, F.A., Hung, S.-H. & Nolet, G., 2000, Frechet kernels for finite-frequency traveltimes—I. Theory, Geophys. J. Int., 141, 157–174.
- Gilbert, J.D., Piety, L., and LaForge, R., 1983, Seismotectonic study for Black Canyon Dam, Boise project, Idaho: U.S. Bureau of Reclamation Seismotectonic Report 83-7, 73 p., 8 pl.
- Mandl, G., 1988, Mechanics of Tectonic Faulting, Models and Basic Concepts, Elsevier, Amsterdam, 407 pp.
- Marchal, D., M. Guiraud, and T. Rives, 2003, Geometric and morphologic evolution of normal fault planes and traces from 2D to 4D data, Journal of Structural Geology, 25, 135-158.
- Ostenaa, D., 1985, Memorandum to Chief, Division of Dam and Waterway Design, U.S. Bureau of Reclamation, Seismotectonic considerations for Modification Decision Analysis-Deer Flat Dams-Boise Project, Idaho, dated October 2, 1985, p. 10.
- Othberg, K.L., 1994, Geology and geomorphology of the Boise Valley and adjoining areas, western Snake River Plain, Idaho: Idaho Geological Survey Bulletin 29, 54 p.
- Othberg, K.L., and Stanford, L.R., 1992, Geologic map of the Boise Valley and adjoining areas, western Snake River Plain, Idaho: Idaho Geological Survey Geologic Map Series, scale 1:100,000.
- Perrin, C., I. Manighetti, and Y. Gaudemer, 2016, Off-fault tip splay networks: A genetic and generic property of faults indicative of their long-term propagation, Comptes Rendus Geoscience, 348, 52-60.
- Personius, S.F., compiler, 2003, Fault number 635, Western Snake River Plain fault system, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/gfaults.
- Savage, C.N., 1958, Geology and mineral resources of Ada and Canyon Counties: Idaho Bureau of Mines and Geology County Report No. 3, 94 p., 2 pls., scale 1:125,000.
- Wood, S.H., and Anderson, J.E., 1981, Chapter 2-Geology, in Mitchell, J.C., ed., Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho: Idaho Department of Water Resources Water Information Bulletin No. 30, Geothermal Investigations in Idaho, Part 11, p. 9-31.

FIGURES

Area.mxd February 2022

C:\Users\christina.coulter\OneDrive - Tetra Tech, Inc\Documents\Pickles Butte Boise Seismic\Pickles_Butte_Figure1_3D_Survey_

Approx. Project Area Boundary

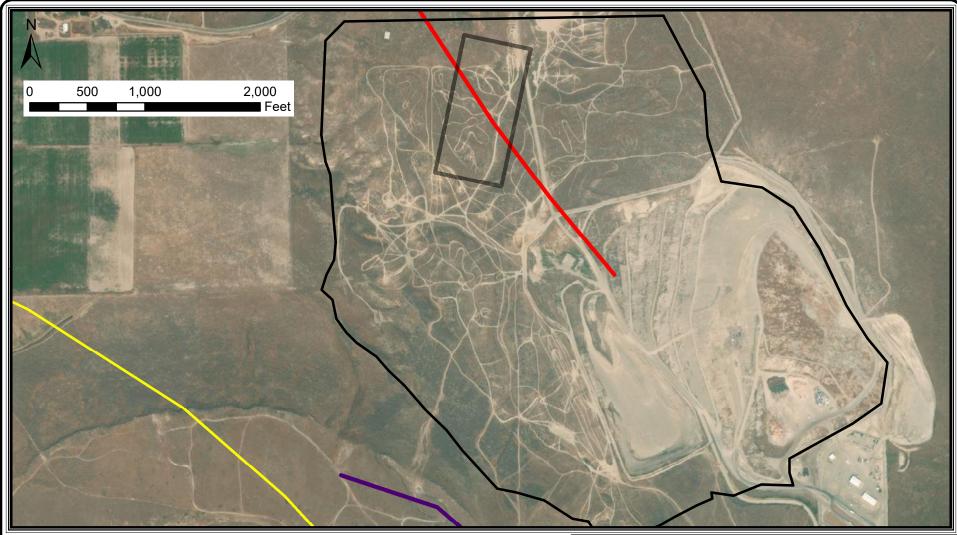
Western Snake River Plain Fault System

Primary Site NW Segment

Upper NE Segment

SW Site NE Dipping Segment

Lower SW Segment


SW Site SW Dipping Segment

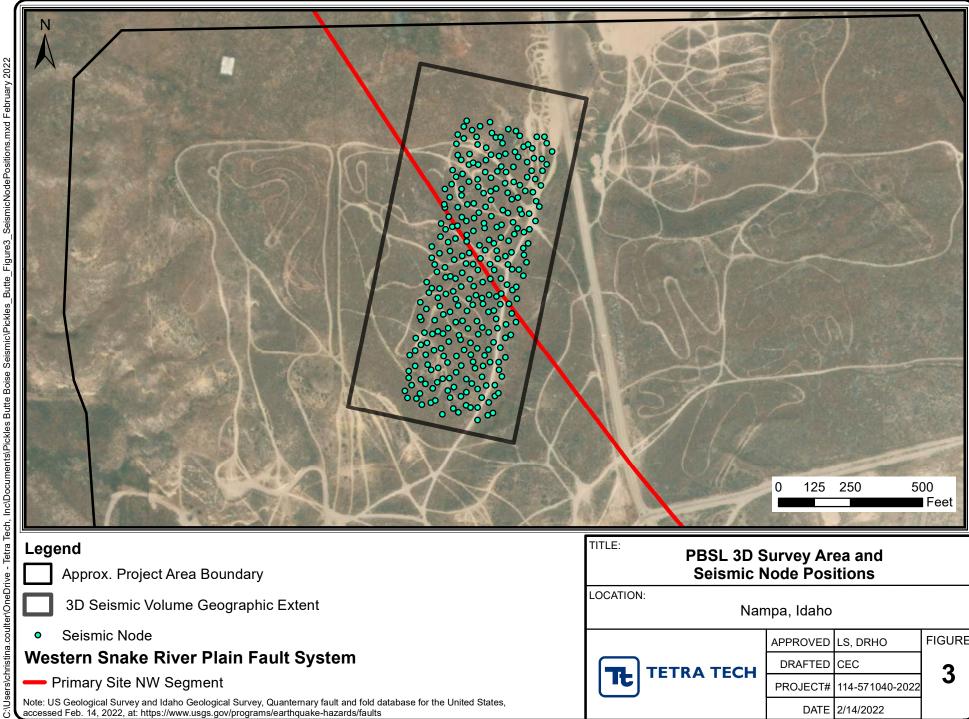
Lower SE Segment

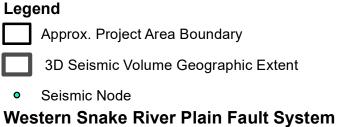
Note: US Geological Survey and Idaho Geological Survey, Quanternary fault and fold database for the United States, accessed Feb. 14, 2022, at: https://www.usgs.gov/programs/earthquake-hazards/faults

Faults Mapped Near the Project Area LOCATION: Nampa, Idaho APPROVED LS, DRHO DRAFTED CEC PROJECT# 114-571040-2022

DATE 2/14/2022

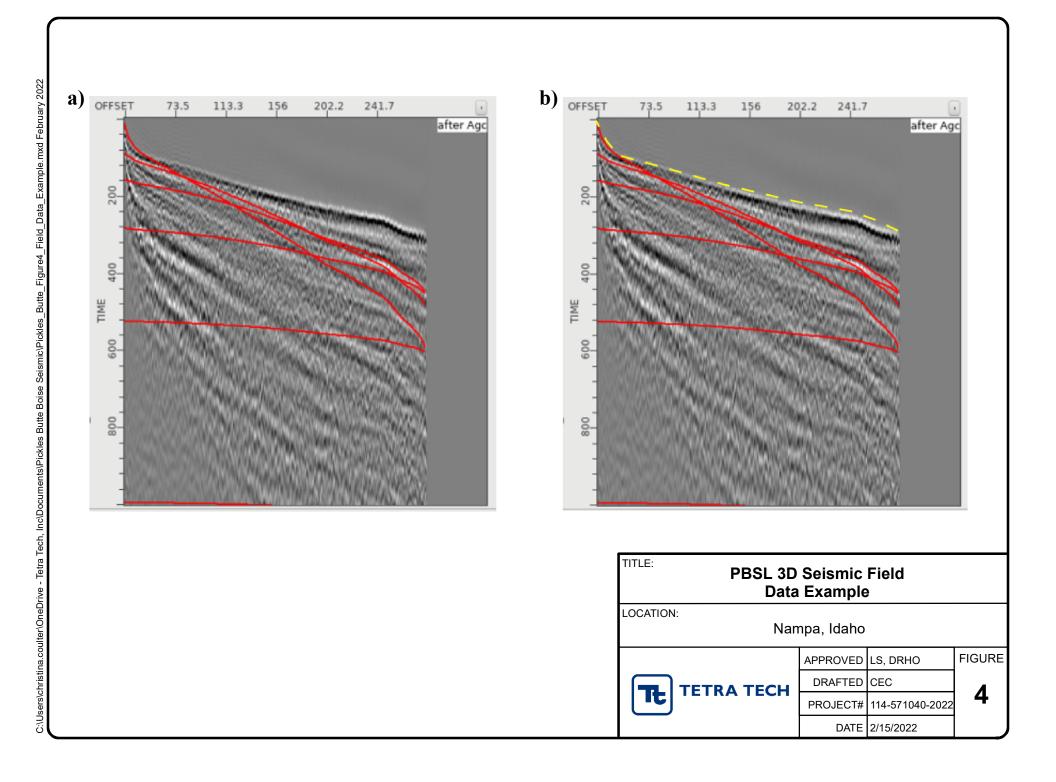
C:\Users\christina.coulter\OneDrive - Tetra Tech, Inc\Documents\Pickles Butte Boise Seismic\Pickles_Butte_Figure2_3D_SeismicSurvey.mxd February 2022

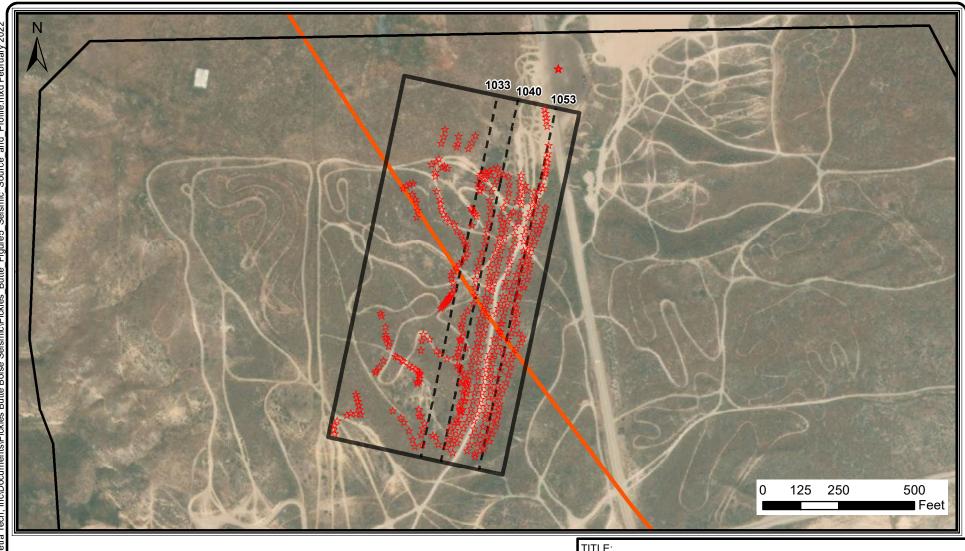

Approx. Project Area Boundary 🔲 3D Seismic Volume Geographic Extent


Western Snake River Plain Fault System

- Primary Site NW Segment
- SW Site NE Dipping Segment
- SW Site SW Dipping Segment

Note: US Geological Survey and Idaho Geological Survey, Quanternary fault and fold database for the United States, accessed Feb. 14, 2022, at: https://www.usgs.gov/programs/earthquake-hazards/faults





Primary Site NW Segment

Note: US Geological Survey and Idaho Geological Survey, Quanternary fault and fold database for the United States, accessed Feb. 14, 2022, at: https://www.usgs.gov/programs/earthquake-hazards/faults

PBSL 3D Survey Area and Seismic Node Positions			
LOCATION: Nampa, Idaho			
	APPROVED	LS, DRHO	FIGURE
TETRA TECH	DRAFTED	CEC	2
TETRA TECH	PROJECT#	114-571040-2022	3
	DATE	2/14/2022	

Legend

Approx. Project Area Boundary

★ Seismic Source Points

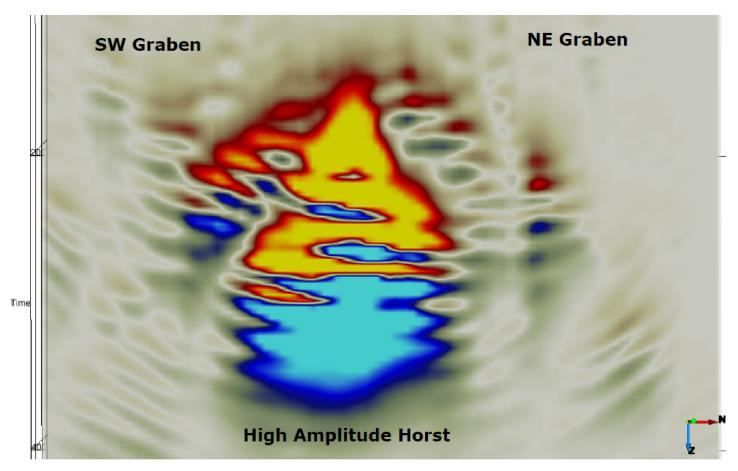
3D Seismic Volume Geographic Extent

--- Inline Positions

Western Snake River Plain Fault System

Primary Site NW Segment

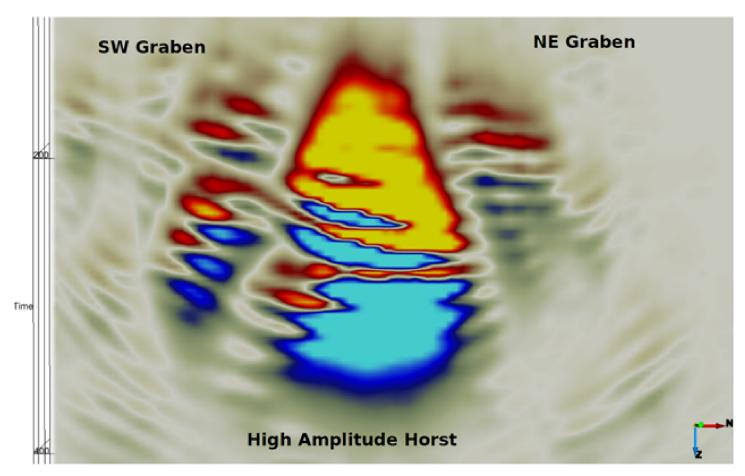
Note: US Geological Survey and Idaho Geological Survey, Quanternary fault and fold database for the United States, accessed Feb. 14, 2022, at: https://www.usgs.gov/programs/earthquake-hazards/faults


PBSL 3D Seismic Source and Inline Profile Positions

LOCATION:

Nampa, Idaho

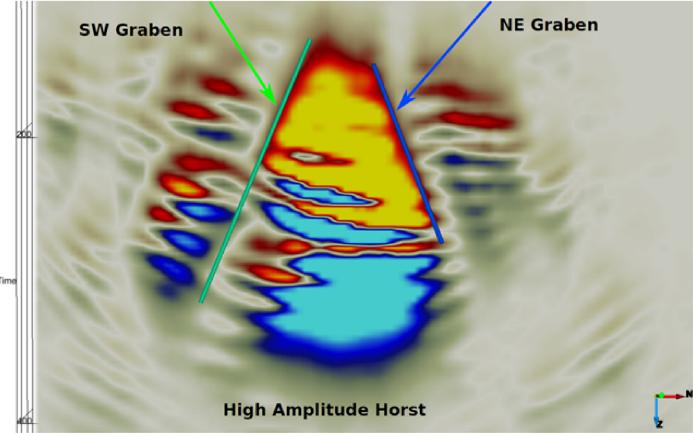
APPROVED	LS, DRHO	FIGURE
DRAFTED	CEC	5
PROJECT#	114-571040-2022	5
DATE	2/15/2022	



West Mapping (Inline 1033)

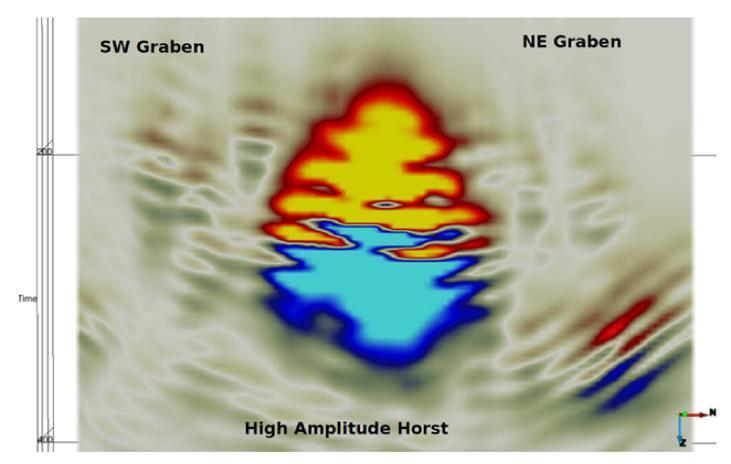
Seismic Reflection Two-Way-Time Cross-Section Along Western Inline 1033			
LOCATION: Nampa, Idaho			
	APPROVED	LS, DRHO	FIGURE
TETRA TECH	DRAFTED	CEC	6-
	PROJECT#	114-571040-2022	6a
	DATE	2/16/2022	

C:\Users\christina.coulter\OneDrive - Tetra Tech, Inc\Documents\Pickles Butte Boise Seismic\Pickles_Butte_Figure6a.mxd February 2022


DATE 2/16/2022

Middle Mapping (Inline 1040)

Seismic Reflection Two-Way-Time Cross-Section Along Middle Inline 1040				
LOCATION: Nampa, Idaho				
	APPROVED	LS, DRHO	FIGURE	
TETRA TECH	DRAFTED	CEC	7-	
	PROJECT#	114-571040-2022	7a	
	DATE	2/16/2022		


WSRP SW Stepover Fault WSRP NE Horsetail Splay Fault

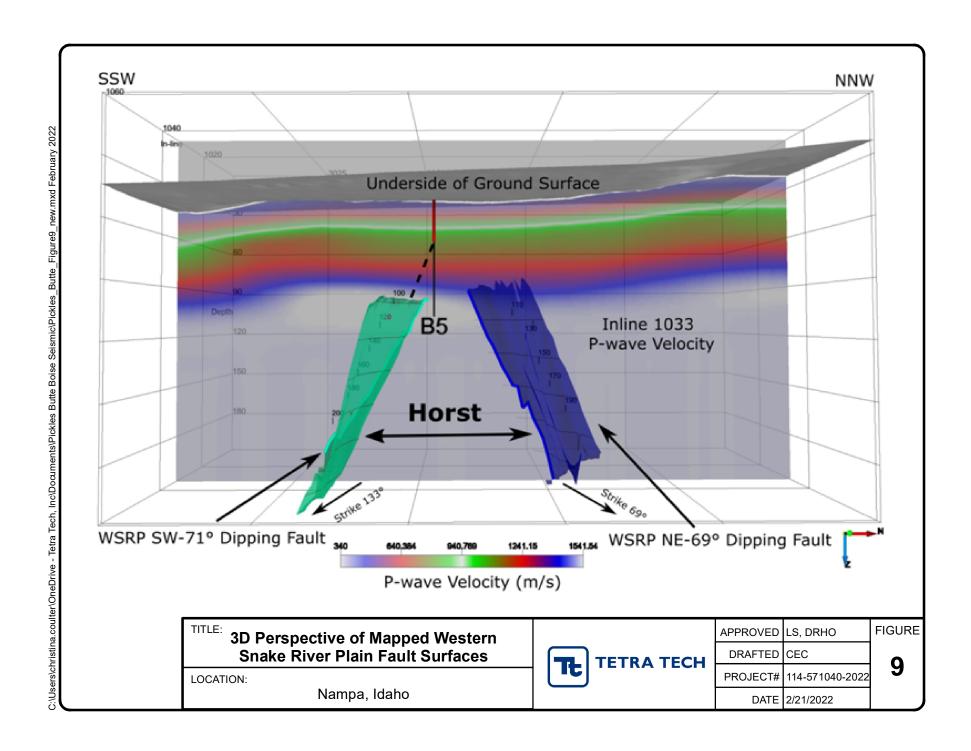
Middle Mapping (Inline 1040)

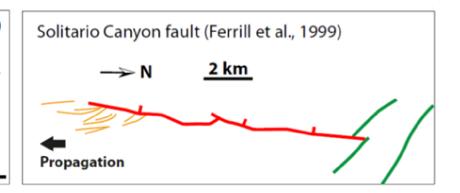
C:\Users\christina.coulter\OneDrive - Tetra Tech, Inc\Documents\Pickles Butte Boise Seismic\Pickles_Butte_Figure7b.mxd February 2022

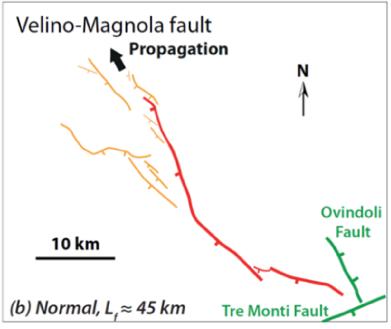
Interpreted Seismic Reflection Two-Way-Time Cross-Section Along Middle Inline 1040				
LOCATION:	N	ampa, Idal	าด	
TETRA TECH		APPROVED	LS, DRHO	FIGURE
	TETRA TECH	DRAFTED	CEC	7 L
	PROJECT#	114-571040-2022	7b	
	DATE	2/16/2022		

East Mapping (Inline 1053)

TITLE:	Seismic Reflection Two-Way-Time Cross-Section Along Eastern Inline 1053


LOCATION:


Nampa, Idaho



APPROVED	LS, DRHO	FIGURE
DRAFTED	CEC	0-
PROJECT#	114-571040-2022	8a
DATE	2/16/2022	

DATE 2/16/2022

Parent fault trace

Tip splay faults

Other splay faults, likely from prior stages

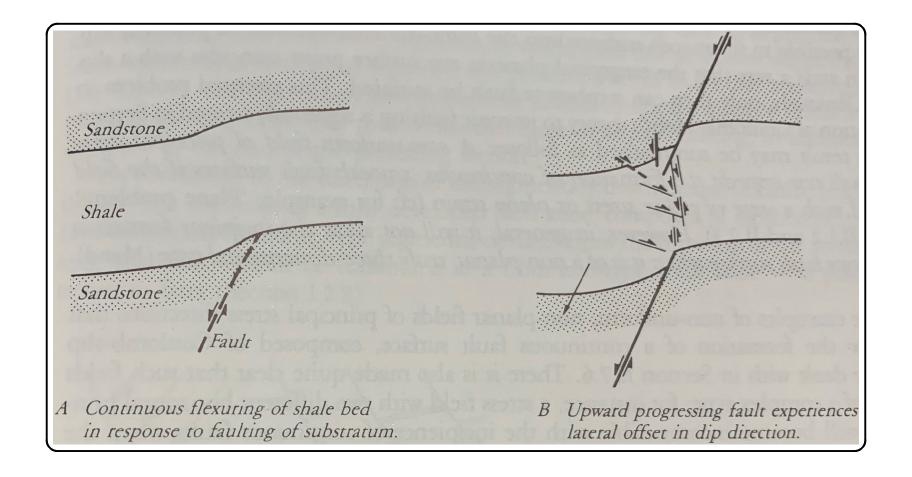
Nearby other faults or features

Direction of long-term propagation of the parent fault

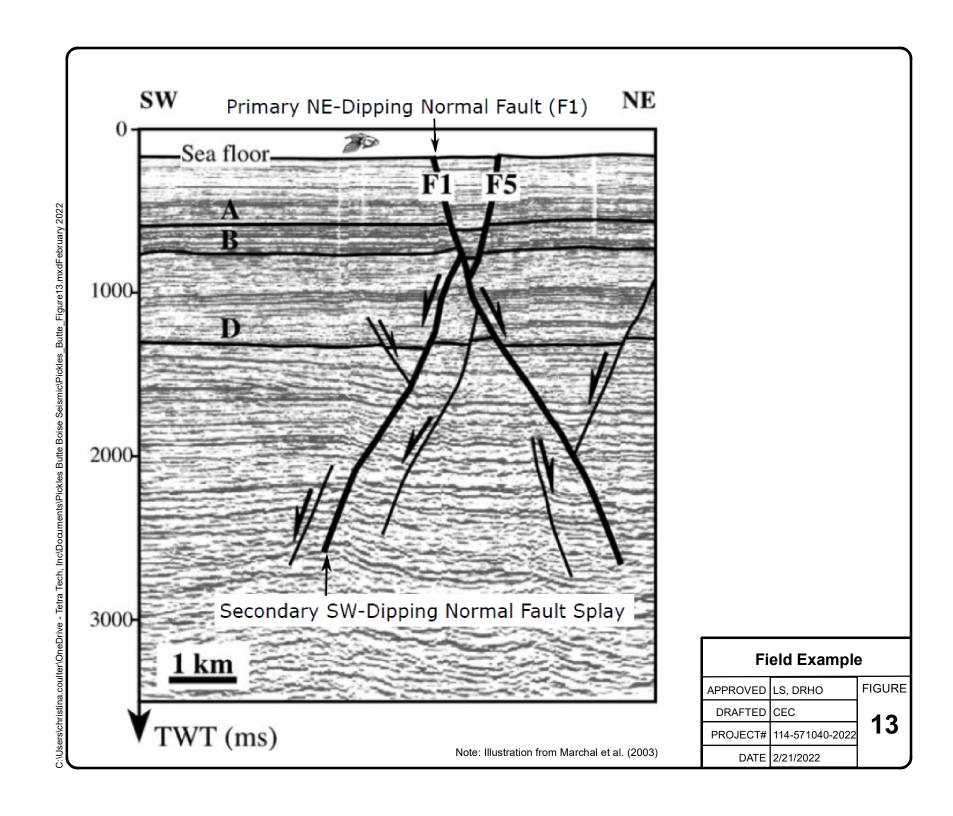
Examples of Normal Faulting and Splay Faulting Distributions				
LOCATION:	N	ampa, Idal	10	
		APPROVED	LS, DRHO	FIGURE
TETRA TECH	ETRA TECH	DRAFTED	CEC	40
	PROJECT#	114-571040-2022	10	
		DATE	2/16/2022	

Note: Illustration from Perrin et al., 2016

C:\Users\christina.coulter\OneDrive - Tetra Tech, Inc\Documents\Pickles Butte Boise Seismic\Pickles_Butte_Figure10.mxd February 2022



3D Map Perspective (3x Vertical Exaggeration)


Nampa, Idaho

APPROVED	LS, DRHO	FIGURE
DRAFTED	CEC	44
PROJECT#	114-571040-2022	1111
DATE	2/18/2022	

Exam Leading	ple of Fle to Fault C		
LOCATION: Nampa, Idaho			
	APPROVED	LS, DRHO	FIGURE
TETRA TECH	DRAFTED	CEC	40
	PROJECT#	114-571040-2022	12
	DATE	2/16/2022	

Note: Illustration from Mandl, 1988 (pg. 45)

Appendix A

Seismic Processing Agile Seismic LLC

Pickles Butte 3D Seismic Survey Report Pickles Butte, Idaho Project No. 114-571040-2022

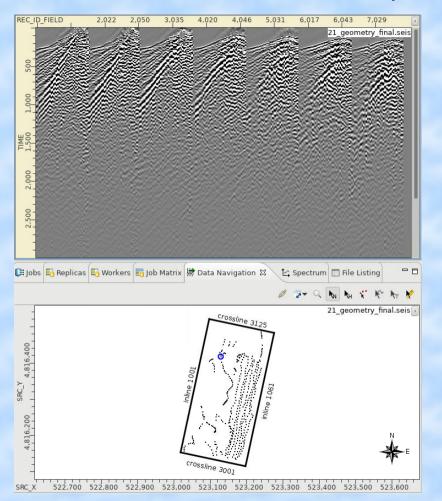
Pickles Butte

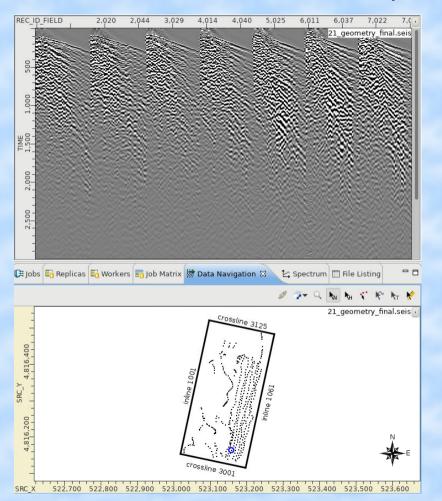
Seismic Processing

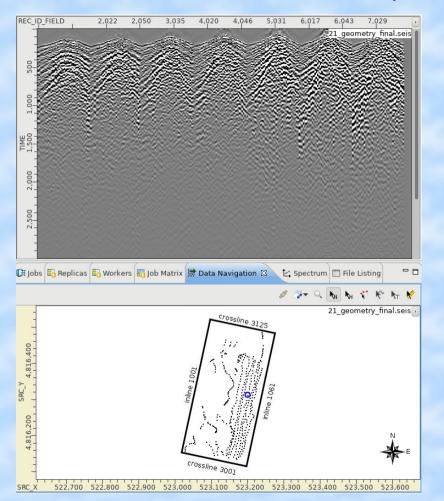
Final Report

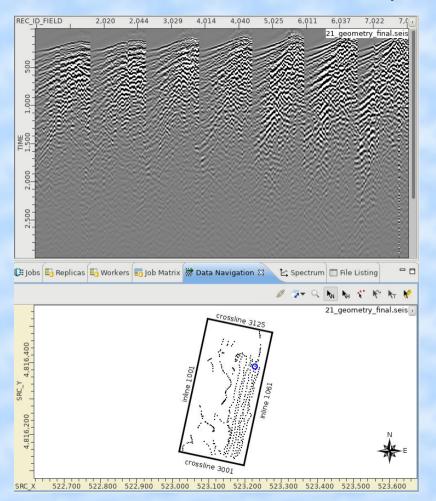
January 16th 2022

Agile Seismic LLC

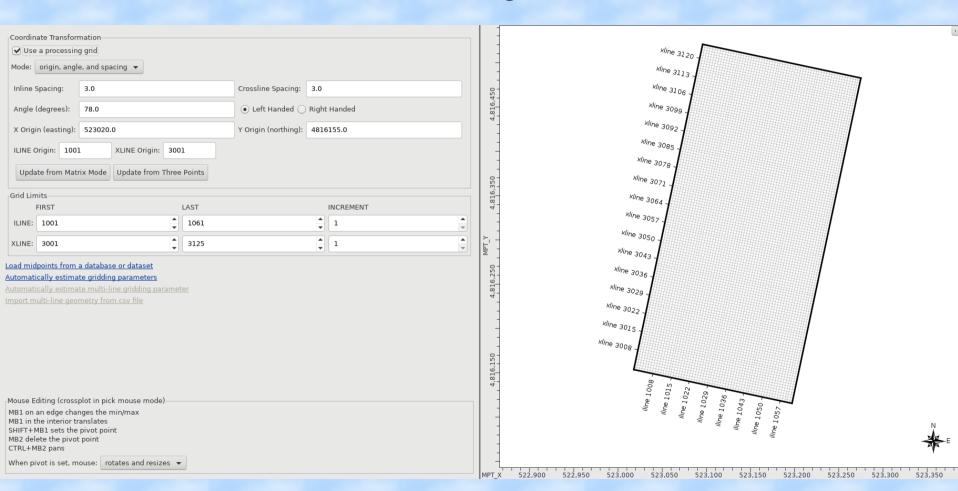

Processing Steps

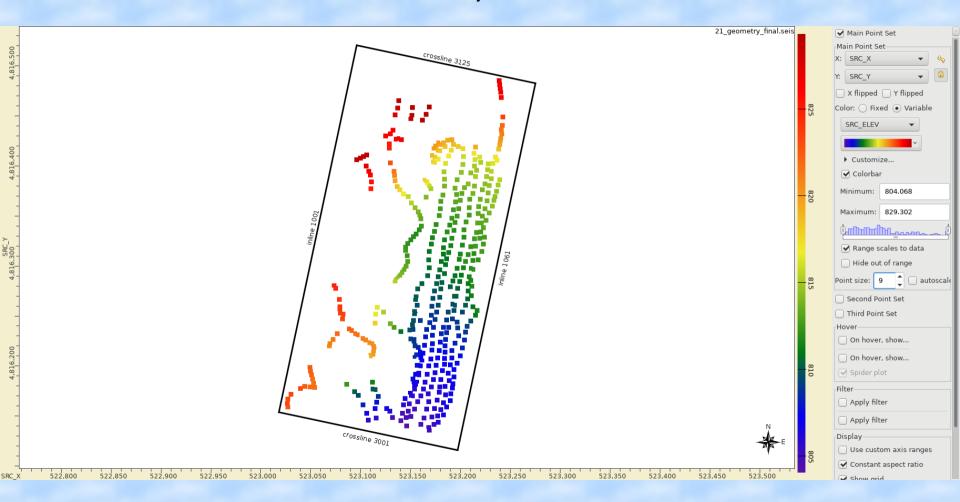

Pickles Butte seismic processing are shown below:


- ▶ 않 01_IMPORT
- ▶ 않 02_GEOMETRY
- ▶ ७ 04_NO_REFRACTION_STATICS
- DENOISE
- 6 SCAC_1
- ▶ 🗁 07_DECON
- ▶ 6 08 SCAC 2
- > 09_RESIDUAL_STATICS_1
- ▶ № 10_Q-COMPENSATION
- ▶ ▶ 11_FINAL_PROCESSING
- > 12 PoSTM
- 13_PSTM

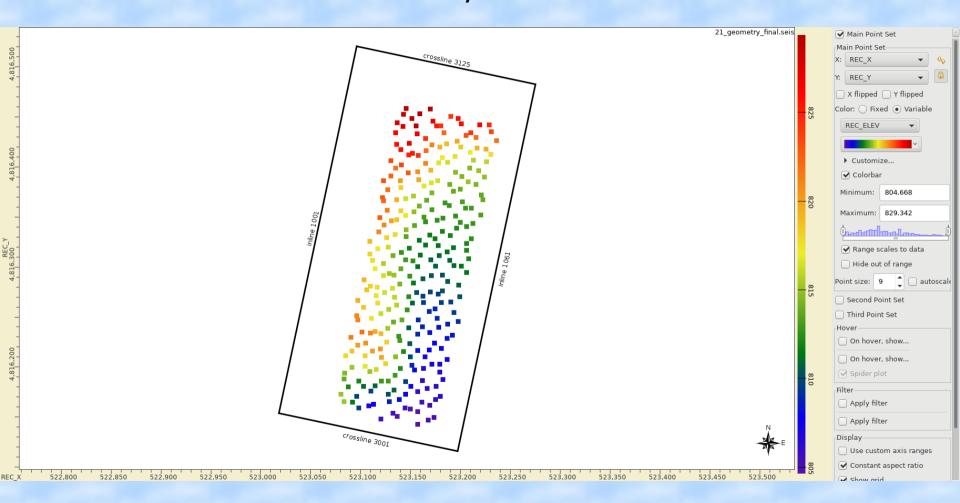

Data Import

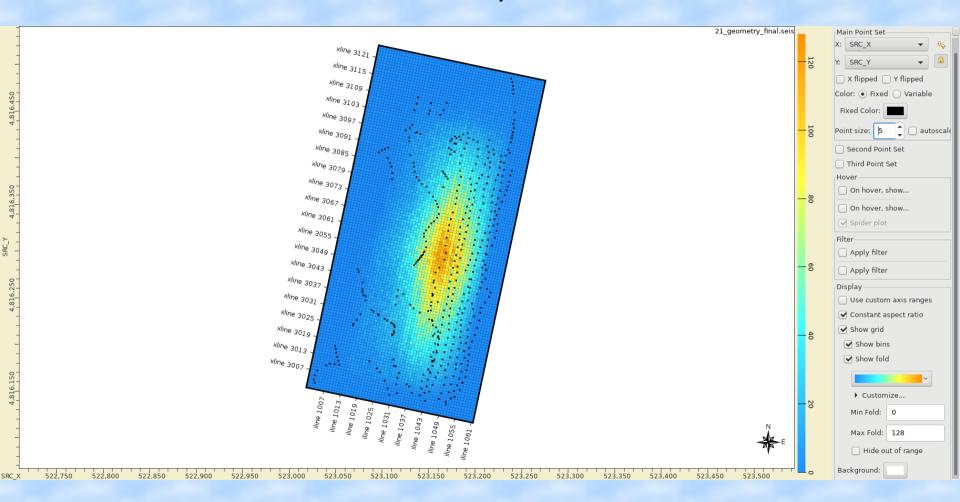
- Seismic source was vibroseis
- Receivers were GTI nodes
- Pilot sweep frequency range is 5-75 hz.
- Seismic data was acquired at 2 ms and resampled to 4 ms.
- Total number of shots is 440
- Total number of receivers is 285
- Total number of traces is 125224
- All data had coordinates and elevations for sources and receivers in the headers.
- Vibroseis data was mostly clean with strong ground-roll and occasional noise from water pumps.

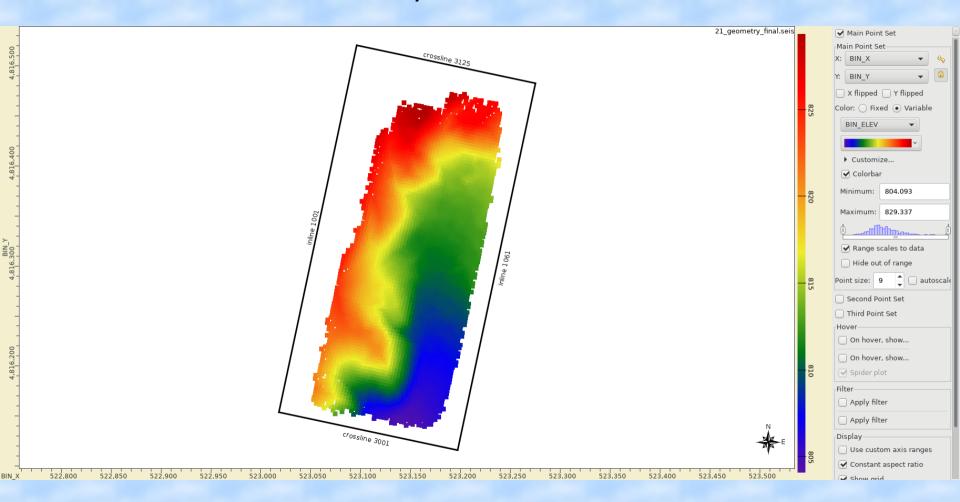


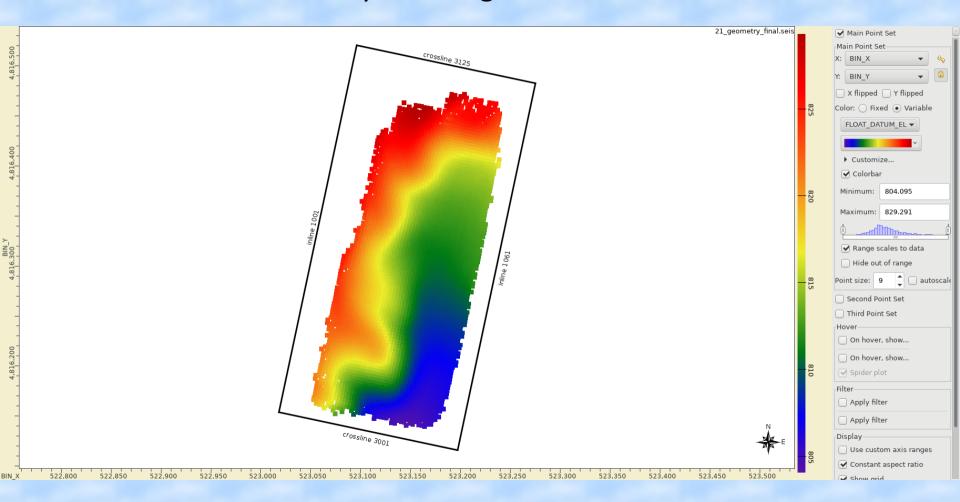

Geometry

- Seismic data already had source and receiver coordinates and elevations in the headers.
- Processing grid was created with the following parameters:
 - Inline range 1001-1061
 - Crossline range 3001-3125
 - Inline and crossline spacing was set to 3 m
 - Fixed datum 850 m and replacement velocity 1500 m/sec
- Geometry was built using coordinates and elevations in the headers.
- Geometry brute stack was shown for select inlines only since good fold was very narrow in xline direction.
- Following processing was done for Geometry brute stack:
 - Sparse velocity analysis
 - AGC
 - Spiking Decon
 - Stack
 - FXYDecon 5-75 Hz
 - Low Cut Filter 12-20-- Hz

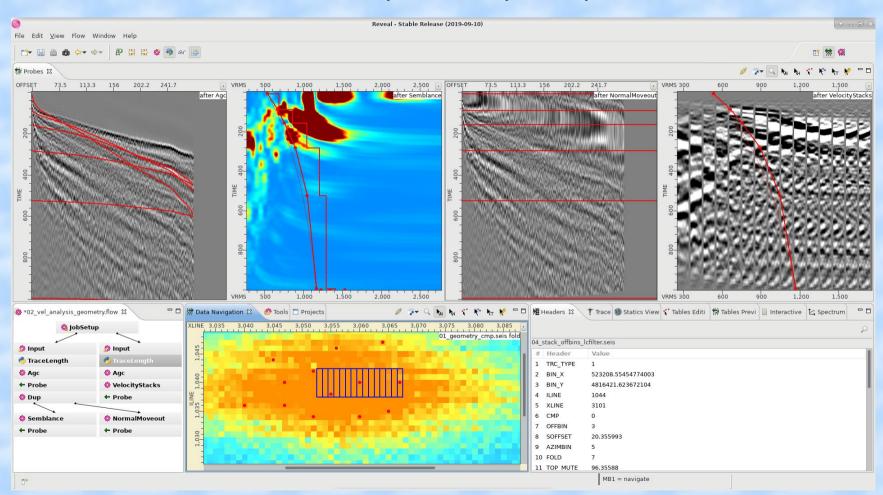

Processing Grid


Geometry: Sources

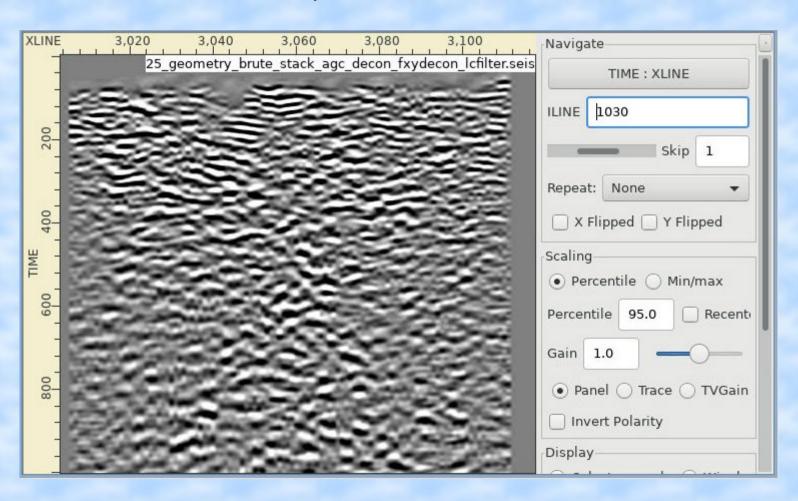

Geometry: Receivers

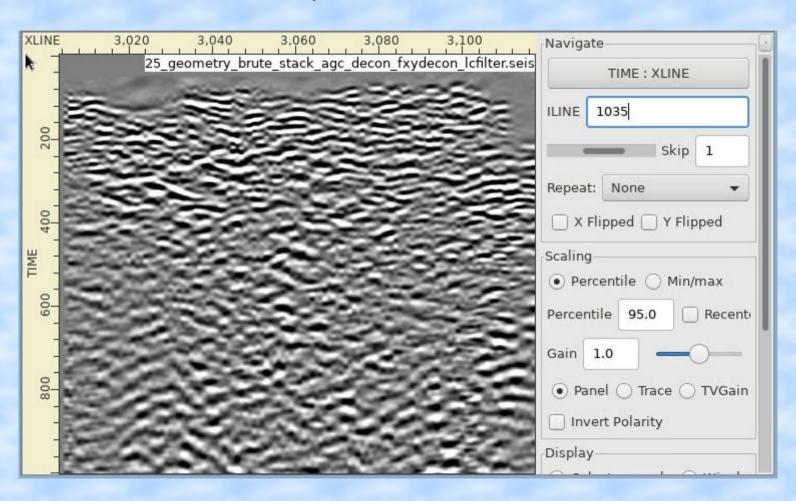

Geometry: Fold

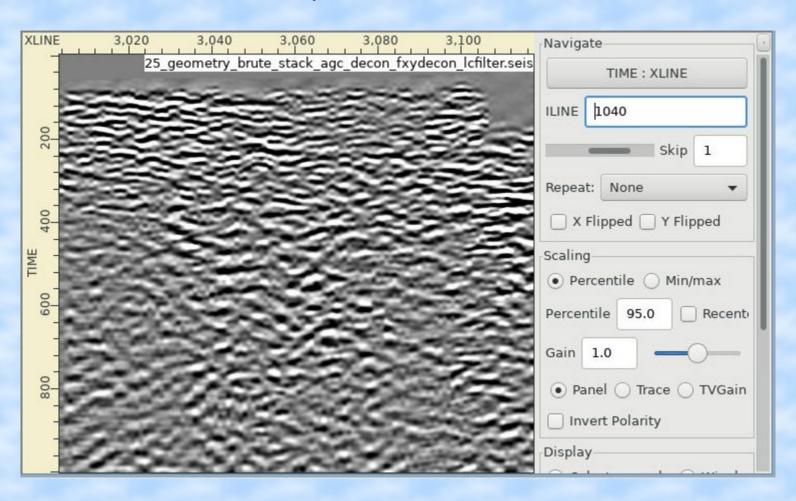
Geometry: Surface Elevation

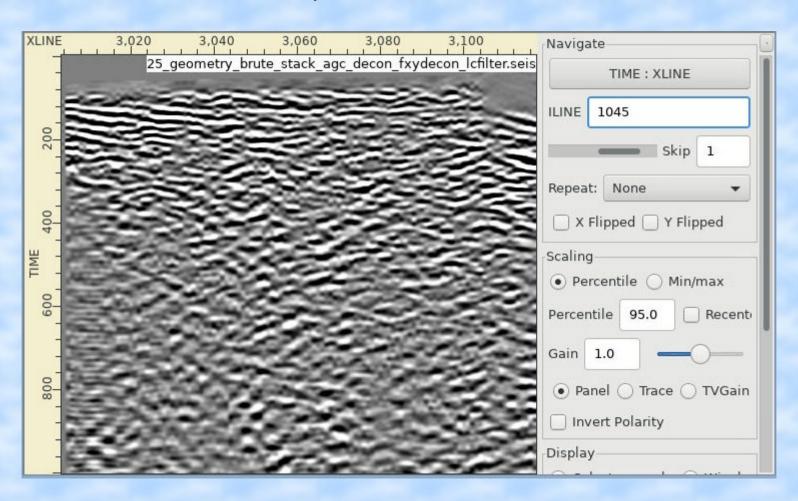

Geometry: Floating Datum Elevation

Geometry: Brute Stack

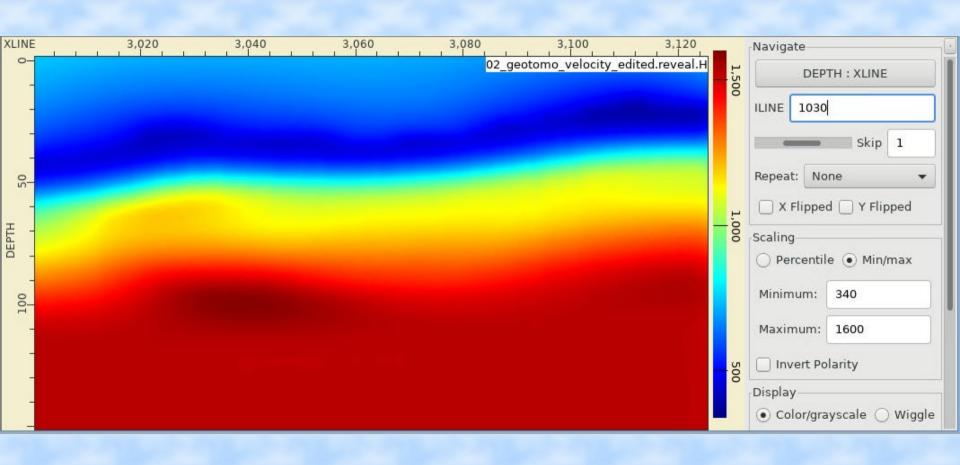

Velocity Analysis

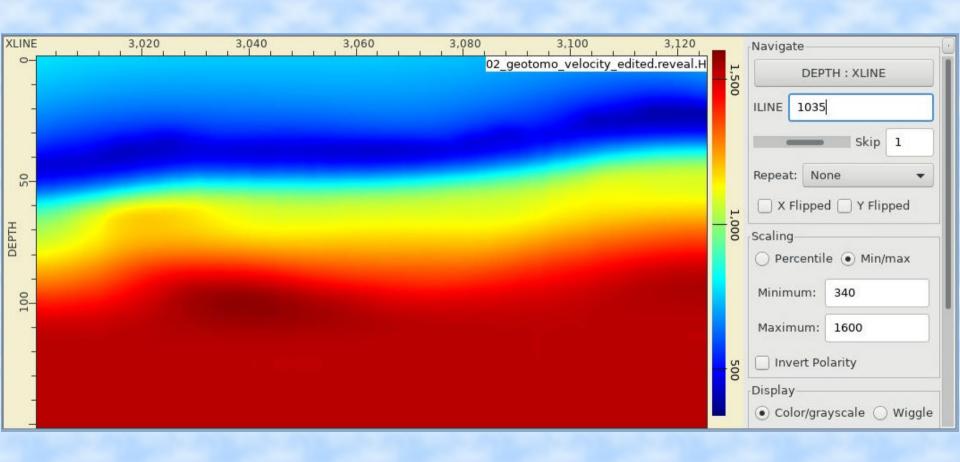

Geometry: Velocity Analysis

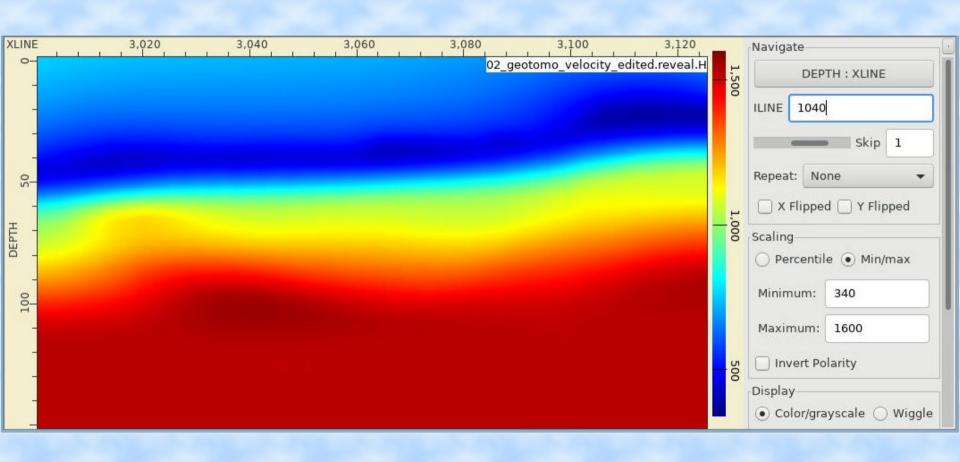


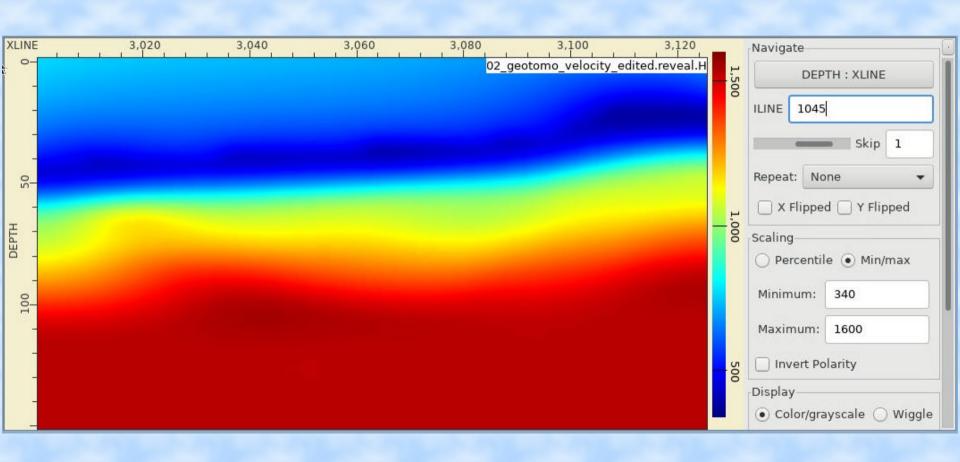

Geometry: Brute Stack

Inlines

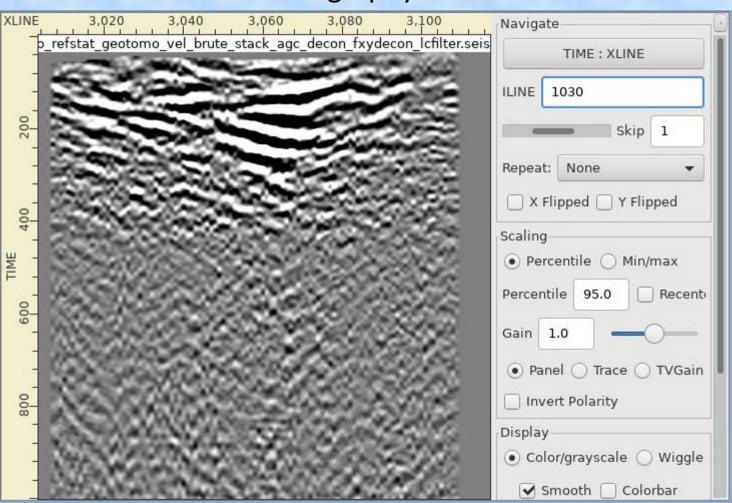


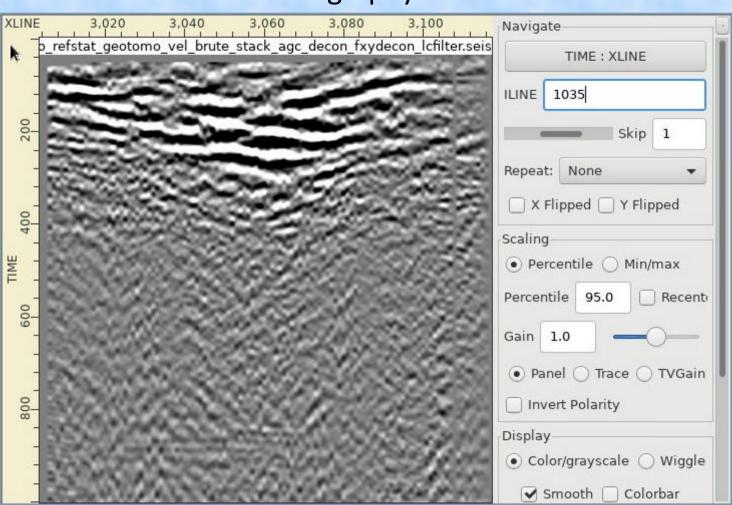


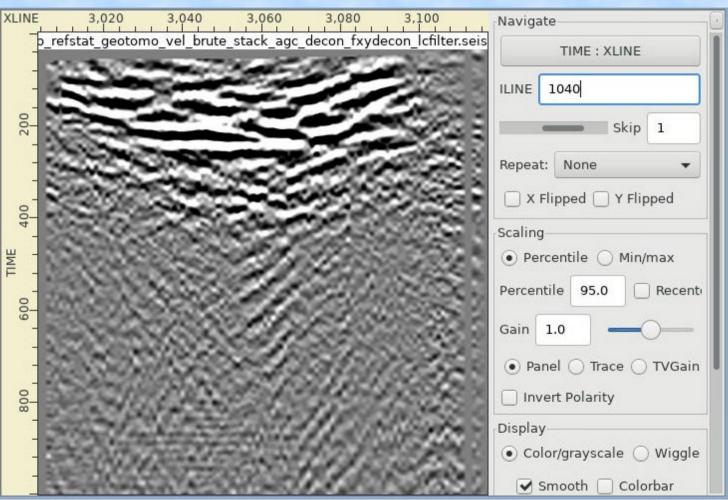

Refraction Tomography

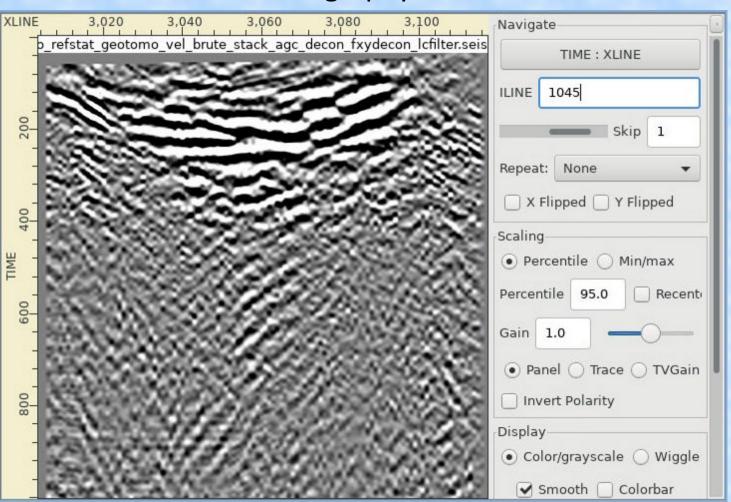

- Refraction Tomography was used to produce near surface velocity as well as refraction statics.
- Refraction statics were not used and instead statics were handled in residual Statics processing.
- Refraction tomography velocity was used in all stacks and for migration since it is not
 possible to derive very shallow velocity from reflection data.

Inlines

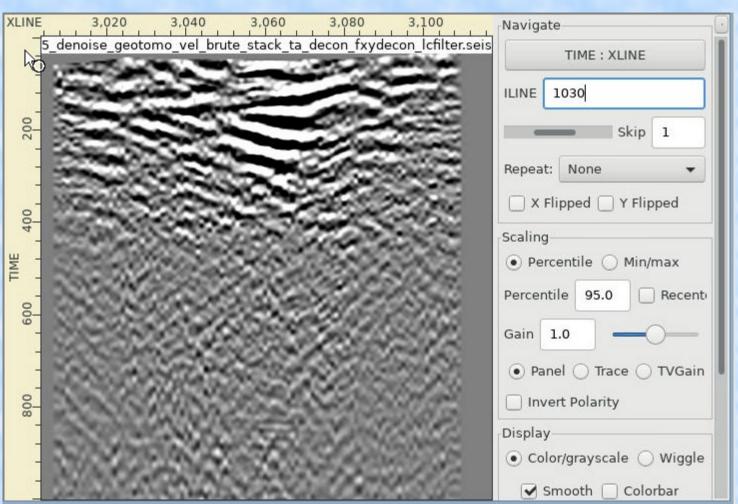


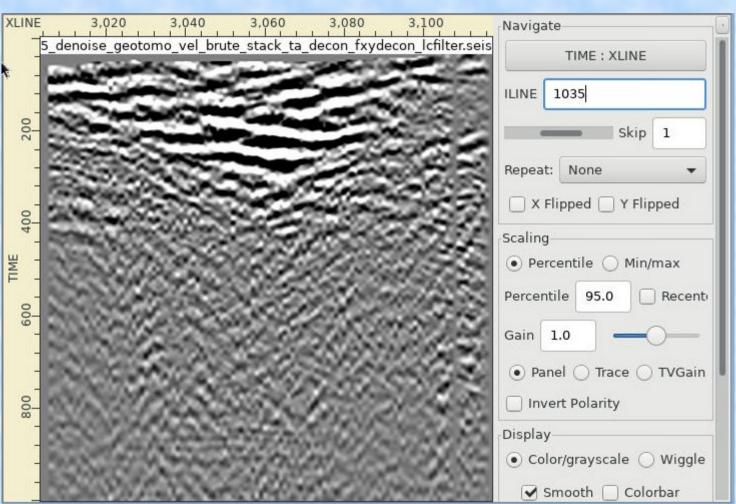


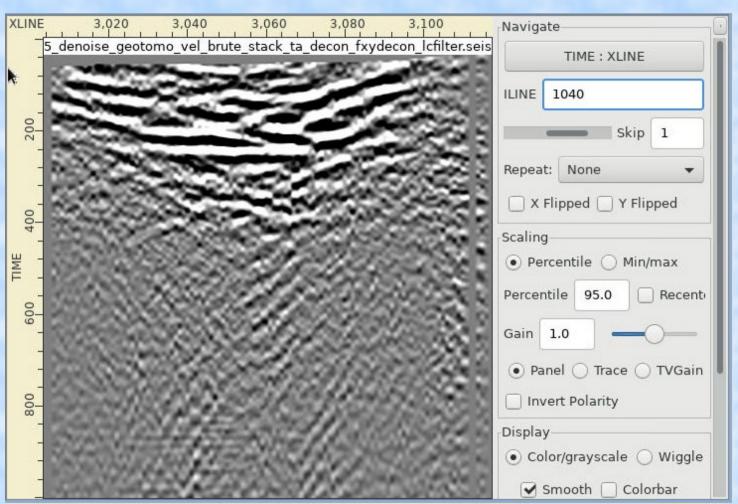


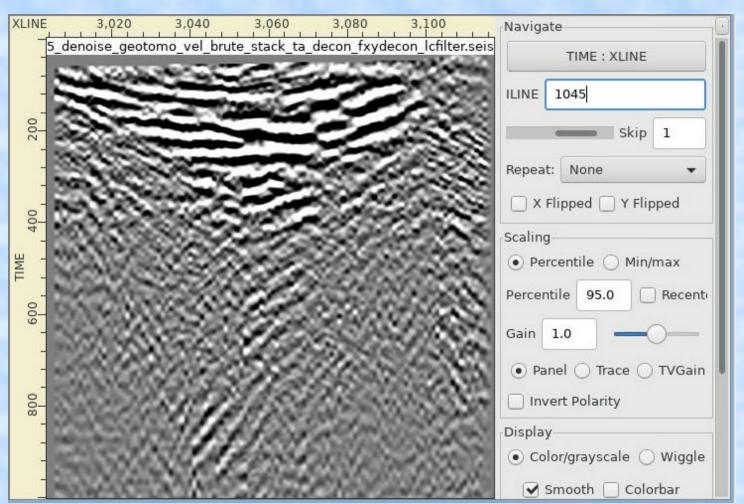


Inlines

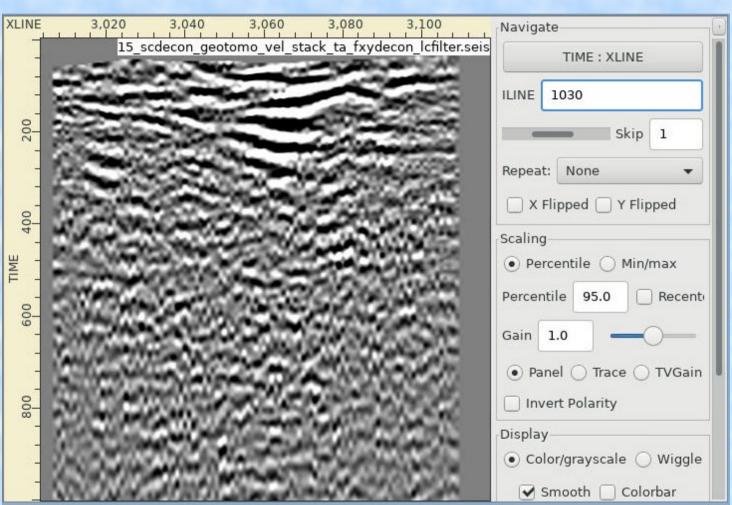


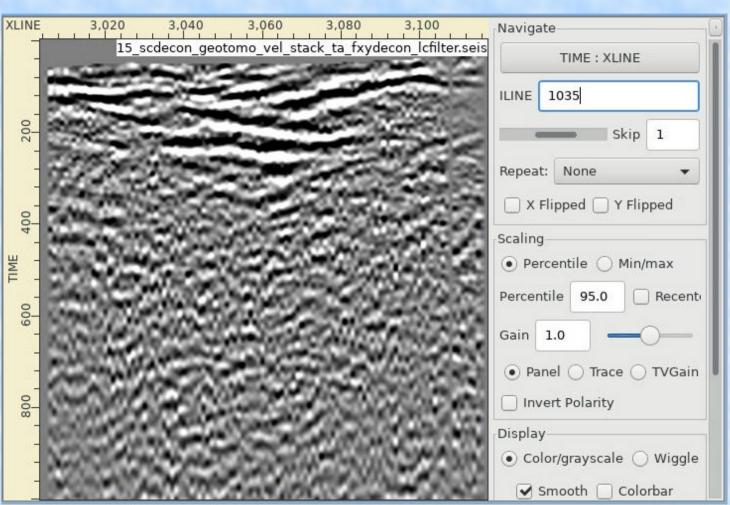

Denoise

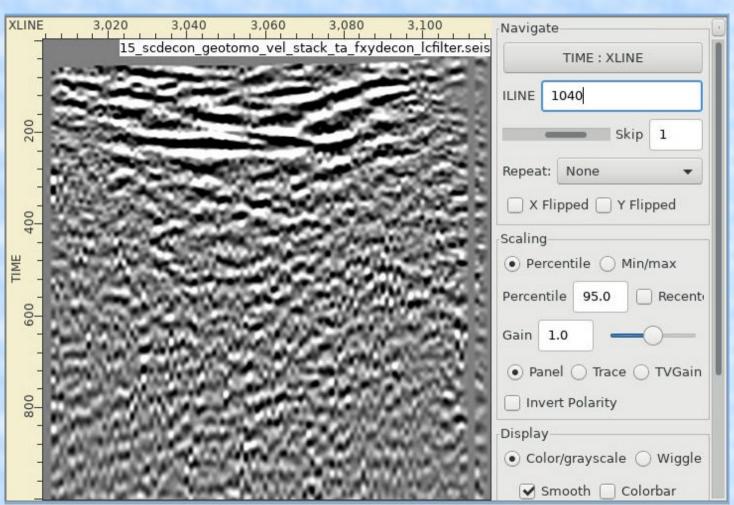

- This data is clean as far as burst/environmental noise is concerned.
- Surface waves are strong.
- Main goal of denoising was to attenuate surface noise.

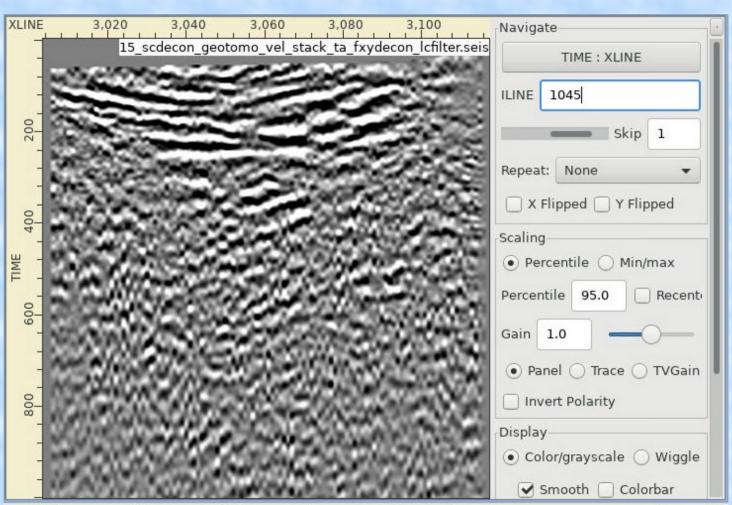

Denoise: Stack

Inlines



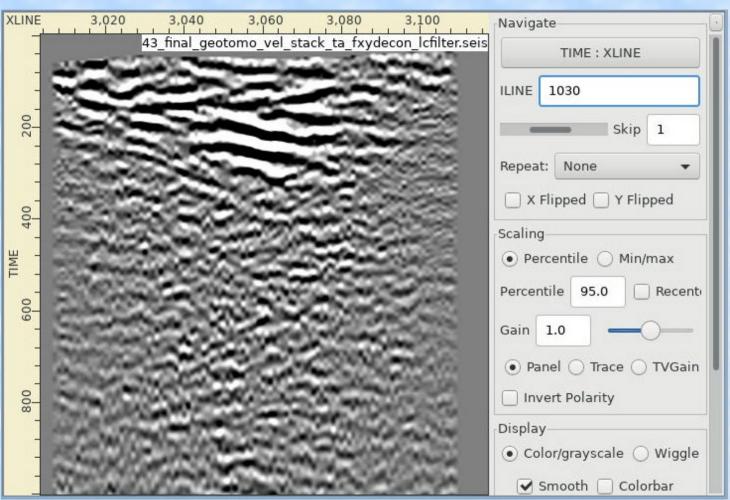

Surface Consistent (SC) Deconvolution

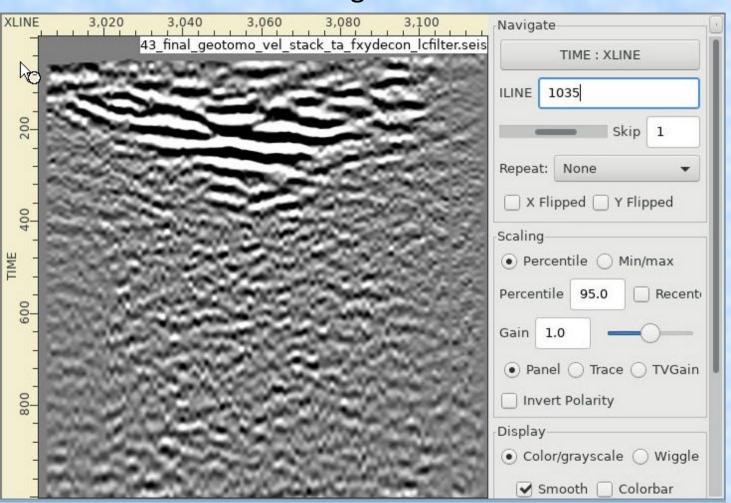

- Surface Consistent (SC) Deconvolution was used to compress the seismic wavelet and broaden frequency band of the data.
- SC Decon parameters used were:
- Gap: 0 ms (Spiking Decon)
- Operator Length: 180 ms

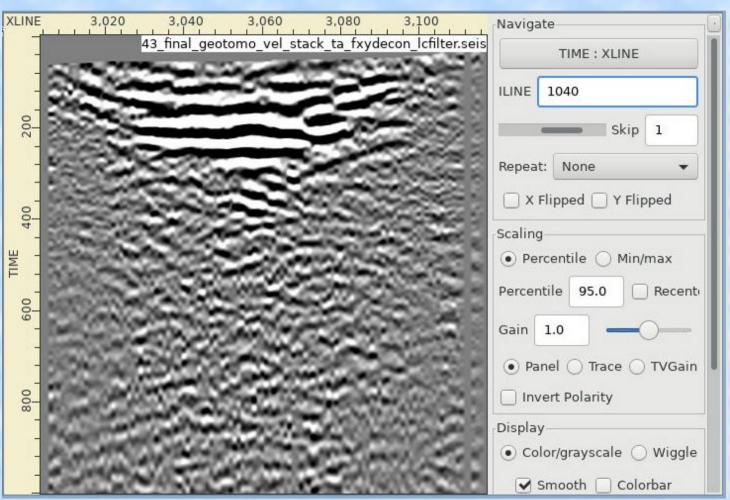

Surface Consistent (SC) Deconvolution: Stack

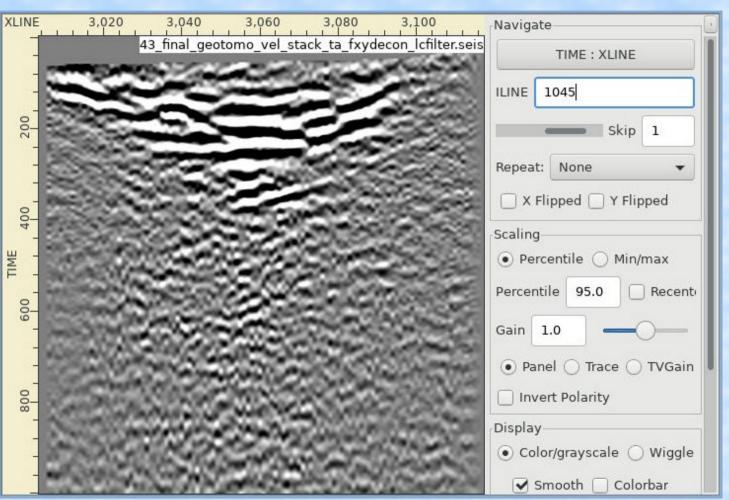
Inlines

Residual Statics and Q-Compensation

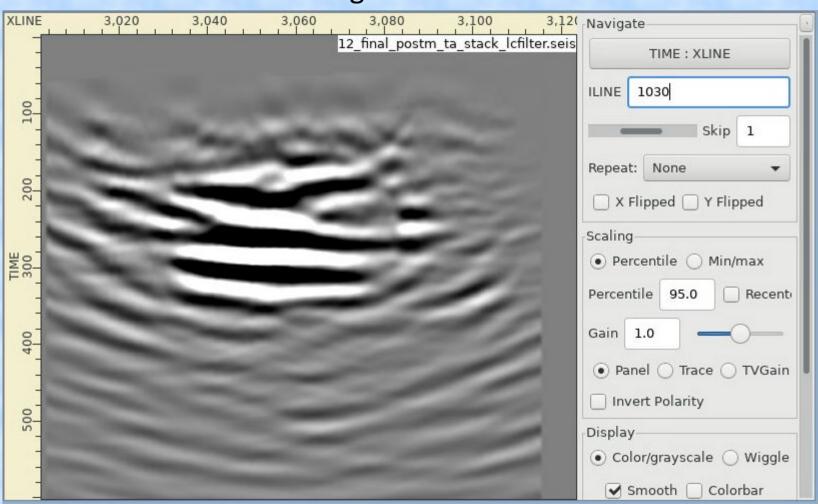

- Residual Statics was done to enhance continuity of horizons.
- Q-Compensation was done to compensate for loss of frequency due to low Q (Quality Factor).

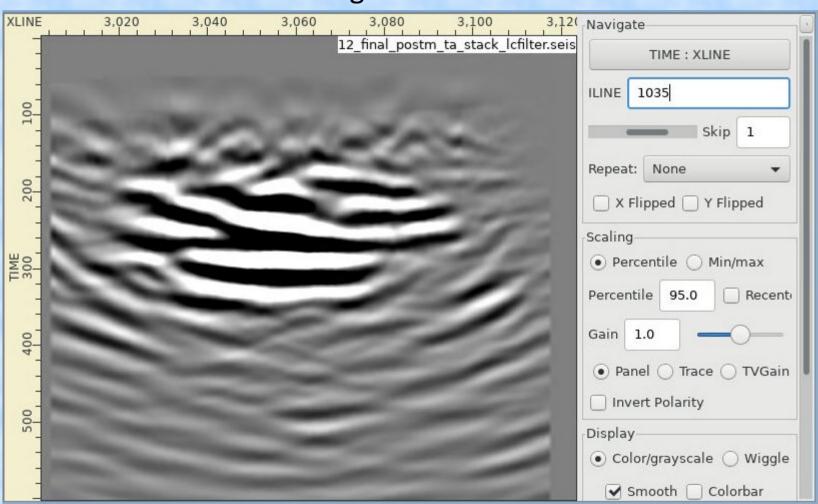

Final Processing


- Final processing steps included Residual Statics and Q-Compensation.
- Residual Statics was done to enhance continuity of horizons.
- Q-Compensation was done to compensate for loss of frequency due to low Q (Quality Factor).
- Often, additional denoising is done in the final stage of processing. However, in this case because the data was clean no additional denoising was done.

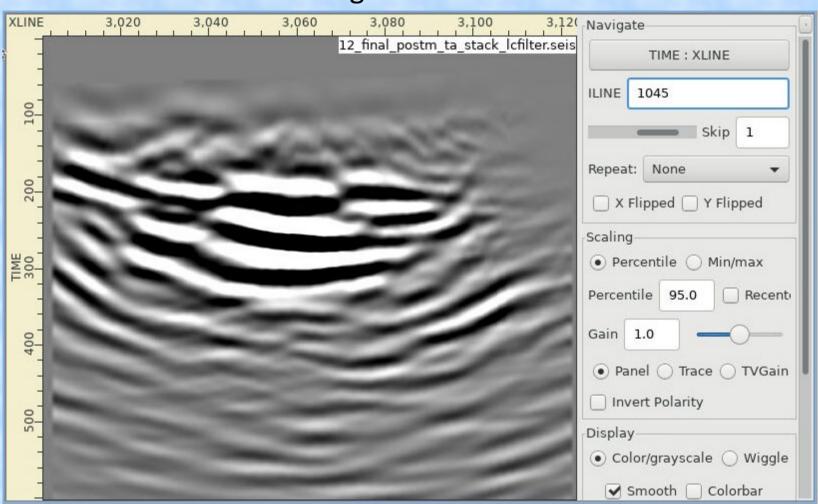

Final Processing: Stack

Inlines






Time Migration

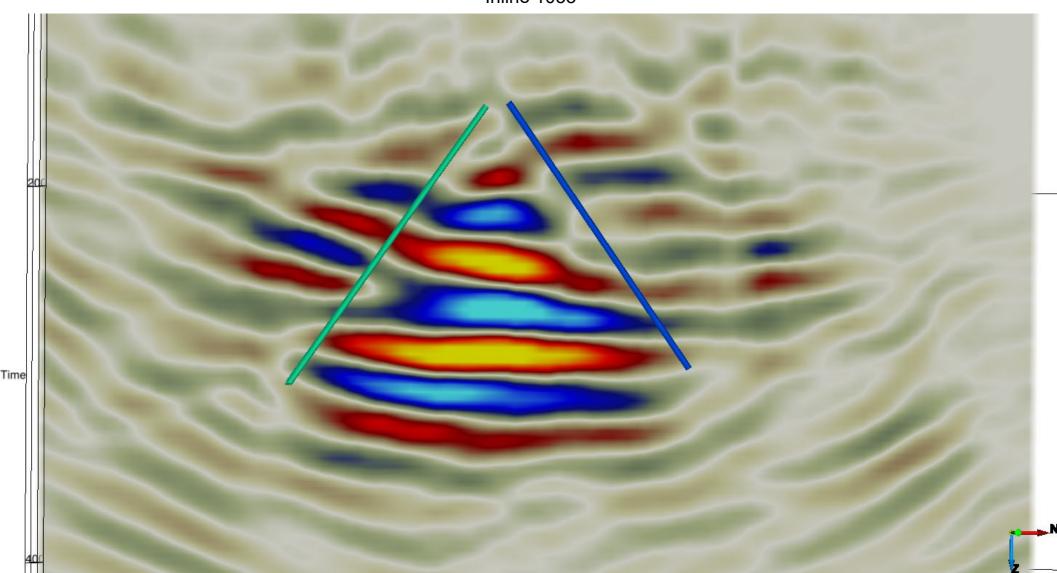

- Migration is done in order collapse diffraction hyperbolas at reflectors and faults as well
 as to correctly position steeply dipping seismic events.
- Two types of seismic time migration were tested:
 - Kirchhoff Post-stack Time Migration (PoSTM)
 - Kirchhoff Pre-stack Time Migration (PSTM)
- Better results were produced by Kirchhoff PoSTM.

Inlines

Final Deliverables

Pickles Butte seismic processing Final Deliverables are shown below:

```
▼ B CMP_GATHERS
  ▼ 🍃 TRUE AMPLITUDE
       M Pickles Butte Final True Amplitude CMP Gathers.segy 506M
▼ ⑤ GEOTOMO_VELOCITY
     Pickles Butte GeoTomo Velocity.segy 3312K
  PoSTM STACK
  AGC
       Pickles_Butte_Final_PoSTM_AGC_Stack.segy 4M
       Pickles_Butte_Final_PoSTM_AGC_Stack_90_perc_velocity.segy 4M
  ▼ B TRUE_AMPLITUDE
       Pickles_Butte_Final_PoSTM_True_Amplitude_Stack.segy 4M
       Pickles_Butte_Final_PoSTM_True_Amplitude_Stack_90_perc_velocity.segy 4M
  STACK
  ▼ AGC
       Pickles_Butte_Final_AGC_Stack.segy 5M
  ▼ B TRUE AMPLITUDE
       Pickles_Butte_Final_True_Amplitude_Stack.segy 5M
```


Conclusions

- Pickles Butte seismic surveys was processed through time migration.
- Data was clean as far as environmental noise is concerned but it had strong surface waves.
- Clean data enabled good First Break (FB) picks and that is important for refraction Tomography.
- Denoising goal was to attenuate surface waves.
- SC Decon improved resolution of the data.
- Residual statics improved continuity of the data.
- Both Kirchhoff PoSTM and PSTM were tested. PoSTM results were better.

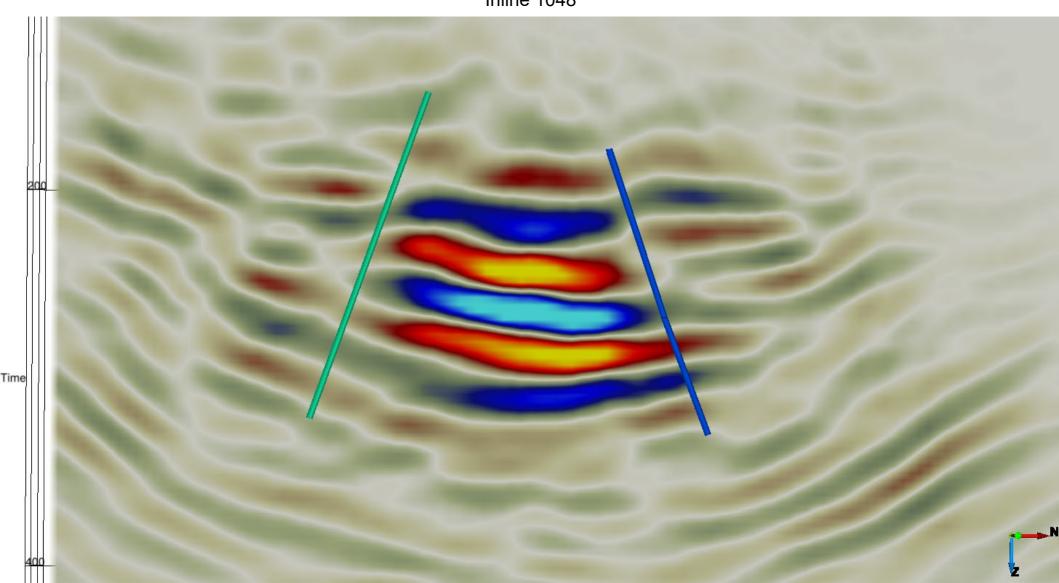
Appendix B

True Amplitude Inline Snapshots With Fault Picks

Pickles Butte 3D Seismic Survey Report Pickles Butte, Idaho Project No. 114-571040-2022 Inline 1033



Inline 1036 Time


Inline 1038 Time

Inline 1040 Time

Inline 1042 Time

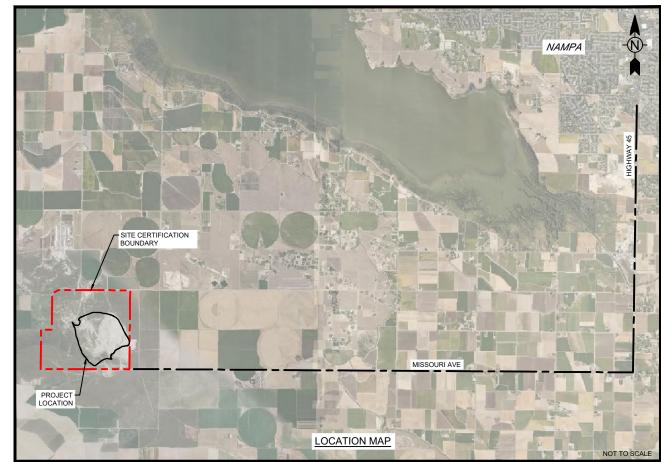
Inline 1048

Inline 1053 Time

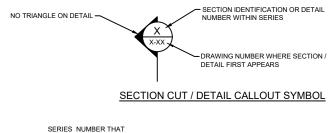
APPENDIX H: LANDFILL EXPANSION DESIGN DRAWINGS

PICKLES BUTTE LANDFILL CANYON COUNTY, ID PHASE 5 EXPANSION

3380 AMERICANA TERRACE, SUITE 201


BOISE, IDAHO 83706 PHONE: 208-389-1030

www.tetratech.com


SHEET INDEX

SHEET NO.	SHEET TITLE
G-100	COVER (THIS SHEET)
C-101	EXCAVATION PLAN
C-102	WASTE PLAN
C-103	EXCAVATION & WASTE - SECTION A
C-104	EXCAVATION & WASTE - SECTION B
C-105	EXCAVATION & WASTE - SECTION C
C-106	EXCAVATION & WASTE - SECTION D
C-107	EXCAVATION & WASTE - SECTION E
C-108	LANDFILL GAS PIPELINE EXPANSION
C-109	STORMWATER MANAGEMENT PLAN
C-110	STORMWATER RUN-OFF/RUN-ON PLAN
C-111	STORMWATER POND SECTIONS
C-112	STORMWATER POND SECTIONS
C-113	STORMWATER SECTIONS AND DETAILS

SURVEY DATUM INFORMATION PER IDAHO SURVEY GROUP MAPPING DATED OCTOBER 4, 2023 LOCATION: SECTION 21, T2N, R3W, CANYON COUNTY, IDAHO BASIS OF BEARING: IDAHO STATE PLANE - WEST VERTICAL DATUM: NAVD 88 UNIT OF MEASURE: U.S. SURVEY FOOT

SECTION AND DETAIL DESIGNATION

TITLE FOR SECTION CUT / DETAIL

DRAWING NO. WHERE SECTION / DETAIL WAS FIRST CUT / TAKEN. BLANK IF SECTION / DETAIL IS ON SAME SHEET —

SECTION / DETAIL FALLS IN -

- SECTION / DETAIL NUMBER WITHIN SERIES 2-1 SECTION / DETAIL TITLE

LINEAR FEET LANDFILL GAS

ABBF	REVIATIONS		
#	NUMBER	HDPE	HIGH-DENSITY POLYETHYLE
&	AND	MAX.	MAXIMUM
Ø	DIAMETER	MIN.	MINIMUM
%	PERCENT	NOM.	NOMINAL
CF	CUBIC FEET	NTS	NOT TO SCALE
CY	CUBIC YARD	PBL	PICKLES BUTTE LANDFILL
CMP	CORRUGATED METAL PIPE	QTY	QUANTITY
DIA	DIAMETER	STA	STATION
DWG	DRAWING	SF	SQUARE FEET
EG	EXISTING GROUND	SY	SQUARE YARD
ELEV	ELEVATION	TYP	TYPICAL
FG	FINISH GRADE		

PROJECT LOCATION:

INTERSECTION OF MISSOURI AVENUE AND PERCH ROAD

PICKLES BUTTE LANDFILL 15500 MISSOURI AVENUE NAMPA, ID 83686

CLIENT INFORMATION:

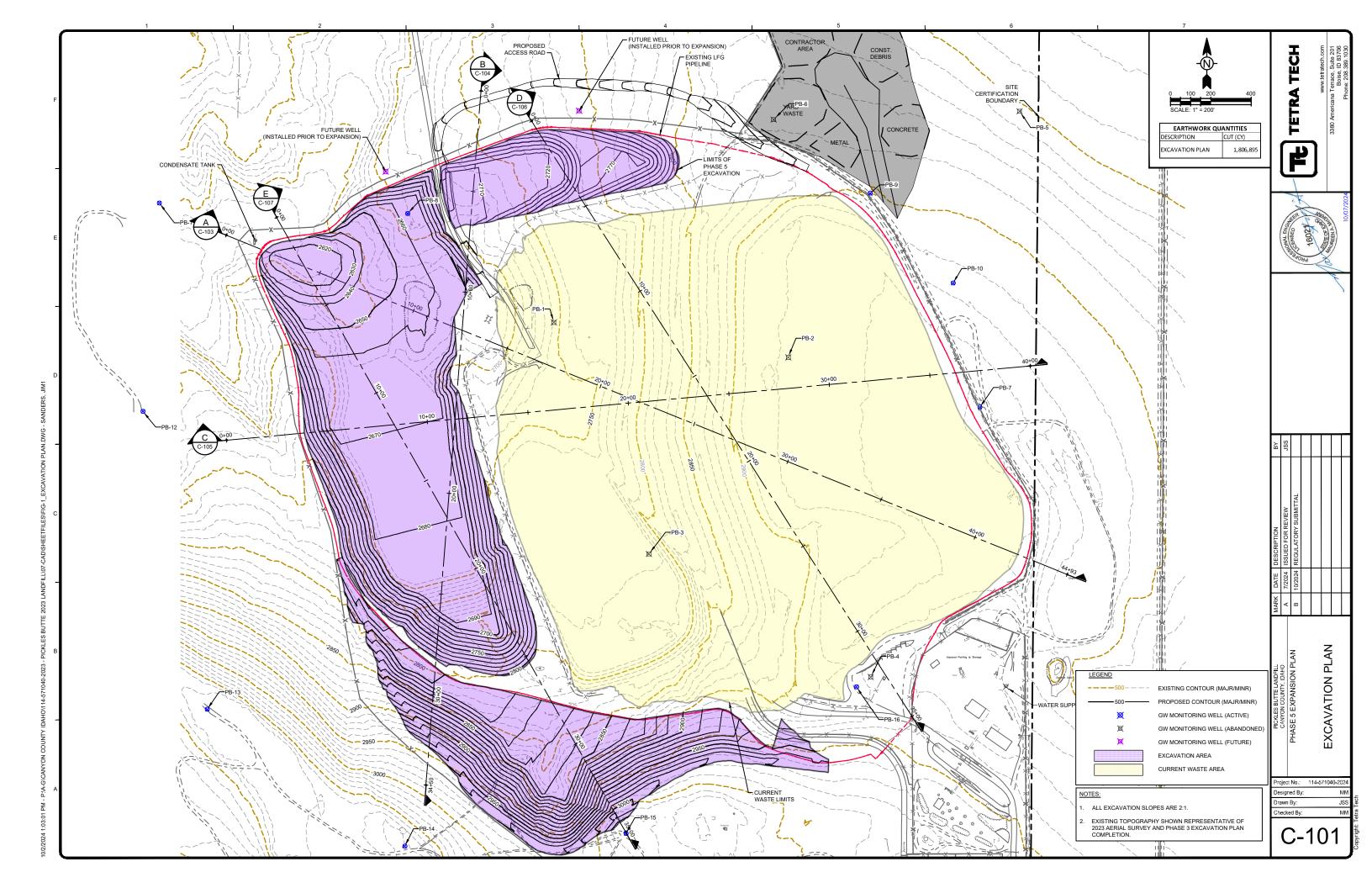
Tt PROJECT No.:

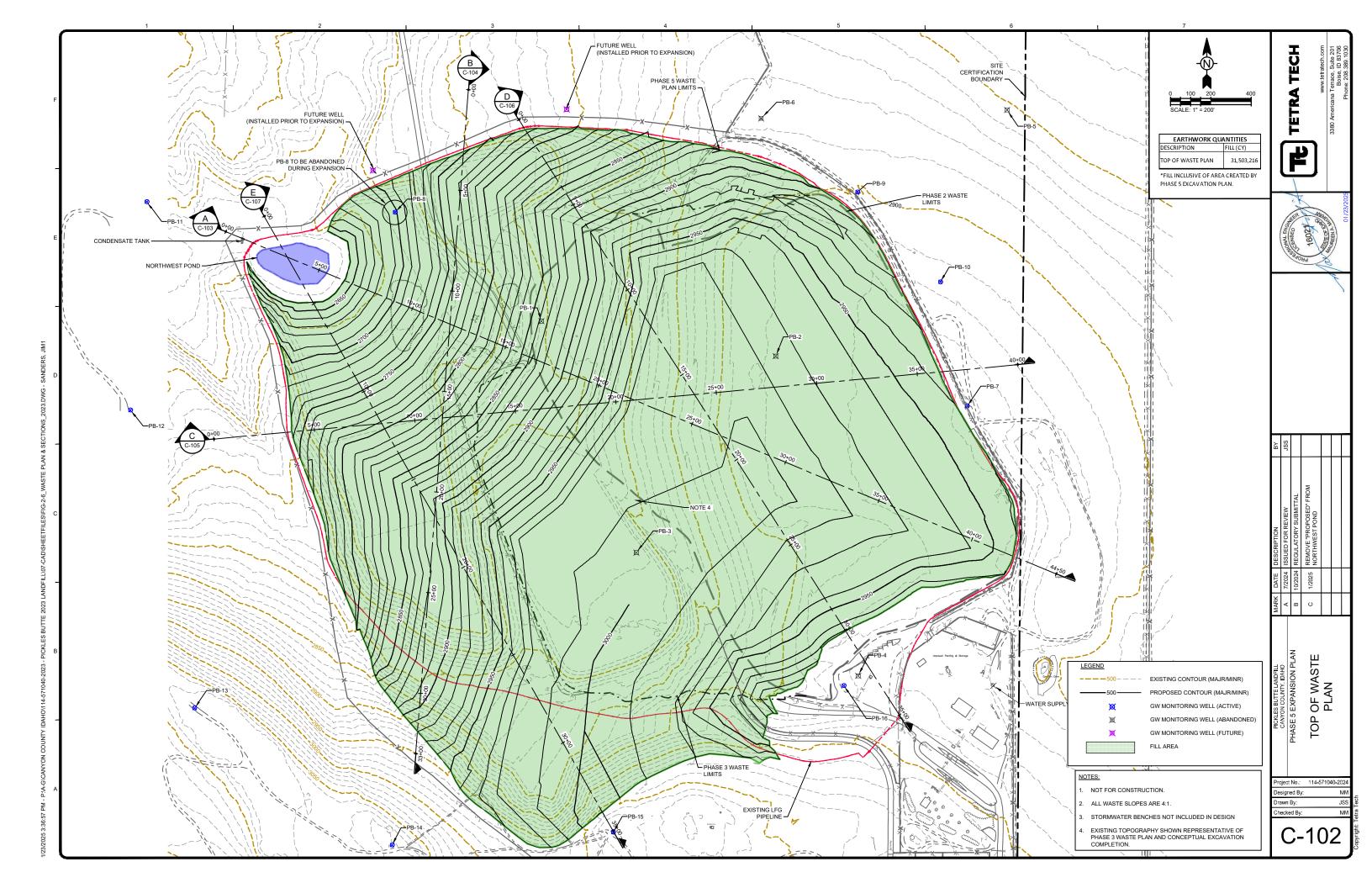
114-571040-2024

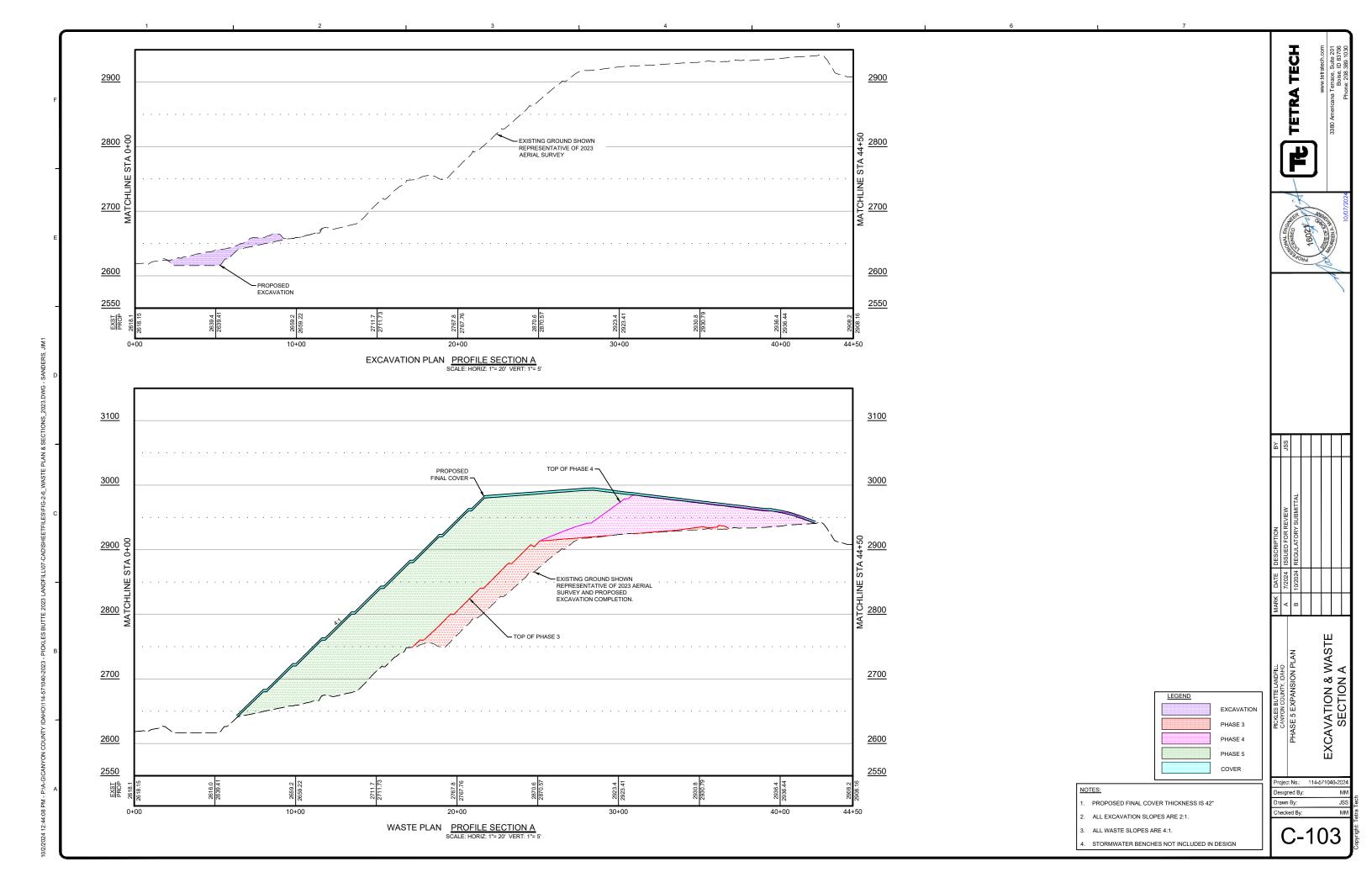
CLIENT PROJECT No.

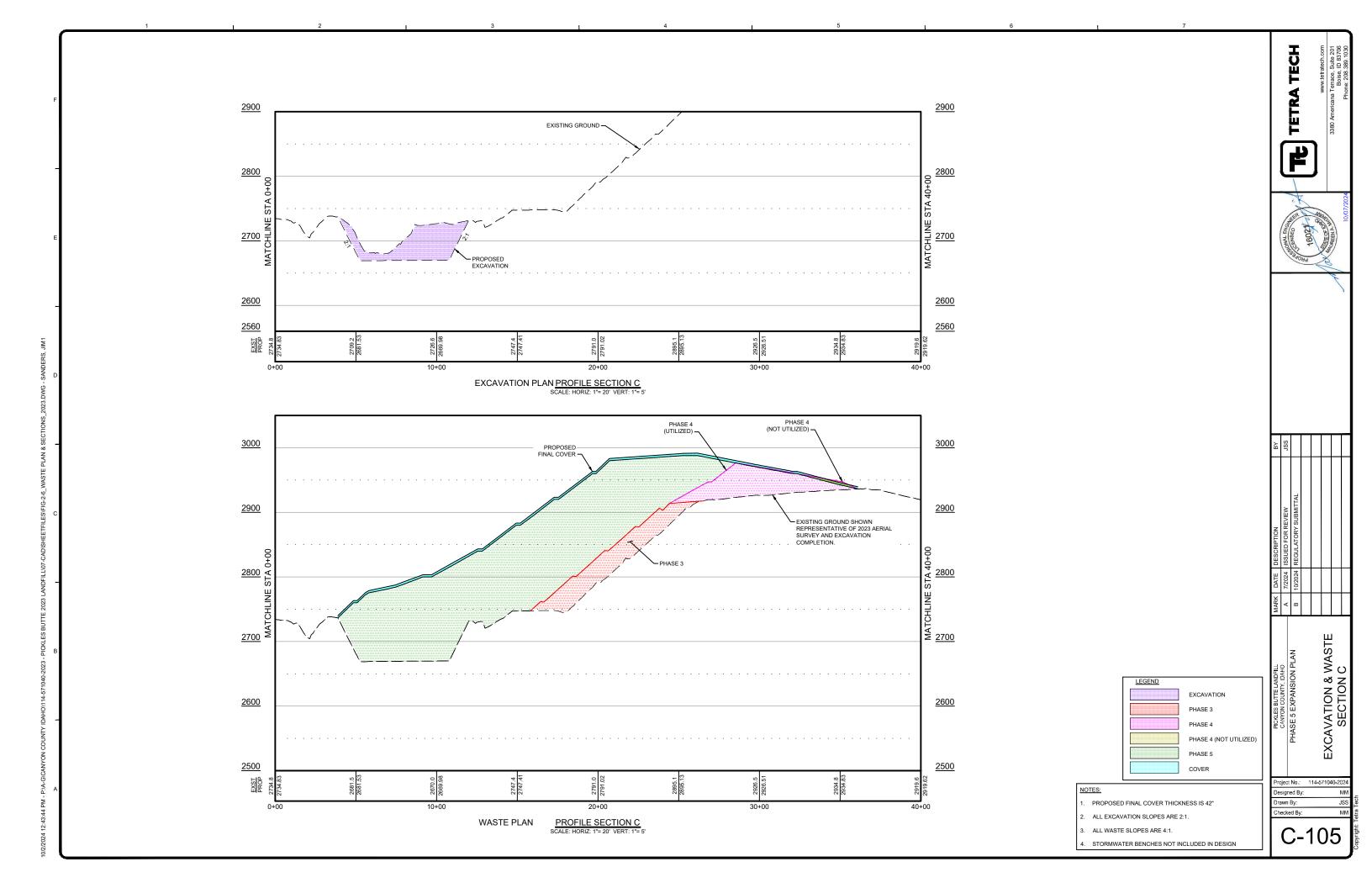
PROJECT DESCRIPTION / NOTES:

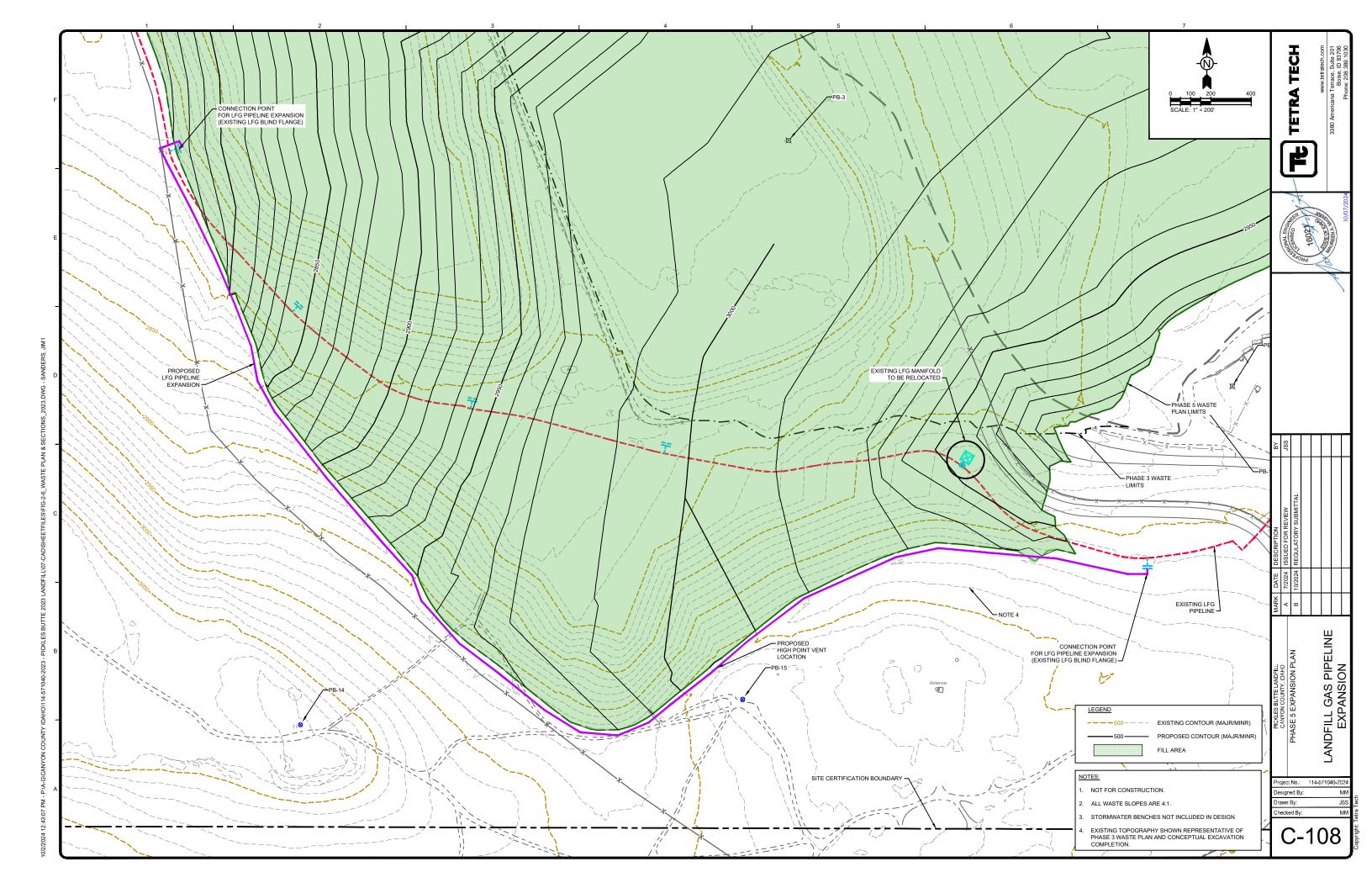
PHASE 5 EXPANSION DESIGN

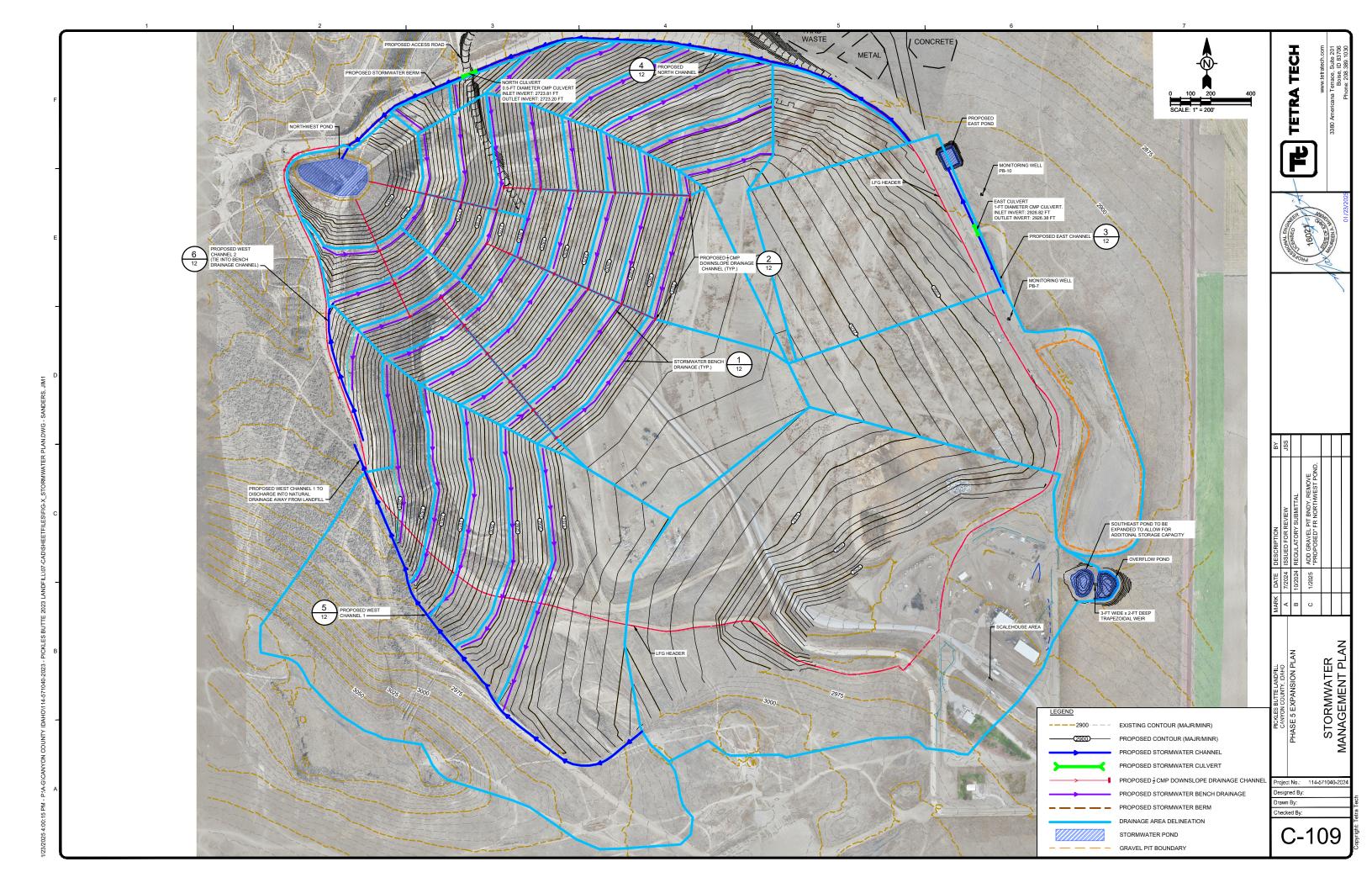

ISSUED:

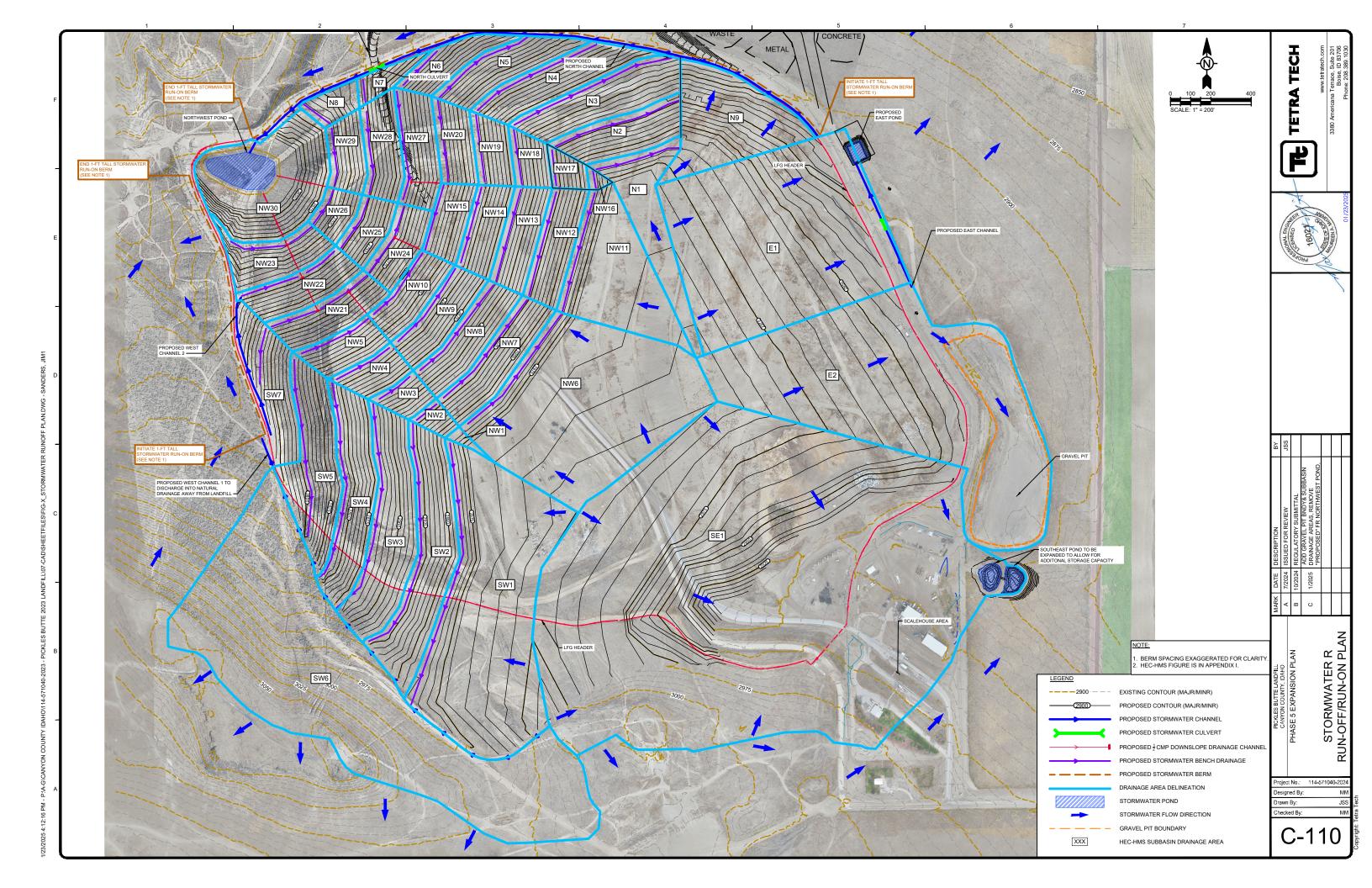

7/2024 ISSUED FOR REVIEW 10/2024 REGULATORY SUBMITTAL 1/2025 SUBMITTAL OF FINAL EXPANSION DESIGN

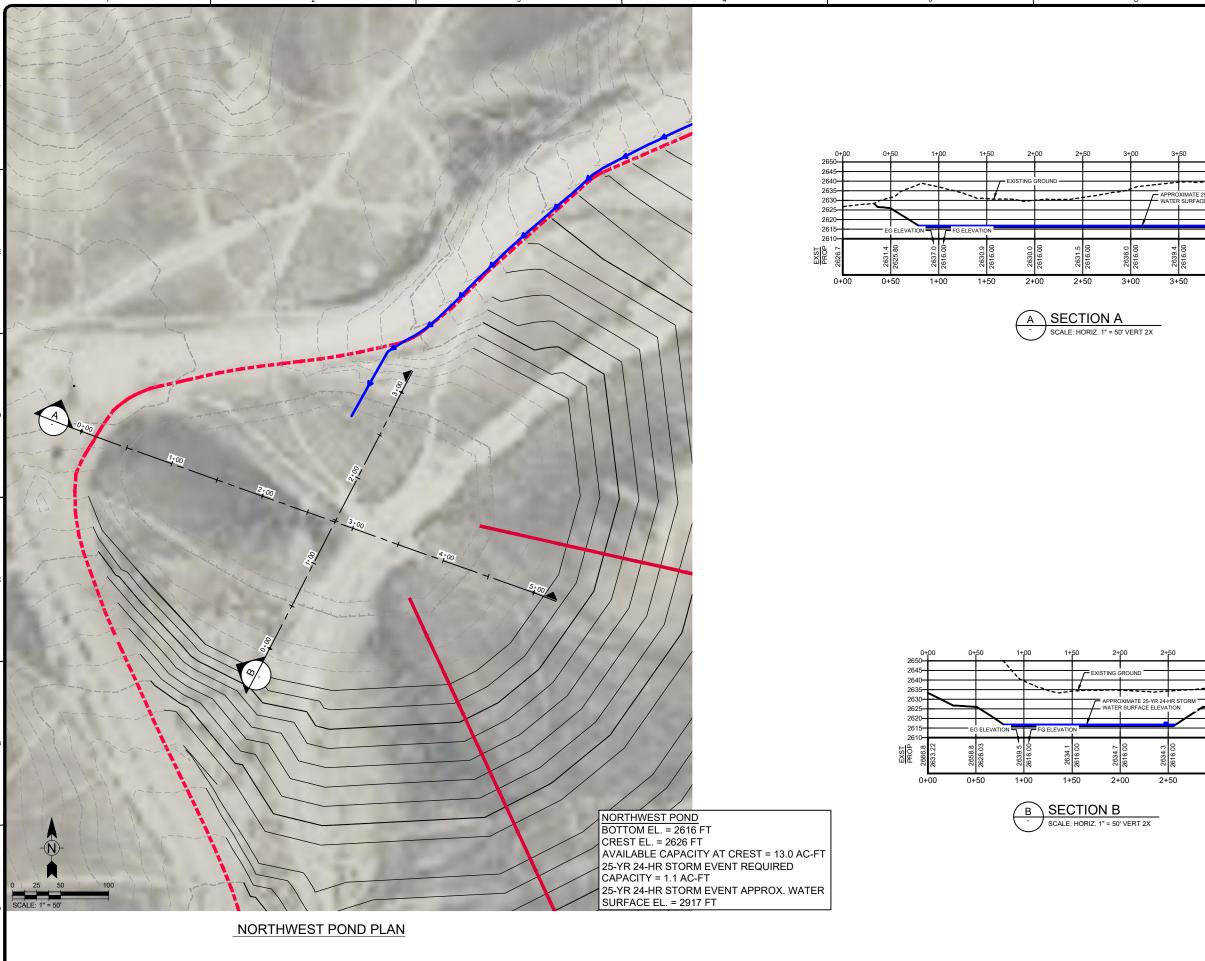

VICINITY MAP:

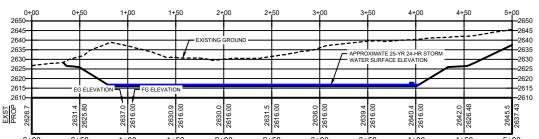

NOT TO SCALE

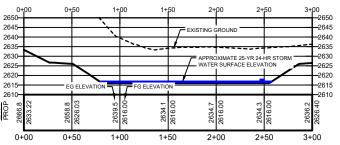


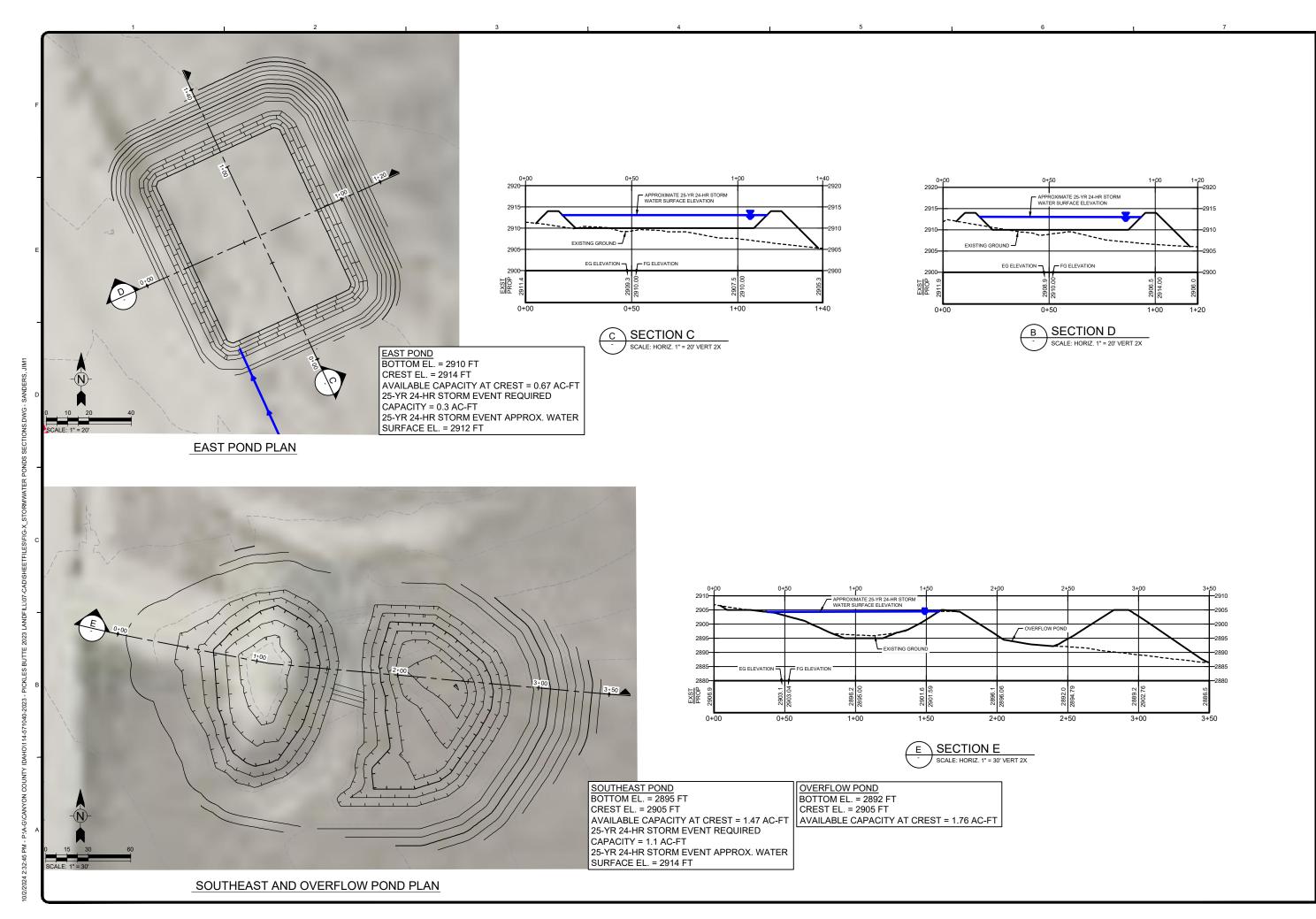

TETRA TECH 3000 3000 <u>2900</u> <u>2900</u> PROPOSED -EXCAVATION -S 2800 2800 L EXISTING GROUND -<u>2700</u> <u>2700</u> PROPOSED EXCAVATION -PROPOSED = <u>2600</u> <u>2600</u> 0+00 20+00 30+00 10+00 33+00 EXCAVATION PLAN PROFILE SECTION B
SCALE: HORIZ: 1"= 20' VERT: 1"= 5' 3000 3000 PROPOSED FINAL COVER 2900 <u>2900</u> 2800 <u>"</u> MATCHLINE ST EXCAVATION & WASTE SECTION B <u>2700</u> <u>2700</u> EXISTING GROUND
SHOWN REPRESENTATIVE
OF EXCAVATION
COMPLETION. 2600 2600 LEGEND EXCAVATION PHASE 5 <u>2550</u> <u>2550</u> roject No : 114-571040-202 NOTES: 0+00 20+00 30+00 10+00 33+00 PROPOSED FINAL COVER THICKNESS IS 42" PROFILE SECTION B SCALE: HORIZ: 1"= 20' VERT: 1"= 5' WASTE PLAN Checked By: ALL EXCAVATION SLOPES ARE 2:1. ALL WASTE SLOPES ARE 4:1. STORMWATER BENCHES NOT INCLUDED IN DESIGN




TETRA TECH <u>2900</u> <u>2900</u> EXISTING GROUND SHOWN REPRESENTATIVE OF 2023 AERIAL SURVEY. 2800 <u>∠ 2800</u> PROPOSED EXCAVATION 2700 2700 <u>2600</u> <u>2600</u> 0+00 EXCAVATION PLAN PROFILE SECTION D
SCALE: HORIZ: 1"= 20' VERT: 1"= 5' <u>3100</u> <u>3100</u> PHASE 4 (UTILIZED) = PROPOSED FINAL COVER -- PHASE 4 (NOT UTILIZED) 3000 3000 <u>2900</u> ₹ ₹ <u>2900</u> MATCHLINE EXCAVATION & WASTE SECTION D EXISTING GROUND SHOWN
REPRESENTATIVE OF 2023 AERIAL
SURVEY AND EXCAVATION
COMPLETION. ≥ <u>2800</u> LEGEND EXCAVATION PHASE 3 <u>2700</u> <u>2700</u> PHASE 4 PHASE 4 (NOT UTILIZED) PHASE 5 COVER <u>2600</u> <u>2600</u> roject No : 114-571040-20: NOTES: PROPOSED FINAL COVER THICKNESS IS 42" Checked By: ALL EXCAVATION SLOPES ARE 2:1. 10+00 30+00 . ALL WASTE SLOPES ARE 4:1. WASTE PLAN PROFILE SECTION D
SCALE: HORIZ: 1"= 20' VERT: 1"= 5' STORMWATER BENCHES NOT INCLUDED IN DESIGN


TETRA TECH 3000 3000 PROPOSED EXCAVATION <u>2900</u> <u>2900</u> EXISTING GROUND -2800 <u>2800</u> 2700 <u>2700</u> PROPOSED EXCAVATION PROPOSED EXCAVATION <u>2600</u> <u>2600</u> EXST PROP 0+00 EXCAVATION PLAN PROFILE SECTION E
SCALE: HORIZ: 1"= 20' VERT: 1"= 5' 3000 3000 PROPOSED FINAL COVER -2900 <u>2900</u> <u> 2800</u> <u>2800</u> EXCAVATION & WASTE SECTION E EXISTING GROUND
SHOWN REPRESENTATIVE
OF EXCAVATION
COMPLETION. <u>2700</u> <u>2700</u> LEGEND EXCAVATION 2600 EST O PHASE 5 <u>2600</u> oject No : 114-571040-20: NOTES: PROPOSED FINAL COVER THICKNESS IS 42" WASTE PLAN PROFILE SECTION E SCALE: HORIZ: 1"= 20' VERT: 1"= 5' Checked By: ALL EXCAVATION SLOPES ARE 2:1. ALL WASTE SLOPES ARE 4:1. STORMWATER BENCHES NOT INCLUDED IN DESIGN

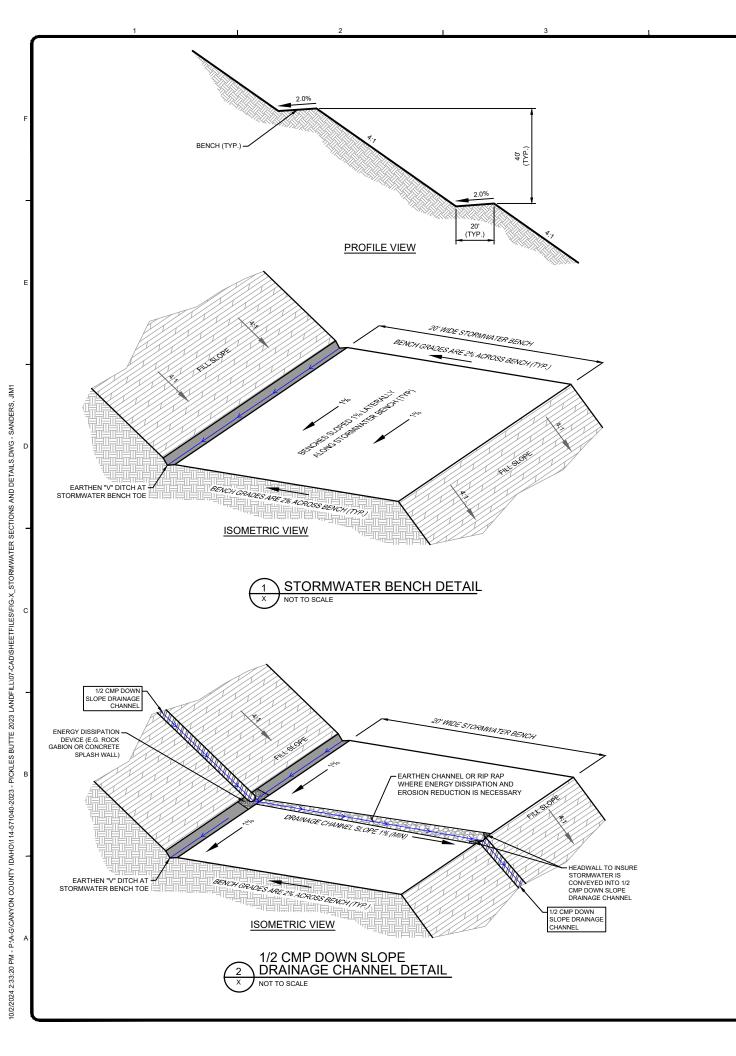


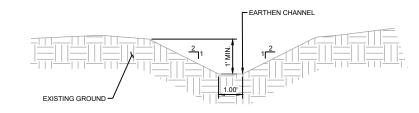


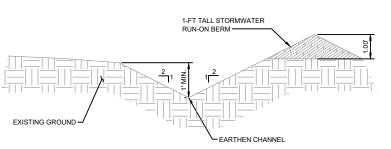
roject No.: 114-571040-202 hecked By:

STORMWATER PONDS SECTIONS 1

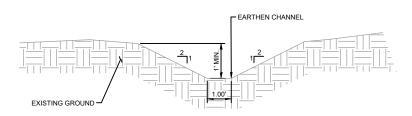
TETRA TECH



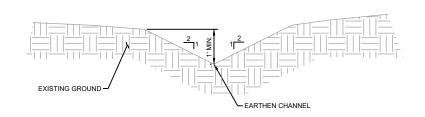

TETRA TECH



roject No.: 114-571040-20 hecked By:



3 EAST STORMWATER CHANNEL SECTION (TYP.) NOT TO SCALE



NORTH STORMWATER CHANNEL SECTION (TYP.)

NOT TO SCALE

5 WEST STORMWATER CHANNEL 1 SECTION (TYP.)
NOT TO SCALE

6 WEST STORMWATER CHANNEL 2 SECTION (TYP.)
NOT TO SCALE

TETRA TECH

				I	I
	MARK	DATE	MARK DATE DESCRIPTION	ВУ	
	٧	7/2024	. ISSUED FOR REVIEW	SSI	
				0	
	В	10/2024	10/2024 REGULATORY SUBMITTAL		
S.					
)					

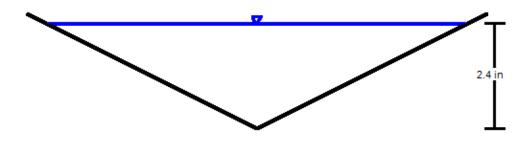
STORMWATER SECTION
AND DETAILS

Project No.: 114-571040-202
Designed By: M

Drawn By: Checked By:

C-113

APPENDIX I: HYDROLOGY AND HYDRAULIC CALCULATIONS

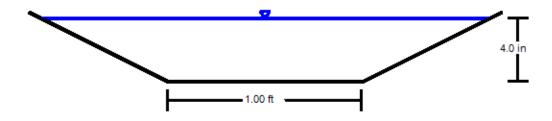

LEGEND PROPOSED STORMWATER CHANNEL NC1.3 -PROPOSED STORMWATER CULVERT PROPOSED ½ CMP DOWNSLOPE DRAINAGE CHANNEL PROPOSED STORMWATER BENCH DRAINAGE DRAINAGE AREA DELINEATION STORMWATER POND NC1.4 — PROPOSED NORTH CHA - NC START XXX DRAINAGE AREA DCX.X DOWNCHUTE NC1.6 -JX.X JUNCTION N3 N9 NCX.X NORTH CHANNEL SEGMENT NORTHWEST POND -N2 NJX SWCX.X SOUTHWEST CHANNEL SEGMENT DC3.4 7 DC3.3 SWJX.X SOUTHWEST CHANNEL JUNCTION **∇** DC3.2 ∇DC5.3 **∇**DC5.2 -EAST CHANNEL N1 **L** _{J3.3} DC4.3 J4.2 EC START **⊤** DC2.4 NW11 E1 NW23 DC4.1~ **C** DC2.2 DC2.1r DC1.3 _ DC1.2 E2 NW6 SWC 1.6 -SW5 PROPOSED WEST CHANNEL 1 TO DISCHARGE INTO NATURAL DRAINAGE AWAY FROM LANDFILL — SW4 SE1 SW3 SOUTHEAST POND TO BE EXPANDED TO ALLOW FOR ADDITONAL STORAGE CAPACITY SW2 SW1 SWJ 3 -SWC 1.3 -SWJ 2 -SW6 SWC 1.2 SWC 1.1-

Worksheet for North Channel

Project Description		
Friction Method Solve For	Manning Formula Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.090 ft/ft	
Left Side Slope	2.000 H:V	
Right Side Slope	2.000 H:V	
Discharge	0.20 cfs	
Results		
Normal Depth	2.4 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.9 ft	
Hydraulic Radius	1.1 in	
Top Width	0.80 ft	
Critical Depth	2.7 in	
Critical Slope	0.043 ft/ft	
Velocity	2.53 ft/s	
Velocity Head	0.10 ft	
Specific Energy	0.30 ft	
Froude Number	1.415	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.4 in	
Critical Depth	2.7 in	
Channel Slope	0.090 ft/ft	
Critical Slope	0.043 ft/ft	

Cross Section for North Channel

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient	0.035			
Channel Slope	0.090 ft/ft			
Normal Depth	2.4 in			
Left Side Slope	2.000 H:V			
Right Side Slope	2.000 H:V			
Discharge	0.20 cfs			

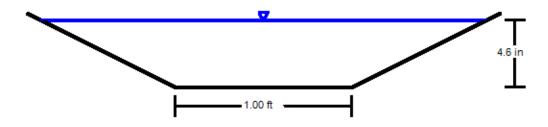


Worksheet for East Channel

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.020 ft/ft	
Left Side Slope	2.000 H:V	
Right Side Slope	2.000 H:V	
Bottom Width	1.00 ft	
Discharge	1.20 cfs	
Results		
Normal Depth	4.0 in	
Flow Area	0.5 ft ²	
Wetted Perimeter	2.5 ft	
Hydraulic Radius	2.7 in	
Top Width	2.32 ft	
Critical Depth	3.5 in	
Critical Slope	0.032 ft/ft	
Velocity	2.20 ft/s	
Velocity Head	0.07 ft	
Specific Energy	0.40 ft	
Froude Number	0.797	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.0 in	
Critical Depth	3.5 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.032 ft/ft	

Cross Section for East Channel

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient	0.035			
Channel Slope	0.020 ft/ft			
Normal Depth	4.0 in			
Left Side Slope	2.000 H:V			
Right Side Slope	2.000 H:V			
Bottom Width	1.00 ft			
Discharge	1.20 cfs			

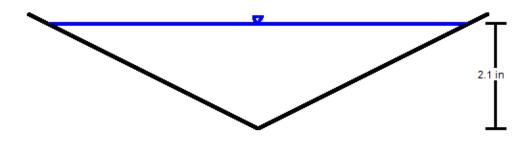


Worksheet for West Channel 1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.020 ft/ft	
Left Side Slope	2.000 H:V	
Right Side Slope	2.000 H:V	
Bottom Width	1.00 ft	
Discharge	1.60 cfs	
Results		
Normal Depth	4.6 in	
Flow Area	0.7 ft ²	
Wetted Perimeter	2.7 ft	
Hydraulic Radius	3.0 in	
Top Width	2.53 ft	
Critical Depth	4.1 in	
Critical Slope	0.031 ft/ft	
Velocity	2.38 ft/s	
Velocity Head	0.09 ft	
Specific Energy	0.47 ft	
Froude Number	0.811	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	4.6 in	
Critical Depth	4.1 in	
Channel Slope	0.020 ft/ft	
Critical Slope	0.031 ft/ft	

Cross Section for West Channel 1

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient	0.035			
Channel Slope	0.020 ft/ft			
Normal Depth	4.6 in			
Left Side Slope	2.000 H:V			
Right Side Slope	2.000 H:V			
Bottom Width	1.00 ft			
Discharge	1.60 cfs			



Worksheet for West Channel 2

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.200 ft/ft	
Left Side Slope	2.000 H:V	
Right Side Slope	2.000 H:V	
Discharge	0.20 cfs	
Results		
Normal Depth	2.1 in	
Flow Area	0.1 ft ²	
Wetted Perimeter	0.8 ft	
Hydraulic Radius	0.9 in	
Top Width	0.68 ft	
Critical Depth	2.7 in	
Critical Slope	0.043 ft/ft	
Velocity	3.42 ft/s	
Velocity Head	0.18 ft	
Specific Energy	0.35 ft	
Froude Number	2.060	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.1 in	
Critical Depth	2.7 in	
Channel Slope	0.200 ft/ft	
Critical Slope	0.043 ft/ft	

Cross Section for West Channel 2

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient	0.035			
Channel Slope	0.200 ft/ft			
Normal Depth	2.1 in			
Left Side Slope	2.000 H:V			
Right Side Slope	2.000 H:V			
Discharge	0.20 cfs			

Worksheet for Bench Channel (Typ.)

Project Description		2011011 0110111101 (1.34)
-1	Manning	
Friction Method	Manning Formula	
Solve For	Normal Depth	
	'	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.010 ft/ft	
Left Side Slope	2.000 H:V	
Right Side Slope	2.000 H:V	
Discharge	0.80 cfs	
Results		
Normal Depth	6.1 in	
Flow Area	0.5 ft ²	
Wetted Perimeter	2.3 ft	
Hydraulic Radius	2.7 in	
Top Width	2.02 ft	
Critical Depth	4.8 in	
Critical Slope	0.035 ft/ft	
Velocity	1.57 ft/s	
Velocity Head	0.04 ft	
Specific Energy	0.54 ft	
Froude Number	0.552	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	6.1 in	
Critical Depth	4.8 in	
Channel Slope	0.010 ft/ft	
Critical Slope	0.035 ft/ft	

Cross Section for Bench Channel (Typ.)

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.010 ft/ft	
Normal Depth	6.1 in	
Left Side Slope	2.000 H:V	
Right Side Slope	2.000 H:V	
Discharge	0.80 cfs	

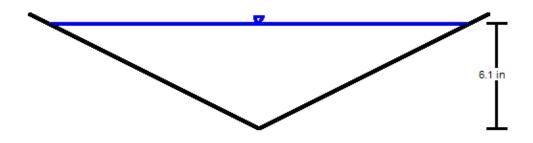


TABLE 1
Phase 5 Expansion, 25-Year, 24-Hour HEC-HMS Results - Northwest Pond
Pickles Butte Sanitary Landfill, Nampa, Idaho

End Discharge	Drainage Area ID	Area (Ac)	CN	Landcover Description	Hydrologic Soil Group	Time of Concentration (min)	Peak Discharge (cfs)
	NW-1	0.22	70	Closure Cover	В	5.7	0.0
	NW-2	0.54	70	Closure Cover	В	9.3	0.0
	NW-3	0.91	70	Closure Cover	В	13.7	0.1
	NW-4	1.29	70	Closure Cover	В	18.0	0.1
	NW-5	1.61	70	Closure Cover	В	20.4	0.1
	NW-6	16.38	70	Closure Cover	В	33.7	0.8
	NW-7	2.94	70	Closure Cover	В	30.7	0.1
	NW-8	2.60	70	Closure Cover	В	27.8	0.1
	NW-9	2.26	70	Closure Cover	В	24.7	0.1
	NW-10	1.91	70	Closure Cover	В	21.3	0.1
	NW-11	6.28	70	Closure Cover	В	28.9	0.3
	NW-12	2.42	70	Closure Cover	В	26.4	0.1
	NW-13	2.14	70	Closure Cover	В	23.7	0.1
	NW-14	1.85	70	Closure Cover	В	21.0	0.1
	NW-15	1.57	70	Closure Cover	В	18.2	0.1
	NW-16	0.19	70	Closure Cover	В	6.2	0.0
	NW-17	0.71	70	Closure Cover	В	11.6	0.0
	NW-18	1.08	70	Closure Cover	В	15.5	0.1
	NW-19	1.40	70	Closure Cover	В	18.5	0.1
Northwest	NW-20	1.66	70	Closure Cover	В	21.1	0.1
Pond	NW-21	2.35	70	Closure Cover	В	26.5	0.1
	NW-22	2.33	70	Closure Cover	В	26.4	0.1
	NW-23	2.39	70	Closure Cover	В	26.1	0.1
	NW-24	1.74	70	Closure Cover	В	19.6	0.1
	NW-25	1.38	70	Closure Cover	В	15.8	0.1
	NW-26	1.01	70	Closure Cover	В	11.7	0.1
	NW-27	2.40	70	Closure Cover	В	27.1	0.1
	NW-28	2.10	70	Closure Cover	В	22.0	0.1
	NW-29	1.50	70	Closure Cover	В	16.3	0.1
	NW-30	6.86	70	Closure Cover	В	2.6	0.5
	SW-7	2.86	70	Closure Cover	В	15.4	0.2
	N-1	3.65	70	Closure Cover	В	56.2	0.1
	N-2	2.69	70	Closure Cover	В	31.2	0.1
	N-3	3.75	70	Closure Cover	В	36.7	0.2
	N-4	3.17	70	Closure Cover	В	31.6	0.2
	N-5	2.56	70	Closure Cover	В	26.4	0.1
	N-6	1.66	70	Closure Cover	В	16.1	0.1
	N-7	0.80	70	Closure Cover	В	8.9	0.1
	N-8	0.90	70	Closure Cover	В	10.3	0.1
	N-9	5.56	70	Closure Cover	В	10	0.3

TABLE 2
Phase 5 Expansion, 25-Year, 24-Hour Run-off Summary - Natural Drainage
Pickles Butte Sanitary Landfill, Nampa, Idaho

End Discharge	Drainage Area ID	Area (Ac)	CN	Landcover Description	Hydrologic Soil Group	Time of Concentration (min)	Peak Discharge (cfs)
	SW-1	17.05	70	Closure Cover	В	52.8	0.7
	SW-2	5.99	70	Closure Cover	В	47.5	0.3
	SW-3	5.58	70	Closure Cover	В	45.8	0.3
Natural Drainage	SW-4	4.35	70	Closure Cover	В	42.6	0.2
Natural Drainage	SW-5	4.61	70	Closure Cover	В	38.5	0.2
				Sagebrush with			
				grass			
	SW-6	28.58	51	understory	В	12.4	0.0

TABLE 3 Phase 5 Expansion, 25-Year, 24-Hour HEC-HMS - Results - East Pond Pickles Butte Sanitary Landfill, Nampa, Idaho

End Discharge	Drainage Area ID	Area (Ac)	CN	Landcover Description	Hydrologic Soil Group	Time of Concentration (min)	Peak Discharge (cfs)
East Pond	E-1	19.95	70	Closure Cover	В	20.4	0.7

TABLE 4 Phase 5 Expansion, 25-Year, 24-Hour HEC-HMS - Results - Southeast Pond Pickles Butte Sanitary Landfill, Nampa, Idaho

End Discharge	Drainage Area ID	Area (Ac)	CN ¹	Landcover Description	Hydrologic Soil Group	Time of Concentration (min)	Peak Discharge (cfs)
Southeast Pond	SE-1	68.53	70.7	Closure Cover	В	36.1	3.9

¹CN reflects a weighted Curve Number using the following land cover types:

Closure Cover, CN = 70

Sagebrush with grass understory, fair condition, CN = 51

Streets and Roads, gravel, CN = 85

Project: Pbl 2024

Simulation Run: 25-yr 24-hr SCS II Simulation Start: 31 July 2024, 24:00 Simulation End: 3 August 2024, 24:00

HMS Version: 4.12

Executed: 26 September 2024, 19:54

Global Parameter Summary - Subbasin

Area (MI2)

Element Name	Area (MI2)
NW - 6	0.03
NW - 11	0.01
NW - 7	0
NW - 12	O
NW - 8	0
NW - 13	O
NW - 9	0
NW - 14	0
NW - 10	0
NW - 15	0
NW - 18	0
NW - 17	0
NW - 19	0
NW - 20	0
NW - 27	0
NW - 24	O
NW - 28	0
NW - 25	0
NW - 29	0
NW - 26	0
NW - I	0
NW - 2	0
NW - 3	0
NW - 4	0
NW - 5	0
NW - 21	0
NW - 22	0

NW - 23	o
NW - 30	0.01
N - 6	O
N - 7	O
N - 8	O
E - 1	0.03
SW - I	0.03
SW - 2	0.01
SW - 3	0.01
SW - 4	0.01
SW - 5	0.01
SW - 6	0.04
SE - I	O.II
N - 1	0.01
N - 2	O
N - 9	0.01
N - 3	0.01
N - 4	0.01
N - 5	O
NW - 16	O
SW - 7	O

Downstream

Element Name	Downstream
NW - 6	Downchute 2.1
NW - 11	Downchute 2.1
NW - 7	Junction 2.1
NW - 12	Junction 2.1
NW - 8	Junction 2.2
NW - 13	Junction 2.2
NW - 9	Junction 2.3
NW - 14	Junction 2.3
NW - 10	Junction 2.4
NW - 15	Junction 2.4
NW - 18	Junction 3.2
NW - 17	Junction 3.1
NW - 19	Junction 3.3
NW - 20	Junction 3.4
NW - 27	Downchute 5.1
NW - 24	Downchute 5.1
NW - 28	Junction 5.1
NW - 25	Junction 5.1
NW - 29	Junction 5.2
NW - 26	Junction 5.2
NW - I	Downchute I.I
NW - 2	Junction 1.1
NW - 3	Junction 1.2
NW - 4	Junction 1.3
NW - 5	Junction 1.4
NW - 21	Downchute 4.1
NW - 22	Junction - 1
NW - 23	Junction 4.2
NW - 30	Northwest pond
N - 6	N junction 3
N - 7	N junction 4
N - 8	N junction 5
E - I	East channel
SW - I	Sw channel 1.1
SW - 2	Sw junction 1
SW - 3	Sw junction 2
SW - 4	Sw junction 3
SW - 5	Sw junction 4
SW - 6	Sw junction 5
SE - I	Se pond
N - 1	Downchute 6

N - 2	Downchute 6
N - 9	N channel start
N - 3	N channel start
N - 4	N junction 1
N - 5	N junction 2
NW - 16	Downchute 3.1

Loss Rate: Scs

Element Name	Percent Impervious Area	Curve Number
NW - 6	О	70
NW - 11	О	70
NW - 7	0	70
NW - 12	O	70
NW - 8	0	70
NW - 13	O	70
NW - 9	0	70
NW - 14	0	70
NW - 10	0	70
NW - 15	0	70
NW - 18	0	70
NW - 17	0	70
NW - 19	0	70
NW - 20	0	70
NW - 27	0	70
NW - 24	0	70
NW - 28	0	70
NW - 25	0	70
NW - 29	0	70
NW - 26	0	70
NW - I	0	70
NW - 2	0	70
NW - 3	0	70
NW - 4	О	70
NW - 5	O	70
NW - 21	O	70
NW - 22	O	70
NW - 23	O	70
NW - 30	O	70
N - 6	O	70
N - 7	O	70
N - 8	o	70
E - 1	o	70
SW - I	O	70
SW - 2	O	70
SW - 3	O	70
SW - 4	O	70
SW - 5	O	70
SW - 6	O	51
SE - I	O	70.7
N - 1	O	70

N - 2	0	70
N - 9	0	70
N - 3	0	70
N - 4	0	70
N - 5	0	70
NW - 16	0	70
SW - 7	0	70

Transform: Scs

	Transform: Scs	
Element Name	Lag	Unitgraph Type
NW - 6	24.3	Standard
NW - II	20.9	Standard
NW - 7	22.2	Standard
NW - 12	19	Standard
NW - 8	20.1	Standard
NW - 13	17.1	Standard
NW - 9	17.8	Standard
NW - 14	15.2	Standard
NW - 10	15.4	Standard
NW - 15	13.1	Standard
NW - 18	II.2	Standard
NW - 17	8.4	Standard
NW - 19	13.3	Standard
NW - 20	15.2	Standard
NW - 27	19.6	Standard
NW - 24	14.1	Standard
NW - 28	15.9	Standard
NW - 25	II. 4	Standard
NW - 29	11.7	Standard
NW - 26	8.4	Standard
NW - I	4. I	Standard
NW - 2	6.7	Standard
NW - 3	9.9	Standard
NW - 4	13	Standard
NW - 5	14.7	Standard
NW - 21	19.1	Standard
NW - 22	19	Standard
NW - 23	18.8	Standard
NW - 30	1.9	Standard
N - 6	11.6	Standard
N - 7	6.5	Standard
N - 8	7.4	Standard
E - 1	14.7	Standard
SW - I	31.7	Standard
SW - 2	28.5	Standard
SW - 3	27.5	Standard
SW - 4	25.6	Standard
SW - 5	23.I	Standard
SW - 6	7-4	Standard
SE - I	21.7	Standard
N - I	40.5	Standard

N - 2	22.5	Standard
N - 9	IO	Standard
N - 3	26.5	Standard
N - 4	22.8	Standard
N - 5	19.1	Standard
NW - 16	4.5	Standard
SW - 7	9.3	Standard

Global Parameter Summary - Reach

Downstream

Element Name	Downstream
Downchute 2.1	Junction 2.1
Downchute 2.2	Junction 2.2
Downchute 2.3	Junction 2.3
Downchute 2.4	Junction 2.4
Downchute 3.2	Junction 3.2
Downchute 3.3	Junction 3.3
Downchute 3.4	Junction 3.4
Downchute 5.1	Junction 5.1
Downchute 5.2	Junction 5.2
Downchute 5.3	Northwest pond
Downchute I.I	Junction 1.1
Downchute 1.2	Junction 1.2
Downchute 1.3	Junction 1.3
Downchute 1.4	Junction 1.4
Downchute 4.1	Junction - 1
Downchute 4.2	Junction 4.2
Downchute 4.3	Northwest pond
N channel 1.3	N junction 3
N channel 1.4	N junction 4
N channel 1.5	N junction 5
N channel 1.6	Northwest pond
East channel	East pond
Sw channel 1.1	Sw junction 1
Sw channel 1.2	Sw junction 2
Sw channel 1.3	Sw junction 3
Sw channel 1.4	Sw junction 4
Sw channel 1.5	Sw junction 5
Sw channel 1.6	West channel I sink
Downchute 6	N channel start

N channel 1.2 N junction 2

Route: Lag

Element Name	Method	Initial Variable	Lag
Downchute 2.1	Lag	Combined Inflow	0.5
Downchute 2.2	Lag	Combined Inflow	0.5
Downchute 2.3	Lag	Combined Inflow	0.5
Downchute 2.4	Lag	Combined Inflow	0.2
Downchute 3.2	Lag	Combined Inflow	0.5
Downchute 3.3	Lag	Combined Inflow	0.5
Downchute 3.4	Lag	Combined Inflow	0.2
Downchute 5.1	Lag	Combined Inflow	0.5
Downchute 5.2	Lag	Combined Inflow	0.5
Downchute 5.3	Lag	Combined Inflow	0.5
Downchute 1.1	Lag	Combined Inflow	0.5
Downchute 1.2	Lag	Combined Inflow	0.5
Downchute 1.3	Lag	Combined Inflow	0.5
Downchute 1.4	Lag	Combined Inflow	0.5
Downchute 4.1	Lag	Combined Inflow	0.5
Downchute 4.2	Lag	Combined Inflow	0.5
Downchute 4.3	Lag	Combined Inflow	0.5
N channel 1.3	Lag	Combined Inflow	2.4
N channel 1.4	Lag	Combined Inflow	2.4
N channel 1.5	Lag	Combined Inflow	2.4
N channel 1.6	Lag	Combined Inflow	2.4
East channel	Lag	Combined Inflow	10.1
Sw channel 1.1	Lag	Combined Inflow	2.4
Sw channel 1.2	Lag	Combined Inflow	2.4
Sw channel 1.3	Lag	Combined Inflow	2.4
Sw channel 1.4	Lag	Combined Inflow	2.4
Sw channel 1.5	Lag	Combined Inflow	2.4
Sw channel 1.6	Lag	Combined Inflow	2.4
Downchute 6	Lag	Combined Inflow	0.5
N channel 1.1	Lag	Combined Inflow	2.4
N channel 1.2	Lag	Combined Inflow	2.4
Downchute 3.1	Lag	Combined Inflow	0.5

Global Results Summary

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
NW - 6	0.03	0.81	01Aug2024, 12:30	0.17
NW - 11	0.01	0.31	01Aug2024, 12:30	0.17

Downchute 2.1	0.04	1.13	01Aug2024, 12:30	0.17
NW - 7	О	0.15	01Aug2024, 12:30	0.17
NW - 12	O	0.13	01Aug2024, 12:15	0.17
Junction 2.1	0.04	I.4	01Aug2024, 12:30	0.17
Downchute 2.2	0.04	I.4	01Aug2024, 12:30	0.17
NW - 8	О	0.13	01Aug2024, 12:15	0.17
NW - 13	О	0.12	01Aug2024, 12:15	0.17
Junction 2.2	0.05	1.63	01Aug2024, 12:30	0.17
Downchute 2.3	0.05	1.63	01Aug2024, 12:30	0.17
NW - 9	О	0.12	01Aug2024, 12:15	0.17
NW - 14	О	0.11	01Aug2024, 12:15	0.17
Junction 2.3	0.06	1.83	01Aug2024, 12:30	0.17
Downchute 2.4	0.06	1.83	01Aug2024, 12:30	0.17
NW - 10	O	O.II	01Aug2024, 12:15	0.17
NW - 15	O	0.1	01Aug2024, 12:15	0.17
Junction 2.4	0.06	1.99	01Aug2024, 12:30	0.17
NW - 18	0	0.06	01Aug2024, 12:15	0.17
NW - 17	O	0.05	01Aug2024, 12:00	0.17
Junction 3.1	O	0.05	01Aug2024, 12:00	0.17
Downchute 3.2	O	0.05	01Aug2024, 12:00	0.17
Junction 3.2	0	O.II	01Aug2024, 12:00	0.17
Downchute 3.3	O	O.II	01Aug2024, 12:00	0.17
NW - 19	O	0.08	01Aug2024, 12:15	0.17
Junction 3.3	0.01	0.19	01Aug2024, 12:15	0.17
Downchute 3.4	0.01	0.19	01Aug2024, 12:15	0.17
NW - 20	O	0.1	01Aug2024, 12:15	0.17
Junction 3.4	0.01	0.29	01Aug2024, 12:15	0.17
NW - 27	O	0.12	01Aug2024, 12:15	0.17
NW - 24	O	O.I	01Aug2024, 12:15	0.17
Downchute 5.1	0.08	2.49	01Aug2024, 12:15	0.17
NW - 28	O	0.12	01Aug2024, 12:15	0.17
NW - 25	O	0.08	01Aug2024, 12:15	0.17
Junction 5.1	0.08	2.69	01Aug2024, 12:15	0.17
Downchute 5.2	0.08	2.69	01Aug2024, 12:15	0.17
NW - 29	O	0.09	01Aug2024, 12:15	0.17
NW - 26	O	0.07	01Aug2024, 12:00	0.17
Junction 5.2	0.09	2.84	01Aug2024, 12:15	0.17
Downchute 5.3	0.09	2.84	01Aug2024, 12:15	0.17
NW - I	O	0.01	01Aug2024, 12:00	0.17
NW - 2	О	0.04	01Aug2024, 12:00	0.17
Downchute 1.1	O	0.01	01Aug2024, 12:00	0.17
Junction 1.1	О	0.05	01Aug2024, 12:00	0.17
NW - 3	O	0.06	01Aug2024, 12:00	0.17

Downchute 1.2	0	0.05	01Aug2024, 12:00	0.17
Junction 1.2	0	0.11	01Aug2024, 12:00	0.17
Downchute 1.3	0	0.11	01Aug2024, 12:00	0.17
NW - 4	О	0.08	01Aug2024, 12:15	0.17
Junction 1.3	0	0.17	01Aug2024, 12:15	0.17
Downchute 1.4	O	0.17	01Aug2024, 12:15	0.17
NW - 5	0	0.09	01Aug2024, 12:15	0.17
Junction 1.4	0.01	0.26	01Aug2024, 12:15	0.17
NW - 21	0	0.13	01Aug2024, 12:15	0.17
Downchute 4.1	0.01	0.39	01Aug2024, 12:15	0.17
NW - 22	0	0.12	01Aug2024, 12:15	0.17
Junction - 1	0.01	0.51	01Aug2024, 12:15	0.17
Downchute 4.2	0.01	0.51	01Aug2024, 12:15	0.17
NW - 23	0	0.13	01Aug2024, 12:15	0.17
Junction 4.2	0.02	0.64	01Aug2024, 12:15	0.17
Downchute 4.3	0.02	0.64	01Aug2024, 12:15	0.17
NW - 30	0.01	0.5	01Aug2024, 12:00	0.17
N - 6	0	O.I	01Aug2024, 12:15	0.17
N channel 1.3	0	O	31Jul2024, 24:00	Not specified
N junction 3	0	O.I	01Aug2024, 12:15	0.17
N channel 1.4	0	O.I	01Aug2024, 12:15	0.17
N - 7	0	0.06	01Aug2024, 12:00	0.17
N junction 4	0	0.14	01Aug2024, 12:15	0.17
N channel 1.5	0	0.14	01Aug2024, 12:15	0.17
N - 8	0	0.07	01Aug2024, 12:00	0.17
N junction 5	0.01	0.19	01Aug2024, 12:15	0.17
N channel 1.6	0.01	0.19	01Aug2024, 12:15	0.17
Northwest pond	0.12	0	31Jul2024, 24:00	0
E - 1	0.03	1.19	01Aug2024, 12:15	0.17
East channel	0.03	1.11	01Aug2024, 12:30	0.17
SW - I	0.03	0.74	01Aug2024, 12:45	0.17
Sw channel 1.1	0.03	0.74	01Aug2024, 12:45	0.17
SW - 2	0.01	0.28	01Aug2024, 12:30	0.17
Sw junction 1	0.04	I	01Aug2024, 12:45	0.17
Sw channel 1.2	0.04	I	01Aug2024, 12:45	0.17
SW - 3	0.01	0.26	01Aug2024, 12:30	0.17
Sw junction 2	0.04	1.23	01Aug2024, 12:45	0.17
Sw channel 1.3	0.04	1.23	01Aug2024, 12:45	0.17
SW - 4	0.01	0.21	01Aug2024, 12:30	0.17
Sw junction 3	0.05	1.41	01Aug2024, 12:45	0.17
Sw channel 1.4	0.05	1.41	01Aug2024, 12:45	0.17
SW - 5	0.01	0.23	01Aug2024, 12:30	0.17
Sw junction 4	0.06	1.6	01Aug2024, 12:45	0.17
			5 ., .9	,

Sw channel 1.5	0.06	1.59	01Aug2024, 12:45	0.17
SW - 6	0.04	0	31Jul2024, 24:00	0
Sw junction 5	O.I	1.59	01Aug2024, 12:45	O.I
Sw channel 1.6	O.I	1.57	01Aug2024, 12:45	O.I
SE - I	O.II	3.94	01Aug2024, 12:30	0.18
Se pond	O.II	3.94	01Aug2024, 12:30	0.18
West channel 1 sink	O.I	1.57	01Aug2024, 12:45	O.I
East pond	0.03	I.II	01Aug2024, 12:30	0.17
N - 1	0.01	0.14	01Aug2024, 12:45	0.17
N - 2	O	0.13	01Aug2024, 12:30	0.17
Downchute 6	0.01	0.26	01Aug2024, 12:45	0.17
N - 9	0.01	0.34	01Aug2024, 12:00	0.17
N - 3	0.01	0.18	01Aug2024, 12:30	0.17
N channel start	0.02	0.68	01Aug2024, 12:30	0.17
N channel 1.1	0.02	0.68	01Aug2024, 12:30	0.17
N - 4	0.01	0.16	01Aug2024, 12:30	0.17
N junction 1	0.01	0.16	01Aug2024, 12:30	0.17
N channel 1.2	0.01	0.16	01Aug2024, 12:30	0.17
N - 5	O	0.14	01Aug2024, 12:15	0.17
N junction 2	0.01	0.28	01Aug2024, 12:30	0.17
NW - 16	0	0.01	01Aug2024, 12:00	0.17
SW - 7	0	0.19	01Aug2024, 12:00	0.17
Downchute 3.1	0	0.01	01Aug2024, 12:00	0.17

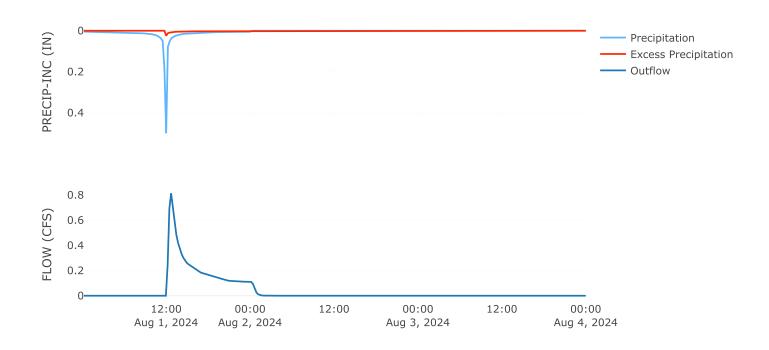
Subbasin: NW-6

Area (MI2): 0.03

Downstream: Downchute 2.1

Loss Rate: Scs

Percent Impervious Area	O
Curve Number	70


Transform: Scs

Lag	24.3
Unitgraph Type	Standard

Results: NW-6

D 1 D: 1 (ODO)	. 0.
Peak Discharge (CFS)	0.81
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	2.46
Loss Volume (AC - FT)	2.23
Excess Volume (AC - FT)	0.23
Direct Runoff Volume (AC - FT)	0.23
Baseflow Volume (AC - FT)	O

Precipitation and Outflow

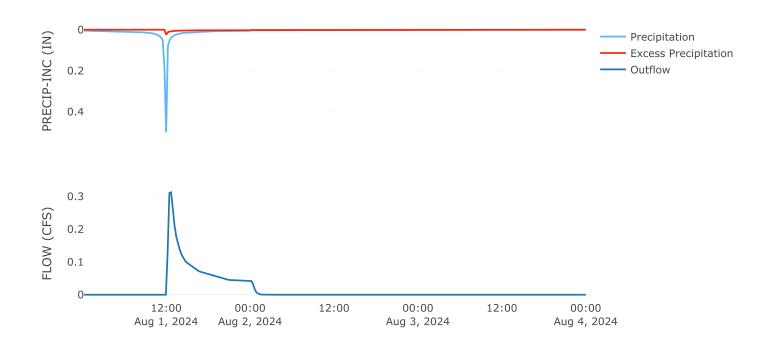
Subbasin: NW-11

Area (MI2): 0.01

Downstream: Downchute 2.1

Loss Rate: Scs

Percent Impervious Area	O
Curve Number	70


Transform: Scs

Lag	20.9
Unitgraph Type	Standard

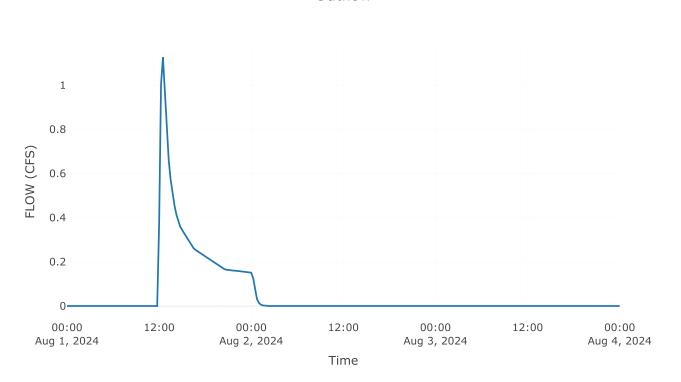
Results: NW-11

Peak Discharge (CFS)	0.31
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.94
Loss Volume (AC - FT)	0.85
Excess Volume (AC - FT)	0.09
Direct Runoff Volume (AC - FT)	0.09
Baseflow Volume (AC - FT)	O

Precipitation and Outflow

Reach: DOWNCHUTE 2.1

Downstream: Junction 2.1


Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 2.1

Peak Discharge (CFS)	1.13
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Peak Inflow (CFS)	1.13
Inflow Volume (AC - FT)	0.32

Outflow

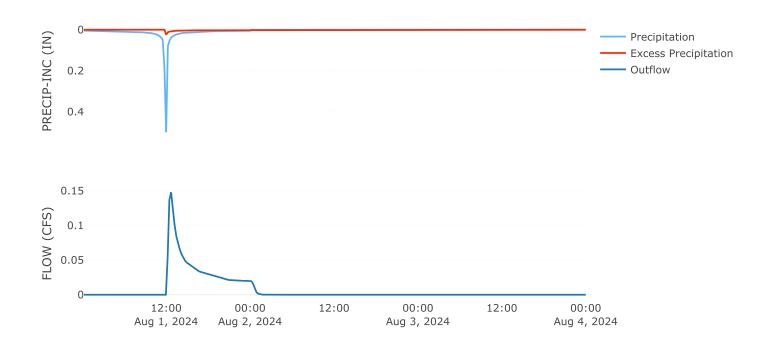
Subbasin: NW-7

Area (MI2): 0

Downstream: Junction 2.1

Loss Rate: Scs

Percent Impervious Area	0
Curve Number	70


Transform: Scs

Lag	22.2
Unitgraph Type	Standard

Results: NW-7

	·
Peak Discharge (CFS)	0.15
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.44
Loss Volume (AC - FT)	0.4
Excess Volume (AC - FT)	0.04
Direct Runoff Volume (AC - FT)	0.04
Baseflow Volume (AC - FT)	O

Precipitation and Outflow

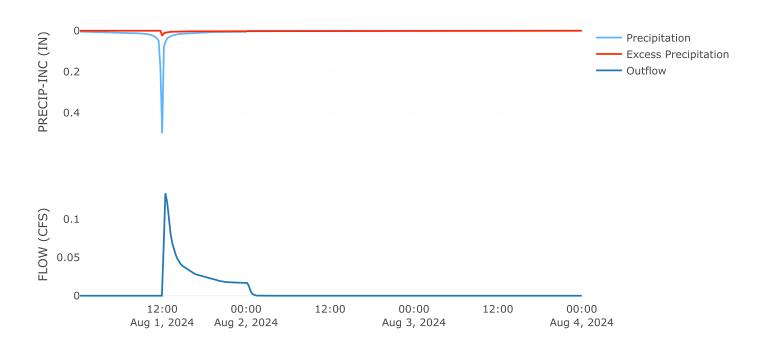
Subbasin: NW-12

Area (MI2): 0

Downstream: Junction 2.1

Loss Rate: Scs

Percent Impervious Area	O
Curve Number	70

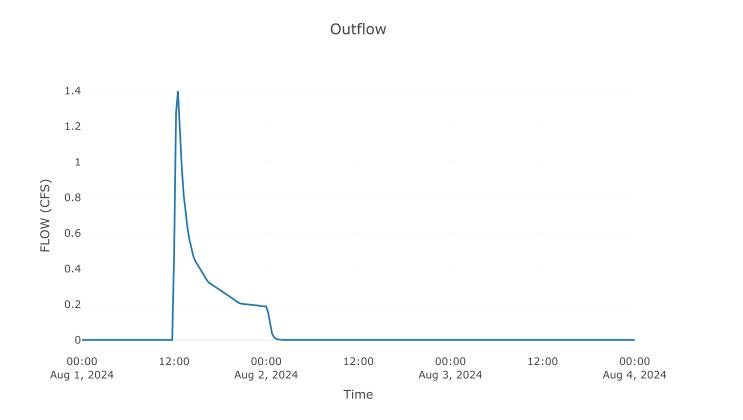

Transform: Scs

Lag	19
Unitgraph Type	Standard

Results: NW-12

Peak Discharge (CFS)	0.13
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.37
Loss Volume (AC - FT)	0.34
Excess Volume (AC - FT)	0.04
Direct Runoff Volume (AC - FT)	0.04
Baseflow Volume (AC - FT)	O

Precipitation and Outflow



Junction: JUNCTION 2.1

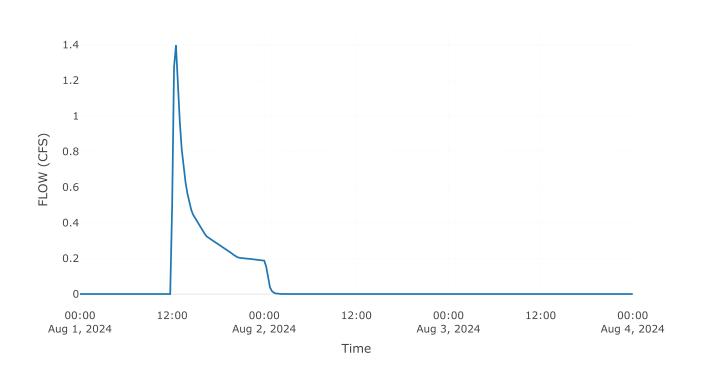
Downstream: Downchute 2.2

Results: JUNCTION 2.1

Peak Discharge (CFS)	1.4
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17

Reach: DOWNCHUTE 2.2

Downstream: Junction 2.2


Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 2.2

Peak Discharge (CFS)	I.4
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Peak Inflow (CFS)	1.4
Inflow Volume (AC - FT)	0.4

Outflow

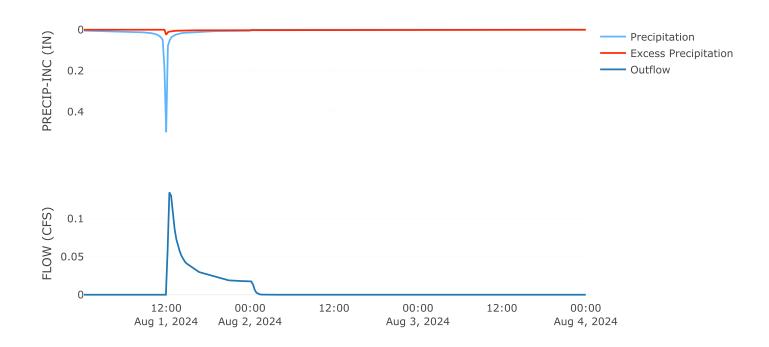
Subbasin: NW-8

Area (MI2): 0

Downstream: Junction 2.2

Loss Rate: Scs

Percent Impervious Area	0
Curve Number	70


Transform: Scs

Lag	2O.I
Unitgraph Type	Standard

Results: NW-8

Peak Discharge (CFS)	0.13
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.39
Loss Volume (AC - FT)	0.36
Excess Volume (AC - FT)	0.04
Direct Runoff Volume (AC - FT)	0.04
Baseflow Volume (AC - FT)	O

Precipitation and Outflow

Area (MI2): 0

Downstream: Junction 2.2

Loss Rate: Scs

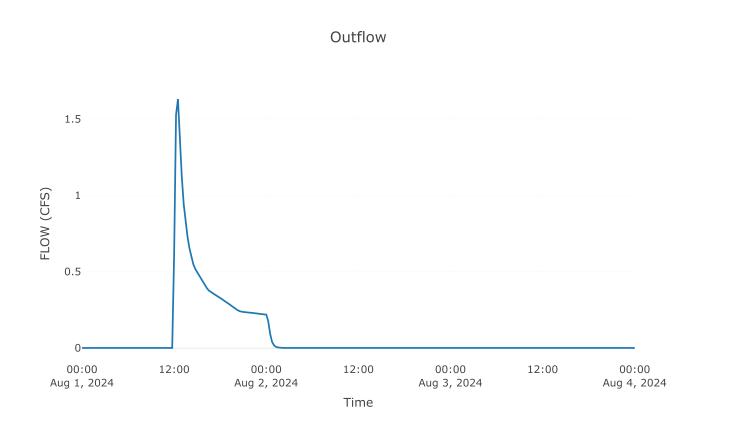
Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	17.1
Unitgraph Type	Standard

Results: NW-13

	3
Peak Discharge (CFS)	O.I2
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.32
Loss Volume (AC - FT)	0.29
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	O



Junction: JUNCTION 2.2

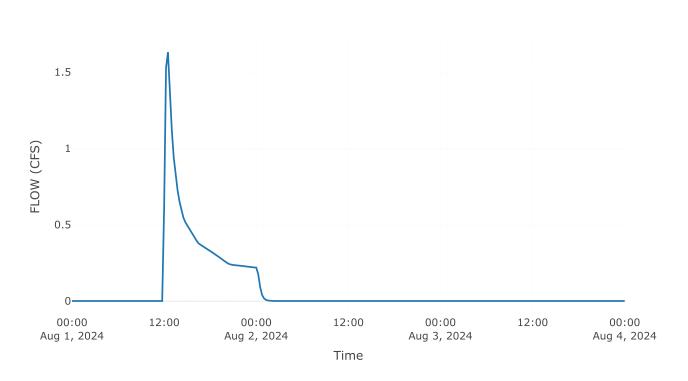
Downstream: Downchute 2.3

Results: JUNCTION 2.2

Peak Discharge (CFS)	1.63
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17

Reach: DOWNCHUTE 2.3

Downstream: Junction 2.3


Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 2.3

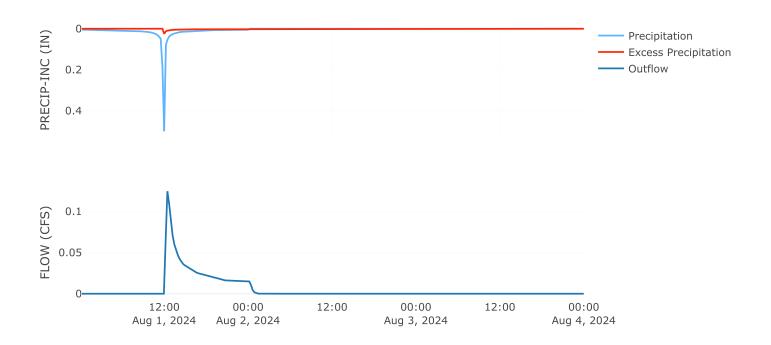
Peak Discharge (CFS)	1.63
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Peak Inflow (CFS)	1.63
Inflow Volume (AC - FT)	0.47

Outflow

Area (MI2): 0

Downstream: Junction 2.3

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	17.8
Unitgraph Type	Standard

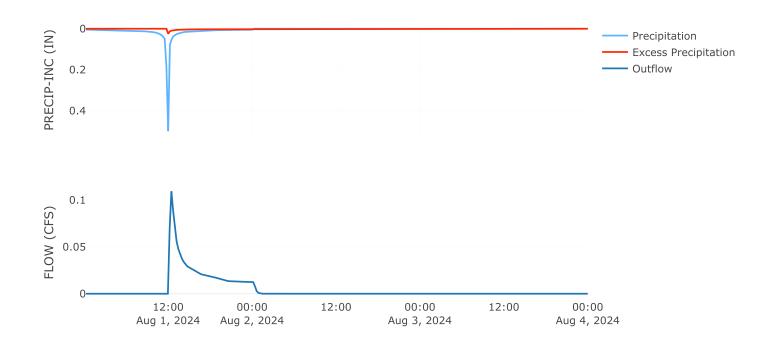
Results: NW-9

Peak Discharge (CFS)	0.12
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.34
Loss Volume (AC - FT)	0.3
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	O

Area (MI2): 0

Downstream: Junction 2.3

Loss Rate: Scs

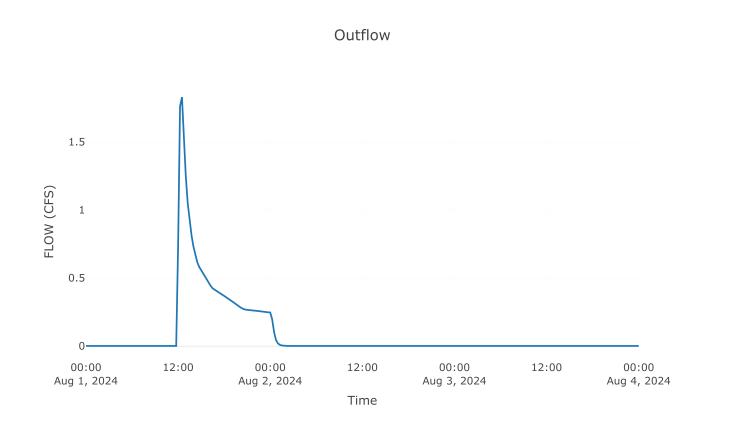

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	15.2
Unitgraph Type	Standard

Results: NW-14

	ALEGORIES ATT A
Peak Discharge (CFS)	O.II
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.28
Loss Volume (AC - FT)	0.25
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	0



Junction: JUNCTION 2.3

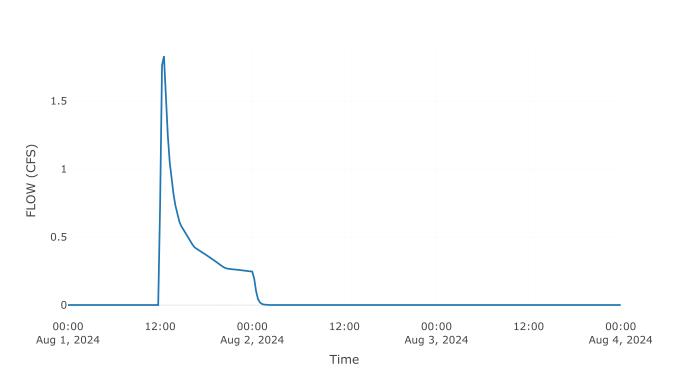
Downstream: Downchute 2.4

Results: JUNCTION 2.3

Peak Discharge (CFS)	1.83
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17

Reach: DOWNCHUTE 2.4

Downstream: Junction 2.4


Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.2

Results: DOWNCHUTE 2.4

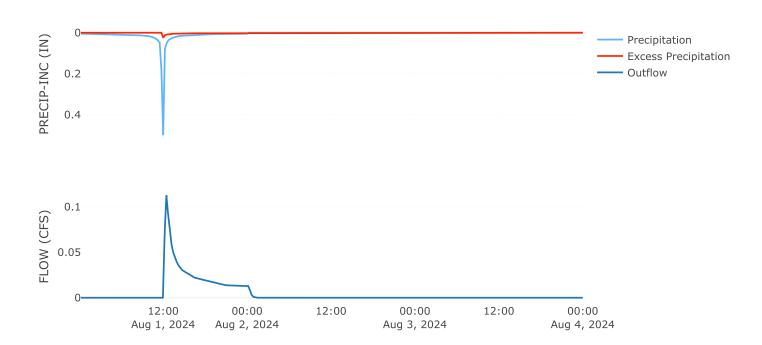
Peak Discharge (CFS)	1.83
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Peak Inflow (CFS)	1.83
Inflow Volume (AC - FT)	0.52

Outflow

Area (MI2): 0

Downstream: Junction 2.4

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	I5.4
Unitgraph Type	Standard

Results: NW-10

Peak Discharge (CFS)	0.11
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.29
Loss Volume (AC - FT)	0.26
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	O

Area (MI2): 0

Downstream: Junction 2.4

Loss Rate: Scs

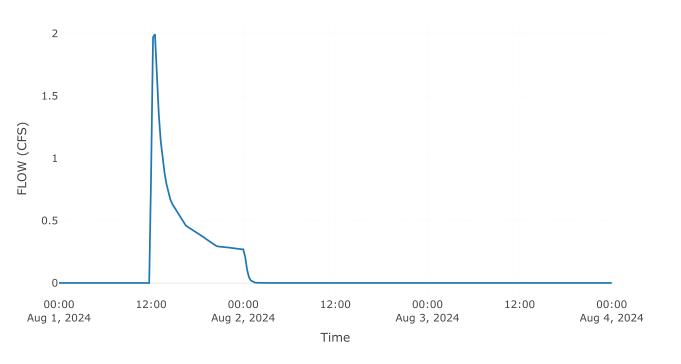
Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	13.1
Unitgraph Type	Standard

Results: NW-15

	-
Peak Discharge (CFS)	O.I
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.24
Loss Volume (AC - FT)	0.22
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O


Junction: JUNCTION 2.4

Downstream: Downchute 5.1

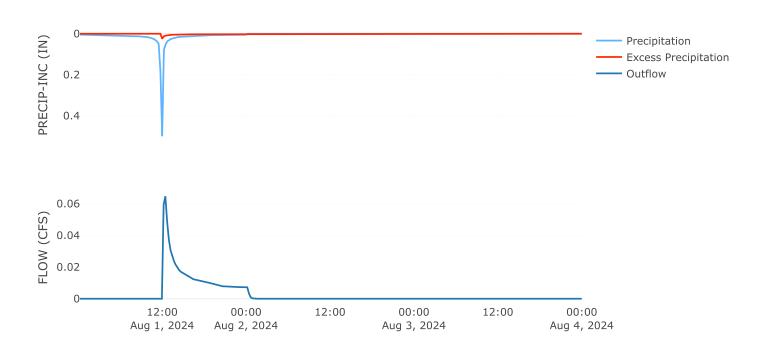
Results: JUNCTION 2.4

Peak Discharge (CFS)	I.99
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17

Area (MI2): 0

Downstream: Junction 3.2

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	II.2
Unitgraph Type	Standard

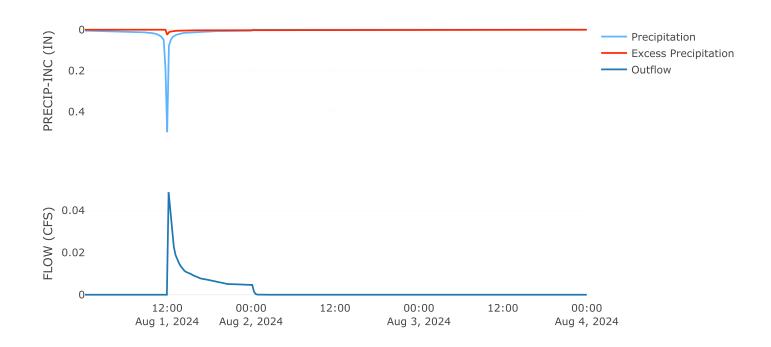
Results: NW-18

Peak Discharge (CFS)	0.06
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.16
Loss Volume (AC - FT)	0.15
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O

Area (MI2): 0

Downstream: Junction 3.1

Loss Rate: Scs

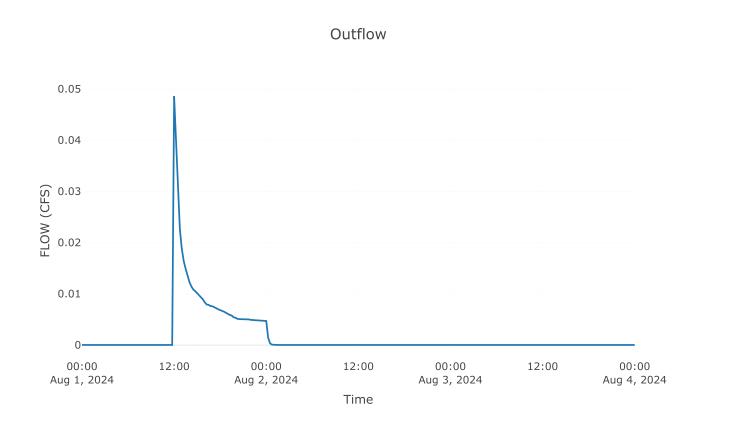

Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	8.4
Unitgraph Type	Standard

Results: NW-17

	•
Peak Discharge (CFS)	0.05
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	O.II
Loss Volume (AC - FT)	O.I
Excess Volume (AC - FT)	0.01
Direct Runoff Volume (AC - FT)	0.01
Baseflow Volume (AC - FT)	O



Junction: JUNCTION 3.1

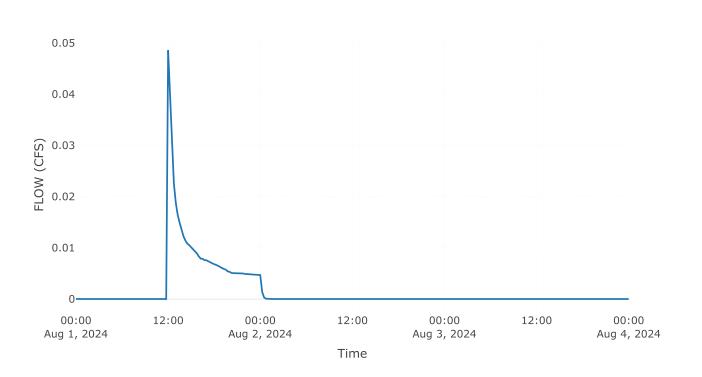
Downstream: Downchute 3.2

Results: JUNCTION 3.1

Peak Discharge (CFS)	0.05
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17

Reach: DOWNCHUTE 3.2

Downstream: Junction 3.2

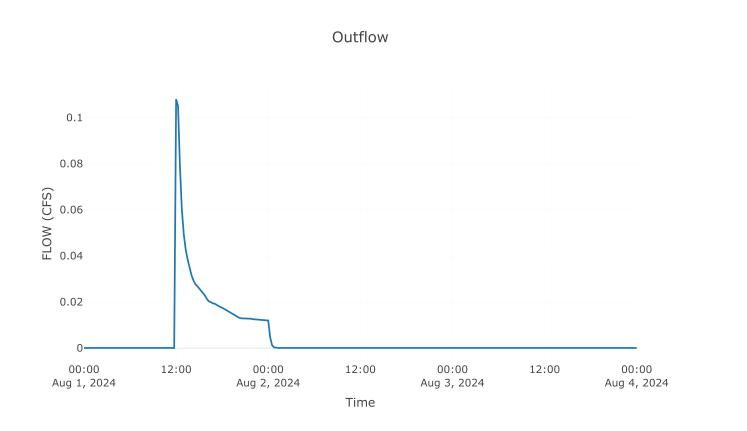

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 3.2

Peak Discharge (CFS)	0.05
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Peak Inflow (CFS)	0.05
Inflow Volume (AC - FT)	0.01

Outflow



Junction: JUNCTION 3.2

Downstream: Downchute 3.3

Results: JUNCTION 3.2

Peak Discharge (CFS)	O.II
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17

Reach: DOWNCHUTE 3.3

Downstream: Junction 3.3

00:00

Aug 1, 2024

12:00

00:00

Aug 2, 2024

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 3.3

Peak Discharge (CFS)	O.II
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Peak Inflow (CFS)	O.II
Inflow Volume (AC - FT)	0.03

0.1 0.08 (SJ) 0.06 MOJ 0.04 0.02

12:00

Time

00:00

Aug 3, 2024

12:00

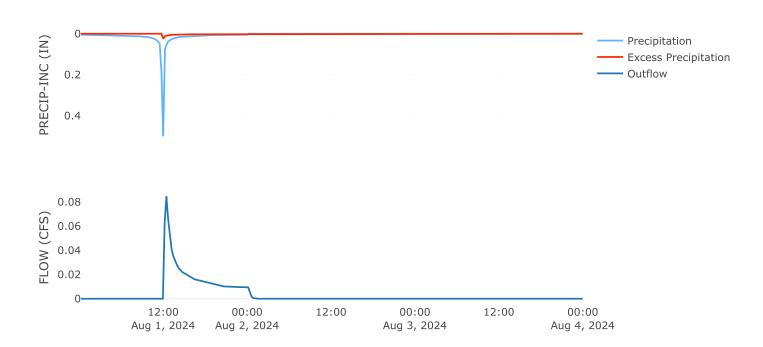
00:00

Aug 4, 2024

Area (MI2): 0

Downstream: Junction 3.3

Loss Rate: Scs

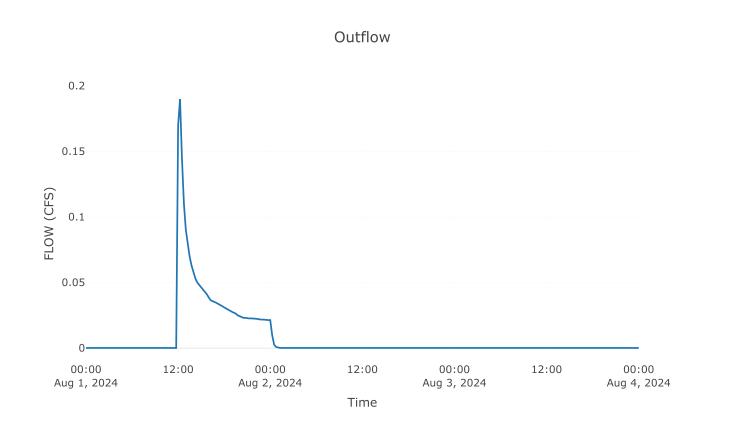

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	13.3
Unitgraph Type	Standard

Results: NW-19

	110011011111111111111111111111111111111
Peak Discharge (CFS)	0.08
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.21
Loss Volume (AC - FT)	0.19
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	0



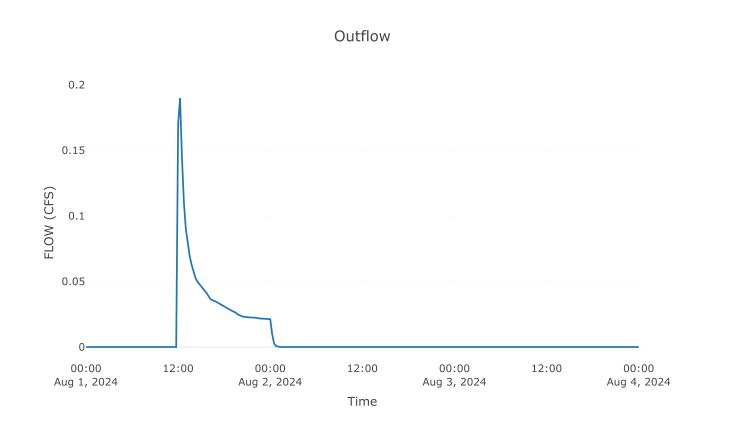
Junction: JUNCTION 3.3

Downstream: Downchute 3.4

Results: JUNCTION 3.3

Peak Discharge (CFS)	0.19
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: DOWNCHUTE 3.4


Downstream: Junction 3.4

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.2

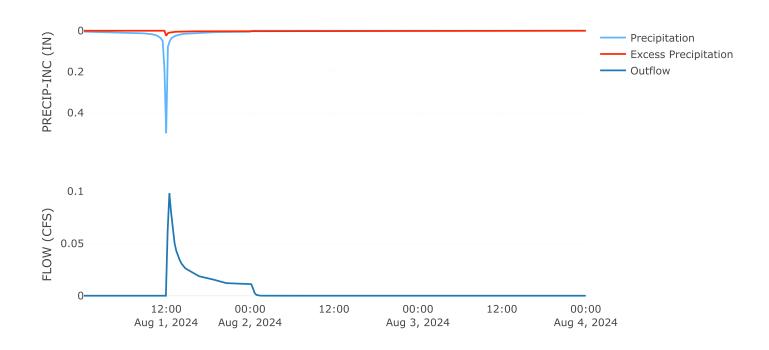
Results: DOWNCHUTE 3.4

Peak Discharge (CFS)	0.19
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	0.19
Inflow Volume (AC - FT)	0.05

Area (MI2): 0

Downstream: Junction 3.4

Loss Rate: Scs

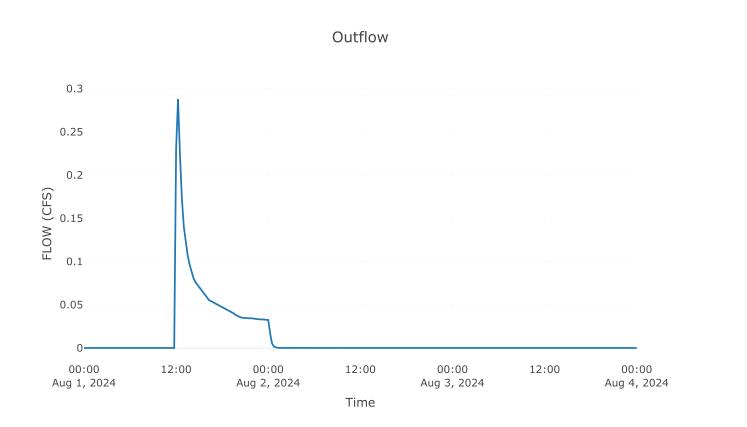

Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	15.2
Unitgraph Type	Standard

Results: NW-20

Peak Discharge (CFS)	0.1
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.25
Loss Volume (AC - FT)	0.23
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O



Junction: JUNCTION 3.4

Downstream: Downchute 5.1

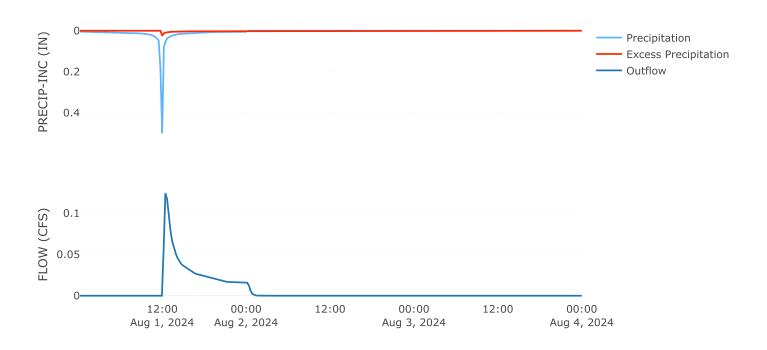
Results: JUNCTION 3.4

Peak Discharge (CFS)	0.29
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Area (MI2): 0

Downstream: Downchute 5.1

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	19.6
Unitgraph Type	Standard

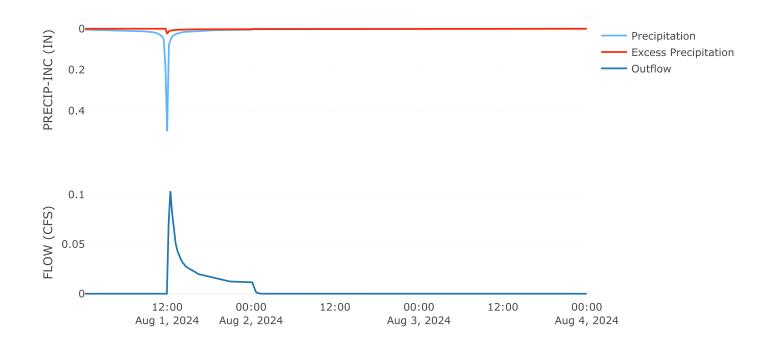
Results: NW-27

	·
Peak Discharge (CFS)	O.I2
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.36
Loss Volume (AC - FT)	0.32
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	O

Area (MI2): 0

Downstream: Downchute 5.1

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

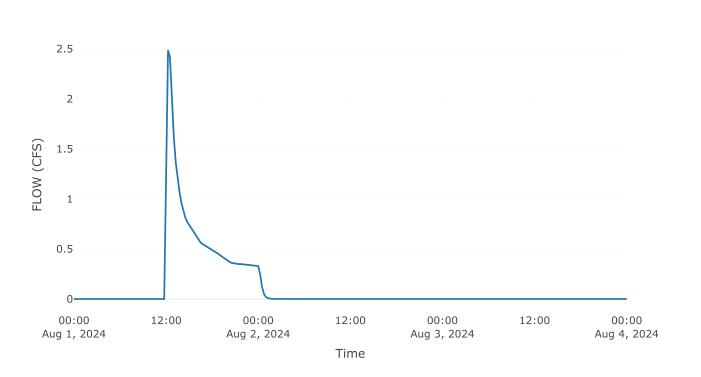
Lag	14.1
Unitgraph Type	Standard

Results: NW-24

	•
Peak Discharge (CFS)	O.I
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.26
Loss Volume (AC - FT)	0.23
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O

Reach: DOWNCHUTE 5.1

Downstream: Junction 5.1


Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 5.1

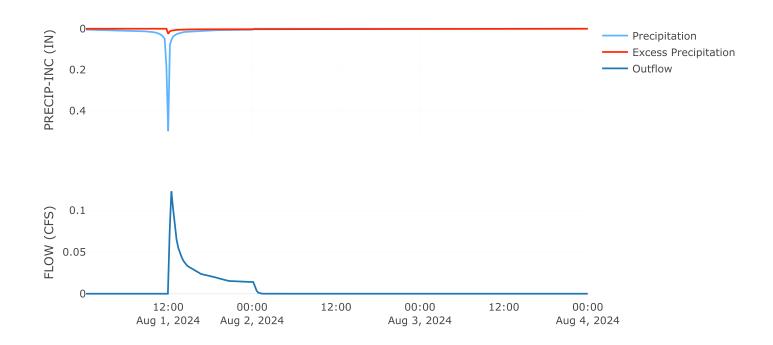
Peak Discharge (CFS)	2.49
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	2.49
Inflow Volume (AC - FT)	0.7

Outflow

Area (MI2): 0

Downstream: Junction 5.1

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	15.9
Unitgraph Type	Standard

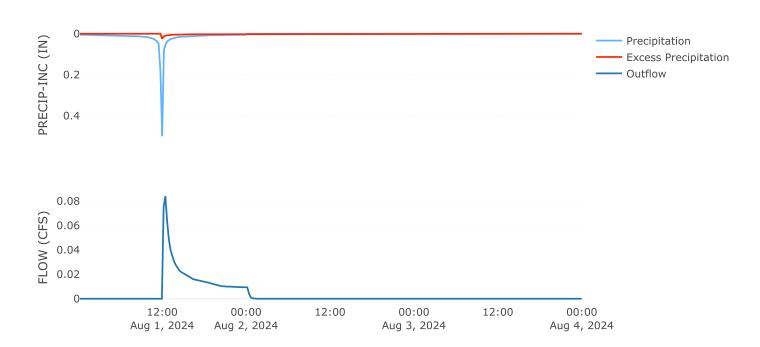
Results: NW-28

Peak Discharge (CFS)	0.12
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.32
Loss Volume (AC - FT)	0.29
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	O

Area (MI2): 0

Downstream: Junction 5.1

Loss Rate: Scs

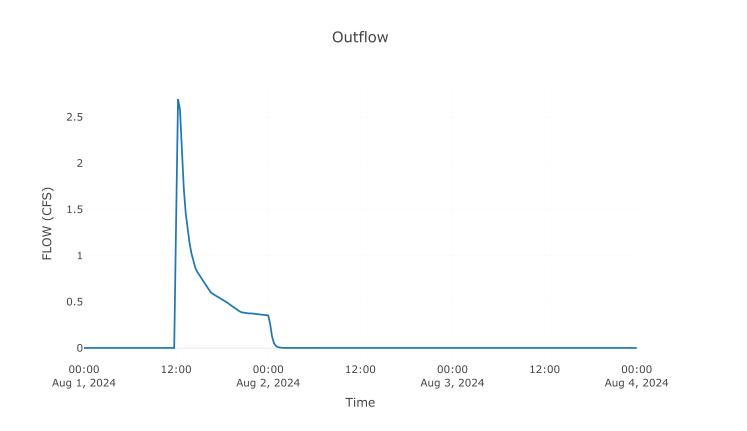

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	II.4
Unitgraph Type	Standard

Results: NW-25

Peak Discharge (CFS)	0.08
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.21
Loss Volume (AC - FT)	0.19
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O



Junction: JUNCTION 5.1

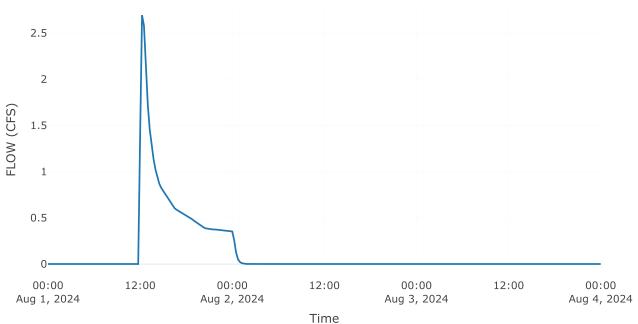
Downstream: Downchute 5.2

Results: JUNCTION 5.1

Peak Discharge (CFS)	2.69
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: DOWNCHUTE 5.2

Downstream: Junction 5.2


Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 5.2

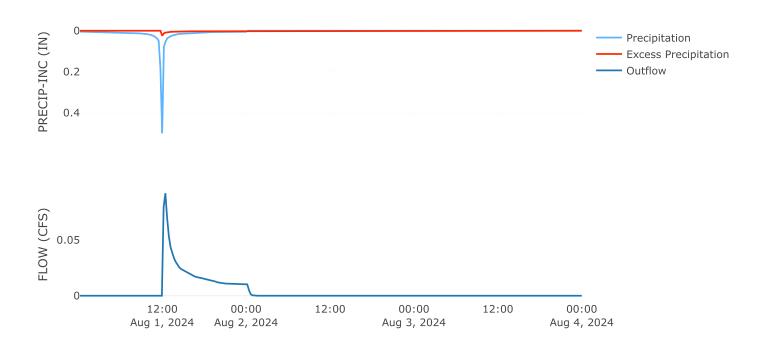
Peak Discharge (CFS)	2.69
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	2.69
Inflow Volume (AC - FT)	0.75

Outflow

Area (MI2): 0

Downstream: Junction 5.2

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	11.7
Unitgraph Type	Standard

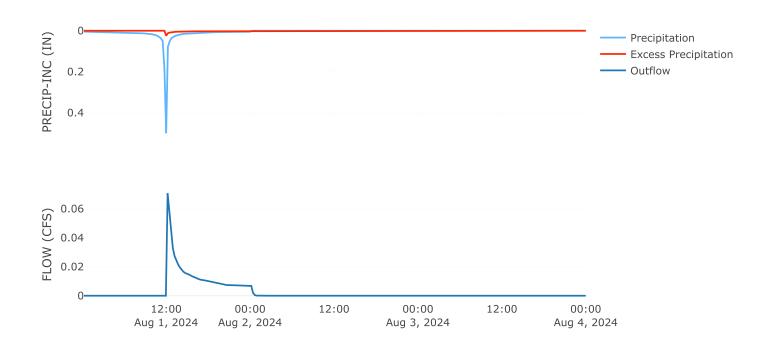
Results: NW-29

Peak Discharge (CFS)	0.09
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.23
Loss Volume (AC - FT)	0.21
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O

Area (MI2): 0

Downstream: Junction 5.2

Loss Rate: Scs

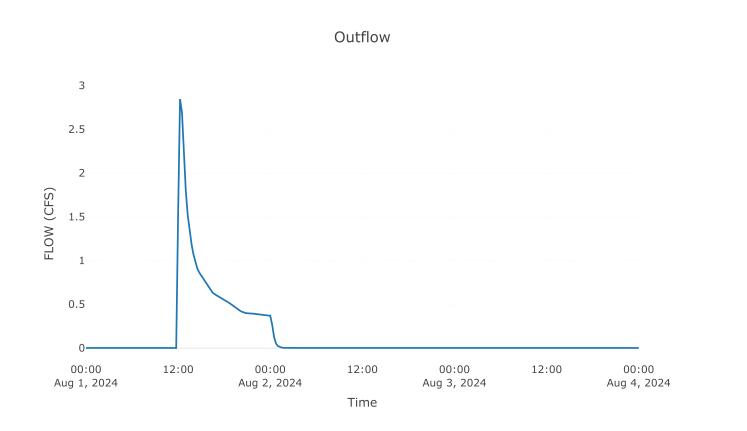

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	8.4
Unitgraph Type	Standard

Results: NW-26

Peak Discharge (CFS)	0.07
Time of Peak Discharge	01Aug2024, 12:00
Time of Feak Discharge	01Aug2024, 12.00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.15
Loss Volume (AC - FT)	0.14
Excess Volume (AC - FT)	0.01
Direct Runoff Volume (AC - FT)	10.0
Baseflow Volume (AC - FT)	O



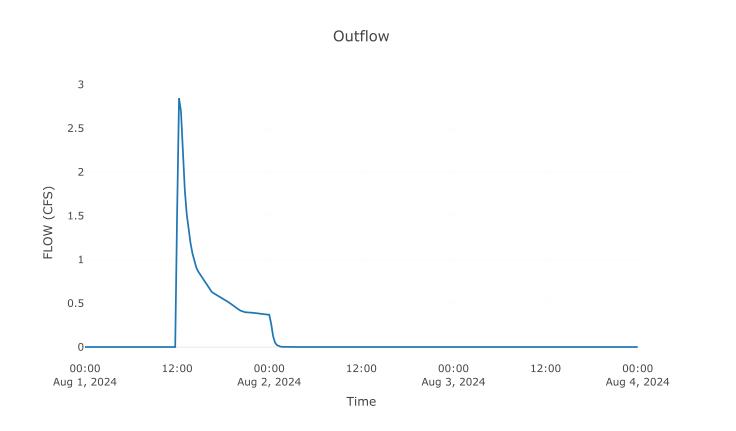
Junction: JUNCTION 5.2

Downstream: Downchute 5.3

Results: JUNCTION 5.2

Peak Discharge (CFS)	2.84
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: DOWNCHUTE 5.3


Downstream: Northwest pond

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

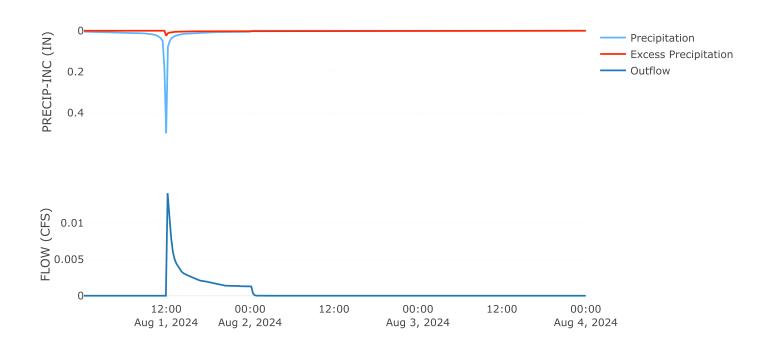
Results: DOWNCHUTE 5.3

Peak Discharge (CFS)	2.84
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	2.84
Inflow Volume (AC - FT)	0.79

Area (MI2): 0

Downstream: Downchute I.I

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	4.1
Unitgraph Type	Standard

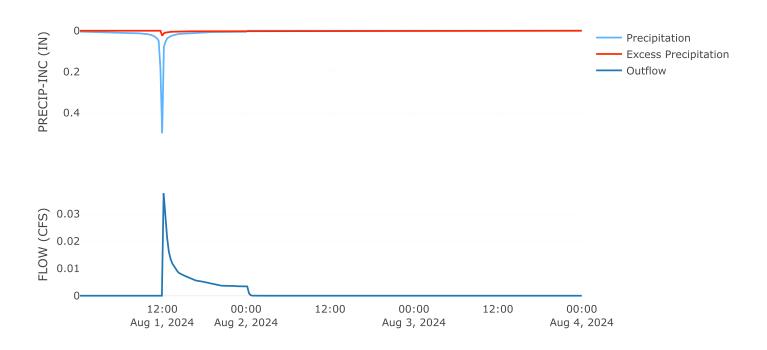
Results: NW-1

Peak Discharge (CFS)	0.01
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.03
Loss Volume (AC - FT)	0.03
Excess Volume (AC - FT)	O
Direct Runoff Volume (AC - FT)	O
Baseflow Volume (AC - FT)	O

Area (MI2): 0

Downstream: Junction 1.1

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

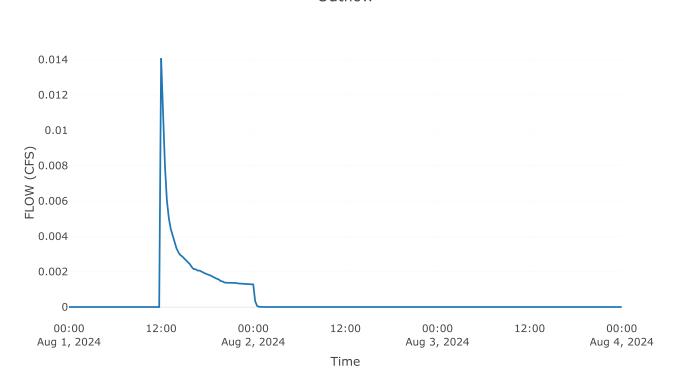
Lag	6.7
Unitgraph Type	Standard

Results: NW-2

Peak Discharge (CFS)	0.04
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.08
Loss Volume (AC - FT)	0.07
Excess Volume (AC - FT)	0.01
Direct Runoff Volume (AC - FT)	0.01
Baseflow Volume (AC - FT)	O

Reach: DOWNCHUTE 1.1

Downstream: Junction I.I

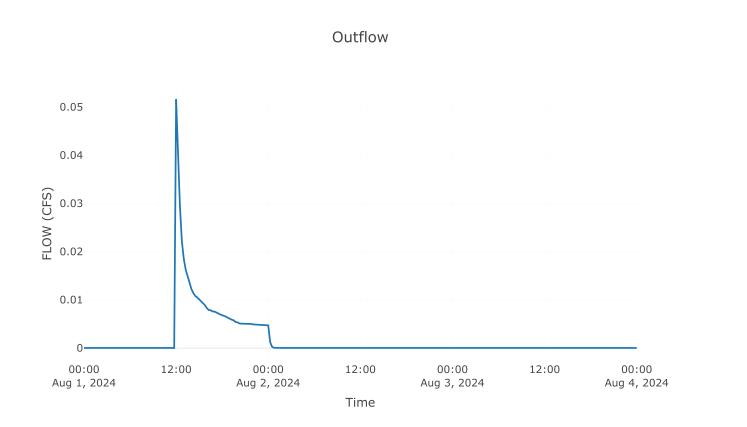

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 1.1

Peak Discharge (CFS)	0.01
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Peak Inflow (CFS)	0.01
Inflow Volume (AC - FT)	O

Outflow



Junction: JUNCTION 1.1

Downstream: Downchute 1.2

Results: JUNCTION 1.1

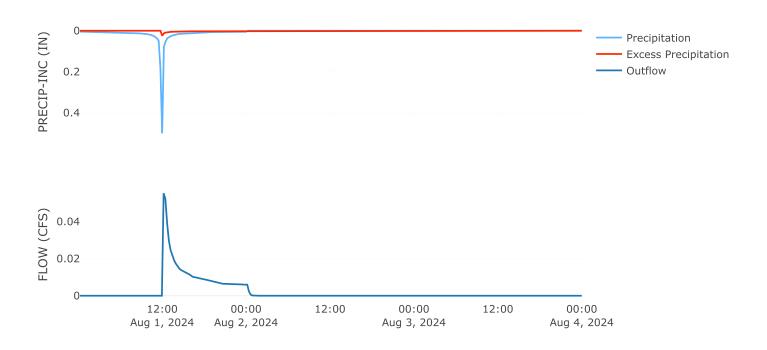
Peak Discharge (CFS)	0.05
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17

Subbasin: NW-3

Area (MI2): 0

Downstream: Junction 1.2

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

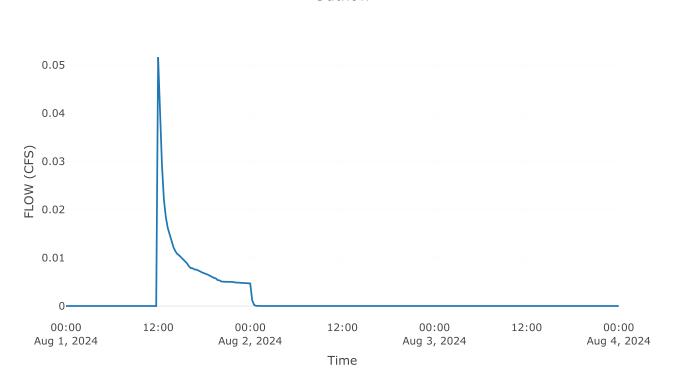
Transform: Scs

Lag	9.9
Unitgraph Type	Standard

Results: NW-3

	<u> </u>
Peak Discharge (CFS)	0.06
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.13
Loss Volume (AC - FT)	0.12
Excess Volume (AC - FT)	0.01
Direct Runoff Volume (AC - FT)	0.0
Baseflow Volume (AC - FT)	O

Reach: DOWNCHUTE 1.2

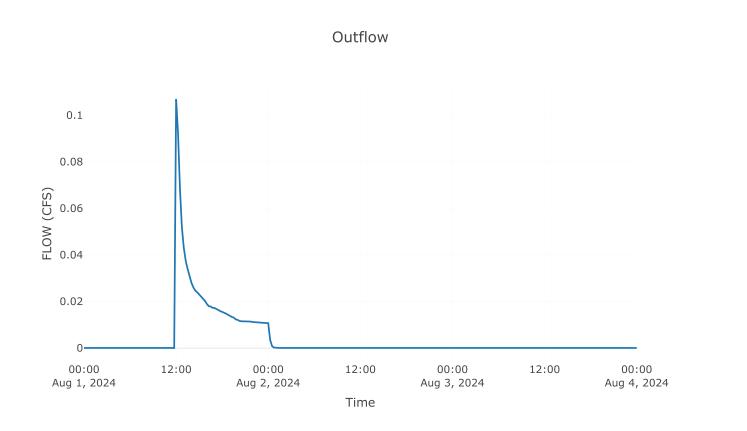

Downstream: Junction 1.2

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 1.2

Peak Discharge (CFS)	0.05
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Peak Inflow (CFS)	0.05
Inflow Volume (AC - FT)	0.01



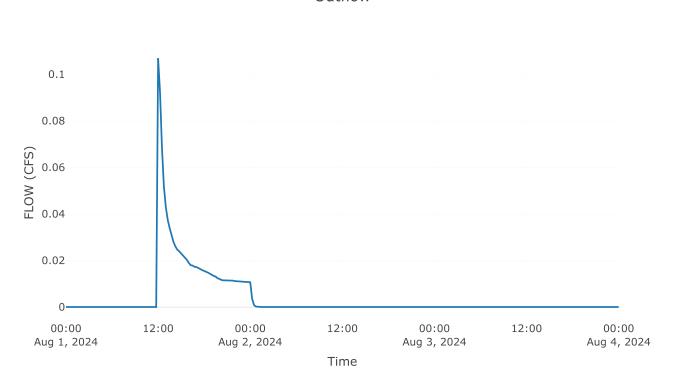
Junction: JUNCTION 1.2

Downstream: Downchute 1.3

Results: JUNCTION 1.2

Peak Discharge (CFS)	O.II
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17

Reach: DOWNCHUTE 1.3


Downstream: Junction 1.3

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 1.3

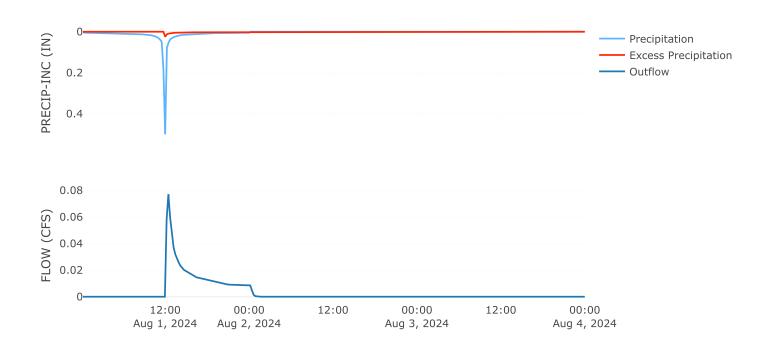
Peak Discharge (CFS)	O.II
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Peak Inflow (CFS)	O.II
Inflow Volume (AC - FT)	0.02

Subbasin: NW-4

Area (MI2): 0

Downstream: Junction 1.3

Loss Rate: Scs

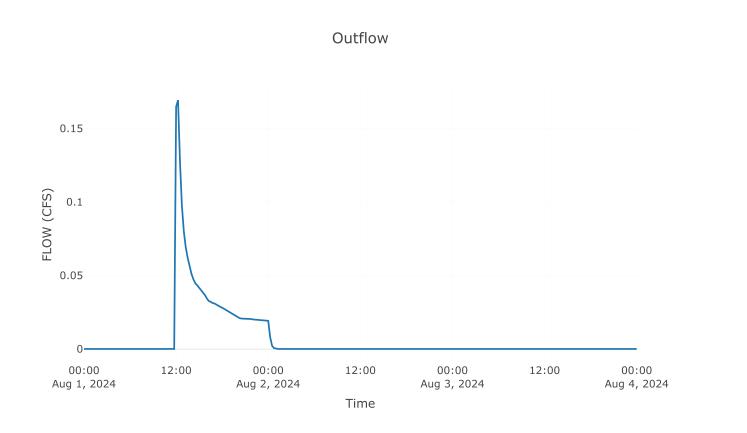

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	13
Unitgraph Type	Standard

Results: NW-4

	•
Peak Discharge (CFS)	0.08
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.19
Loss Volume (AC - FT)	0.17
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O



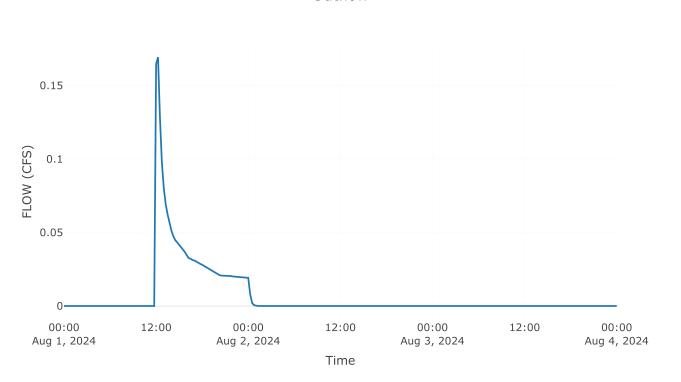
Junction: JUNCTION 1.3

Downstream: Downchute 1.4

Results: JUNCTION 1.3

Peak Discharge (CFS)	0.17
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: DOWNCHUTE 1.4


Downstream: Junction 1.4

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 1.4

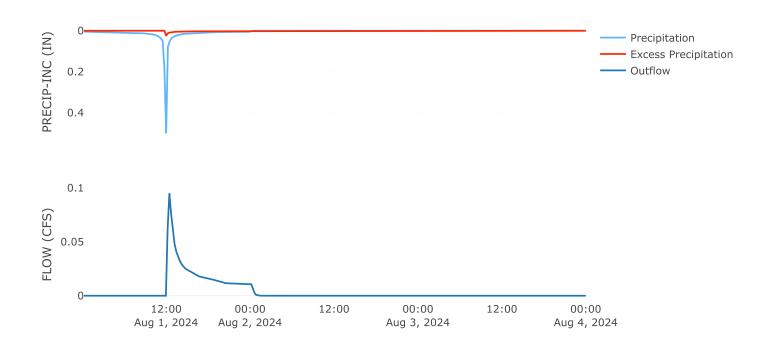
Peak Discharge (CFS)	0.17
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	0.17
Inflow Volume (AC - FT)	0.04

Subbasin: NW-5

Area (MI2): 0

Downstream: Junction 1.4

Loss Rate: Scs

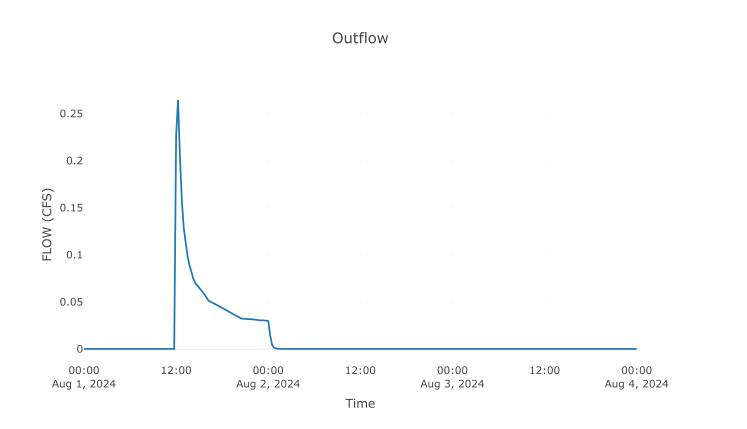

Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	I4.7
Unitgraph Type	Standard

Results: NW-5

Peak Discharge (CFS)	0.09
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.24
Loss Volume (AC - FT)	0.22
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O



Junction: JUNCTION 1.4

Downstream: Downchute 4.1

Results: JUNCTION 1.4

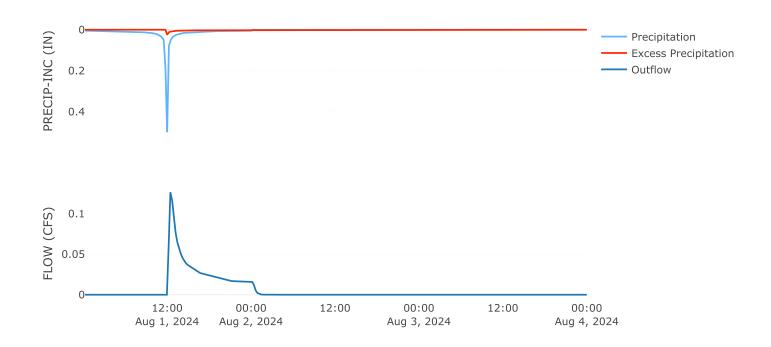
Peak Discharge (CFS)	0.26
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Subbasin: NW-21

Area (MI2): 0

Downstream: Downchute 4.1

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

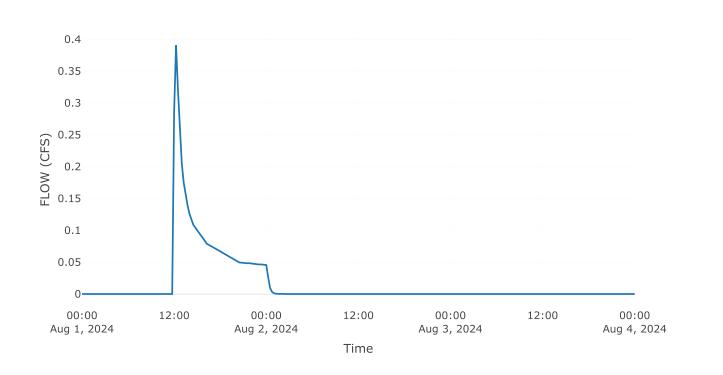
Transform: Scs

Lag	19.1
Unitgraph Type	Standard

Results: NW-21

Peak Discharge (CFS)	0.13
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.36
Loss Volume (AC - FT)	0.32
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	0

Reach: DOWNCHUTE 4.1


Downstream: Junction - I

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 4.1

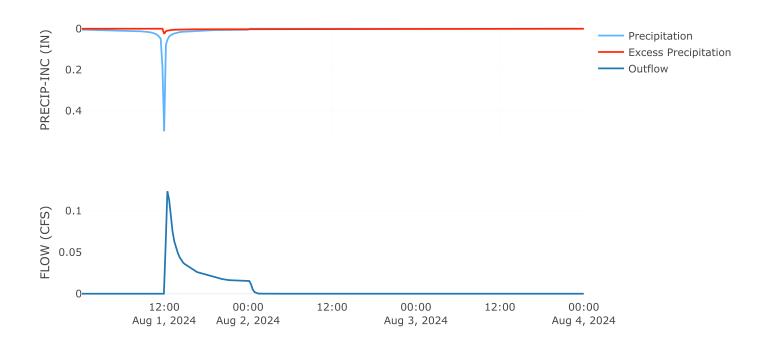
Peak Discharge (CFS)	0.39
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	0.39
Inflow Volume (AC - FT)	O.I

Subbasin: NW-22

Area (MI2): 0

Downstream: Junction - I

Loss Rate: Scs

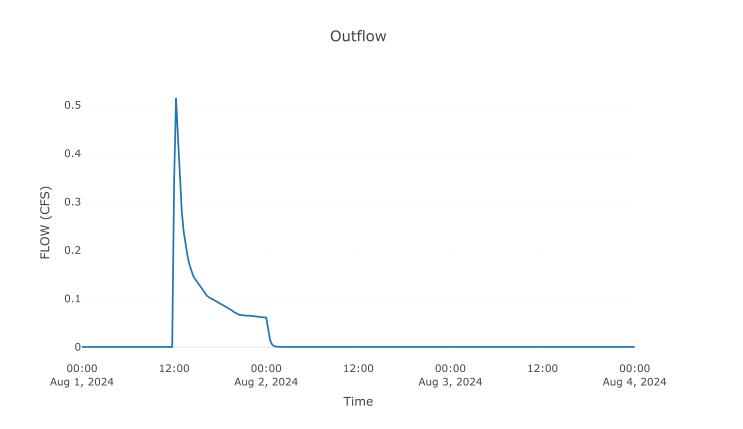

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	19
Unitgraph Type	Standard

Results: NW-22

Peak Discharge (CFS)	0.12
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.35
Loss Volume (AC - FT)	0.31
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	O



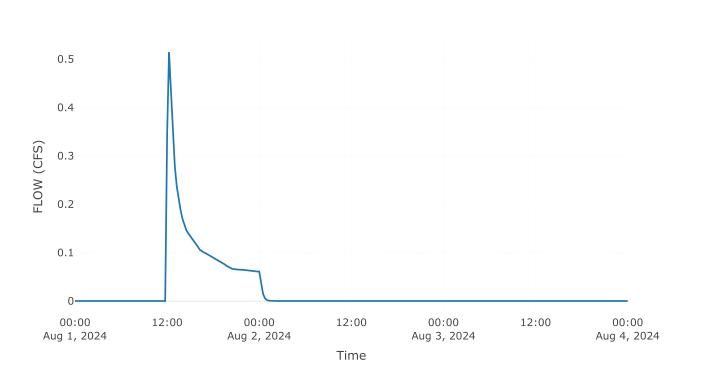
Junction: Junction-1

Downstream: Downchute 4.2

Results: Junction-1

Peak Discharge (CFS)	0.51
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: DOWNCHUTE 4.2


Downstream: Junction 4.2

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 4.2

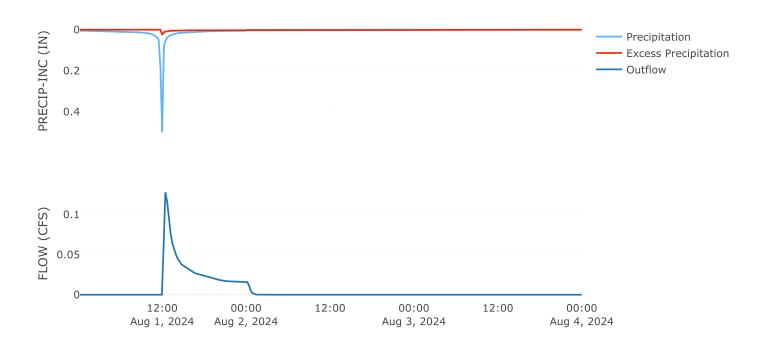
Peak Discharge (CFS)	0.51
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	0.51
Inflow Volume (AC - FT)	0.13

Subbasin: NW-23

Area (MI2): 0

Downstream: Junction 4.2

Loss Rate: Scs

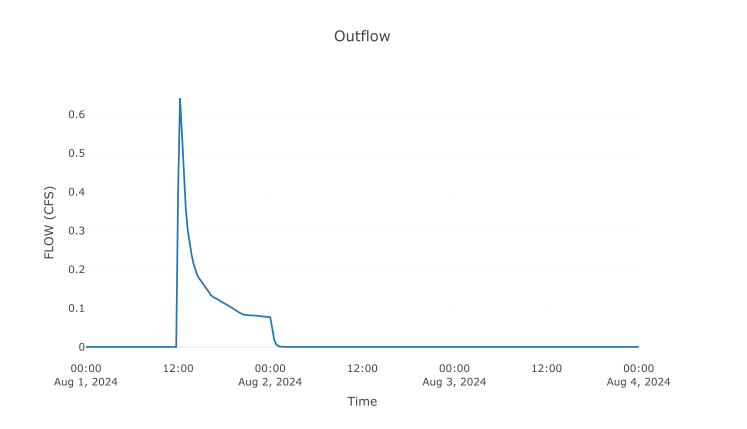

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	18.8
Unitgraph Type	Standard

Results: NW-23

	_
Peak Discharge (CFS)	0.13
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.36
Loss Volume (AC - FT)	0.32
Excess Volume (AC - FT)	0.03
Direct Runoff Volume (AC - FT)	0.03
Baseflow Volume (AC - FT)	O



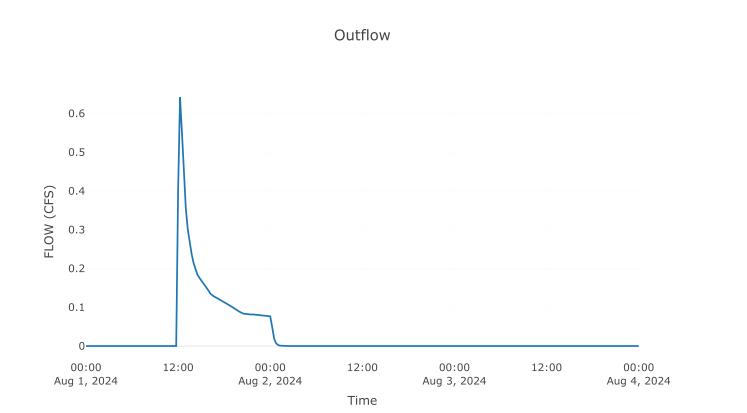
Junction: JUNCTION 4.2

Downstream: Downchute 4.3

Results: JUNCTION 4.2

Peak Discharge (CFS)	0.64
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: DOWNCHUTE 4.3


Downstream: Northwest pond

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 4.3

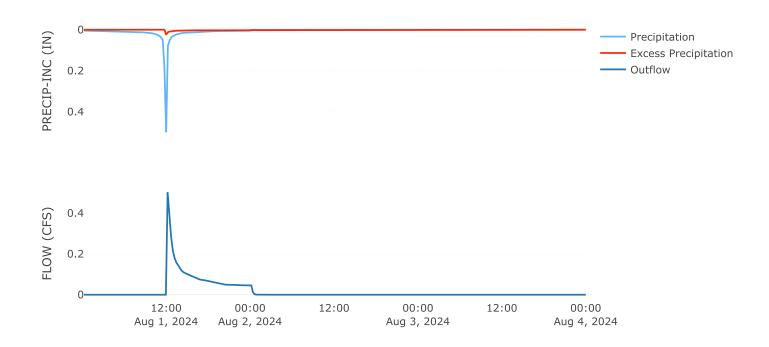
Peak Discharge (CFS)	0.64
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	0.64
Inflow Volume (AC - FT)	0.16

Subbasin: NW-30

Area (MI2): 0.01

Downstream: Northwest pond

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	1.9
Unitgraph Type	Standard

Results: NW-30

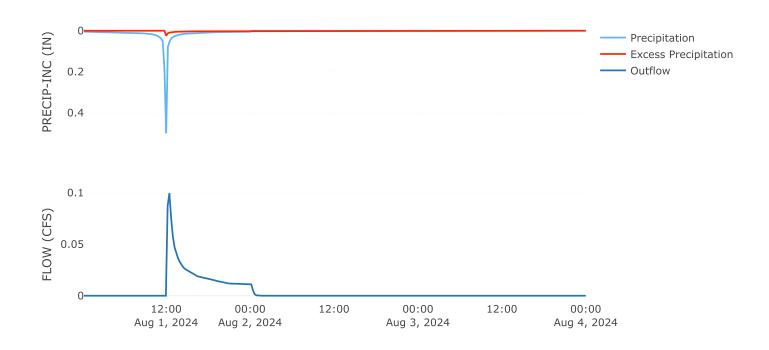
Peak Discharge (CFS)	0.5
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	1.03
Loss Volume (AC - FT)	0.93
Excess Volume (AC - FT)	O.I
Direct Runoff Volume (AC - FT)	O.I
Baseflow Volume (AC - FT)	O

Subbasin: N-6

Area (MI2): 0

Downstream: N junction 3

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

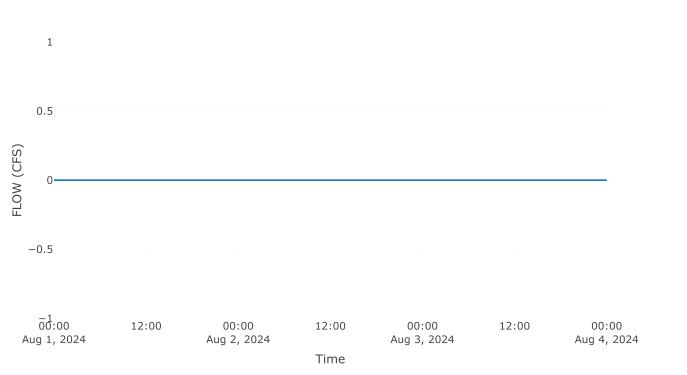
Transform: Scs

Lag	11.6
Unitgraph Type	Standard

Results: N-6

Peak Discharge (CFS)	O.I
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.25
Loss Volume (AC - FT)	0.23
Excess Volume (AC - FT)	0.02
Direct Runoff Volume (AC - FT)	0.02
Baseflow Volume (AC - FT)	O

Reach: N CHANNEL 1.3

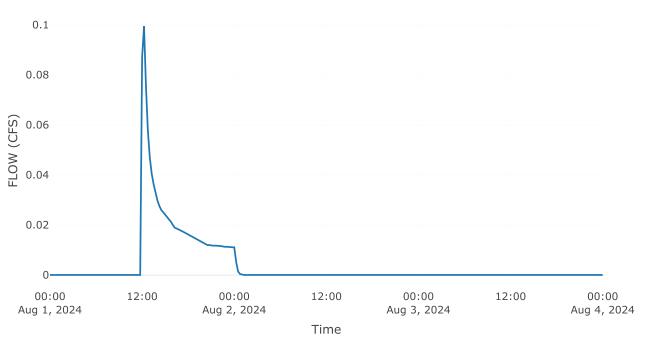

Downstream: N junction 3

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: N CHANNEL 1.3

Peak Discharge (CFS)	o
Time of Peak Discharge	31Jul2024, 24:00
Peak Inflow (CFS)	O
Inflow Volume (AC - FT)	0

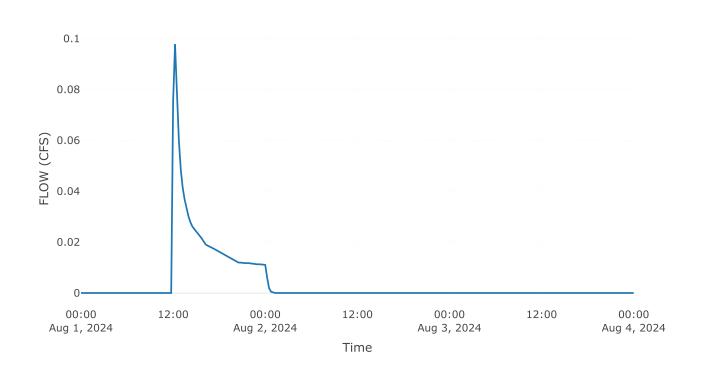

Junction: N JUNCTION 3

Downstream: N channel 1.4

Results: N JUNCTION 3

Peak Discharge (CFS)	O.I
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: N CHANNEL 1.4


Downstream: N junction 4

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: N CHANNEL 1.4

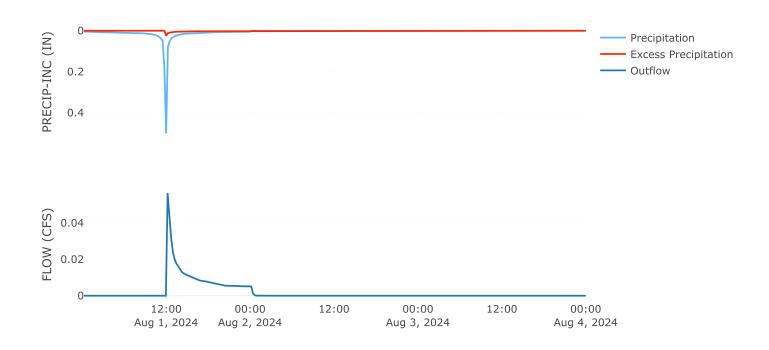
Peak Discharge (CFS)	O.I
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	O.I
Inflow Volume (AC - FT)	0.02

Subbasin: N-7

Area (MI2): 0

Downstream: N junction 4

Loss Rate: Scs

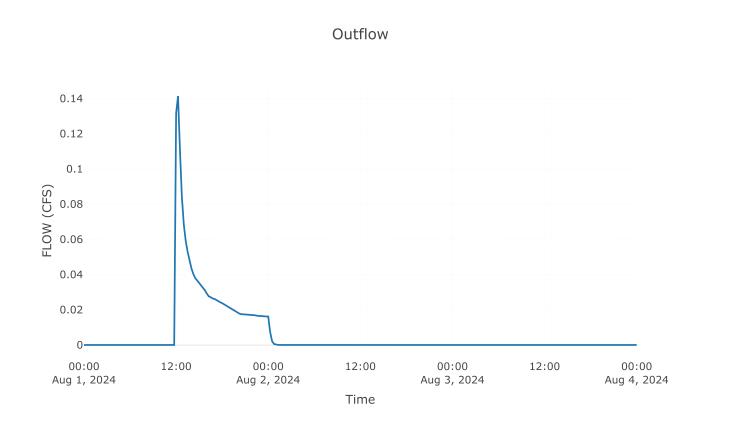

Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	6.5
Unitgraph Type	Standard

Results: N-7

	•
Peak Discharge (CFS)	0.06
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.12
Loss Volume (AC - FT)	O.I
Excess Volume (AC - FT)	0.01
Direct Runoff Volume (AC - FT)	0.01
Baseflow Volume (AC - FT)	O



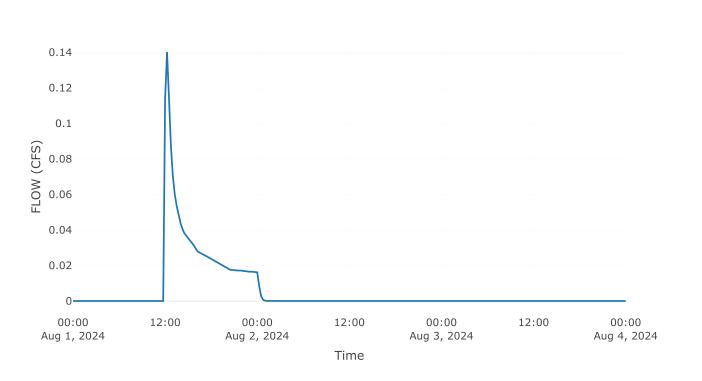
Junction: N JUNCTION 4

Downstream: N channel 1.5

Results: N JUNCTION 4

Peak Discharge (CFS)	0.14
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

Reach: N CHANNEL 1.5


Downstream: N junction 5

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: N CHANNEL 1.5

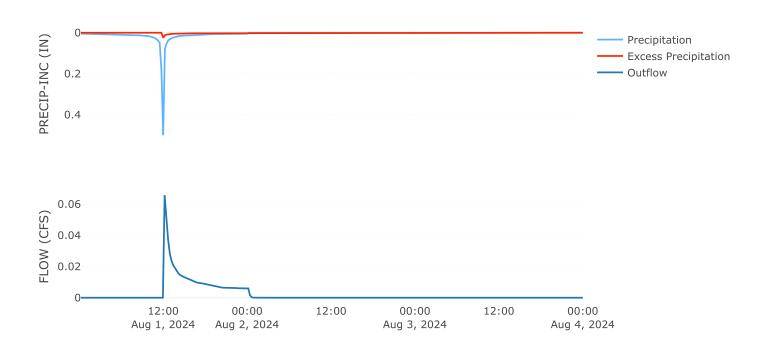
Peak Discharge (CFS)	0.14
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	0.14
Inflow Volume (AC - FT)	0.03

Subbasin: N-8

Area (MI2): 0

Downstream: N junction 5

Loss Rate: Scs

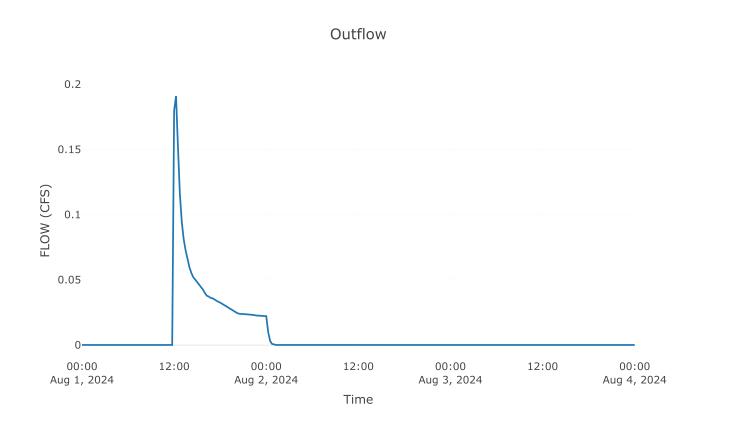

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	7-4
Unitgraph Type	Standard

Results: N-8

Peak Discharge (CFS)	0.07
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.13
Loss Volume (AC - FT)	0.12
Excess Volume (AC - FT)	0.01
Direct Runoff Volume (AC - FT)	0.01
Baseflow Volume (AC - FT)	O



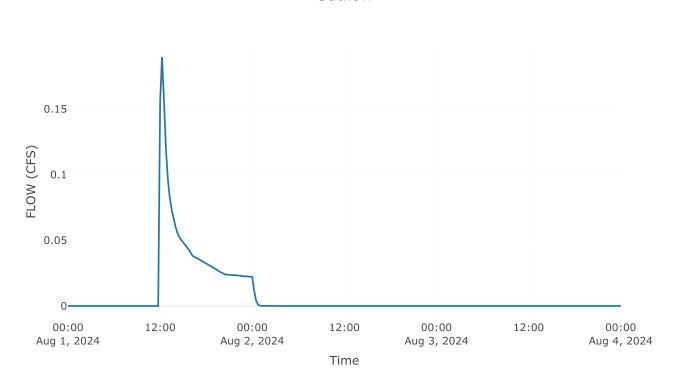
Junction: N JUNCTION 5

Downstream: N channel 1.6

Results: N JUNCTION 5

Peak Discharge (CFS)	0.19
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17

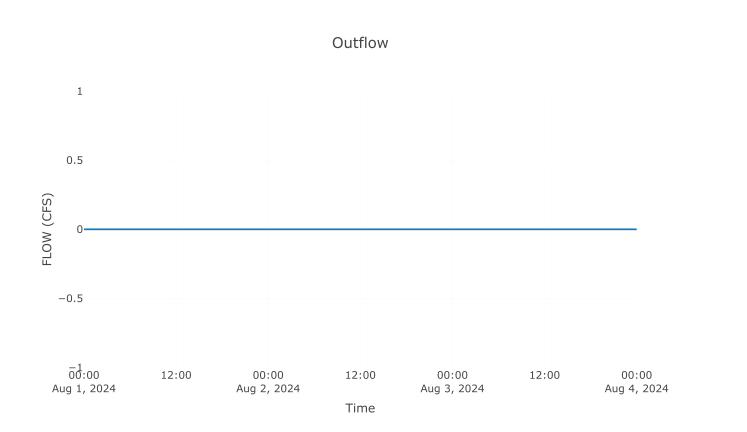
Reach: N CHANNEL 1.6


Downstream: Northwest pond

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: N CHANNEL 1.6


Peak Discharge (CFS)	0.19
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Peak Inflow (CFS)	0.19
Inflow Volume (AC - FT)	0.05

Reservoir: NORTHWEST POND

Results: NORTHWEST POND

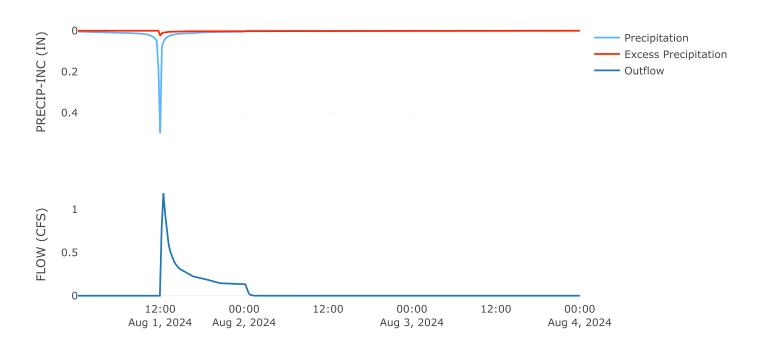
Peak Discharge (CFS)	O
Time of Peak Discharge	31Jul2024, 24:00
Volume (IN)	O
Peak Inflow (CFS)	4.06
Time of Peak Inflow	01Aug2024, 12:15
Inflow Volume (AC - FT)	1.09
Maximum Storage (AC - FT)	1.09
Peak Elevation (FT)	2617.07
Discharge Volume (AC - FT)	O

Subbasin: E-1

Area (MI2): 0.03

Downstream: East channel

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

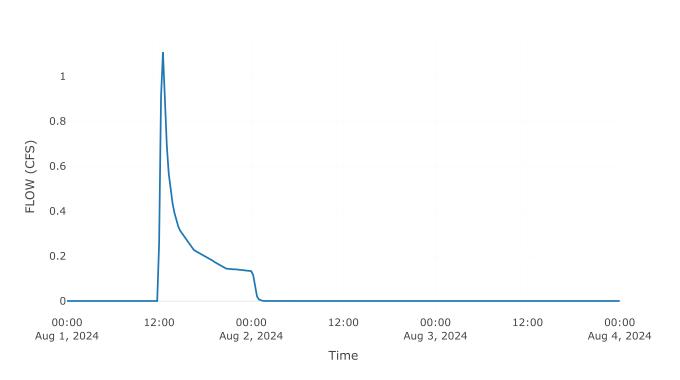
Transform: Scs

Lag	I4.7
Unitgraph Type	Standard

Results: E-1

Peak Discharge (CFS)	1.19
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	3
Loss Volume (AC - FT)	2.71
Excess Volume (AC - FT)	0.28
Direct Runoff Volume (AC - FT)	0.28
Baseflow Volume (AC - FT)	O

Reach: EAST CHANNEL


Downstream: East pond

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	IO.I

Results: EAST CHANNEL

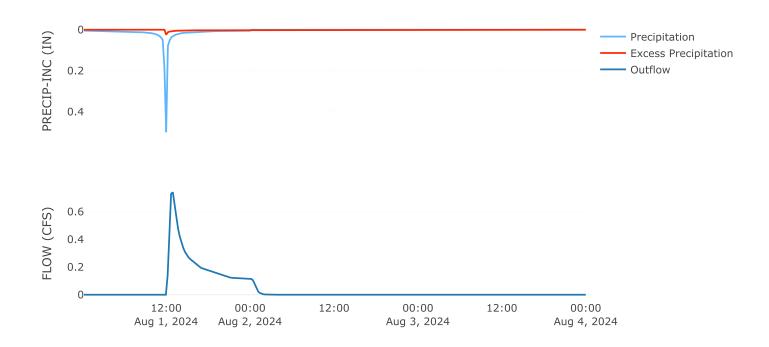
Peak Discharge (CFS)	I.II
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Peak Inflow (CFS)	1.19
Inflow Volume (AC - FT)	0.28

Subbasin: SW-1

Area (MI2): 0.03

Downstream: Sw channel 1.1

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

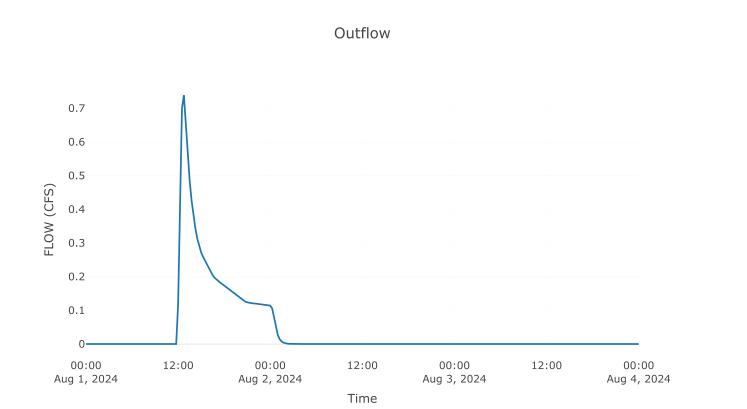
Transform: Scs

Lag	31.7
Unitgraph Type	Standard

Results: SW-1

Peak Discharge (CFS)	0.74
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Precipitation Volume (AC - FT)	2.55
Loss Volume (AC - FT)	2.31
Excess Volume (AC - FT)	0.24
Direct Runoff Volume (AC - FT)	0.24
Baseflow Volume (AC - FT)	O

Reach: SW CHANNEL 1.1


Downstream: Sw junction I

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: SW CHANNEL 1.1

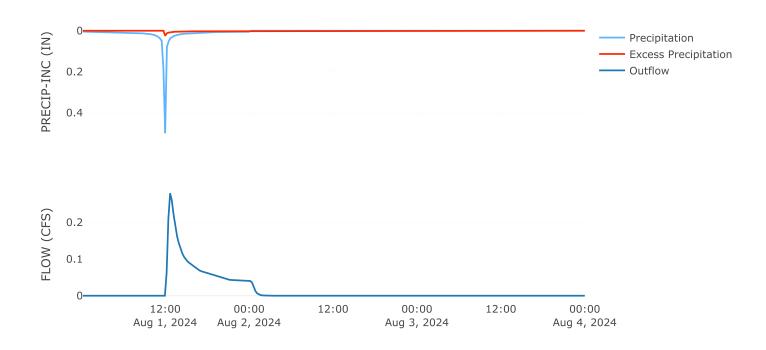
Peak Discharge (CFS)	0.74
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Peak Inflow (CFS)	0.74
Inflow Volume (AC - FT)	0.24

Subbasin: SW-2

Area (MI2): 0.01

Downstream: Sw junction I

Loss Rate: Scs

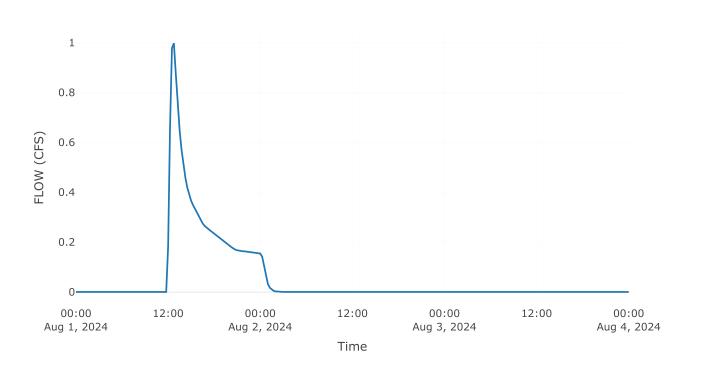

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	28.5
Unitgraph Type	Standard

Results: SW-2

Peak Discharge (CFS)	0.28
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.9
Loss Volume (AC - FT)	0.82
Excess Volume (AC - FT)	0.09
Direct Runoff Volume (AC - FT)	0.09
Baseflow Volume (AC - FT)	0



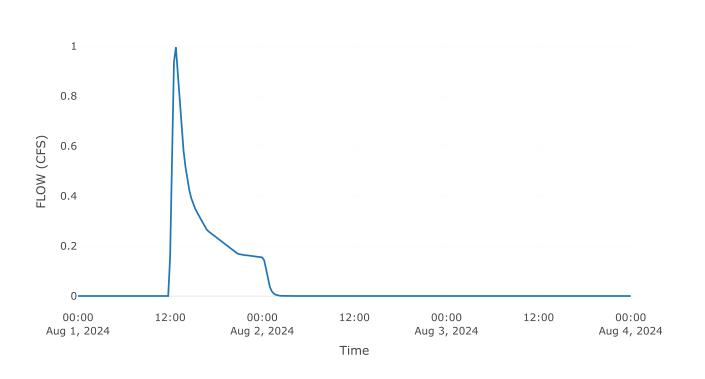
Junction: SW JUNCTION 1

Downstream: Sw channel 1.2

Results: SW JUNCTION 1

Peak Discharge (CFS)	I
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17

Reach: SW CHANNEL 1.2


Downstream: Sw junction 2

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: SW CHANNEL 1.2

Peak Discharge (CFS)	I
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Peak Inflow (CFS)	I
Inflow Volume (AC - FT)	0.33

Subbasin: SW-3

Area (MI2): 0.01

Downstream: Sw junction 2

Loss Rate: Scs

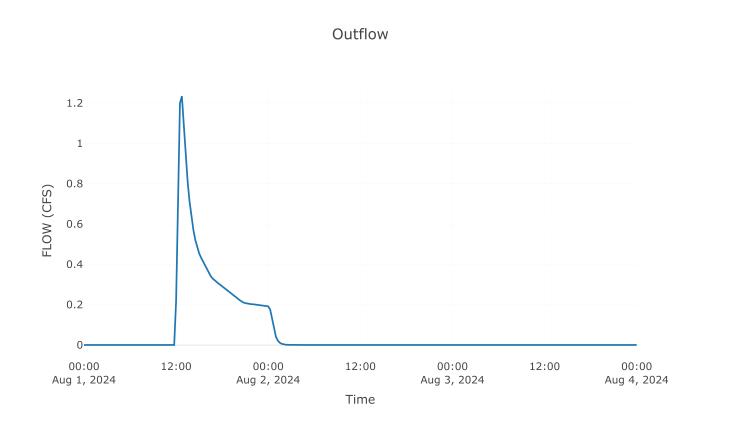

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	27.5
Unitgraph Type	Standard

Results: SW-3

Peak Discharge (CFS)	0.26
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.84
Loss Volume (AC - FT)	0.76
Excess Volume (AC - FT)	0.08
Direct Runoff Volume (AC - FT)	0.08
Baseflow Volume (AC - FT)	O



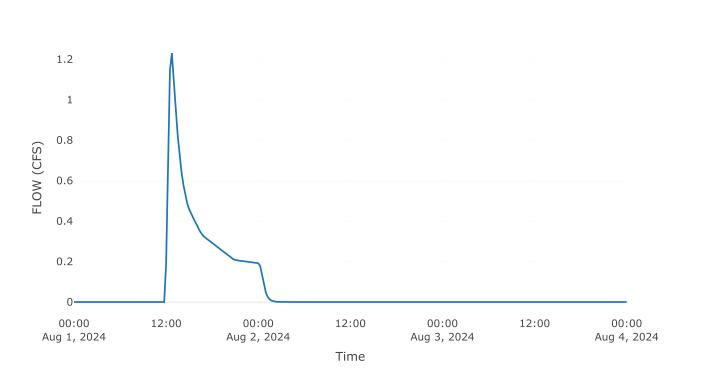
Junction: SW JUNCTION 2

Downstream: Sw channel 1.3

Results: SW JUNCTION 2

Peak Discharge (CFS)	I.23
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17

Reach: SW CHANNEL 1.3


Downstream: Sw junction 3

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: SW CHANNEL 1.3

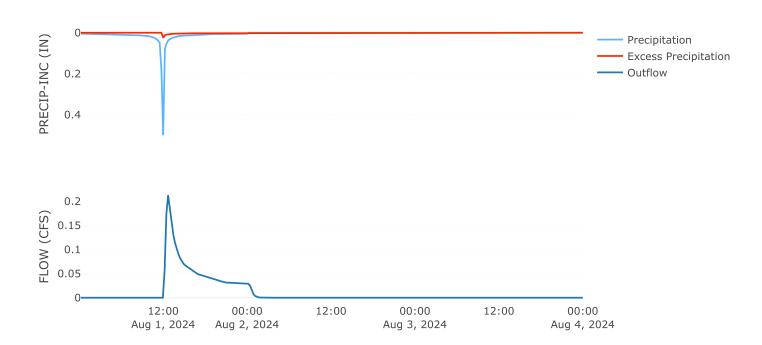
Peak Discharge (CFS)	1.23
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Peak Inflow (CFS)	1.23
Inflow Volume (AC - FT)	0.41

Subbasin: SW-4

Area (MI2): 0.01

Downstream: Sw junction 3

Loss Rate: Scs

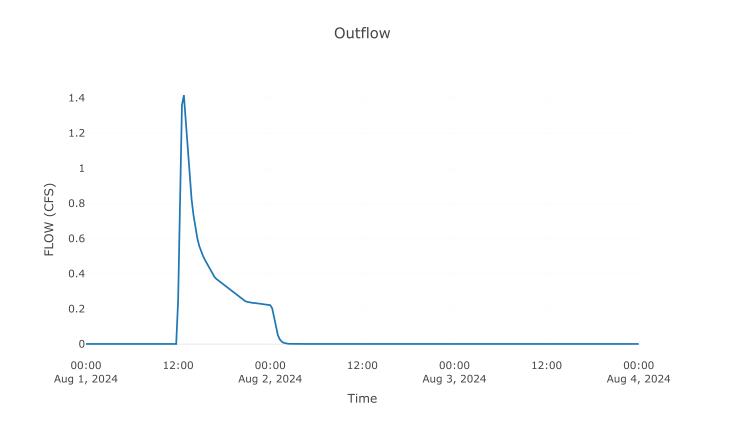

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	25.6
Unitgraph Type	Standard

Results: SW-4

	•
Peak Discharge (CFS)	0.21
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.65
Loss Volume (AC - FT)	0.59
Excess Volume (AC - FT)	0.06
Direct Runoff Volume (AC - FT)	0.06
Baseflow Volume (AC - FT)	O



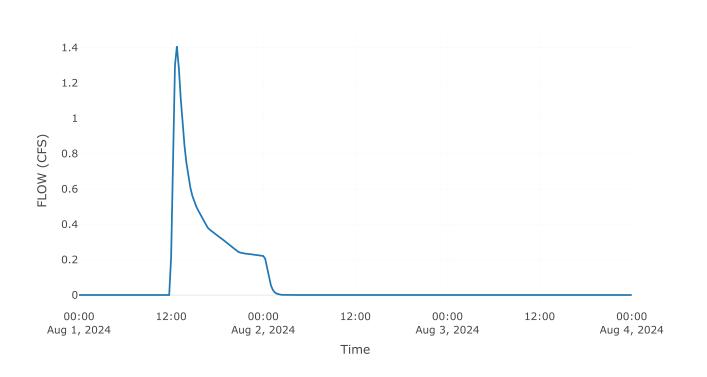
Junction: SW JUNCTION 3

Downstream: Sw channel 1.4

Results: SW JUNCTION 3

Peak Discharge (CFS)	1.41
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17

Reach: SW CHANNEL 1.4


Downstream: Sw junction 4

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: SW CHANNEL 1.4

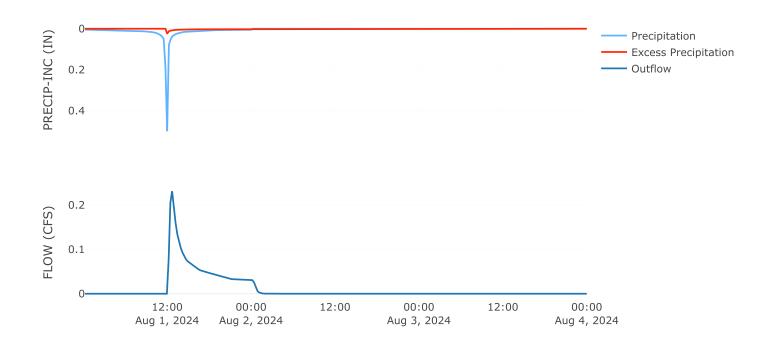
Peak Discharge (CFS)	I.4I
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Peak Inflow (CFS)	I.4I
Inflow Volume (AC - FT)	0.47

Subbasin: SW-5

Area (MI2): 0.01

Downstream: Sw junction 4

Loss Rate: Scs

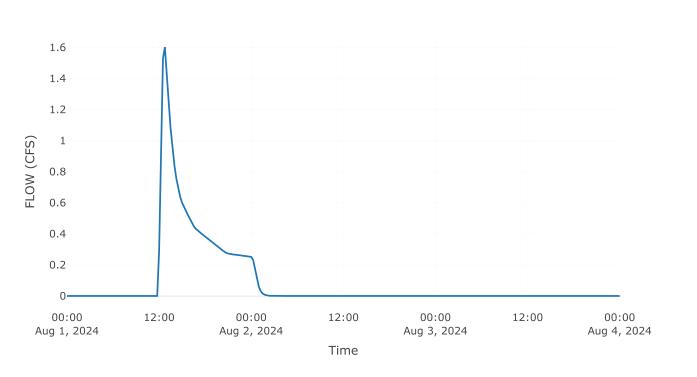

Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	23.I
Unitgraph Type	Standard

Results: SW-5

	3
Peak Discharge (CFS)	0.23
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.69
Loss Volume (AC - FT)	0.63
Excess Volume (AC - FT)	0.07
Direct Runoff Volume (AC - FT)	0.07
Baseflow Volume (AC - FT)	O

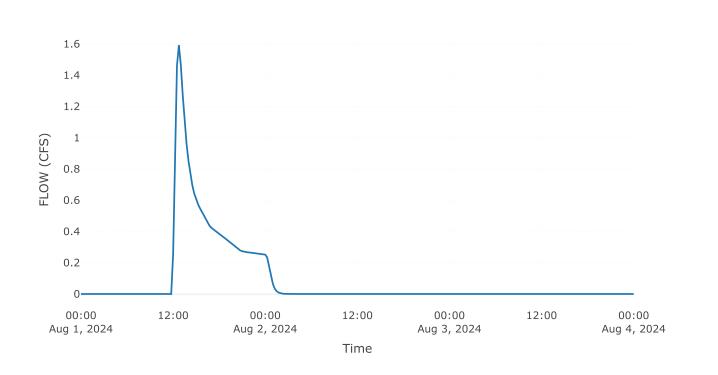

Junction: SW JUNCTION 4

Downstream: Sw channel 1.5

Results: SW JUNCTION 4

Peak Discharge (CFS)	1.6
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17

Reach: SW CHANNEL 1.5


Downstream: Sw junction 5

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: SW CHANNEL 1.5

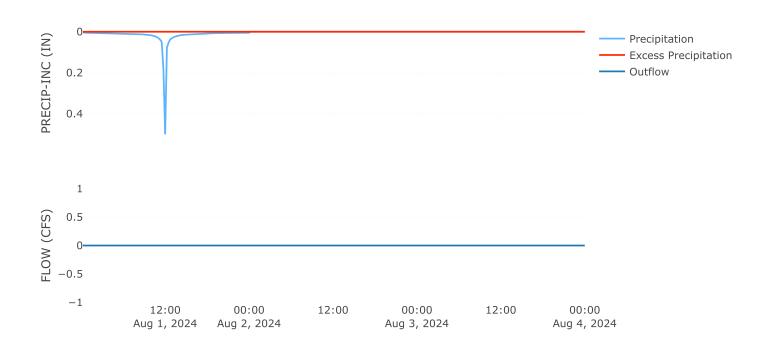
Peak Discharge (CFS)	I.59
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Peak Inflow (CFS)	1.6
Inflow Volume (AC - FT)	0.53

Subbasin: SW-6

Area (MI2): 0.04

Downstream: Sw junction 5

Loss Rate: Scs

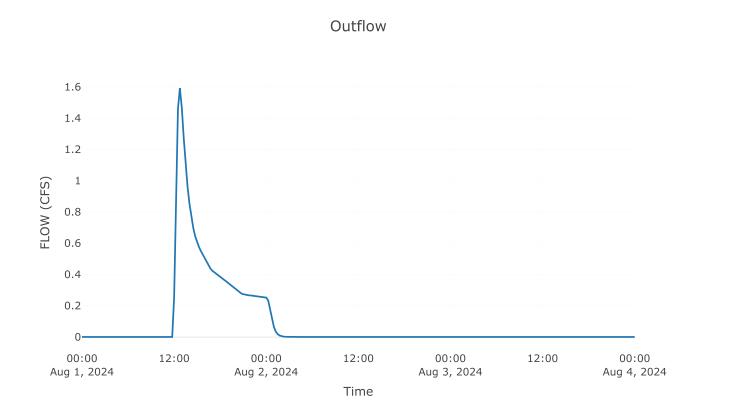

Percent Impervious Area	0
Curve Number	51

Transform: Scs

Lag	7.4
Unitgraph Type	Standard

Results: SW-6

Peak Discharge (CFS)	О
Time of Peak Discharge	31Jul2024, 24:00
Volume (IN)	O
Precipitation Volume (AC - FT)	4.29
Loss Volume (AC - FT)	4.29
Excess Volume (AC - FT)	O
Direct Runoff Volume (AC - FT)	O
Baseflow Volume (AC - FT)	O



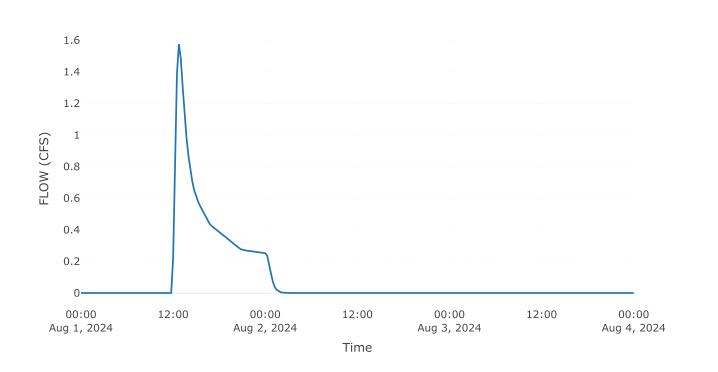
Junction: SW JUNCTION 5

Downstream: Sw channel 1.6

Results: SW JUNCTION 5

Peak Discharge (CFS)	1.59
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	O.I

Reach: SW CHANNEL 1.6


Downstream: West channel I sink

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: SW CHANNEL 1.6

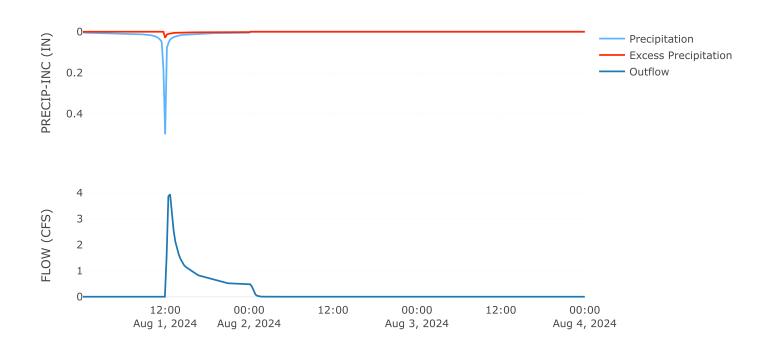
Peak Discharge (CFS)	I.57
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	O.I
Peak Inflow (CFS)	1.59
Inflow Volume (AC - FT)	0.53

Subbasin: SE-1

Area (MI2): 0.11

Downstream : Se pond

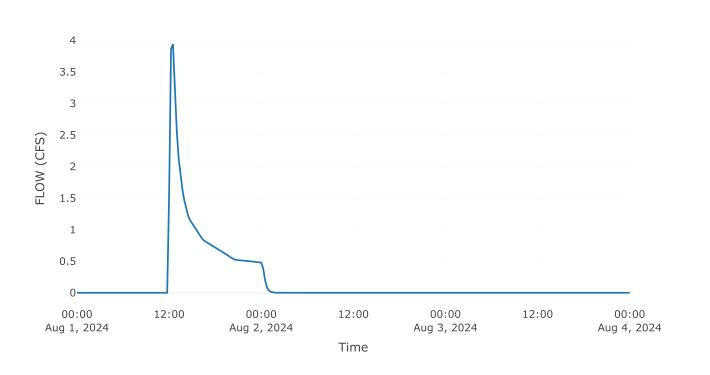
Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70.7

Transform: Scs

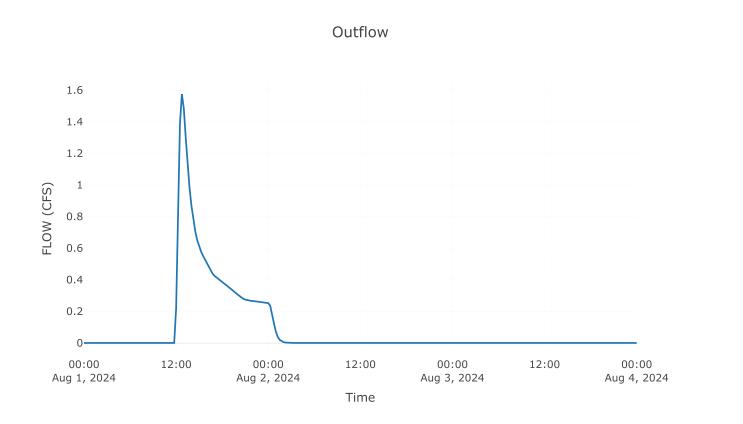
Lag	21.7
Unitgraph Type	Standard

Results: SE-1


Peak Discharge (CFS)	3.94
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.18
Precipitation Volume (AC - FT)	10.28
Loss Volume (AC - FT)	9.23
Excess Volume (AC - FT)	1.05
Direct Runoff Volume (AC - FT)	1.05
Baseflow Volume (AC - FT)	O

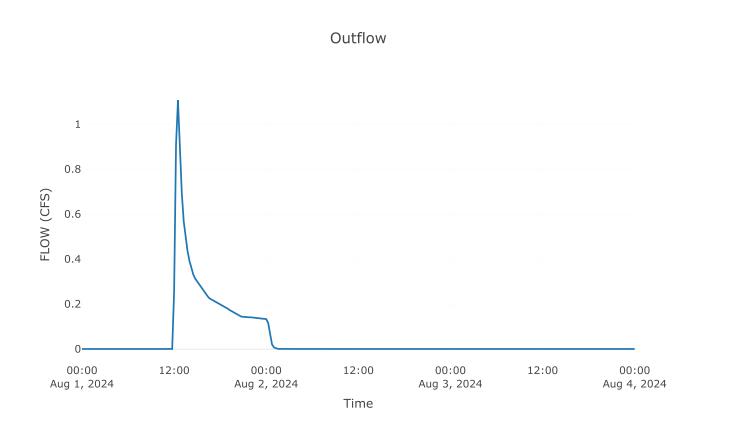
Reservoir: SE POND

Results: SE POND


Peak Discharge (CFS)	3.94
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.18
Peak Inflow (CFS)	3.94
Time of Peak Inflow	01Aug2024, 12:30
Inflow Volume (AC - FT)	1.05
Discharge Volume (AC - FT)	1.05

Sink: WEST CHANNEL I SINK

Results: WEST CHANNEL I SINK


Peak Discharge (CFS)	I.57
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	O.I

Sink: EAST POND

Results: EAST POND

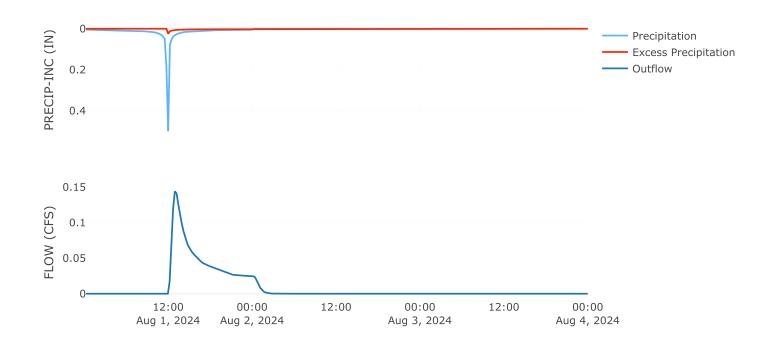
Peak Discharge (CFS)	I.II
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17

Subbasin: N-1

Area (MI2): 0.01

Downstream: Downchute 6

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	40.5
Unitgraph Type	Standard

Results: N-1

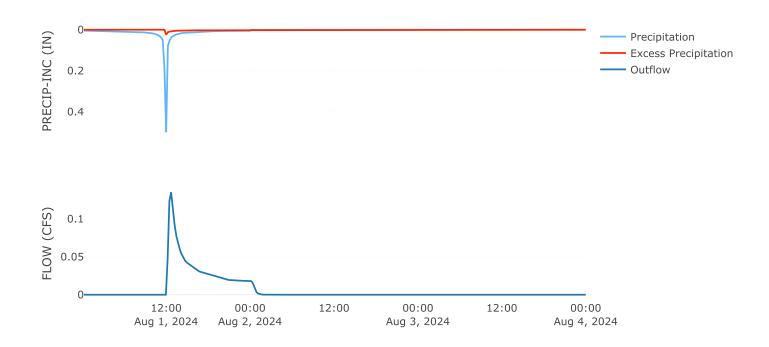
Peak Discharge (CFS)	0.14
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.55
Loss Volume (AC - FT)	0.5
Excess Volume (AC - FT)	0.05
Direct Runoff Volume (AC - FT)	0.05
Baseflow Volume (AC - FT)	0

Subbasin: N-2

Area (MI2): 0

Downstream: Downchute 6

Loss Rate: Scs


Percent Impervious Area	O
Curve Number	70

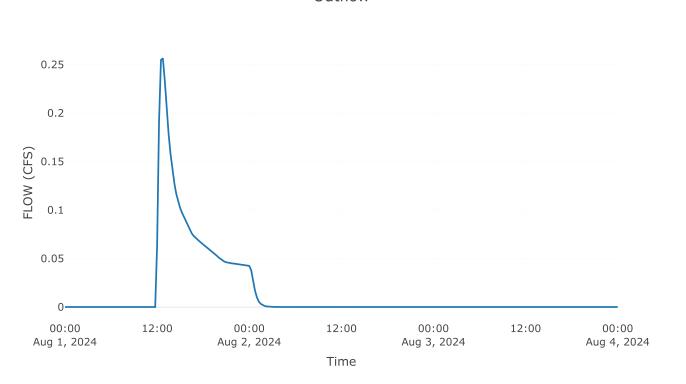
Transform: Scs

Lag	22.5
Unitgraph Type	Standard

Results: N-2

Peak Discharge (CFS)	0.13
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.4
Loss Volume (AC - FT)	0.37
Excess Volume (AC - FT)	0.04
Direct Runoff Volume (AC - FT)	0.04
Baseflow Volume (AC - FT)	0

Reach: DOWNCHUTE 6


Downstream: N channel start

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 6

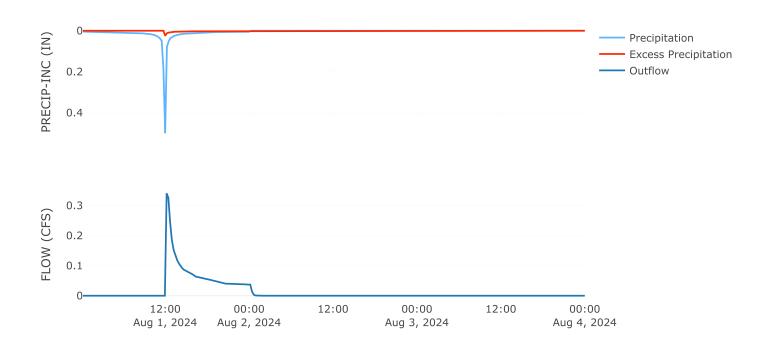
Peak Discharge (CFS)	0.26
Time of Peak Discharge	01Aug2024, 12:45
Volume (IN)	0.17
Peak Inflow (CFS)	0.26
Inflow Volume (AC - FT)	0.09

Subbasin: N-9

Area (MI2): 0.01

 $\textbf{Downstream}: N \ channel \ start$

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	IO
Unitgraph Type	Standard

Results: N-9

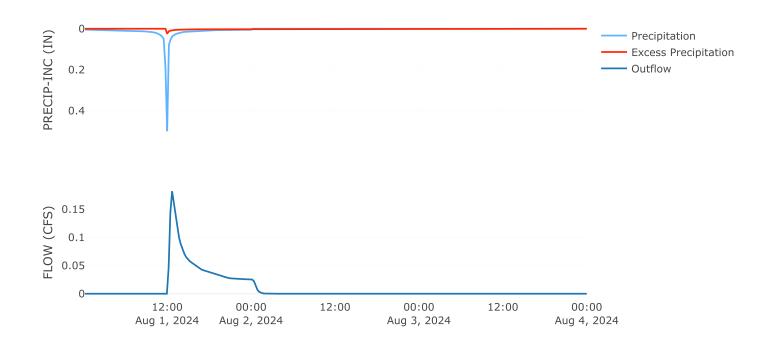
	,
Peak Discharge (CFS)	0.34
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.84
Loss Volume (AC - FT)	0.76
Excess Volume (AC - FT)	0.08
Direct Runoff Volume (AC - FT)	0.08
Baseflow Volume (AC - FT)	O

Subbasin: N-3

Area (MI2): 0.01

 $\textbf{Downstream}: N \ channel \ start$

Loss Rate: Scs

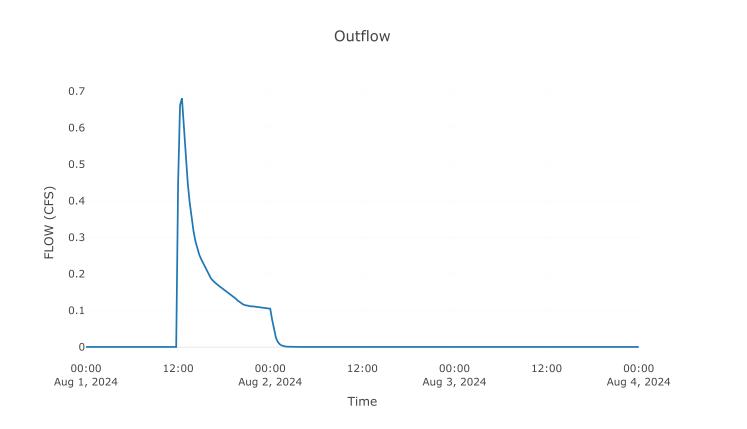

Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	26.5
Unitgraph Type	Standard

Results: N-3

	3
Peak Discharge (CFS)	0.18
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.57
Loss Volume (AC - FT)	0.51
Excess Volume (AC - FT)	0.05
Direct Runoff Volume (AC - FT)	0.05
Baseflow Volume (AC - FT)	O

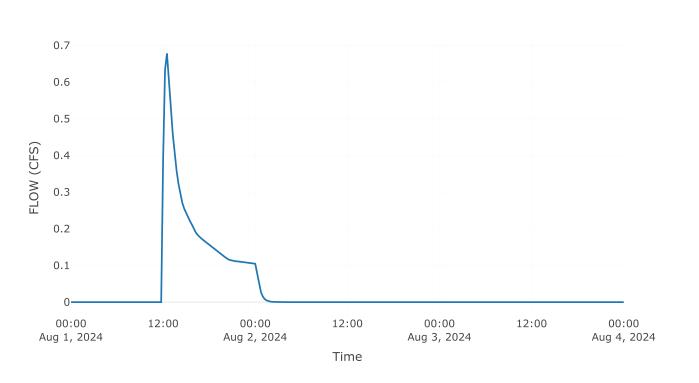


Junction: N CHANNEL START

Downstream: N channel 1.1

Results: N CHANNEL START

Peak Discharge (CFS)	0.68
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17


Reach: N CHANNEL 1.1

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: N CHANNEL 1.1

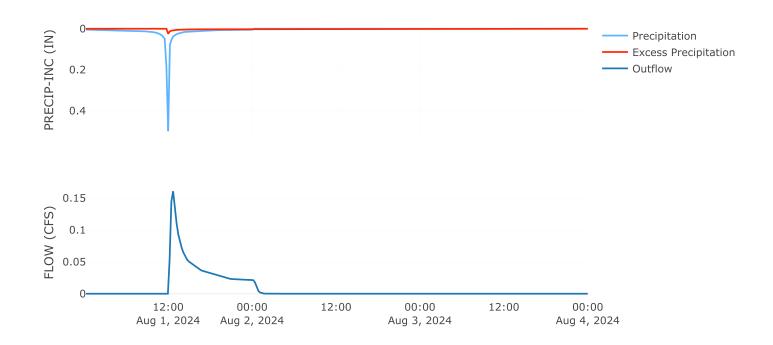
Peak Discharge (CFS)	0.68
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Peak Inflow (CFS)	0.68
Inflow Volume (AC - FT)	0.22

Subbasin: N-4

Area (MI2): 0.01

Downstream: N junction I

Loss Rate: Scs

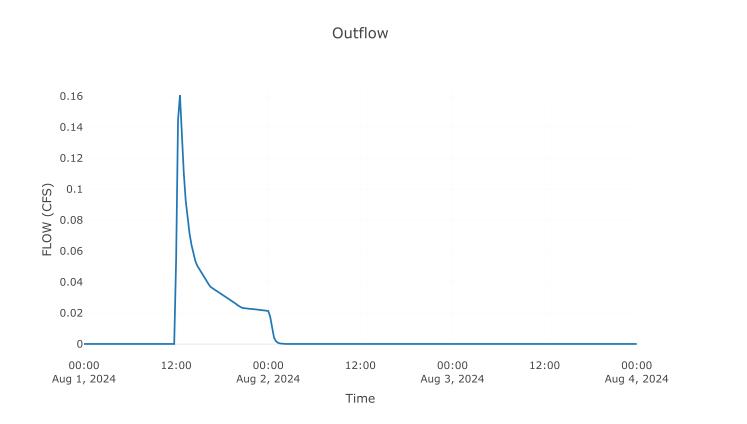

Percent Impervious Area	O
Curve Number	70

Transform: Scs

Lag	22.8
Unitgraph Type	Standard

Results: N-4

	•
Peak Discharge (CFS)	0.16
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.48
Loss Volume (AC - FT)	0.43
Excess Volume (AC - FT)	0.05
Direct Runoff Volume (AC - FT)	0.05
Baseflow Volume (AC - FT)	O



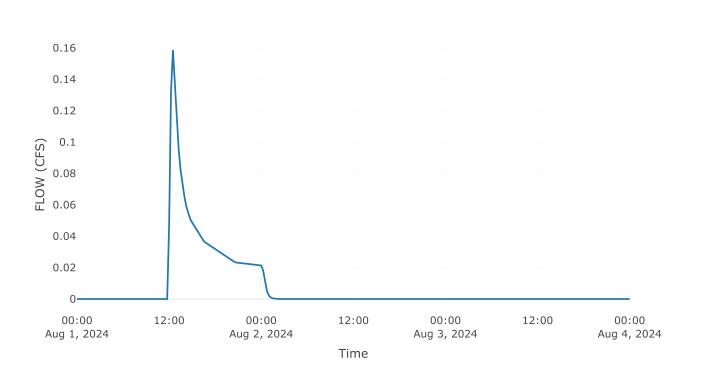
Junction: N JUNCTION 1

Downstream: N channel 1.2

Results: N JUNCTION 1

Peak Discharge (CFS)	0.16
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17

Reach: N CHANNEL 1.2


Downstream: N junction 2

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	2.4

Results: N CHANNEL 1.2

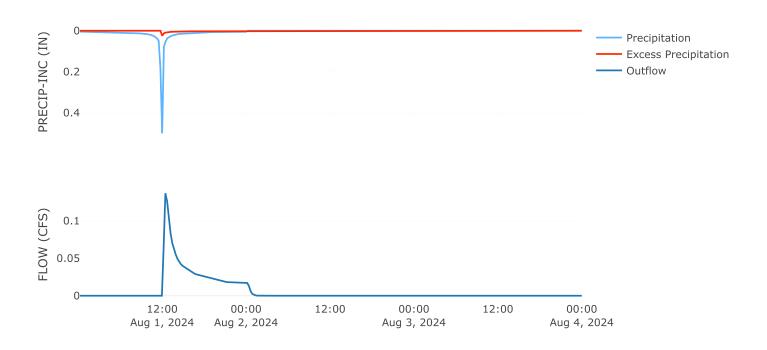
Peak Discharge (CFS)	0.16
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17
Peak Inflow (CFS)	0.16
Inflow Volume (AC - FT)	0.05

Subbasin: N-5

Area (MI2): 0

Downstream: N junction 2

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	19.1
Unitgraph Type	Standard

Results: N-5

Peak Discharge (CFS)	0.14
Time of Peak Discharge	01Aug2024, 12:15
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.38
Loss Volume (AC - FT)	0.35
Excess Volume (AC - FT)	0.04
Direct Runoff Volume (AC - FT)	0.04
Baseflow Volume (AC - FT)	O

Junction: N JUNCTION 2

Results: N JUNCTION 2

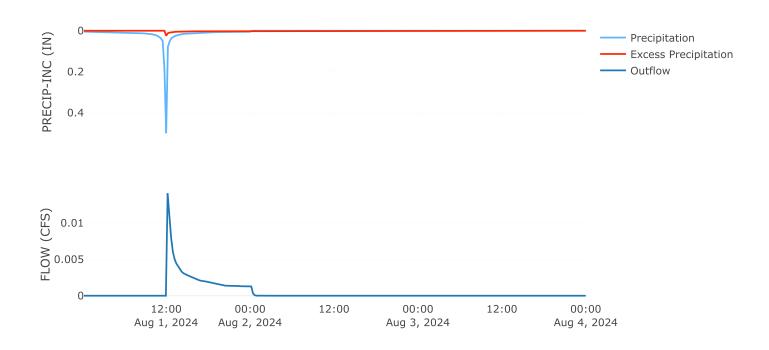
Peak Discharge (CFS)	0.28
Time of Peak Discharge	01Aug2024, 12:30
Volume (IN)	0.17

Subbasin: NW-16

Area (MI2): 0

Downstream: Downchute 3.1

Loss Rate: Scs


Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	4.5
Unitgraph Type	Standard

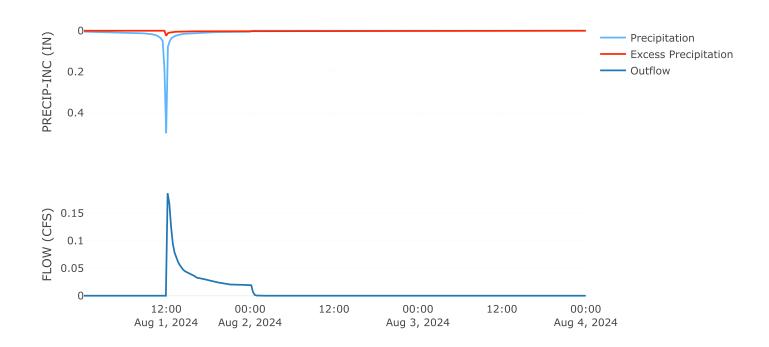
Results: NW-16

Peak Discharge (CFS)	0.01
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.03
Loss Volume (AC - FT)	0.03
Excess Volume (AC - FT)	O
Direct Runoff Volume (AC - FT)	O
Baseflow Volume (AC - FT)	O

Subbasin: SW-7

Area (MI2): 0

Loss Rate: Scs

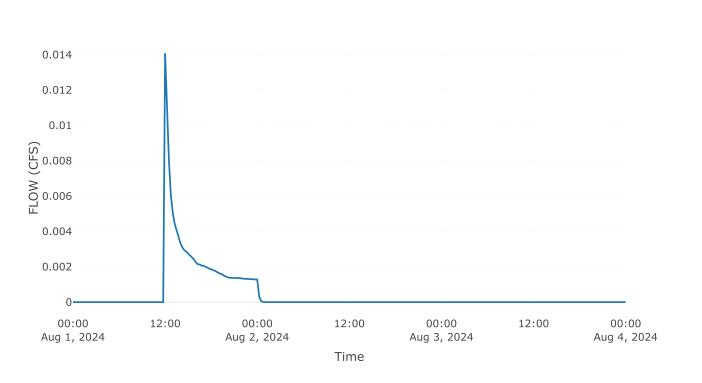

Percent Impervious Area	0
Curve Number	70

Transform: Scs

Lag	9.3
Unitgraph Type	Standard

Results: SW-7

Peak Discharge (CFS)	0.19
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Precipitation Volume (AC - FT)	0.43
Loss Volume (AC - FT)	0.39
Excess Volume (AC - FT)	0.04
Direct Runoff Volume (AC - FT)	0.04
Baseflow Volume (AC - FT)	O

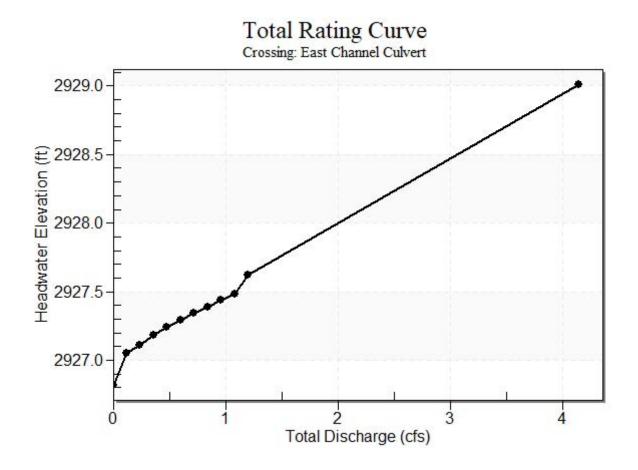

Reach: DOWNCHUTE 3.1

Route: Lag

Method	Lag
Initial Variable	Combined Inflow
Lag	0.5

Results: DOWNCHUTE 3.1

Peak Discharge (CFS)	0.01
Time of Peak Discharge	01Aug2024, 12:00
Volume (IN)	0.17
Peak Inflow (CFS)	0.01
Inflow Volume (AC - FT)	0



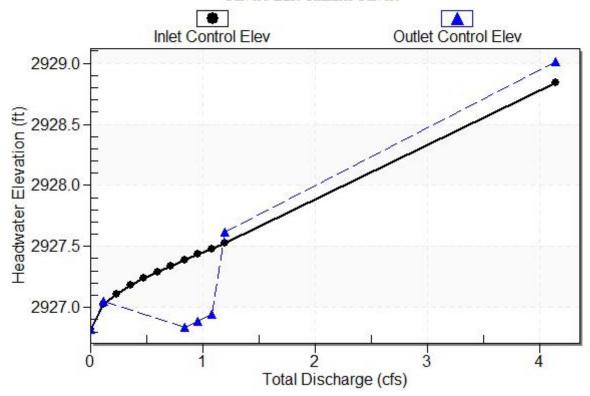
HY-8 Culvert Analysis Report Pickles Butte Landfill Phase 5 Expansion

Table 1 - Summary of Culvert Flows at Crossing: East Channel Culvert

Headwater Elevation (ft)	Total Discharge (cfs)	East Channel Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
2926.82	0.00	0.00	0.00	1
2927.05	0.12	0.12	0.00	1
2927.11	0.24	0.24	0.00	1
2927.18	0.36	0.36	0.00	1
2927.24	0.48	0.48	0.00	1
2927.29	0.60	0.60	0.00	1
2927.34	0.72	0.72	0.00	1
2927.39	0.84	0.84	0.00	1
2927.43	0.96	0.96	0.00	1
2927.48	1.08	1.08	0.00	1
2927.62	1.20	1.20	0.00	1
2929.00	3.99	3.99	0.00	Overtopping

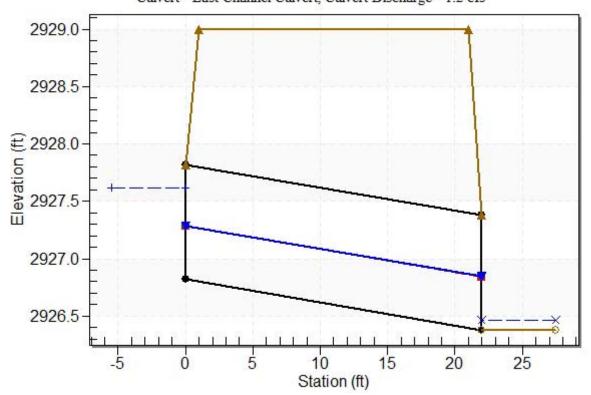
Rating Curve Plot for Crossing: East Channel Culvert

Table 2 - Culvert Summary Table: East Channel Culvert


Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	2926.82	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
0.12	0.12	2927.05	0.203	0.233	2-M2c	0.142	0.141	0.141	0.019	1.771	6.270
0.24	0.24	2927.11	0.291	0.0*	1-S2n	0.200	0.201	0.200	0.029	2.145	8.227
0.36	0.36	2927.18	0.359	0.0*	1-S2n	0.245	0.248	0.245	0.037	2.414	9.608
0.48	0.48	2927.24	0.418	0.0*	1-S2n	0.284	0.287	0.284	0.045	2.620	10.729
0.60	0.60	2927.29	0.471	0.0*	1-S2n	0.318	0.322	0.318	0.051	2.792	11.669
0.72	0.72	2927.34	0.521	0.0*	1-S2n	0.350	0.354	0.350	0.058	2.937	12.496
0.84	0.84	2927.39	0.569	0.019	1-S2n	0.380	0.383	0.380	0.063	3.064	13.236
0.96	0.96	2927.43	0.615	0.069	1-S2n	0.409	0.411	0.409	0.069	3.176	13.900
1.08	1.08	2927.48	0.660	0.121	1-S2n	0.437	0.437	0.437	0.074	3.277	14.510
1.20	1.20	2927.62	0.703	0.799	2-M2c	0.464	0.462	0.462	0.080	3.384	15.083

* Full Flow Headwater eleva	ation is below inlet invert.	
	************	***********
	Straight	Culvert
I	Inlet Elevation (invert): 2926.82 ft,	Outlet Elevation (invert): 2926.38 ft
	Culvert Length: 22.00 ft,	Culvert Slope: 0.0200

Culvert Performance Curve Plot: East Channel Culvert


Performance Curve

Culvert: East Channel Culvert

Water Surface Profile Plot for Culvert: East Channel Culvert

Crossing - East Channel Culvert, Design Discharge - 1.2 cfs Culvert - East Channel Culvert, Culvert Discharge - 1.2 cfs

Site Data - East Channel Culvert

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 2926.82 ft
Outlet Station: 22.00 ft
Outlet Elevation: 2926.38 ft

Number of Barrels: 1

Culvert Data Summary - East Channel Culvert

Barrel Shape: Circular Barrel Diameter: 1.00 ft

Barrel Material: Corrugated Steel

Embedment: 0.00 in

Barrel Manning's n: 0.0240

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting

Inlet Depression: None

Table 3 - Downstream Channel Rating Curve (Crossing: East Channel Culvert)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.00	2926.38	0.00	0.00	0.00	0.00
0.12	2926.40	0.02	6.27	5.37	7.99
0.24	2926.41	0.03	8.23	8.19	8.49
0.36	2926.42	0.04	9.61	10.52	8.75
0.48	2926.42	0.04	10.73	12.56	8.94
0.60	2926.43	0.05	11.67	14.44	9.07
0.72	2926.44	0.06	12.50	16.18	9.17
0.84	2926.44	0.06	13.24	17.82	9.26
0.96	2926.45	0.07	13.90	19.39	9.32
1.08	2926.45	0.07	14.51	20.90	9.37
1.20	2926.46	0.08	15.08	22.34	9.42

Tailwater Channel Data - East Channel Culvert

Tailwater Channel Option: Rectangular Channel

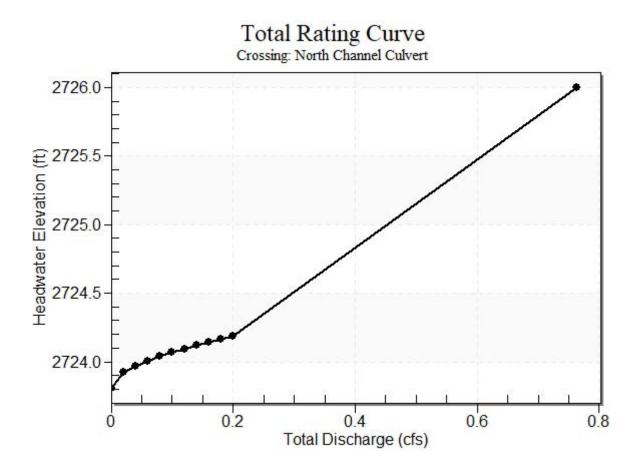
Bottom Width: 1.00 ft Channel Slope: 4.5000

Channel Manning's n: 0.0350

Channel Invert Elevation: 2926.38 ft

Roadway Data for Crossing: East Channel Culvert

Roadway Profile Shape: Constant Roadway Elevation


Crest Length: 30.00 ft

Crest Elevation: 2929.00 ft Roadway Surface: Gravel Roadway Top Width: 20.00 ft

Table 4 - Summary of Culvert Flows at Crossing: North Channel Culvert

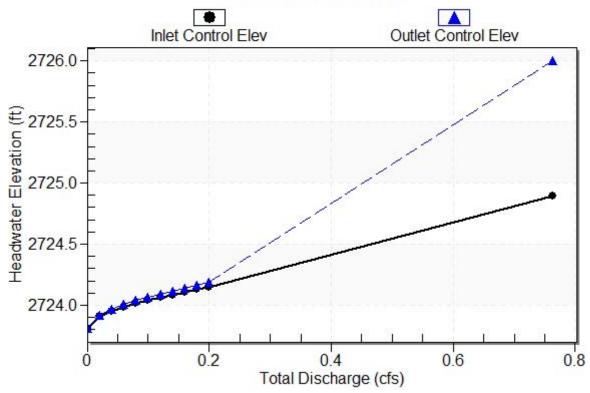
Headwater Elevation (ft)	Total Discharge (cfs)	North Channel Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
2723.81	0.00	0.00	0.00	1
2723.92	0.02	0.02	0.00	1
2723.97	0.04	0.04	0.00	1
2724.01	0.06	0.06	0.00	1
2724.04	0.08	0.08	0.00	1
2724.07	0.10	0.10	0.00	1
2724.09	0.12	0.12	0.00	1
2724.12	0.14	0.14	0.00	1
2724.14	0.16	0.16	0.00	1
2724.16	0.18	0.18	0.00	1
2724.18	0.20	0.20	0.00	1
2726.00	0.74	0.74	0.00	Overtopping

Rating Curve Plot for Crossing: North Channel Culvert

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.00	0.00	2723.81	0.000	0.000	0-NF	0.000	0.000	0.000	0.000	0.000	0.000
0.02	0.02	2723.92	0.099	0.110	2-M2c	0.074	0.069	0.069	0.034	1.234	8.741
0.04	0.04	2723.97	0.141	0.158	2-M2c	0.104	0.098	0.098	0.044	1.482	10.395
0.06	0.06	2724.01	0.174	0.196	2-M2c	0.128	0.120	0.120	0.051	1.654	11.504
0.08	0.08	2724.04	0.203	0.228	2-M2c	0.148	0.139	0.139	0.057	1.792	12.362
0.10	0.10	2724.07	0.229	0.257	2-M2c	0.166	0.156	0.156	0.062	1.909	13.071
0.12	0.12	2724.09	0.252	0.284	2-M2c	0.183	0.172	0.172	0.066	2.012	13.680
0.14	0.14	2724.12	0.275	0.308	2-M2c	0.199	0.186	0.186	0.070	2.105	14.218
0.16	0.16	2724.14	0.297	0.331	2-M2c	0.214	0.199	0.199	0.074	2.192	14.700
0.18	0.18	2724.16	0.319	0.354	2-M2c	0.228	0.212	0.212	0.077	2.273	15.140
0.20	0.20	2724.18	0.339	0.375	2-M2c	0.243	0.224	0.224	0.080	2.349	15.544

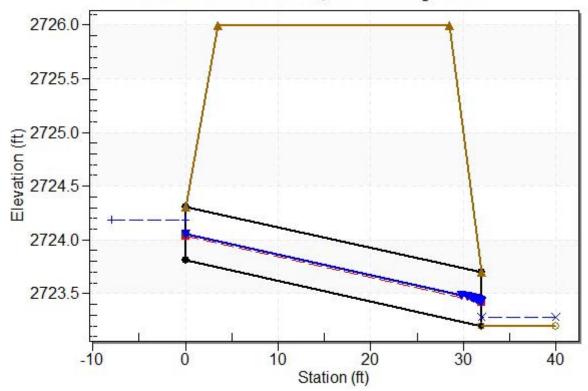
Table 5 - Culvert Summary Table: North Channel Culvert

Straight Culvert


Inlet Elevation (invert): 2723.81 ft, Outlet Elevation (invert): 2723.20 ft

Culvert Length: 32.01 ft, Culvert Slope: 0.0191

Culvert Performance Curve Plot: North Channel Culvert


Performance Curve

Culvert: North Channel Culvert

Water Surface Profile Plot for Culvert: North Channel Culvert

Crossing - North Channel Culvert, Design Discharge - 0.2 cfs
Culvert - North Channel Culvert, Culvert Discharge - 0.2 cfs

Site Data - North Channel Culvert

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 2723.81 ft
Outlet Station: 32.00 ft
Outlet Elevation: 2723.20 ft

Number of Barrels: 1

Culvert Data Summary - North Channel Culvert

Barrel Shape: Circular
Barrel Diameter: 0.50 ft

Barrel Material: Corrugated Steel

Embedment: 0.00 in

Barrel Manning's n: 0.0240

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting

Inlet Depression: None

Table 6 - Downstream Channel Rating Curve (Crossing: North Channel Culvert)

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number	
0.00	2723.20	0.00	0.00	0.00	0.00	
0.02	2723.23	0.03	8.74	23.91	11.84	
0.04	2723.24	0.04	10.39	31.01	12.37	
0.06	2723.25	0.05	11.50	36.10	12.69	
0.08	2723.26	0.06	12.36	40.22	12.92	
0.10	2723.26	0.06	13.07	43.73	13.10	
0.12	2723.27	0.07	13.68	46.82	13.25	
0.14	2723.27	0.07	14.22	49.61	13.38	
0.16	2723.27	0.07	14.70	52.15	13.49	
0.18	2723.28	0.08	15.14	54.51	13.59	
0.20	2723.28	0.08	15.54	56.71	13.68	

Tailwater Channel Data - North Channel Culvert

Tailwater Channel Option: Triangular Channel

Side Slope (H:V): 2.00 (_:1) Channel Slope: 11.3300

Channel Manning's n: 0.0350

Channel Invert Elevation: 2723.20 ft

Roadway Data for Crossing: North Channel Culvert

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 30.00 ft

Crest Elevation: 2726.00 ft Roadway Surface: Gravel Roadway Top Width: 25.00 ft

NOAA Atlas 14, Volume 12, Version 2 Location name: Caldwell, Idaho, USA* Latitude: 43.515°, Longitude: -116.7205° Elevation: 2737 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Carl Trypaluk, Dale Unruh, Michael St.Laurent, Austin Jordan, Rama Sesha Sridhar Mantripragada, Sandra Pavlovic, Greg Fall, Fernando Salas

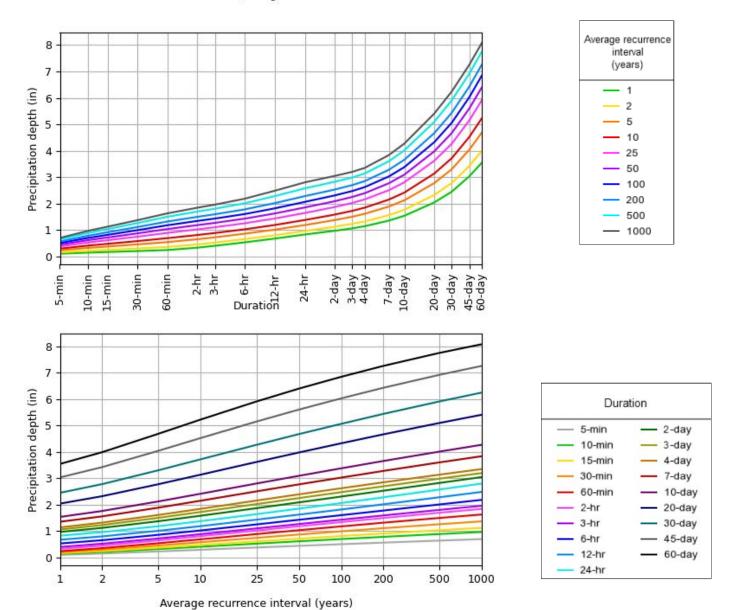
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
D	Average recurrence interval (years)											
Duration	1	2	5	10	25	50	100	200	500	1000		
5-min	0.102 (0.088-0.118)	0.152 (0.131-0.178)	0.231 (0.196-0.275)	0.295 (0.245-0.356)	0.380 (0.303-0.468)	0.443 (0.341-0.554)	0.505 (0.367-0.646)	0.565 (0.386-0.751)	0.642 (0.406-0.904)	0.698 (0.426-1.03)		
10-min	0.142 (0.122-0.164)	0.211 (0.182-0.247)	0.321 (0.272-0.382)	0.409 (0.340-0.494)	0.527 (0.421-0.650)	0.615 (0.472-0.769)	0.700 (0.510-0.896)	0.784 (0.536-1.04)	0.890 (0.563-1.25)	0.968 (0.591-1.43)		
15-min	0.165 (0.141-0.191)	0.245 (0.211-0.287)	0.373 (0.316-0.443)	0.475 (0.395-0.574)	0.612 (0.489-0.755)	0.714 (0.549-0.893)	0.814 (0.592-1.04)	0.911 (0.622-1.21)	1.04 (0.654-1.46)	1.12 (0.686-1.66)		
30-min	0.201 (0.172-0.233)	0.299 (0.258-0.349)	0.454 (0.385-0.540)	0.579 (0.482-0.699)	0.746 (0.596-0.920)	0.871 (0.669-1.09)	0.992 (0.722-1.27)	1.11 (0.758-1.48)	1.26 (0.798-1.78)	1.37 (0.837-2.02)		
60-min	0.241 (0.206-0.279)	0.357 (0.308-0.417)	0.541 (0.458-0.644)	0.690 (0.573-0.833)	0.888 (0.709-1.09)	1.04 (0.796-1.30)	1.18 (0.858-1.51)	1.32 (0.902-1.75)	1.50 (0.948-2.11)	1.63 (0.995-2.41)		
2-hr	0.330 (0.286-0.374)	0.453 (0.395-0.522)	0.649 (0.557-0.763)	0.809 (0.681-0.965)	1.02 (0.829-1.25)	1.18 (0.927-1.47)	1.34 (1.00-1.71)	1.50 (1.06-1.99)	1.70 (1.11-2.40)	1.84 (1.17-2.74)		
3-hr	0.400 (0.353-0.451)	0.524 (0.462-0.597)	0.722 (0.626-0.839)	0.884 (0.751-1.04)	1.10 (0.904-1.34)	1.27 (1.01-1.57)	1.43 (1.09-1.82)	1.59 (1.16-2.12)	1.80 (1.23-2.55)	1.96 (1.29-2.92)		
6-hr	0.532 (0.477-0.591)	0.656 (0.588-0.735)	0.859 (0.755-0.978)	1.02 (0.886-1.19)	1.25 (1.05-1.49)	1.43 (1.17-1.74)	1.60 (1.27-2.01)	1.78 (1.36-2.33)	2.01 (1.46-2.80)	2.18 (1.53-3.21)		
12-hr	0.674 (0.614-0.740)	0.801 (0.729-0.884)	1.01 (0.910-1.13)	1.19 (1.06-1.34)	1.43 (1.24-1.65)	1.62 (1.38-1.90)	1.82 (1.52-2.18)	2.02 (1.64-2.52)	2.28 (1.78-3.03)	2.48 (1.89-3.46)		
24-hr	0.827 (0.762-0.902)	0.962 (0.886-1.05)	1.19 (1.08-1.30)	1.38 (1.25-1.52)	1.64 (1.47-1.83)	1.85 (1.63-2.09)	2.06 (1.79-2.38)	2.28 (1.94-2.74)	2.58 (2.14-3.27)	2.80 (2.28-3.73)		
2-day	0.969 (0.895-1.06)	1.12 (1.04-1.22)	1.37 (1.26-1.50)	1.58 (1.44-1.74)	1.87 (1.68-2.07)	2.09 (1.86-2.35)	2.31 (2.03-2.65)	2.53 (2.19-3.02)	2.82 (2.40-3.56)	3.05 (2.54-4.03)		
3-day	1.06 (0.980-1.16)	1.23 (1.13-1.34)	1.50 (1.37-1.64)	1.72 (1.56-1.89)	2.02 (1.81-2.25)	2.25 (2.00-2.54)	2.47 (2.18-2.86)	2.70 (2.34-3.23)	2.99 (2.55-3.78)	3.20 (2.70-4.25)		
4-day	1.14 (1.05-1.24)	1.32 (1.22-1.44)	1.61 (1.47-1.76)	1.84 (1.67-2.02)	2.16 (1.93-2.40)	2.39 (2.12-2.70)	2.62 (2.30-3.03)	2.85 (2.48-3.41)	3.14 (2.69-3.98)	3.35 (2.84-4.45)		
7-day	1.35 (1.25-1.48)	1.56 (1.43-1.70)	1.89 (1.72-2.06)	2.15 (1.94-2.37)	2.50 (2.24-2.80)	2.77 (2.45-3.14)	3.03 (2.65-3.52)	3.28 (2.84-3.95)	3.60 (3.08-4.60)	3.84 (3.24-5.15)		
10-day	1.54 (1.41-1.68)	1.76 (1.62-1.92)	2.12 (1.93-2.32)	2.41 (2.17-2.66)	2.80 (2.50-3.13)	3.09 (2.73-3.51)	3.38 (2.95-3.93)	3.66 (3.16-4.42)	4.01 (3.41-5.14)	4.27 (3.58-5.76)		
20-day	2.04 (1.88-2.23)	2.32 (2.13-2.54)	2.77 (2.52-3.04)	3.14 (2.82-3.45)	3.62 (3.22-4.05)	3.98 (3.51-4.52)	4.32 (3.78-5.04)	4.66 (4.02-5.65)	5.09 (4.32-6.54)	5.41 (4.54-7.28)		
30-day	2.45 (2.26-2.67)	2.78 (2.55-3.03)	3.30 (3.00-3.61)	3.72 (3.35-4.09)	4.27 (3.80-4.77)	4.67 (4.13-5.31)	5.06 (4.42-5.90)	5.44 (4.70-6.58)	5.91 (5.03-7.58)	6.24 (5.28-8.40)		
45-day	3.03 (2.79-3.30)	3.42 (3.13-3.73)	4.04 (3.66-4.40)	4.52 (4.07-4.96)	5.15 (4.59-5.74)	5.60 (4.96-6.36)	6.02 (5.29-7.03)	6.43 (5.59-7.78)	6.92 (5.95-8.86)	7.26 (6.25-9.76)		
60-day	3.54 (3.26-3.87)	3.99 (3.65-4.35)	4.68 (4.24-5.11)	5.22 (4.70-5.73)	5.91 (5.28-6.60)	6.39 (5.68-7.27)	6.84 (6.04-7.99)	7.26 (6.36-8.79)	7.75 (6.74-9.93)	8.08 (7.07-10.9)		

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

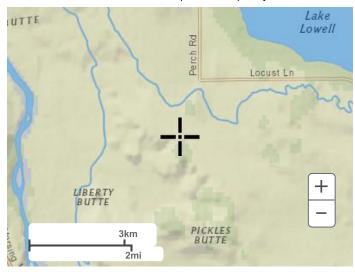

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

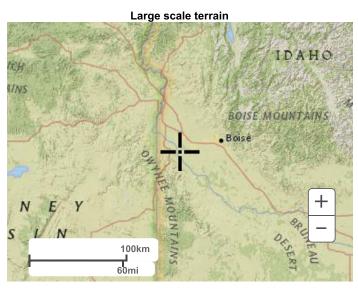
Please refer to NOAA Atlas 14 document for more information.

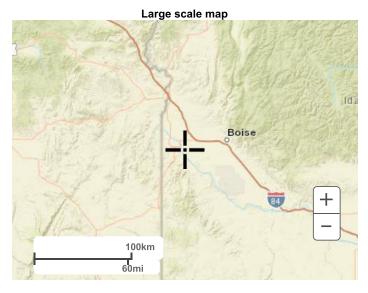
Back to Top

PF graphical

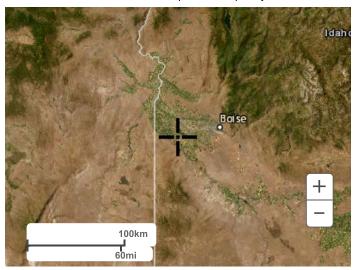
PDS-based depth-duration-frequency (DDF) curves Latitude: 43.5150°, Longitude: -116.7205°


NOAA Atlas 14, Volume 12, Version 2


Created (GMT): Mon Jan 13 18:44:19 2025


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>